VOL. 97

2003

NO. 1

AN ORBIT CLOSURE FOR A REPRESENTATION OF THE KRONECKER QUIVER WITH BAD SINGULARITIES

BҮ

GRZEGORZ ZWARA (Toruń)

Abstract. We give an example of a representation of the Kronecker quiver for which the closure of the corresponding orbit contains a singularity smoothly equivalent to the isolated singularity of two planes crossing at a point. Therefore this orbit closure is neither Cohen–Macaulay nor unibranch.

1. Introduction and the main result. Throughout the paper, k denotes a fixed algebraically closed field. Let $Q = (Q_0, Q_1, s, e)$ be a finite quiver, that is, Q_0 is a finite set of vertices, Q_1 is a finite set of arrows, and $s, e : Q_1 \to Q_0$ are functions such that any arrow $\alpha \in Q_1$ has the starting vertex $s(\alpha)$ and the ending vertex $e(\alpha)$. Let $\mathbf{d} = (d_i)_{i \in Q_0} \in \mathbb{N}^{Q_0}$ be a dimension vector. We define the vector space

$$\operatorname{rep}_Q(\mathbf{d}) = \prod_{\alpha \in Q_1} \mathbb{M}_{d_{e(\alpha)} \times d_{s(\alpha)}}(k),$$

where $\mathbb{M}_{d' \times d''}(k)$ denotes the set of $d' \times d''$ -matrices with coefficients in k for any positive integers d' and d''. The product $\mathrm{Gl}(\mathbf{d}) = \prod_{i \in Q_0} \mathrm{Gl}_{d_i}(k)$ of general linear groups acts on $\mathrm{rep}_Q(\mathbf{d})$ via

$$g \star V = (g_{e(\alpha)} V_{\alpha} g_{s(\alpha)}^{-1})_{\alpha \in Q_1}$$

for any $g = (g_i)_{i \in Q_0} \in \operatorname{Gl}(\mathbf{d})$ and $V = (V_\alpha)_{\alpha \in Q_1} \in \operatorname{rep}_Q(\mathbf{d})$. The orbits of this action correspond to the isomorphism classes of the representations of Q with dimension vector \mathbf{d} .

Let M be a representation of Q with dimension vector \mathbf{d} . We will denote by \mathcal{O}_M the corresponding $\mathrm{Gl}(\mathbf{d})$ -orbit in $\mathrm{rep}_Q(\mathbf{d})$. An interesting problem is to study the geometry of the orbit closure $\overline{\mathcal{O}}_M$. For example we may ask when it is regular, normal or Cohen–Macaulay. The orbit closure $\overline{\mathcal{O}}_M$ is Cohen–Macaulay and normal if Q is a Dynkin quiver of type \mathbb{A}_n or \mathbb{D}_m ([3], [4]). For the remaining Dynkin quivers of type \mathbb{E}_l , l = 6, 7, 8, we know at least that $\overline{\mathcal{O}}_M$ is unibranch ([14]), that is, its normalization map is bijective.

²⁰⁰⁰ Mathematics Subject Classification: 14B05, 14L30, 16G20.

Supported by Polish Scientific Grant KBN No. 5 PO3A 008 21.

The Dynkin quivers are the only quivers Q for which the variety $\operatorname{rep}_Q(\mathbf{d})$ has only finitely many $\operatorname{Gl}(\mathbf{d})$ -orbit for any dimension vector \mathbf{d} . The simplest quiver admitting infinite families of orbits is a point with a loop. Then the points of $\operatorname{rep}_Q(\mathbf{d})$ are square matrices and the orbit \mathcal{O}_M is a conjugacy class. Hence $\overline{\mathcal{O}}_M$ is normal and Cohen–Macaulay ([6], [10], [11]).

Another distinguished example is given by the Kronecker quiver Q: $1 \stackrel{\alpha}{\underset{\beta}{\leftarrow}} 2$. It has been proved recently that then $\overline{\mathcal{O}}_M$ is regular in codimension one, and moreover it is Cohen-Macaulay and normal at any point Nsuch that there is no point W satisfying $\overline{\mathcal{O}}_N \subsetneq \overline{\mathcal{O}}_W \subsetneq \overline{\mathcal{O}}_M$ ([2]). In fact, [2] gives a classification of the types of singularities $\operatorname{Sing}(\overline{\mathcal{O}}_M, N)$ for such points N. Recall that following Hesselink (see [9, (1.7)]), the types of singularities $\operatorname{Sing}(\mathcal{X}, x_0)$ and $\operatorname{Sing}(\mathcal{Y}, y_0)$ of two pointed varieties (\mathcal{X}, x_0) and (\mathcal{Y}, y_0) coincide if there are smooth morphisms $f : \mathcal{Z} \to \mathcal{X}, g : \mathcal{Z} \to \mathcal{Y}$ and a point $z_0 \in \mathcal{Z}$ with $f(z_0) = x_0$ and $g(z_0) = y_0$. If $\operatorname{Sing}(\mathcal{X}, x_0) = \operatorname{Sing}(\mathcal{Y}, y_0)$ then the variety \mathcal{X} is regular (respectively, normal, Cohen-Macaulay, unibranch) at x_0 if and only if the same is true for the variety \mathcal{Y} at y_0 (see [8, Section 17] for more information about smooth morphisms).

Let \mathcal{V} be the set of points $(x, y, z, t) \in k^4$ such that xz = xt = yz = yt = 0. Thus \mathcal{V} is a union of two planes intersecting at the point 0. Consequently, the variety \mathcal{V} is neither unibranch nor normal at 0. It is also not difficult to show that \mathcal{V} is not Cohen–Macaulay (see for instance [7, p. 459]). The main result of the paper shows that $\operatorname{Sing}(\mathcal{V}, 0)$ appears as the type of singularity of an orbit closure in $\operatorname{rep}_Q(\mathbf{d})$, where Q is the Kronecker quiver.

THEOREM 1. Let Q be the Kronecker quiver $1 \stackrel{\alpha}{\underset{\beta}{\leftarrow}} 2$ and $\mathbf{d} = (3,3)$. Let $M = (M_{\alpha}, M_{\beta})$ and $N = (N_{\alpha}, N_{\beta})$ be two points of $\operatorname{rep}_Q(\mathbf{d})$ given by

$$M_{\alpha} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \ M_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ N_{\alpha} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \ N_{\beta} = \begin{bmatrix} 0 & 0 & 0 \\ \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \end{bmatrix}$$

for some scalars $\lambda_1 \neq \lambda_2$. Then $N \in \overline{\mathcal{O}}_M$ and $\operatorname{Sing}(\overline{\mathcal{O}}_M, N) = \operatorname{Sing}(\mathcal{V}, 0)$.

Note that this theorem gives the first example (to the author's knowledge) of an orbit closure in a variety of representations of a quiver which is not Cohen–Macaulay.

2. Transversal slices. Let $Q = (Q_0, Q_1, s, e)$ be a finite quiver, $\mathbf{d} \in \mathbb{N}^{Q_0}$ be a dimension vector and $N = (N_\alpha)_{\alpha \in Q_1}$ be a point of $\operatorname{rep}_Q(\mathbf{d})$. We identify the tangent space $\mathcal{T}_{\operatorname{rep}_Q(\mathbf{d}),N}$ with the vector space $\operatorname{rep}_Q(\mathbf{d})$, the tangent space $\mathcal{T}_{\mathcal{O}_N,N}$ with a subspace of $\operatorname{rep}_Q(\mathbf{d})$ and the tangent space $\mathcal{T}_{\operatorname{Gl}(\mathbf{d}),1}$ with the product $\prod_{i \in Q_0} \mathbb{M}_{d_i \times d_i}(k)$. Let $\mu : \operatorname{Gl}(\mathbf{d}) \to \mathcal{O}_N$ denote the orbit

map sending g to $g \star N$. Then the induced linear map of tangent spaces $\mu' : \mathcal{T}_{\mathrm{Gl}(\mathbf{d}),1} \to \mathcal{T}_{\mathcal{O}_N,N}$ is given by the formula

$$\mu'(h) = (h_{e(\alpha)}N_{\alpha} - N_{\alpha}h_{s(\alpha)})_{\alpha \in Q_1}$$

for any $h = (h_i)_{i \in Q_0} \in \mathcal{T}_{\mathrm{Gl}(\mathbf{d}),1}$. The kernel of μ' is just the endomorphism space $\mathrm{End}_Q(N)$ of the representation N, and the stabilizer $\mu^{-1}(N)$ of the point N is just the automorphism group $\mathrm{Aut}_Q(N)$ of the representation N. Since $\mathrm{Aut}_Q(N)$ is a non-empty open subset of the vector space $\mathrm{End}_Q(N)$, we have

$$\dim \operatorname{Im} \mu' = \dim \prod_{i \in Q_0} \mathbb{M}_{d_i \times d_i}(k) - \dim \operatorname{End}_Q(N)$$
$$= \dim \operatorname{Gl}(\mathbf{d}) - \dim \operatorname{Aut}_Q(N) = \dim \mathcal{O}_N = \dim \mathcal{T}_{\mathcal{O}_N, N}.$$

Consequently, μ' is a surjective map, which means that the orbit map μ is separable. This enables us to apply the transversal slice method explained in [13, Section 5.1] (see also [5, Section 6.2]). Namely, let \mathcal{S} be a Gl(**d**)-invariant subvariety of rep_Q(**d**) containing N. We choose a linear complement \mathcal{C} of $\mathcal{T}_{\mathcal{O}_N,N}$ in $\mathcal{T}_{\text{rep}_Q(\mathbf{d}),N} = \text{rep}_Q(\mathbf{d})$. Then

$$\operatorname{Sing}(\mathcal{S}, N) = \operatorname{Sing}(\mathcal{S} \cap (N + \mathcal{C}), N).$$

For instance, we may apply this for any orbit closure $S = \overline{\mathcal{O}}_M$ containing the point N.

3. The proof of Theorem 1. Let Q be the Kronecker quiver $1 \stackrel{\alpha}{\underset{\beta}{\leftarrow}} 2$ and $\mathbf{d} = (3,3)$. We consider the representation M in $\operatorname{rep}_Q(\mathbf{d})$ given in Theorem 1. The following lemma characterizes the orbit \mathcal{O}_M .

LEMMA 2. Let $V = (V_{\alpha}, V_{\beta})$ be a point of $\operatorname{rep}_Q(\mathbf{d})$. Then V belongs to \mathcal{O}_M if and only if

$$\operatorname{rk} \begin{bmatrix} V_{\alpha} & V_{\beta} \end{bmatrix} = \operatorname{rk} \begin{bmatrix} V_{\alpha} \\ V_{\beta} \end{bmatrix} = 3, \quad \operatorname{rk} \begin{bmatrix} V_{\alpha} & V_{\beta} & 0 \\ 0 & V_{\alpha} & V_{\beta} \end{bmatrix} = \operatorname{rk} \begin{bmatrix} V_{\alpha} & 0 \\ V_{\beta} & V_{\alpha} \\ 0 & V_{\beta} \end{bmatrix} = 5.$$

Proof. We will use some basic facts concerning finite-dimensional representations of the Kronecker quiver which can be found in [1] or [12]. Observe that the above conditions are invariant under the action of the group $Gl(\mathbf{d})$ and hold for V = M. Thus one implication is proved.

We consider the following representations of Q:

$$P_1 = k \stackrel{0}{\underset{0}{\leftarrow}} 0, \quad P_2 = k^2 \stackrel{[\stackrel{0}{1}]}{\underset{[\stackrel{1}{0}]}{\leftarrow}} k, \quad I_1 = k \stackrel{[01]}{\underset{[10]}{\leftarrow}} k^2, \quad I_2 = 0 \stackrel{0}{\underset{0}{\leftarrow}} k.$$

In particular, $M \simeq P_2 \oplus I_1$. Assume that V satisfies the above rank conditions. It is easy to check that the equality $\operatorname{rk} [V_{\alpha} V_{\beta}] = 3$ means that $\dim \operatorname{Hom}_Q(V, P_1) = 0$, and $\operatorname{rk} \begin{bmatrix} V_{\alpha} & V_{\beta} & 0 \\ 0 & V_{\alpha} & V_{\beta} \end{bmatrix} = 5$ means that $\dim \operatorname{Hom}_Q(V, P_2) = 1$. Observe that the radical rad P_2 of the representation P_2 is isomorphic to $P_1 \oplus P_1$. Since P_2 is a projective representation, it follows that

$$1 = \dim \operatorname{Hom}_Q(V, P_2) - \dim \operatorname{Hom}_Q(V, \operatorname{rad} P_2)$$

is the multiplicity of P_2 as a direct summand of V. By duality, the representation I_1 occurs as a direct summand of V. Hence $V \simeq P_2 \oplus I_1 \oplus V'$ for some representation V'. Comparing the dimension vectors of the above representations we get $V' \simeq 0$, and consequently, $V \simeq M$.

We fix two different scalars $\lambda_1, \lambda_2 \in k$. Let N be the representation in $\operatorname{rep}_Q(\mathbf{d})$ given in Theorem 1. It is easy to calculate that the tangent space $\mathcal{T}_{\mathcal{O}_N,N}$ consists of the points

$$\left(\begin{bmatrix} c_{1,1} & c_{1,2} & 0\\ c_{2,1} & c_{2,2} & c_{2,3}\\ c_{3,1} & c_{3,2} & c_{3,3} \end{bmatrix}, \begin{bmatrix} \lambda_1 c_{1,1} & \lambda_2 c_{1,2} & 0\\ \lambda_1 c_{2,1} & d_{2,2} & \lambda_1 c_{2,3}\\ d_{3,1} & \lambda_2 c_{3,2} & \lambda_2 c_{3,3} \end{bmatrix}\right),$$

where $c_{i,j}, d_{i,j} \in k$. We choose the following linear complement of $\mathcal{T}_{\mathcal{O}_N,N}$ in $\mathcal{T}_{\operatorname{rep}_Q(\mathbf{d}),N}$:

$$\mathcal{C} = \left\{ \left(\begin{bmatrix} 0 & 0 & * \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} * & * & * \\ * & 0 & * \\ 0 & * & * \end{bmatrix} \right) \right\},\$$

where each * stands for an arbitrary scalar. Thus each element $V = (V_{\alpha}, V_{\beta})$ of N + C has the form

(1)
$$V_{\alpha} = \begin{bmatrix} 0 & 0 & a_{1,3} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad V_{\beta} = \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & 0 & b_{2,3} \\ 0 & b_{3,2} & b_{3,3} \end{bmatrix}$$

for some scalars $a_{1,3}, b_{i,j}$. Let \mathcal{U} denote the open subset of $\overline{\mathcal{O}}_M \cap (N + \mathcal{C})$ given by the inequality $b_{2,1} \neq b_{3,2}$.

LEMMA 3. \mathcal{U} consists of the points V of the form (1) such that

$$(2) a_{1,3} = b_{1,3} = b_{1,1}b_{1,2} = b_{1,1}b_{2,3} = b_{3,3}b_{1,2} = b_{3,3}b_{2,3} = 0, b_{2,1} \neq b_{3,2}.$$

Proof. We denote by \mathcal{W} the set of points V of the form (1) satisfying (2). Let $V \in \mathcal{U}$. Observe that $\operatorname{rk}(M_{\alpha} + \lambda M_{\beta}) \leq 2$ for any scalar λ . Since this is a closed condition invariant under the action of $\operatorname{Gl}(\mathbf{d})$, we have $\operatorname{rk}(V_{\alpha} + \lambda V_{\beta}) \leq 2$ for any $\lambda \in k$. Thus the coefficients of the polynomial $\det(V_{\alpha} + \lambda V_{\beta})$ of the variable λ vanish. After standard calculations we get

$$a_{1,3} = b_{1,3} = b_{1,1}b_{2,3} = b_{3,3}b_{1,2} = 0.$$

From Lemma 2 we conclude that

$$\operatorname{rk}\begin{bmatrix} V_{\alpha} & V_{\beta} & 0\\ 0 & V_{\alpha} & V_{\beta} \end{bmatrix}, \operatorname{rk}\begin{bmatrix} V_{\alpha} & 0\\ V_{\beta} & V_{\alpha}\\ 0 & V_{\beta} \end{bmatrix} \le 5.$$

Next standard calculations give the remaining two equalities

$$b_{1,1}b_{1,2} = b_{3,3}b_{2,3} = 0.$$

Thus $\mathcal{U} \subseteq \mathcal{W}$.

In order to prove the reverse inclusion it suffices to show that $\mathcal{W} \cap \mathcal{O}_M$ is a dense subset of \mathcal{W} . The variety \mathcal{W} is the union of two four-dimensional irreducible components:

$$\mathcal{W}' = \left\{ \left(\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} b_{1,1} & 0 & 0 \\ b_{2,1} & 0 & 0 \\ 0 & b_{3,2} & b_{3,3} \end{bmatrix} \right) : b_{2,1} \neq b_{3,2} \right\},\$$
$$\mathcal{W}'' = \left\{ \left(\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & b_{1,2} & 0 \\ b_{2,1} & 0 & b_{2,3} \\ 0 & b_{3,2} & 0 \end{bmatrix} \right) : b_{2,1} \neq b_{3,2} \right\}.$$

Applying Lemma 2 we can calculate that an element V in \mathcal{W} belongs to \mathcal{O}_M if and only if

(3)
$$\operatorname{rk}\begin{bmatrix}b_{1,1} & b_{1,2}\end{bmatrix} = \operatorname{rk}\begin{bmatrix}b_{2,3}\\b_{3,3}\end{bmatrix} = 1.$$

It is easy to see that there is a point in \mathcal{W}' as well as a point in \mathcal{W}'' satisfying the open condition (3). Hence $\mathcal{W}' \cap \mathcal{O}_M$ is a dense subset of \mathcal{W}' and $\mathcal{W}'' \cap \mathcal{O}_M$ is a dense subset of \mathcal{W}'' .

By the above lemma, $N \in \mathcal{U} \subset \overline{\mathcal{O}}_M$. Applying the transversal slice method we get

$$\operatorname{Sing}(\overline{\mathcal{O}}_M, N) = \operatorname{Sing}(\mathcal{U}, N).$$

It follows from Lemma 3 that ${\mathcal U}$ is isomorphic to the product of the smooth variety

$$\{(b_{2,1}, b_{3,2}) \in k^2 : b_{2,1} \neq b_{3,2}\}$$

and the variety \mathcal{V} introduced in Section 1. Hence

 $\operatorname{Sing}(\mathcal{U}, N) = \operatorname{Sing}(\mathcal{V}, 0),$

which finishes the proof of Theorem 1. \blacksquare

REFERENCES

 M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.

G. ZWARA	$\mathbf{G}.$	ZWARA
----------	---------------	-------

[2]	J. Bender and K. Bongartz, Minimal singularities in orbit closures of matrix pencils,
	Linear Algebra Appl. 365 (2003), 13–24.

- [3] G. Bobiński and G. Zwara, Normality of orbit closures for Dynkin quivers of type \mathbb{A}_n , Manuscripta Math. 105 (2001), 103–109.
- [4] —, —, Schubert varieties and representations of Dynkin quivers, Colloq. Math. 94 (2002), 285–309.
- K. Bongartz, Minimal singularities for representations of Dynkin quivers, Comment. Math. Helv. 63 (1994), 575–611.
- S. Donkin, The normality of closures of conjugacy classes of matrices, Invent. Math. 101 (1990), 717–736.
- D. Eisenbud, Commutative Algebra with a View Towards Algebraic Geometry, Grad. Texts in Math. 150, Springer, 1995.
- [8] A. Grothendieck et J. A. Dieudonné, Éléments de géométrie algébrique IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967).
- W. Hesselink, Singularities in the nilpotent scheme of a classical group, Trans. Amer. Math. Soc. 222 (1976), 1–32.
- [10] H. Kraft and C. Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1979), 227–247.
- [11] V. B. Mehta and W. Van der Kallen, A simultaneous Frobenius splitting for closures of conjugacy classes of nilpotent matrices, Compositio Math. 84 (1992), 211–221.
- C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
- [13] P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lecture Notes in Math. 815, Springer, 1980.
- [14] G. Zwara, Unibranch orbit closures in module varieties, Ann. Sci. École Norm. Sup. 35 (2002), 877–895.

Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland E-mail: gzwara@mat.uni.torun.pl

> Received 19 May 2003; revised 3 June 2003

(4349)