COLLOQUIUM MATHEMATICUM

AN ORBIT CLOSURE FOR A REPRESENTATION OF THE KRONECKER QUIVER WITH BAD SINGULARITIES

BY
GRZEGORZ ZWARA (Toruń)

Abstract

We give an example of a representation of the Kronecker quiver for which the closure of the corresponding orbit contains a singularity smoothly equivalent to the isolated singularity of two planes crossing at a point. Therefore this orbit closure is neither Cohen-Macaulay nor unibranch.

1. Introduction and the main result. Throughout the paper, k denotes a fixed algebraically closed field. Let $Q=\left(Q_{0}, Q_{1}, s, e\right)$ be a finite quiver, that is, Q_{0} is a finite set of vertices, Q_{1} is a finite set of arrows, and $s, e: Q_{1} \rightarrow Q_{0}$ are functions such that any arrow $\alpha \in Q_{1}$ has the starting vertex $s(\alpha)$ and the ending vertex $e(\alpha)$. Let $\mathbf{d}=\left(d_{i}\right)_{i \in Q_{0}} \in \mathbb{N}^{Q_{0}}$ be a dimension vector. We define the vector space

$$
\operatorname{rep}_{Q}(\mathbf{d})=\prod_{\alpha \in Q_{1}} \mathbb{M}_{d_{e(\alpha)} \times d_{s(\alpha)}}(k)
$$

where $\mathbb{M}_{d^{\prime} \times d^{\prime \prime}}(k)$ denotes the set of $d^{\prime} \times d^{\prime \prime}$-matrices with coefficients in k for any positive integers d^{\prime} and $d^{\prime \prime}$. The product $\mathrm{Gl}(\mathbf{d})=\prod_{i \in Q_{0}} \mathrm{Gl}_{d_{i}}(k)$ of general linear groups acts on $\operatorname{rep}_{Q}(\mathbf{d})$ via

$$
g \star V=\left(g_{e(\alpha)} V_{\alpha} g_{s(\alpha)}^{-1}\right)_{\alpha \in Q_{1}}
$$

for any $g=\left(g_{i}\right)_{i \in Q_{0}} \in \mathrm{Gl}(\mathbf{d})$ and $V=\left(V_{\alpha}\right)_{\alpha \in Q_{1}} \in \operatorname{rep}_{Q}(\mathbf{d})$. The orbits of this action correspond to the isomorphism classes of the representations of Q with dimension vector \mathbf{d}.

Let M be a representation of Q with dimension vector \mathbf{d}. We will denote by \mathcal{O}_{M} the corresponding $\mathrm{Gl}(\mathbf{d})$-orbit in $\operatorname{rep}_{Q}(\mathbf{d})$. An interesting problem is to study the geometry of the orbit closure $\overline{\mathcal{O}}_{M}$. For example we may ask when it is regular, normal or Cohen-Macaulay. The orbit closure $\overline{\mathcal{O}}_{M}$ is Cohen-Macaulay and normal if Q is a Dynkin quiver of type \mathbb{A}_{n} or \mathbb{D}_{m} ([3], [4]). For the remaining Dynkin quivers of type $\mathbb{E}_{l}, l=6,7,8$, we know at least that $\overline{\mathcal{O}}_{M}$ is unibranch ([14]), that is, its normalization map is bijective.

[^0]The Dynkin quivers are the only quivers Q for which the variety $\operatorname{rep}_{Q}(\mathbf{d})$ has only finitely many $\mathrm{Gl}(\mathbf{d})$-orbit for any dimension vector \mathbf{d}. The simplest quiver admitting infinite families of orbits is a point with a loop. Then the points of $\operatorname{rep}_{Q}(\mathbf{d})$ are square matrices and the orbit \mathcal{O}_{M} is a conjugacy class. Hence $\overline{\mathcal{O}}_{M}$ is normal and Cohen-Macaulay ([6], [10], [11]).

Another distinguished example is given by the Kronecker quiver Q : $1 \underset{\beta}{\underset{\beta}{\alpha}} 2$. It has been proved recently that then $\overline{\mathcal{O}}_{M}$ is regular in codimension one, and moreover it is Cohen-Macaulay and normal at any point N such that there is no point W satisfying $\overline{\mathcal{O}}_{N} \varsubsetneqq \overline{\mathcal{O}}_{W} \varsubsetneqq \overline{\mathcal{O}}_{M}$ ([2]). In fact, [2] gives a classification of the types of singularities $\operatorname{Sing}\left(\overline{\mathcal{O}}_{M}, N\right)$ for such points N. Recall that following Hesselink (see [9, (1.7)]), the types of singularities $\operatorname{Sing}\left(\mathcal{X}, x_{0}\right)$ and $\operatorname{Sing}\left(\mathcal{Y}, y_{0}\right)$ of two pointed varieties $\left(\mathcal{X}, x_{0}\right)$ and $\left(\mathcal{Y}, y_{0}\right)$ coincide if there are smooth morphisms $f: \mathcal{Z} \rightarrow \mathcal{X}, g: \mathcal{Z} \rightarrow \mathcal{Y}$ and a point $z_{0} \in \mathcal{Z}$ with $f\left(z_{0}\right)=x_{0}$ and $g\left(z_{0}\right)=y_{0} . \operatorname{If} \operatorname{Sing}\left(\mathcal{X}, x_{0}\right)=\operatorname{Sing}\left(\mathcal{Y}, y_{0}\right)$ then the variety \mathcal{X} is regular (respectively, normal, Cohen-Macaulay, unibranch) at x_{0} if and only if the same is true for the variety \mathcal{Y} at y_{0} (see [8, Section 17] for more information about smooth morphisms).

Let \mathcal{V} be the set of points $(x, y, z, t) \in k^{4}$ such that $x z=x t=y z=$ $y t=0$. Thus \mathcal{V} is a union of two planes intersecting at the point 0 . Consequently, the variety \mathcal{V} is neither unibranch nor normal at 0 . It is also not difficult to show that \mathcal{V} is not Cohen-Macaulay (see for instance [7, p. 459]). The main result of the paper shows that $\operatorname{Sing}(\mathcal{V}, 0)$ appears as the type of singularity of an orbit closure in $\operatorname{rep}_{Q}(\mathbf{d})$, where Q is the Kronecker quiver.
 $M=\left(M_{\alpha}, M_{\beta}\right)$ and $N=\left(N_{\alpha}, N_{\beta}\right)$ be two points of $\operatorname{rep}_{Q}(\mathbf{d})$ given by
$M_{\alpha}=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right], M_{\beta}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], N_{\alpha}=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right], N_{\beta}=\left[\begin{array}{ccc}0 & 0 & 0 \\ \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0\end{array}\right]$
for some scalars $\lambda_{1} \neq \lambda_{2}$. Then $N \in \overline{\mathcal{O}}_{M}$ and $\operatorname{Sing}\left(\overline{\mathcal{O}}_{M}, N\right)=\operatorname{Sing}(\mathcal{V}, 0)$.
Note that this theorem gives the first example (to the author's knowledge) of an orbit closure in a variety of representations of a quiver which is not Cohen-Macaulay.
2. Transversal slices. Let $Q=\left(Q_{0}, Q_{1}, s, e\right)$ be a finite quiver, $\mathbf{d} \in \mathbb{N}^{Q_{0}}$ be a dimension vector and $N=\left(N_{\alpha}\right)_{\alpha \in Q_{1}}$ be a point of $\operatorname{rep}_{Q}(\mathbf{d})$. We identify the tangent space $\mathcal{T}_{\text {rep }_{Q}(\mathbf{d}), N}$ with the vector space $\operatorname{rep}_{Q}(\mathbf{d})$, the tangent space $\mathcal{T}_{\mathcal{O}_{N}, N}$ with a subspace of $\operatorname{rep}_{Q}(\mathbf{d})$ and the tangent space $\mathcal{T}_{\mathrm{Gl}(\mathbf{d}), 1}$ with the product $\prod_{i \in Q_{0}} \mathbb{M}_{d_{i} \times d_{i}}(k)$. Let $\mu: \operatorname{Gl}(\mathbf{d}) \rightarrow \mathcal{O}_{N}$ denote the orbit
map sending g to $g \star N$. Then the induced linear map of tangent spaces $\mu^{\prime}: \mathcal{T}_{\mathrm{Gl}(\mathbf{d}), 1} \rightarrow \mathcal{T}_{\mathcal{O}_{N}, N}$ is given by the formula

$$
\mu^{\prime}(h)=\left(h_{e(\alpha)} N_{\alpha}-N_{\alpha} h_{s(\alpha)}\right)_{\alpha \in Q_{1}}
$$

for any $h=\left(h_{i}\right)_{i \in Q_{0}} \in \mathcal{T}_{\mathrm{Gl}(\mathbf{d}), 1}$. The kernel of μ^{\prime} is just the endomorphism space $\operatorname{End}_{Q}(N)$ of the representation N, and the stabilizer $\mu^{-1}(N)$ of the point N is just the automorphism group $\operatorname{Aut}_{Q}(N)$ of the representation N. Since $\operatorname{Aut}_{Q}(N)$ is a non-empty open subset of the vector space $\operatorname{End}_{Q}(N)$, we have

$$
\begin{aligned}
\operatorname{dim} \operatorname{Im} \mu^{\prime} & =\operatorname{dim} \prod_{i \in Q_{0}} \mathbb{M}_{d_{i} \times d_{i}}(k)-\operatorname{dim} \operatorname{End}_{Q}(N) \\
& =\operatorname{dim} \operatorname{Gl}(\mathbf{d})-\operatorname{dim} \operatorname{Aut}_{Q}(N)=\operatorname{dim} \mathcal{O}_{N}=\operatorname{dim} \mathcal{T}_{\mathcal{O}_{N}, N}
\end{aligned}
$$

Consequently, μ^{\prime} is a surjective map, which means that the orbit map μ is separable. This enables us to apply the transversal slice method explained in [13, Section 5.1] (see also [5, Section 6.2]). Namely, let \mathcal{S} be a Gl(d)-invariant subvariety of $\operatorname{rep}_{Q}(\mathbf{d})$ containing N. We choose a linear complement \mathcal{C} of $\mathcal{T}_{\mathcal{O}_{N}, N}$ in $\mathcal{T}_{\text {rep }_{Q}(\mathbf{d}), N}=\operatorname{rep}_{Q}(\mathbf{d})$. Then

$$
\operatorname{Sing}(\mathcal{S}, N)=\operatorname{Sing}(\mathcal{S} \cap(N+\mathcal{C}), N)
$$

For instance, we may apply this for any orbit closure $\mathcal{S}=\overline{\mathcal{O}}_{M}$ containing the point N.
3. The proof of Theorem 1. Let Q be the Kronecker quiver $1 \underset{\beta}{\underset{\xi}{\rightleftarrows}} 2$ and $\mathbf{d}=(3,3)$. We consider the representation M in $\operatorname{rep}_{Q}(\mathbf{d})$ given in Theorem 1. The following lemma characterizes the orbit \mathcal{O}_{M}.

Lemma 2. Let $V=\left(V_{\alpha}, V_{\beta}\right)$ be a point of $\operatorname{rep}_{Q}(\mathbf{d})$. Then V belongs to \mathcal{O}_{M} if and only if

$$
\operatorname{rk}\left[\begin{array}{ll}
V_{\alpha} & V_{\beta}
\end{array}\right]=\operatorname{rk}\left[\begin{array}{c}
V_{\alpha} \\
V_{\beta}
\end{array}\right]=3, \quad \operatorname{rk}\left[\begin{array}{ccc}
V_{\alpha} & V_{\beta} & 0 \\
0 & V_{\alpha} & V_{\beta}
\end{array}\right]=\operatorname{rk}\left[\begin{array}{cc}
V_{\alpha} & 0 \\
V_{\beta} & V_{\alpha} \\
0 & V_{\beta}
\end{array}\right]=5 .
$$

Proof. We will use some basic facts concerning finite-dimensional representations of the Kronecker quiver which can be found in [1] or [12]. Observe that the above conditions are invariant under the action of the group $\mathrm{Gl}(\mathbf{d})$ and hold for $V=M$. Thus one implication is proved.

We consider the following representations of Q :

In particular, $M \simeq P_{2} \oplus I_{1}$. Assume that V satisfies the above rank conditions. It is easy to check that the equality $\operatorname{rk}\left[V_{\alpha} V_{\beta}\right]=3$ means that $\operatorname{dim} \operatorname{Hom}_{Q}\left(V, P_{1}\right)=0$, and rk $\left[\begin{array}{ccc}V_{\alpha} & V_{\beta} & 0 \\ 0 & V_{\alpha} & V_{\beta}\end{array}\right]=5$ means that $\operatorname{dim} \operatorname{Hom}_{Q}\left(V, P_{2}\right)$ $=1$. Observe that the radical $\operatorname{rad} P_{2}$ of the representation P_{2} is isomorphic to $P_{1} \oplus P_{1}$. Since P_{2} is a projective representation, it follows that

$$
1=\operatorname{dim} \operatorname{Hom}_{Q}\left(V, P_{2}\right)-\operatorname{dim} \operatorname{Hom}_{Q}\left(V, \operatorname{rad} P_{2}\right)
$$

is the multiplicity of P_{2} as a direct summand of V. By duality, the representation I_{1} occurs as a direct summand of V. Hence $V \simeq P_{2} \oplus I_{1} \oplus V^{\prime}$ for some representation V^{\prime}. Comparing the dimension vectors of the above representations we get $V^{\prime} \simeq 0$, and consequently, $V \simeq M$.

We fix two different scalars $\lambda_{1}, \lambda_{2} \in k$. Let N be the representation in $\operatorname{rep}_{Q}(\mathbf{d})$ given in Theorem 1. It is easy to calculate that the tangent space $\mathcal{T}_{\mathcal{O}_{N}, N}$ consists of the points

$$
\left(\left[\begin{array}{ccc}
c_{1,1} & c_{1,2} & 0 \\
c_{2,1} & c_{2,2} & c_{2,3} \\
c_{3,1} & c_{3,2} & c_{3,3}
\end{array}\right],\left[\begin{array}{ccc}
\lambda_{1} c_{1,1} & \lambda_{2} c_{1,2} & 0 \\
\lambda_{1} c_{2,1} & d_{2,2} & \lambda_{1} c_{2,3} \\
d_{3,1} & \lambda_{2} c_{3,2} & \lambda_{2} c_{3,3}
\end{array}\right]\right)
$$

where $c_{i, j}, d_{i, j} \in k$. We choose the following linear complement of $\mathcal{T}_{\mathcal{O}_{N}, N}$ in $\mathcal{T}_{\operatorname{rep}_{Q}(\mathbf{d}), N}:$

$$
\mathcal{C}=\left\{\left(\left[\begin{array}{lll}
0 & 0 & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
* & * & * \\
* & 0 & * \\
0 & * & *
\end{array}\right]\right)\right\}
$$

where each $*$ stands for an arbitrary scalar. Thus each element $V=\left(V_{\alpha}, V_{\beta}\right)$ of $N+\mathcal{C}$ has the form

$$
V_{\alpha}=\left[\begin{array}{ccc}
0 & 0 & a_{1,3} \tag{1}\\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad V_{\beta}=\left[\begin{array}{ccc}
b_{1,1} & b_{1,2} & b_{1,3} \\
b_{2,1} & 0 & b_{2,3} \\
0 & b_{3,2} & b_{3,3}
\end{array}\right]
$$

for some scalars $a_{1,3}, b_{i, j}$. Let \mathcal{U} denote the open subset of $\overline{\mathcal{O}}_{M} \cap(N+\mathcal{C})$ given by the inequality $b_{2,1} \neq b_{3,2}$.

Lemma 3. \mathcal{U} consists of the points V of the form (1) such that

$$
\begin{equation*}
a_{1,3}=b_{1,3}=b_{1,1} b_{1,2}=b_{1,1} b_{2,3}=b_{3,3} b_{1,2}=b_{3,3} b_{2,3}=0, \quad b_{2,1} \neq b_{3,2} \tag{2}
\end{equation*}
$$

Proof. We denote by \mathcal{W} the set of points V of the form (1) satisfying (2). Let $V \in \mathcal{U}$. Observe that $\operatorname{rk}\left(M_{\alpha}+\lambda M_{\beta}\right) \leq 2$ for any scalar λ. Since this is a closed condition invariant under the action of $\mathrm{Gl}(\mathbf{d})$, we have $\operatorname{rk}\left(V_{\alpha}+\lambda V_{\beta}\right)$ ≤ 2 for any $\lambda \in k$. Thus the coefficients of the polynomial $\operatorname{det}\left(V_{\alpha}+\lambda V_{\beta}\right)$ of the variable λ vanish. After standard calculations we get

$$
a_{1,3}=b_{1,3}=b_{1,1} b_{2,3}=b_{3,3} b_{1,2}=0
$$

From Lemma 2 we conclude that

$$
\operatorname{rk}\left[\begin{array}{ccc}
V_{\alpha} & V_{\beta} & 0 \\
0 & V_{\alpha} & V_{\beta}
\end{array}\right], \operatorname{rk}\left[\begin{array}{cc}
V_{\alpha} & 0 \\
V_{\beta} & V_{\alpha} \\
0 & V_{\beta}
\end{array}\right] \leq 5
$$

Next standard calculations give the remaining two equalities

$$
b_{1,1} b_{1,2}=b_{3,3} b_{2,3}=0
$$

Thus $\mathcal{U} \subseteq \mathcal{W}$.
In order to prove the reverse inclusion it suffices to show that $\mathcal{W} \cap \mathcal{O}_{M}$ is a dense subset of \mathcal{W}. The variety \mathcal{W} is the union of two four-dimensional irreducible components:

$$
\begin{aligned}
& \mathcal{W}^{\prime}=\left\{\left(\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{ccc}
b_{1,1} & 0 & 0 \\
b_{2,1} & 0 & 0 \\
0 & b_{3,2} & b_{3,3}
\end{array}\right]\right): b_{2,1} \neq b_{3,2}\right\}, \\
& \mathcal{W}^{\prime \prime}=\left\{\left(\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & b_{1,2} & 0 \\
b_{2,1} & 0 & b_{2,3} \\
0 & b_{3,2} & 0
\end{array}\right]\right): b_{2,1} \neq b_{3,2}\right\} .
\end{aligned}
$$

Applying Lemma 2 we can calculate that an element V in \mathcal{W} belongs to \mathcal{O}_{M} if and only if

$$
\operatorname{rk}\left[\begin{array}{ll}
b_{1,1} & b_{1,2}
\end{array}\right]=\operatorname{rk}\left[\begin{array}{l}
b_{2,3} \tag{3}\\
b_{3,3}
\end{array}\right]=1
$$

It is easy to see that there is a point in \mathcal{W}^{\prime} as well as a point in $\mathcal{W}^{\prime \prime}$ satisfying the open condition (3). Hence $\mathcal{W}^{\prime} \cap \mathcal{O}_{M}$ is a dense subset of \mathcal{W}^{\prime} and $\mathcal{W}^{\prime \prime} \cap \mathcal{O}_{M}$ is a dense subset of $\mathcal{W}^{\prime \prime}$.

By the above lemma, $N \in \mathcal{U} \subset \overline{\mathcal{O}}_{M}$. Applying the transversal slice method we get

$$
\operatorname{Sing}\left(\overline{\mathcal{O}}_{M}, N\right)=\operatorname{Sing}(\mathcal{U}, N)
$$

It follows from Lemma 3 that \mathcal{U} is isomorphic to the product of the smooth variety

$$
\left\{\left(b_{2,1}, b_{3,2}\right) \in k^{2}: b_{2,1} \neq b_{3,2}\right\}
$$

and the variety \mathcal{V} introduced in Section 1. Hence

$$
\operatorname{Sing}(\mathcal{U}, N)=\operatorname{Sing}(\mathcal{V}, 0)
$$

which finishes the proof of Theorem 1.

REFERENCES

[1] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.
[2] J. Bender and K. Bongartz, Minimal singularities in orbit closures of matrix pencils, Linear Algebra Appl. 365 (2003), 13-24.
[3] G. Bobiński and G. Zwara, Normality of orbit closures for Dynkin quivers of type \mathbb{A}_{n}, Manuscripta Math. 105 (2001), 103-109.
[4] —, 一, Schubert varieties and representations of Dynkin quivers, Colloq. Math. 94 (2002), 285-309.
[5] K. Bongartz, Minimal singularities for representations of Dynkin quivers, Comment. Math. Helv. 63 (1994), 575-611.
[6] S. Donkin, The normality of closures of conjugacy classes of matrices, Invent. Math. 101 (1990), 717-736.
[7] D. Eisenbud, Commutative Algebra with a View Towards Algebraic Geometry, Grad. Texts in Math. 150, Springer, 1995.
[8] A. Grothendieck et J. A. Dieudonné, Éléments de géométrie algébrique IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967).
[9] W. Hesselink, Singularities in the nilpotent scheme of a classical group, Trans. Amer. Math. Soc. 222 (1976), 1-32.
[10] H. Kraft and C. Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1979), 227-247.
[11] V. B. Mehta and W. Van der Kallen, A simultaneous Frobenius splitting for closures of conjugacy classes of nilpotent matrices, Compositio Math. 84 (1992), 211-221.
[12] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
[13] P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lecture Notes in Math. 815, Springer, 1980.
[14] G. Zwara, Unibranch orbit closures in module varieties, Ann. Sci. École Norm. Sup. 35 (2002), 877-895.

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: gzwara@mat.uni.torun.pl

Received 19 May 2003;
revised 3 June 2003

[^0]: 2000 Mathematics Subject Classification: 14B05, 14L30, 16G20.
 Supported by Polish Scientific Grant KBN No. 5 PO3A 00821.

