ON THE DIFFERENTIABILITY OF CERTAIN SALTUS FUNCTIONS

BY
GERALD KUBA (Wien)

Abstract

We investigate several natural questions on the differentiability of certain strictly increasing singular functions. Furthermore, motivated by the observation that for each famous singular function f investigated in the past, $f^{\prime}(\xi)=0$ if $f^{\prime}(\xi)$ exists and is finite, we show how, for example, an increasing real function g can be constructed so that $g^{\prime}(x)=2^{x}$ for all rational numbers x and $g^{\prime}(x)=0$ for almost all irrational numbers x.

1. Introduction and statement of results. Let Φ be the family of all bijective functions from \mathbb{N} onto \mathbb{Q}. (We do not consider 0 to be a member of the set \mathbb{N}.) For $\varphi \in \Phi$ define the function $F_{\varphi}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
F_{\varphi}(x)=\sum_{\varphi(n)<x} \frac{1}{2^{n}}
$$

where the summation is extended over all $n \in \mathbb{N}$ with $\varphi(n)<x$. This is the well-known prototype of a strictly increasing real function which is discontinuous at each rational number and continuous at each irrational number. (This is a worst case scenario for the monotonic functions because their points of discontinuity are always countably many and \mathbb{Q} is a dense subset of \mathbb{R}.)

Naturally, the image W_{φ} of F_{φ} is a subset of the open interval $] 0,1[$ and 0 and 1 are limit points of W_{φ}. Moreover, F_{φ} is a saltus function with a jump to the right of height $2^{\varphi^{-1}(r)}$ at each $r \in \mathbb{Q}$. Thus the open intervals $\left.I_{n}=\right] F_{\varphi}(\varphi(n)), F_{\varphi}(\varphi(n))+2^{-n}[(n \in \mathbb{N})$ are mutually disjoint and disjoint from W_{φ}. As a consequence, the set W_{φ} is null and nowhere dense. But trivially, W_{φ} has the cardinality of the continuum.

As an increasing function, F_{φ} is differentiable almost everywhere. Let \mathcal{E}_{φ} be the set of all reals at which F_{φ} is not differentiable. Thus \mathcal{E}_{φ} is a null set containing \mathbb{Q}. As a consequence of Fort's theorem [2], \mathcal{E}_{φ} is always residual, i.e. $\mathbb{R} \backslash \mathcal{E}_{\varphi}$ is of first category. (This can also be shown in a direct way: Since F_{φ} is increasing and $\left|F_{\varphi}(x)-F_{\varphi}(y)\right| \geq 2^{-n}$ whenever $x<\varphi(n)<y$,
the function F_{φ} cannot be differentiable at any point in the residual set $\left.\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty}\right] \varphi(n)-3^{-n}, \varphi(n)+3^{-n}[$.

In particular, F_{φ} is not differentiable at infinitely many points of continuity. Moreover, $[a, b] \cap \mathcal{E}_{\varphi}$ has the cardinality of the continuum for arbitrary $a<b$ and $\varphi \in \Phi$. This statement can be sharpened in the following way.

Theorem 1. For arbitrary $a<b$ one can find a nowhere dense null set Z of irrational numbers in $[a, b]$ such that $Z \cap \mathcal{E}_{\varphi}$ has the cardinality of the continuum for each $\varphi \in \Phi$.

Since obviously F_{φ} is the limit of a series of monotonic step functions, F_{φ} is a singular function, i.e. its first derivative exists and vanishes almost everywhere. But there is a stronger argument for $\left\{x \in \mathbb{R} \backslash \mathcal{E}_{\varphi} \mid F_{\varphi}^{\prime}(x) \neq 0\right\}$ being a null set. In fact, this set is always empty! Moreover, the following is true.

Theorem 2. Independently of $\varphi \in \Phi$, there never exists a real ξ such that F_{φ} has a right or a left derivative at ξ which is finite and non-vanishing.

Let Φ_{0} be the family of all $\varphi \in \Phi$ such that $\varphi^{-1}(r) \geq q$ for every rational number r with least positive denominator q. Note that $\varphi \in \Phi_{0}$ if φ is either the standard numbering of the rational numbers using Farey sequences or the popular numbering of \mathbb{Q} which uses a spiral path through all points in the lattice \mathbb{Z}^{2} starting with $(0,0)$. If r_{1}, r_{2}, \ldots is the beautiful sequence $\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{2}, \frac{2}{3}, \frac{3}{1}, \frac{1}{4}, \frac{4}{3}, \frac{3}{5}, \frac{5}{2}, \frac{2}{5}, \frac{5}{3}, \frac{3}{4}, \frac{4}{1}, \ldots$ of all positive rational numbers given in [1], then $\varphi_{0} \in \Phi_{0}$ where φ_{0} is defined by $\varphi_{0}(1)=0$ and $\varphi_{0}(2 n)=r_{n}$ and $\varphi_{0}(2 n+1)=-r_{n}$ for every $n \in \mathbb{N}$.

Theorem 3. If $\varphi \in \Phi_{0}$ then the first derivative of F_{φ} exists and vanishes at each algebraic irrational number.

Despite Theorems 1 and 3 it is small wonder that the set \mathcal{E}_{φ} depends strongly on the choice of φ.

Theorem 4.

(i) For every countable set $X \subset \mathbb{R}$ one can choose $\varphi \in \Phi$ such that $X \subset \mathcal{E}_{\varphi}$ and additionally $F_{\varphi}^{\prime}(x)=\infty$ for all $x \in X$.
(ii) On the other hand, for every countable set X of irrational numbers one can choose $\varphi \in \Phi_{0}$ such that $X \cap \mathcal{E}_{\varphi}=\emptyset$ and $F_{\varphi}^{\prime}(x)=0$ for all $x \in X$.

For $\varphi \in \Phi$ let Ω_{φ} be the set of all points $\xi \in \mathbb{R}$ at which F_{φ} has an infinite derivative. Since differentiability means the existence of a finite derivative, $\Omega_{\varphi} \subset \mathcal{E}_{\varphi}$. In particular, Ω_{φ} is always a null set. The following theorem shows that there are φ such that the set Ω_{φ} is extremely small and rather large, respectively.

Theorem 5.

(i) If $\varphi \in \Phi_{0}$ then $\Omega_{\varphi}=\emptyset$.
(ii) If $a<b$ then $[a, b] \cap \Omega_{\varphi}$ has the cardinality of the continuum for some $\varphi \in \Phi$.
By Theorem 4, for every countable $X \subset \mathbb{R}$ we can achieve $X \subset \Omega_{\varphi}$ for some $\varphi \in \Phi$. Since Ω_{φ} is null, in view of Theorem 5 (ii) the question arises whether $X \subset \Omega_{\varphi}$ is possible for an arbitrary null set X or at least for an arbitrary nowhere dense null set X. The following theorem gives a negative answer.

Theorem 6. Let \mathbb{D} be the Cantor ternary set. Then for every $\varphi \in \Phi$ the set $\mathbb{D} \backslash \Omega_{\varphi}$ has the cardinality of the continuum.

Let \mathcal{F} be the family of all real monotonic functions f defined on an arbitrary (nondegenerate) interval I such that $f^{\prime}(x)=0$ for almost all $x \in I$. Let \mathcal{F}^{*} be the family of all functions f in \mathcal{F} such that $f^{\prime}(x) \neq 0$ for at least one point x at which f is differentiable. By Theorem 2 all functions F_{φ} lie in $\mathcal{F} \backslash \mathcal{F}^{*}$. Further, the classical Cantor function (the devil's staircase) lies in $\mathcal{F} \backslash \mathcal{F}^{*}$. Also the famous Riesz-Nagy function (see [5, 18.8]) and Minkowski's Fragefunktion (see [6, p. 345]) and the interesting function $F_{3,2}$ recently investigated in [6], which are all strictly increasing and singular, have the property that at each point the derivative is 0 or ∞ or does not exist. Since no example of a function in \mathcal{F}^{*} seems to be known, the question arises whether $\mathcal{F}^{*}=\emptyset$.

In order to solve this question we modify the definition of our functions F_{φ} and consider saltus functions $G_{\varphi}: \mathbb{R} \rightarrow \mathbb{R}$ for $\varphi \in \Phi$ which are defined by

$$
G_{\varphi}(x)=\sum_{\varphi(n)<x} \frac{1}{n^{2}} .
$$

Of course, just as the functions F_{φ}, all functions G_{φ} are strictly increasing and continuous precisely at the irrational numbers. (The image of G_{φ} is a null and nowhere dense subset of $] 0, \pi^{2} / 6\left[\right.$.) Certainly, all functions G_{φ} lie in \mathcal{F}. Now, the following theorem implies that $\mathcal{F}^{*} \neq \emptyset$.

Theorem 7. For every sequence of distinct irrational numbers ξ_{1}, ξ_{2}, \ldots and every sequence c_{1}, c_{2}, \ldots of positive real numbers there is a $\varphi \in \Phi$ such that G_{φ} is differentiable at ξ_{k} and $G_{\varphi}^{\prime}\left(\xi_{k}\right)=c_{k}$ for every $k \in \mathbb{N}$.

By Theorem 7 we may choose φ so that $G_{\varphi}^{\prime}(r+\pi)=2^{r}$ for every $r \in \mathbb{Q}$ and then $g(x):=G_{\varphi}(x+\pi)$ defines a function $g: \mathbb{R} \rightarrow \mathbb{R}$ as mentioned in the abstract.

Despite Theorem 7 it is not true that for every $\varphi \in \Phi$ there are points ξ such that $0<G_{\varphi}^{\prime}(\xi)<\infty$. (For a counterexample choose any $\varphi \in \Phi$ which maps $\left\{2^{n} \mid n \in \mathbb{N}\right\}$ onto $\mathbb{Q} \backslash \mathbb{Z}$ and define $\psi \in \Phi$ anyhow so that
$\psi(m)=\varphi\left(2^{m / 2}\right)$ for every even $m \in \mathbb{N}$. Then for every $k \in \mathbb{Z}$ there is a constant τ_{k} such that $G_{\varphi}(x)=F_{\psi}(x)+\tau_{k}$ whenever $k<x \leq k+1$.)

Let $\mathcal{E}_{\varphi}^{\prime}$ be the set of all reals at which G_{φ} is not differentiable. Theorem 1 remains true when F_{φ} is replaced by G_{φ} and \mathcal{E}_{φ} is replaced by $\mathcal{E}_{\varphi}^{\prime}$ because $\mathcal{E}_{\varphi} \subset \mathcal{E}_{\varphi}^{\prime}$ for every $\varphi \in \Phi$. (Note that $G_{\varphi}^{\prime}(\xi)=c$ with $0 \leq c<\infty$ implies $F_{\varphi}^{\prime}(\xi)=0$ since $\lim _{k \rightarrow \infty} 2^{k} k^{-2}=\infty$ and $\sum_{n \in \mathcal{N}} n^{-2} \geq 2^{m} m^{-2} \cdot \sum_{n \in \mathcal{N}} 2^{-n}$ whenever $\emptyset \neq \mathcal{N} \subset \mathbb{N}$ and $3 \leq m=\min \mathcal{N}$.) Further, in view of its proof it is not difficult to verify that the second statement of Theorem 4 remains true as well when F_{φ} is replaced by G_{φ}. Trivially this is also the case concerning Theorem 5(ii) and the first statement of Theorem 4 since, naturally, $G_{\varphi}^{\prime}(\xi)=\infty$ when $F_{\varphi}^{\prime}(\xi)=\infty$. But Theorem 3 has no counterpart for the functions G_{φ}.

Theorem 8. For each irrational ξ there exists $a \varphi \in \Phi_{0}$ such that G_{φ} is not differentiable at ξ.
2. Proof of Theorem 1. For irrational ξ let $\left[b_{n}\right]_{n \geq 0}$ be the continued fraction expressing ξ and let $A_{n} / B_{n}=\left[b_{0}, \ldots, b_{n}\right]$ denote the nth convergent to ξ where A_{n}, B_{n} are coprime integers and $B_{n}>0$. Consequently, $0<$ $(-1)^{n}\left(\xi-A_{n} / B_{n}\right)<\left(B_{n} B_{n+1}\right)^{-1}$ for every $n \in \mathbb{N}$.

Lemma 1. If $\log B_{n+1}>\varphi^{-1}\left(A_{n} / B_{n}\right)$ for infinitely many $n \in \mathbb{N}$, then F_{φ} is not differentiable at ξ.

Proof. Put $h_{n}=\frac{9}{8}\left(A_{n} / B_{n}-\xi\right)$ for $n \in \mathbb{N}$. Naturally, the sequence h_{n} tends to 0 as $n \rightarrow \infty$. Further, for arbitrary $h \neq 0$ and $m \in \mathbb{N}$ we have $\left|F_{\varphi}(\xi+h)-F_{\varphi}(\xi)\right| \geq 2^{-m}$ when the rational number $\varphi(m)$ lies between ξ and $\xi+h$. Since $\xi<A_{n} / B_{n}<\xi+h_{n}$ when $h_{n}>0$ and $\xi+h_{n}<A_{n} / B_{n}<\xi$ when $h_{n}<0$, and since $\frac{8}{9}\left|h_{n}\right|<\left(B_{n} B_{n+1}\right)^{-1}$, we have, for every $n \in \mathbb{N}$,

$$
h_{n}^{-1}\left(F_{\varphi}\left(\xi+h_{n}\right)-F_{\varphi}(\xi)\right) \geq \frac{8}{9} B_{n} B_{n+1} 2^{-m_{n}}
$$

where $\varphi\left(m_{n}\right)=A_{n} / B_{n}$. This concludes the proof of Lemma 1 because $B_{n+1} 2^{-m_{n}} \geq 1$ for infinitely many $n \in \mathbb{N}$, and certainly $B_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Proof of Theorem 1. For fixed $a<b$ we construct a null and nowhere dense subset Z of $[a, b] \backslash \mathbb{Q}$ such that for each $\varphi \in \Phi$ there is a set $S \subset Z$ with the cardinality of the continuum such that Lemma 1 can be applied to all numbers in S. First we choose $\delta>0$ and an irrational ξ expressed by the continued fraction $\left[b_{n}\right]_{n \geq 0}$ so that $a<\xi \pm \delta<b$. Now fix $N \in \mathbb{N}$ large enough that $B_{N}>\sqrt{2 / \delta}$. Then every irrational number $\xi^{\prime}=\left[b_{n}^{\prime}\right]_{n \geq 0}$ lies between a and b when $b_{n}=b_{n}^{\prime}$ for every $n=0,1, \ldots, N$ because then $\left|\xi-\xi^{\prime}\right| \leq\left|\xi-A_{N} / B_{N}\right|+\left|\xi^{\prime}-A_{N} / B_{N}\right|<2 / B_{N}^{2}<\delta$ since $\left(A_{N}, B_{N}\right)=$ $\left(A_{N}^{\prime}, B_{N}^{\prime}\right)$.

Now let Z be the set of all irrational numbers $\left[b_{0}, b_{1}, \ldots, b_{N}, z_{N+1}\right.$, $\left.z_{N+2}, \ldots\right]$ with $z_{n}>n^{2}$ for every $n>N$. Then $Z \subset[a, b]$ and Z is nowhere dense because the closure of Z is a subset of $Z \cup \mathbb{Q}$ and every interval of positive length certainly contains an irrational number with continued-fraction expansion $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ having $a_{n}=1$ for some $n>N$. In view of [3, Theorem 197] it is clear that Z is a null set.

Starting with our sequence $b_{0}, b_{1}, \ldots, b_{N}$ we define recursively two sequences $b_{N+1}^{1}, b_{N+2}^{1}, \ldots$ and $b_{N+1}^{2}, b_{N+2}^{2}, \ldots$ of integers such that $n^{2}<b_{n}^{1}<b_{n}^{2}$ for every $n>N$. Then we consider all sequences $\left(c_{n}\right)_{n \geq 0}$ with $c_{n}=b_{n}$ for every $n \leq N$ and $c_{n} \in\left\{b_{n}^{1}, b_{n}^{2}\right\}$ for every $n>N$. Clearly, the family of all these sequences has the cardinality of the continuum and yields an equipotent set S of irrational numbers in Z by associating to each sequence $\left(c_{n}\right)_{n \geq 0}$ the continued fraction $\left[c_{n}\right]_{n \geq 0}$. It remains to show that this can be done so that Lemma 1 can be applied to each number in S.

Put $b_{N}^{1}=b_{N}^{2}=b_{N}$ and suppose that b_{k}^{1} and b_{k}^{2} are already defined for $n \geq k \geq N$. Then choose integers b_{n+1}^{1}, b_{n+1}^{2} so that $b_{n+1}^{2}>b_{n+1}^{1}>(n+1)^{2}$ and

$$
\begin{aligned}
\min \{\log B & \left.\left(\left[b_{0}, \ldots, b_{N}^{i(N)}, \ldots, b_{n+1}^{i(n+1)}\right]\right) \mid i(k) \in\{1,2\}(N \leq k \leq n+1)\right\} \\
& >\max \left\{\varphi^{-1}\left(\left[b_{0}, \ldots, b_{N}^{i(N)}, \ldots, b_{n}^{i(n)}\right]\right) \mid i(k) \in\{1,2\}(N \leq k \leq n)\right\}
\end{aligned}
$$

where $B(r)=q$ when $r=p / q$ with coprime $p, q \in \mathbb{Z}$ and $q>0$. By construction, for each continued fraction $\left[b_{n}\right]_{n \geq 0}$ with $b_{n} \in\left\{b_{n}^{1}, b_{n}^{2}\right\}$ for every $n>N$ we have $\log B_{n+1}>\varphi^{-1}\left(A_{n} / B_{n}\right)$ and therefore we may apply Lemma 1 .
3. Proof of Theorem 2. It is enough to deal with the right derivative case. Suppose that the right derivative of F_{φ} at ξ equals a real number $c \neq 0$. Since F_{φ} is increasing, c is positive. Let $x \in \mathbb{R}$ be such that $c=2^{x}$. For each $m \in \mathbb{N}$ define

$$
\mathcal{N}(m):=\left\{n \in \mathbb{N} \mid \xi \leq \varphi(n)<\xi+2^{-m}\right\} \quad \text { and } \quad \mu(m):=\min \mathcal{N}(m)
$$

Then for every $\varepsilon>0$ there is a positive integer N_{ε} such that $2^{x-\varepsilon}<\Delta_{m}$ $<2^{x+\varepsilon}$ for every integer $m \geq N_{\varepsilon}$ where

$$
\Delta_{m}:=\frac{F_{\varphi}\left(\xi+2^{-m}\right)-F_{\varphi}(\xi)}{2^{-m}}=2^{m} \cdot \sum_{n \in \mathcal{N}(m)} 2^{-n}
$$

If \mathcal{N} is a nonempty subset of \mathbb{N} with minimum μ, then of course

$$
2^{-\mu} \leq \sum_{n \in \mathcal{N}} 2^{-n} \leq 2^{1-\mu}
$$

Consequently, $m-x-\varepsilon<\mu(m)<1+m-x+\varepsilon$ for every integer $m \geq N_{\varepsilon}$. Now we distinguish between the two cases $x \in \mathbb{Z}$ and $x \notin \mathbb{Z}$. Suppose first that $x \notin \mathbb{Z}$ and fix $\varepsilon>0$ so that $[x-\varepsilon, x+\varepsilon] \cap \mathbb{Z}=\emptyset$. Thus for each
integer $m \geq N_{\varepsilon}$ the interval $[m-x-\varepsilon, 1+m-x+\varepsilon$] contains precisely one integer, which must be $\mu(m)$. Hence $\mathcal{N}\left(N_{\varepsilon}\right) \supset\left[N_{\varepsilon}-x-\varepsilon, \infty[\cap \mathbb{Z}\right.$ since $\mu(m) \in \mathcal{N}(m) \subset \mathcal{N}\left(N_{\varepsilon}\right)$ for every integer $m \geq N_{\varepsilon}$ and $\bigcup_{m \geq N_{\varepsilon}}[m-x-\varepsilon$, $1+m-x+\varepsilon] \cap \mathbb{Z}=\left[N_{\varepsilon}-x-\varepsilon, \infty[\cap \mathbb{Z}\right.$.

Therefore the set $\mathbb{N} \backslash \mathcal{N}\left(N_{\varepsilon}\right)$ must be finite, but this is impossible because there are infinitely many rationals outside the interval $\left[\xi, \xi+2^{-N_{\varepsilon}}\right]$ which have to be numbered by φ.

Suppose secondly that $x \in \mathbb{Z}$. Then we fix $\varepsilon=1 / 4$ in order to conclude from $m-x-\varepsilon<\mu(m)<1+m-x+\varepsilon$ that $\mu(m) \in\{m-x, 1+m-x\}$ for every integer $m \geq N_{\varepsilon}$. Now we choose an integer $r \geq N_{\varepsilon}$ such that $1+r-x \notin \mathcal{N}\left(N_{\varepsilon}\right)$. (This can be done because $\mathbb{N} \backslash \mathcal{N}\left(N_{\varepsilon}\right)$ is infinite.) Since $\mu(r), \mu(r+1) \in \mathcal{N}\left(N_{\varepsilon}\right)$, we have $\mu(r), \mu(r+1) \neq 1+r-x$ and therefore we must have $r-x=\mu(r) \in \mathcal{N}(r)$ and $2+r-x=\mu(r+1) \in \mathcal{N}(r+1) \subset \mathcal{N}(r)$. But then

$$
\Delta_{r}=2^{r} \cdot \sum_{n \in \mathcal{N}(r)} 2^{-n}>2^{r} \cdot\left(2^{-(r-x)}+2^{-(2+r-x)}\right)=\frac{5}{4} \cdot 2^{x}
$$

contrary to $\Delta_{m}<2^{\varepsilon+x}=\sqrt[4]{2} \cdot 2^{x}<\frac{5}{4} \cdot 2^{x}$ for every integer $m \geq N_{\varepsilon}$.
4. Vanishing derivatives. A proof of the following lemma is a nice exercise in analysis.

Lemma 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be monotonic on $[x-\delta, x+\delta]$ with fixed $x \in \mathbb{R}$ and $\delta>0$. If $\left(h_{n}\right)$ is a decreasing sequence of positive numbers tending to 0 such that $\left(h_{n} / h_{n+1}\right)$ is bounded and the sequence $\left(h_{n}^{-1} \cdot\left|f\left(x+h_{n}\right)-f\left(x-h_{n}\right)\right|\right)$ tends to 0 , then f is differentiable at x with a vanishing first derivative.

For $\varphi \in \Phi$ and any interval I of positive length define $m_{\varphi}(I)$ to be the least $m \in \mathbb{N}$ such that the rational number $\varphi(m)$ lies in I. Clearly we always have the estimate

$$
\sum_{\varphi(n) \in I} \frac{1}{2^{n}} \leq 2^{1-m_{\varphi}(I)} .
$$

Consequently, for all $x \in \mathbb{R}$ and $h>0$ we have

$$
\left|F_{\varphi}(x+h)-F_{\varphi}(x-h)\right| \leq 2^{1-M}
$$

with $M=m_{\varphi}([x-h, x+h[)$.
Therefore, since for x fixed $F_{\varphi}(x+h)-F_{\varphi}(x-h)$ increases when h increases, Lemma 2 implies

Lemma 3. Let ξ be an irrational number and $\varphi \in \Phi$ and fix $k \in \mathbb{N}$. Let $M_{n}=m_{\varphi}\left(\left[\xi-n^{-k}, \xi+n^{-k}[)\right.\right.$ for every $n \in \mathbb{N}$. If the sequence $\left(n^{-k} 2^{M_{n}}\right)$ tends to ∞ as $n \rightarrow \infty$, then F_{φ} is differentiable at ξ with a vanishing first derivative.

Proof of Theorem 3. We make use of the following lemma which is clearly true if $\xi \in \mathbb{Q}$, and a straightforward consequence of Liouville's theorem (cf. [3, 11.7]) if $\xi \notin \mathbb{Q}$.

Lemma 4. If $\xi \in \mathbb{R}$ is algebraic then there exists a positive integer k such that for each $n \in \mathbb{N}$ the estimate $0 \neq|\xi-r / s| \leq n^{-k}$ is only possible for $r, s \in \mathbb{Z}$ and $s>0$ if $s \geq n$.

Now suppose that $\varphi \in \Phi_{0}$. Let ξ, k, M_{n} be as in Lemma 3 and (with $\xi \notin \mathbb{Q})$ Lemma 4. By Lemma 4 we must have $M_{n} \geq n$ for every $n \in \mathbb{N}$ since $\varphi(m)=r / s$ with $r, s \in \mathbb{Z}$ and $0<s \leq m$ for every $m \in \mathbb{N}$. Thus $\left(n^{-k} 2^{M_{n}}\right)$ tends to ∞ and therefore Theorem 3 follows from Lemma 3.

Remark. More generally, Theorem 3 is true for every irrational number which is not a Liouville number. Indeed, by definition (cf. [7), $\xi \in \mathbb{R}$ is Liouville if and only if for every $k \in \mathbb{N}$ there are integers p, q with $q \geq 2$ such that $0 \neq|\xi-p / q|<q^{-k}$. (An equivalent definition of the Liouville numbers which uses continued fractions and is useful for concrete constructions can be found in [8, §35]. Every Liouville number is transcendental and (cf. [7]) the set of all Liouville numbers is both null and residual.) Consequently, if $\xi \in \mathbb{R}$ is not a Liouville number then the conclusion of Lemma 4 is true for ξ even when ξ is transcendental. (Famous examples of transcendental numbers which are not Liouville are $\pi, e, \ln 2$, cf. [4.)

Proof of Theorem 4 (ii). We will prove a little more than claimed. Let X be any F_{σ}-set of irrational numbers, i.e. the union of a sequence X_{1}, X_{2}, \ldots of closed sets of irrational numbers. (So X may be uncountable and even $\mathbb{R} \backslash X$ may be a null set.) For $\emptyset \neq S \subset \mathbb{R}$ and $a \in \mathbb{R}$ let $d(a, S)=\inf \{|a-s| \mid s \in S\}$ be the Euclidian distance between the point a and the set S. Naturally, if S is closed then $d(a, S)=0$ if and only if $a \in S$. In particular $d\left(r, X_{n}\right)>0$ for all $r \in \mathbb{Q}$ and $n \in \mathbb{N}$. We get an appropriate $\varphi \in \Phi_{0}$ in the following way. We define an injective function ψ from $\mathbb{Q} \backslash \mathbb{Z}$ to \mathbb{N} such that $\mathbb{N} \backslash \psi(\mathbb{Q} \backslash \mathbb{Z})$ is infinite, whence ψ can be extended to a bijection from \mathbb{Q} onto \mathbb{N}. Then we define φ to be the inverse of this bijection. Specifically, if $p / q \notin \mathbb{Z}$ with coprime $p, q \in \mathbb{Z}$ and $q \geq 2$ then we put

$$
\psi(p / q):=\sqrt{2}^{1+|p| / p} \cdot 3^{|p|} \cdot 5^{q} \cdot 7^{\delta(p / q)}
$$

where $\delta(p / q)$ is the least positive integer which is not smaller than

$$
\max \left\{d\left(p / q, X_{i}\right)^{-1} \mid i=1, \ldots, q\right\} .
$$

Obviously, the function ψ is well defined and injective on $\mathbb{Q} \backslash \mathbb{Z}$ and can be extended to a bijection $\psi: \mathbb{Q} \rightarrow \mathbb{N}$. Naturally, $\varphi:=\psi^{-1}$ lies in the family Φ_{0}. In order to verify that $F_{\varphi}^{\prime}(\xi)=0$ for each $\xi \in X$ we fix $m \in \mathbb{N}$ so that $\xi \in X_{m}$ and apply Lemma 3 with $k=1$. Certainly, for sufficiently large $n \in \mathbb{N}$ no integer lies in the interval $[\xi-1 / n, \xi+1 / n]$ and a rational p / q lies
in this interval only if $q \geq m$. By definition, for such a rational we always have $\delta(p / q) \geq d\left(p / q, X_{m}\right)^{-1} \geq|p / q-\xi|^{-1} \geq n$. Therefore $M_{n}>7^{n}$ for all sufficiently large n, and this completes the proof since $\left(n^{-1} 2^{7^{n}}\right)$ tends to infinity.

Remark. As we have just seen, Theorem 4(ii) remains true when X is assumed to be a subset of an F_{σ}-set of irrational numbers. Although such a set X must be meager, Theorem 1 does not allow us to replace countable with meager in (ii). Such a replacement is also impossible in (i) since any meager set $X \subset \mathbb{R}$ which is not null would naturally be a counterexample. (An even better counterexample is provided by Theorem 6 since \mathbb{D} is a nowhere dense null set.)

With the help of vanishing left derivatives Theorem 8 is quickly proved.
Proof of Theorem 8. For $n \in \mathbb{N}$ let A_{n} / B_{n} be the nth convergent to ξ, so that $\left|\xi-A_{n} / B_{n}\right|<\left(B_{n} B_{n+1}\right)^{-1}$ for every $n \in \mathbb{N}$. Now fix $N \in \mathbb{N}$ large enough to enable a choice of $\varphi \in \Phi_{0}$ such that $\varphi\left(B_{n}\right)=A_{n} / B_{n}$ for every odd $n \geq N$. Since $A_{n} / B_{n}>\xi$ for every odd n, in view of the proof of Theorem 4(ii) we can certainly achieve that additionally the left derivative of G_{φ} exists and vanishes at ξ. Then with $h_{n}=\left(B_{n} B_{n+1}\right)^{-1}$ we have

$$
\frac{G_{\varphi}\left(\xi+h_{n}\right)-G_{\varphi}(\xi)}{h_{n}} \geq \frac{1}{h_{n}} \cdot \frac{1}{B_{n}^{2}}=\frac{B_{n+1}}{B_{n}} \geq 1
$$

for every odd $n \geq N$. Hence the right derivative of G_{φ} at ξ cannot vanish if it exists.
5. Infinite derivatives. The following variation of Lemma 2 is evidently true.

Lemma 5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be increasing on $[\xi-\delta, \xi+\delta]$ with fixed $\xi \in \mathbb{R}$ and $\delta>0$. If $\left(x_{n}\right)$ is a decreasing sequence of positive numbers tending to 0 such that

$$
\lim _{n \rightarrow \infty} \frac{f\left(\xi+x_{n+1}\right)-f(\xi)}{x_{n}}=\infty \quad \text { resp. } \quad \lim _{n \rightarrow \infty} \frac{f(\xi)-f\left(\xi-x_{n+1}\right)}{x_{n}}=\infty
$$

then the right resp. left derivative of f at ξ is ∞.
Proof of Theorem $4(i)$. Let \mathbb{P} denote the set of all primes and choose distinct reals $a_{p}(p \in \mathbb{P})$ so that $X \subset\left\{a_{p} \mid p \in \mathbb{P}\right\}$. If X is infinite, we may assume that $X=\left\{a_{p} \mid p \in \mathbb{P}\right\}$. We want to define $\varphi \in \Phi$ so that for every $p \in \mathbb{P}$ and every $n \in \mathbb{N}$ the rational number $\varphi\left(p^{n}\right)$ lies in the interval] $a_{p}, a_{p}+3^{-p^{n+2}}$ [when n is even, and in] $a_{p}-3^{-p^{n+2}}, a_{p}$ [when n is odd. Then for each $a_{p} \in X$ with $h_{n}:=(-1)^{n} 3^{-p^{n}}$ we have

$$
\left|h_{n}\right|^{-1} \cdot\left|F_{\varphi}\left(a_{p}+h_{n+2}\right)-F_{\varphi}\left(a_{p}\right)\right| \geq 3^{p^{n}} \cdot 2^{-p^{n}} \rightarrow \infty \quad(n \rightarrow \infty)
$$

and therefore $F_{\varphi}^{\prime}\left(a_{p}\right)=\infty$ in view of Lemma 5 .

Now to achieve this, for $p \in \mathbb{P}$ put $\mathcal{R}_{p}:=\left\{m / p^{n} \mid m \in \mathbb{Z} \wedge n \in \mathbb{N}\right\} \backslash \mathbb{Z}$. Naturally, each set \mathcal{R}_{p} is dense. Hence for every $p \in \mathbb{P}$ and every $n \in \mathbb{N}$ we may choose $\varphi\left(p^{n}\right)$ in $] a_{p}+3^{-p^{n+4}}, a_{p}+3^{-p^{n+2}}\left[\cap \mathcal{R}_{p}\right.$ when n is even, and in $] a_{p}-3^{-p^{n+2}}, a_{p}-3^{-p^{n+4}}\left[\cap \mathcal{R}_{p}\right.$ when n is odd. Doing so we get an injective function from $M:=\left\{p^{n} \mid p \in \mathbb{P}, n \in \mathbb{N}\right\}$ into $\mathbb{Q} \backslash \mathbb{Z}$ since all the sets \mathcal{R}_{p} are mutually disjoint and for each $p \in \mathbb{P}$ all the intervals $] a_{p} \pm 3^{-i}, a_{p} \pm 3^{-j}[$ are mutually exclusive. Since $\mathbb{N} \backslash M$ is infinite, this injection can easily be extended to a bijection $\varphi \in \Phi$ which fits automatically. This concludes the proof of the first statement of Theorem 4.

Proof of Theorem 5(i). We will prove a little more than claimed. For $\varphi \in \Phi$ let Ω_{φ}^{+}resp. Ω_{φ}^{-}be the set of all points $\xi \in \mathbb{R}$ such that the right resp. left derivative of F_{φ} is infinite at ξ. Then $\Omega_{\varphi}=\Omega_{\varphi}^{+} \cap \Omega_{\varphi}^{-}$and it is clear that always $\Omega_{\varphi}^{+} \supset \mathbb{Q}$. Theorem 5(i) is an immediate consequence of

Theorem 9. If $\varphi \in \Phi_{0}$ then $\Omega_{\varphi}^{-}=\emptyset$ and $\Omega_{\varphi}^{+}=\mathbb{Q}$.
Proof. Let $\varphi \in \Phi_{0}$ and assume indirectly that $\Omega_{\varphi}^{-} \neq \emptyset$ and choose $\xi \in \Omega_{\varphi}^{-}$. The left derivative of F_{φ} is infinite at ξ and hence there is a lower bound $M \in \mathbb{N}$ such that

$$
2^{m} \cdot \sum_{\xi-2^{-m} \leq \varphi(n)<\xi} \frac{1}{2^{n}}>1
$$

for every $m \geq M$. Suppose there were some $m \geq M$ such that $\varphi^{-1}(a)>m$ for every rational a with $\xi-2^{-m} \leq a<\xi$. Then

$$
2^{m} \cdot \sum_{\xi-2^{-m} \leq \varphi(n)<\xi} \frac{1}{2^{n}} \leq 2^{m} \cdot \sum_{n=m+1}^{\infty} \frac{1}{2^{n}}=1,
$$

contrary to the above. It follows that for every $m \geq M$ there exists $n \leq m$ such that $\xi-2^{-m} \leq \varphi(n)<\xi$. Consequently, since $\varphi \in \Phi_{0}$, for every $m \geq M$ there are coprime integers p, q such that $0<q \leq m$ and $|\xi-p / q| \leq 2^{-m}$. In view of the lemma below this is impossible provided that $\xi \notin \mathbb{Q}$. And the following remark is a strong argument that $\xi \notin \Omega_{\varphi}^{-}$whenever $\xi \in \mathbb{Q}$. In a similar way we get a contradiction from the assumption that Ω_{φ}^{+}contains an irrational number ξ.

Remark. By applying Lemma 4 for rational ξ and in view of the proof of Theorem 3, if $\varphi \in \Phi_{0}$ then at each rational number the left derivative of F_{φ} must exist and vanish.

Lemma 6. For each irrational number ξ there exist infinitely many positive integers m such that $|\xi-p / q| \geq 1 /\left(2 m^{2}\right)$ whenever $p, q \in \mathbb{Z}$ and $0<q \leq m$.

Proof. Let ξ be an irrational number and for every $n \in \mathbb{N}$ let A_{n} / B_{n} be the nth convergent to ξ where A_{n}, B_{n} are coprime and $B_{n}>0$. For each $k \in \mathbb{N}$ put $m_{k}:=\left(B_{k}+B_{k+1}+\tau_{k}\right) / 2$ with $\tau_{k} \in\{0,1\}$ so that $m_{k} \in \mathbb{N}$. We have $m_{1}<m_{2}<\cdots$ since always $B_{k}<B_{k+1}$. Further, since always $B_{n+2} \geq B_{n+1}+B_{n}$, for every $k \geq 3$ we have $B_{k-1} \geq 2$. In order to prove Lemma 6 we verify for every $k \geq 3$ that $|\xi-p / q| \geq 1 /\left(2 m_{k}^{2}\right)$ whenever $p, q \in \mathbb{Z}$ and $0<q \leq m_{k}$. Assume indirectly that there is $k \geq 3$ such that both $0<q \leq m_{k}$ and $|\xi-p / q|<1 /\left(2 m_{k}^{2}\right)$ for certain $p, q \in \mathbb{Z}$. Then $|\xi-p / q|<1 /\left(2 q^{2}\right)$ and therefore, as a well-known consequence (cf. [3, Theorem 184]), the rational number p / q must be a convergent to ξ, whence $p / q=A_{n} / B_{n}$ for some $n \in \mathbb{N}$. We have $B_{n} \leq q$ (with $B_{n}=q$ if p, q are coprime) and hence $B_{n} \leq m_{k}$. Moreover, $n \leq k$ since $B_{n} \leq m_{k}<B_{k+1}$. (Note that from $B_{k+1} \geq B_{k}+B_{k-1} \geq B_{k}+2$ we derive $2 B_{k+1} \geq B_{k+1}+$ $B_{k}+2>2 m_{k}$.) Consequently, $B_{n}+B_{n+1} \leq B_{k}+B_{k+1} \leq 2 m_{k}$. Naturally (cf. [8, §13, (12)]),

$$
\left|\xi-\frac{A_{n}}{B_{n}}\right|>\frac{1}{B_{n}\left(B_{n}+B_{n+1}\right)}
$$

and thus we arrive at the contradiction

$$
\frac{1}{2 m_{k}^{2}}>\left|\xi-\frac{p}{q}\right|=\left|\xi-\frac{A_{n}}{B_{n}}\right|>\frac{1}{m_{k} \cdot\left(2 m_{k}\right)}
$$

Proof of Theorem 5(ii). Let $a<b$ and assume without loss of generality that $a, b \in \mathbb{Q}$. Put $\theta_{m}=(b-a) \cdot 257^{-2^{m}}$ and choose an injective function φ from the positive even numbers into $\mathbb{Q} \cap[a, b]$ and, by analogy with the construction of a Cantor set, intervals $\mathcal{I}_{m, 1}, \mathcal{I}_{m, 2}, \ldots, \mathcal{I}_{m, 2^{m}}(m=1,2, \ldots)$ so that the following properties are satisfied for each $m \in \mathbb{N}$:
(1) $\mathcal{I}_{1,1}=\left[a, a+\theta_{1}\right], \mathcal{I}_{1,2}=\left[b-\theta_{1}, b\right]$ and $\varphi(2)=a, \varphi(4)=b$.
(2) $\mathcal{I}_{m, 1}, \mathcal{I}_{m, 2}, \ldots, \mathcal{I}_{m, 2^{m}}$ are mutually disjoint compact intervals of length θ_{m} each.
(3) The $2 \cdot 2^{m}$ endpoints of the intervals $\mathcal{I}_{m, i}$ are the rational numbers $\varphi(n)$ with n running through the even numbers up to $4 \cdot 2^{m}$.
(4) For $m^{\prime}=m+1$ the $2^{m^{\prime}}$ intervals $\mathcal{I}_{m^{\prime}, j}$ are placed so that each $\mathcal{I}_{m^{\prime}, j}$ is a subinterval of some $\mathcal{I}_{m, i}$ with one common endpoint.
Naturally, the nonempty compact set

$$
\mathcal{S}=\bigcap_{m=1}^{\infty} \bigcup_{n=1}^{2^{m}} \mathcal{I}_{m, n}
$$

is a perfect subset of $[a, b]$ and hence it has the cardinality of the continuum.
Extend φ in any way to a numbering of all rational numbers. We conclude the proof by verifying $F_{\varphi}^{\prime}(\xi)=\infty$ for all irrational $\xi \in \mathcal{S}$. Let $\xi \in \mathcal{S} \backslash \mathbb{Q}$. Then for every $m \in \mathbb{N}$ we can find an interval $\mathcal{I}_{m, j}$ which contains ξ. We have
$\mathcal{I}_{m, j}=\left[\varphi(n), \varphi\left(n^{\prime}\right)\right]$ for some even $n, n^{\prime} \leq 4 \cdot 2^{m}$. Thus $\xi<\varphi\left(n^{\prime}\right)<\xi+\theta_{m}$ and $\xi-\theta_{m}<\varphi(n)<\xi$ for some $n, n^{\prime} \leq 2^{m+2}$. Hence for every $m \in \mathbb{N}$, both

$$
\frac{1}{\theta_{m-1}} \cdot \sum_{\xi \leq \varphi(n)<\xi+\theta_{m}} \frac{1}{2^{n}} \text { and } \frac{1}{\theta_{m-1}} \cdot \sum_{\xi-\theta_{m} \leq \varphi(n)<\xi} \frac{1}{2^{n}}
$$

are not smaller than

$$
\frac{1}{\theta_{m-1}} \cdot \frac{1}{2^{2^{m+2}}}=\frac{1}{b-a}\left(\frac{257}{256}\right)^{2^{m-1}} \rightarrow \infty \quad(m \rightarrow \infty)
$$

Consequently,

$$
\lim _{m \rightarrow \infty} \frac{F_{\varphi}\left(\xi \pm \theta_{m}\right)-F_{\varphi}(\xi)}{ \pm \theta_{m-1}}=\infty
$$

and therefore $F_{\varphi}^{\prime}(\xi)=\infty$ by applying Lemma 5 .
Proof of Theorem 6. Define mutually disjoint compact intervals

$$
\mathcal{I}(m, 1), \mathcal{I}(m, 2), \ldots, \mathcal{I}\left(m, 2^{m}\right)
$$

of length 3^{-m} for every $m \in \mathbb{N}$ in the usual way so that

$$
\mathbb{D}=\bigcap_{m=1}^{\infty} \bigcup_{n=1}^{2^{m}} \mathcal{I}(m, n)
$$

and so that for arbitrary $m, k \in \mathbb{N}$ every interval $\mathcal{I}(m, \cdot)$ contains precisely 2^{k} intervals $\mathcal{I}(m+k, \cdot)$. Let $\varphi \in \Phi$ be arbitrary and put $Q(n):=$ $\{\varphi(1), \ldots, \varphi(n)\}$. We claim that for every $m \geq 2$ we can find distinct intervals $\mathcal{I}_{m, k}\left(k=1, \ldots, 2^{m-1}\right)$ disjoint from $Q\left(2 m^{2}\right)$ in the collection $\left\{\mathcal{I}\left(m^{2}, n\right) \mid n \leq 2^{m^{2}}\right\}$ such that for every $m \geq 2$ each interval $\mathcal{I}_{m, k}$ contains precisely two disjoint intervals $\mathcal{I}_{m+1, i}, \mathcal{I}_{m+1, j}$.

In order to verify this, start with $m=2$. At most eight of the sixteen intervals $\mathcal{I}(4, \cdot)$ meet the set $Q(8)$ and hence at least two intervals $\mathcal{I}(4, \cdot)$ are disjoint from $Q(8)$. For arbitrary $m \geq 2$ each interval $\mathcal{I}\left(m^{2}, \cdot\right)$ contains precisely $2^{(m+1)^{2}-m^{2}}$ intervals $\mathcal{I}\left((m+1)^{2}, \cdot\right)$ of which at most $2(m+1)^{2}$ meet $Q\left(2(m+1)^{2}\right)$, whence at least two of them are disjoint from $Q\left(2(m+1)^{2}\right)$ because $2^{(m+1)^{2}-m^{2}}-2(m+1)^{2} \geq 2$.

Naturally,

$$
\mathcal{Y}:=\bigcap_{m=2}^{\infty} \bigcup_{k=1}^{2^{m-1}} \mathcal{I}_{m, k}
$$

is a subset of \mathbb{D} and \mathcal{Y} has the cardinality of the continuum. We finish the proof by showing that $F_{\varphi}^{\prime}(\xi)=\infty$ is impossible for $\xi \in \mathcal{Y}$.

Let $\xi \in \mathcal{Y}$. Then $\{\xi\}=\bigcap_{m=2}^{\infty}\left[a_{m}, b_{m}\right]$ where for every $m \geq 2$ we have $\left[a_{m}, b_{m}\right]=\mathcal{I}\left(m^{2}, n\right)$ for some $n \leq 2^{m^{2}}$ with $\mathcal{I}\left(m^{2}, n\right) \cap Q\left(2 m^{2}\right)=\emptyset$. Therefore
every interval $\left[a_{m}, b_{m}\right]$ has length $3^{-m^{2}}$ and contains a rational $\varphi(n)$ only if $n>2 m^{2}$. Hence

$$
3^{m^{2}} \cdot \sum_{a_{m} \leq \varphi(n)<b_{m}} \frac{1}{2^{n}} \leq 3^{m^{2}} \cdot \sum_{n=2 m^{2}+1}^{\infty} \frac{1}{2^{n}}=\left(\frac{3}{4}\right)^{m^{2}} \rightarrow 0 \quad(m \rightarrow \infty) .
$$

Now for every $m \geq 2$ we may choose $c_{m} \in\left\{a_{m}, b_{m}\right\}$ so that $\left|c_{m}-\xi\right| \geq$ $\frac{1}{2}\left(b_{m}-a_{m}\right)=\frac{1}{2} 3^{-m^{2}}$. Then $\lim _{m \rightarrow \infty} c_{m}=\xi$ and for every $m \geq 2$ we have $c_{m} \neq \xi$ and

$$
\begin{aligned}
\frac{F_{\varphi}(\xi)-F_{\varphi}\left(c_{m}\right)}{\xi-c_{m}} & \leq \frac{F_{\varphi}\left(b_{m}\right)-F_{\varphi}\left(a_{m}\right)}{\frac{1}{2}\left(b_{m}-a_{m}\right)} \\
& =2 \cdot 3^{m^{2}} \cdot \sum_{a_{m} \leq \varphi(n)<b_{m}} \frac{1}{2^{n}} \rightarrow 0 \quad(m \rightarrow \infty) .
\end{aligned}
$$

Hence $F_{\varphi}^{\prime}(\xi)=\infty$ is impossible.
6. Positive derivatives. Finally it remains to prove our probably most surprising theorem.

Proof of Theorem 7. Define three sequences $\left(a_{k}\right),\left(b_{k}\right),\left(d_{k}\right)$ of positive even numbers such that with $A_{k}=\left\{a_{k}+n d_{k} \mid n \in \mathbb{N}\right\}$ and $B_{k}=\left\{b_{k}+n d_{k} \mid\right.$ $n \in \mathbb{N}\}$ all the elements in the family $\left\{A_{k} \mid k \in \mathbb{N}\right\} \cup\left\{B_{k} \mid k \in \mathbb{N}\right\}$ are mutually disjoint sets of even numbers. (Choose for example $a_{k}=2 \cdot 3^{k}$ and $b_{k}=4 \cdot 3^{k}$ and $d_{k}=2 \cdot 3^{k+1}$.) For each $k \in \mathbb{N}$ define a strictly decreasing sequence $\left(x_{m}^{(k)}\right)$ which tends to 0 as $m \rightarrow \infty$ by $x_{m}^{(k)}:=\left(c_{k} d_{k}^{2} m\right)^{-1}$. Elementary asymptotic analysis yields

$$
\begin{align*}
\sum_{n=m}^{\infty} \frac{1}{\left(s+n d_{k}\right)^{2}} & =\frac{1}{d_{k}^{2} m}+O\left(\frac{1}{m^{2}}\right) \tag{6.1}\\
& =c_{k} x_{m}^{(k)}+O\left(\left(x_{m}^{(k)}\right)^{2}\right) \quad(m \rightarrow \infty)
\end{align*}
$$

for each $k, s \in \mathbb{N}$. Now put $\delta_{1}=1$ and $\delta_{k}:=\min \left\{\left|\xi_{i}-\xi_{k}\right| \mid i<k\right\}$ for all integers $k \geq 2$. Then choose $m_{k} \in \mathbb{N}$ for every $k \in \mathbb{N}$ such that with $y_{k}:=x_{m_{k}}^{(k)}=\left(c_{k} d_{k}^{2} m_{k}\right)^{-1}$,

$$
\begin{align*}
y_{k}+\sqrt{c_{k} y_{k}} & <\delta_{k} / 2, \tag{6.2}\\
2 c_{k+1} y_{k+1} & \leq c_{k} y_{k}, \tag{6.3}
\end{align*}
$$

$$
\begin{equation*}
\max \left\{\sum_{n=m_{k}}^{\infty} \frac{1}{\left(a_{k}+n d_{k}\right)^{2}}, \sum_{n=m_{k}}^{\infty} \frac{1}{\left(b_{k}+n d_{k}\right)^{2}}\right\} \leq 2 c_{k} y_{k}, \tag{6.4}
\end{equation*}
$$

for each $k \in \mathbb{N}$. Define $X_{k} \subset A_{k}$ and $Y_{k} \subset B_{k}$ by $X_{k}=\left\{a_{k}+n d_{k} \mid m_{k} \leq n \in \mathbb{N}\right\}$ and $Y_{k}=\left\{b_{k}+n d_{k} \mid m_{k} \leq n \in \mathbb{N}\right\}$. Now we define our desired $\varphi \in \Phi$ first
on $D:=\bigcup\left\{X_{k} \cup Y_{k} \mid k \in \mathbb{N}\right\}$ by choosing for each $k \in \mathbb{N}$ and every integer $n \geq m_{k}$,

$$
\begin{aligned}
& \left.\varphi\left(a_{k}+n d_{k}\right) \in\right] \xi_{k}+x_{n+1}^{(k)}, \xi_{k}+x_{n}^{(k)}[\cap \mathbb{Q} \backslash \mathbb{Z} \\
& \left.\varphi\left(b_{k}+n d_{k}\right) \in\right] \xi_{k}-x_{n}^{(k)}, \xi_{k}-x_{n+1}^{(k)}[\cap \mathbb{Q} \backslash \mathbb{Z}
\end{aligned}
$$

By using the disjoint sets $\mathcal{R}_{p}(p \in \mathbb{P})$ of the proof of Theorem 4 these choices can be made so that φ is injective on D. Then we extend φ (well-defined and injective) by defining φ^{-1} on $\mathbb{Q} \backslash(\mathbb{Z} \cup \varphi(D))$ via

$$
\varphi^{-1}(p / q):=\sqrt{13}^{1+|p| / p} \cdot 3^{|p|} \cdot 5^{q} \cdot 7^{\delta(p / q)}
$$

where p, q are coprime integers and $q \geq 2$ and where $\delta(p / q)$ is the least positive integer not smaller than $\max \left\{\left|p / q-\xi_{i}\right|^{-1} \mid i=1, \ldots, q\right\}$. This extension is clearly possible because $\varphi^{-1}(p / q)$ is always odd by definition and D contains only even numbers. Finally we extend φ in any way to a bijection from \mathbb{N} onto \mathbb{Q}.

Now fix $\kappa \in \mathbb{N}$ and for abbreviation put $\xi:=\xi_{\kappa}$ and $x_{m}:=x_{m}^{(\kappa)}$ for every $m \in \mathbb{N}$. For $k, m \in \mathbb{N}$ let $\mathcal{I}_{m, k}:=\left[\xi_{k}-y_{k}, \xi_{k}+y_{k}\right] \cap\left[\xi-x_{m}, \xi+x_{m}\right]$. We claim that

$$
\begin{equation*}
\forall m, k \in \mathbb{N}: \quad k>\kappa \wedge \mathcal{I}_{m, k} \neq \emptyset \Rightarrow c_{k} y_{k} \leq x_{m}^{2} \tag{6.5}
\end{equation*}
$$

Indeed, if $k>\kappa$ then $\xi \notin\left[\xi_{k}-y_{k}, \xi_{k}+y_{k}\right]$ since by $(6.2), y_{k}<\delta_{k} \leq\left|\xi_{k}-\xi\right|$. Therefore, if additionally $\mathcal{I}_{m, k} \neq \emptyset$ for any m then we clearly must have $x_{m}+y_{k} \geq\left|\xi_{k}-\xi\right| \geq \delta_{k}$ and thus $c_{k} y_{k}>x_{m}^{2}$ would imply $\sqrt{c_{k} y_{k}}+y_{k}>$ $x_{m}+y_{k} \geq \delta_{k}$ contrary to (6.2).

In order to conclude the proof by verifying $G_{\varphi}^{\prime}(\xi)=c_{\kappa}$ we take into account the following three issues.

First, there clearly exists a bound $\delta>0$ such that $\mathbb{Z} \cup \varphi\left(\bigcup_{k=1}^{\kappa-1}\left(X_{k} \cup Y_{k}\right)\right)$ is disjoint from $[\xi-\delta, \xi+\delta]$. We claim that the set

$$
K_{m}:=\left\{k \in \mathbb{N} \mid k>\kappa \wedge \mathcal{I}_{m, k} \neq \emptyset\right\}
$$

is empty for some $m \in \mathbb{N}$ if and only if ξ is not a limit point of the set $\left\{\xi_{1}, \xi_{2}, \ldots\right\}$. Indeed, if K_{m} is empty for some m then for every $k>\kappa$ we have $\mathcal{I}_{m, k}=\emptyset$ and hence $\xi_{k} \notin\left[\xi-x_{m}, \xi+x_{m}\right]$, whence ξ cannot be a limit point of $\left\{\xi_{1}, \xi_{2}, \ldots\right\}$. Conversely, if ξ is not a limit point then we may choose $h>0$ so that $\xi_{k} \notin[\xi-h, \xi+h]$ for every $k>\kappa$. Since by (6.2) we have $y_{k}<\frac{1}{2}\left|\xi_{k}-\xi\right|$ for every $k>\kappa$, we must have $\mathcal{I}_{m, k}=\emptyset$ for every $k>\kappa$, or equivalently $K_{m}=\emptyset$ if m is chosen so that $x_{m}<h / 2$.

So if ξ is not a limit point of $\left\{\xi_{1}, \xi_{2}, \ldots\right\}$ then there exists \tilde{m} such that $\mathcal{I}_{\tilde{m}, k}=\emptyset$ for every $k>\kappa$ and hence $\delta=\min \left\{\delta, x_{\tilde{m}}\right\}$ is a bound such that even $\mathbb{Z} \cup \varphi\left(\bigcup_{k \neq \kappa}\left(X_{k} \cup Y_{k}\right)\right)$ is disjoint from $[\xi-\tilde{\delta}, \xi+\tilde{\delta}]$.

Secondly, put $L_{m, k}:=\left\{n \in\left(X_{k} \cup Y_{k}\right) \mid \xi-x_{m} \leq \varphi(n)<\xi+x_{m}\right\}$ and assume that ξ is a limit point of $\left\{\xi_{1}, \xi_{2}, \ldots\right\}$. Thus K_{m} is never empty and we may define $\mu(m):=\min K_{m}$. Then in view of the definition of φ,

$$
\sum_{k>\kappa} \sum_{n \in L_{m, k}} \frac{1}{n^{2}} \leq \sum_{k \in K_{m}}\left(\sum_{n=m_{k}}^{\infty} \frac{1}{\left(a_{k}+n d_{k}\right)^{2}}+\sum_{n=m_{k}}^{\infty} \frac{1}{\left(b_{k}+n d_{k}\right)^{2}}\right)
$$

for all $m \in \mathbb{N}$. Thus by applying (6.4),

$$
\sum_{k>\kappa} \sum_{n \in L_{m, k}} \frac{1}{n^{2}} \leq 4 \sum_{k \in K_{m}} c_{k} y_{k} .
$$

Furthermore, since $c_{\mu(m)+n} y_{\mu(m)+n} \leq 2^{-n} c_{\mu(m)} y_{\mu(m)}$ for $n=0,1,2, \ldots$ due to (6.3),

$$
\sum_{k \in K_{m}} c_{k} y_{k} \leq \sum_{k=\mu(m)}^{\infty} c_{k} y_{k} \leq \sum_{n=0}^{\infty} 2^{-n} c_{\mu(m)} y_{\mu(m)}=2 c_{\mu(m)} y_{\mu(m)} .
$$

By (6.5) we have $c_{\mu(m)} y_{\mu(m)} \leq x_{m}^{2}$ and so altogether we arrive at

$$
\begin{equation*}
\frac{1}{x_{m}} \cdot \sum_{k>\kappa} \sum_{n \in L_{m, k}} \frac{1}{n^{2}} \leq 8 x_{m} \rightarrow 0 \quad(m \rightarrow \infty) \tag{6.6}
\end{equation*}
$$

provided that ξ is a limit point of $\left\{\xi_{1}, \xi_{2}, \ldots\right\}$.
Thirdly, define $N_{m}:=\left\{n \in \mathbb{N} \backslash D \mid \xi-x_{m} \leq \varphi(n)<\xi+x_{m}\right\}$ and let M be the smallest positive integer such that the interval $\left[\xi-x_{M}, \xi+x_{M}\right]$ does not contain integers or reduced fractions p / q with $|q|<\kappa$. Then for each $m \geq M$ we have $N_{m} \subset\left[5 \cdot 7^{1 / x_{m}}, \infty\left[\right.\right.$ because if $n \in N_{m}$ and $\varphi(n)=p / q$ (where $q>0$ and the fraction p / q is reduced) then $p / q \in\left[\xi-x_{m}, \xi+x_{m}\right] \subset$ [$\xi-x_{M}, \xi+x_{M}$] and hence (by the definition of M) $\kappa \in\{1, \ldots, q\}$ so that $1 / x_{m} \leq|p / q-\xi|^{-1} \leq \delta(p / q)$ and therefore $n \geq 3^{|p|} \cdot 5^{q} \cdot 7^{\delta(p / q)} \geq 5 \cdot 7^{1 / x_{m}}$. Consequently, for $m \geq M$,

$$
\begin{equation*}
\frac{1}{x_{m}} \cdot \sum_{n \in N_{m}} \frac{1}{n^{2}} \leq \frac{1}{x_{m}} \cdot \sum_{n \geq 5 \cdot 7^{1 / x_{m}}} \frac{1}{n^{2}} \leq \frac{1}{x_{m}} \cdot \int_{4 \cdot 7^{1 / x_{m}}}^{\infty} \frac{d x}{x^{2}} \rightarrow 0 \quad(m \rightarrow \infty) . \tag{6.7}
\end{equation*}
$$

To conclude the proof by verifying $G_{\varphi}^{\prime}(\xi)=c_{\kappa}$ it is enough to check

$$
\lim _{m \rightarrow \infty} \frac{G_{\varphi}\left(\xi+x_{m}\right)-G_{\varphi}(\xi)}{x_{m}}=\lim _{m \rightarrow \infty} \frac{G_{\varphi}(\xi)-G_{\varphi}\left(\xi-x_{m}\right)}{x_{m}}=c_{\kappa}
$$

because $\lim _{m \rightarrow \infty} x_{m+1} / x_{m}=1$ and G_{φ} is increasing. Now, for every $m \in \mathbb{N}$
we can write

$$
\begin{aligned}
& \frac{G_{\varphi}\left(\xi+x_{m}\right)-G_{\varphi}(\xi)}{x_{m}} \\
& \quad=\frac{1}{x_{m}}\left(\sum_{n \in S_{m} \cap X_{\kappa}} \frac{1}{n^{2}}+\sum_{n \in S_{m} \cap D \backslash X_{\kappa}} \frac{1}{n^{2}}+\sum_{n \in S_{m} \backslash D} \frac{1}{n^{2}}\right)
\end{aligned}
$$

where $S_{m}:=\left\{n \in \mathbb{N} \mid \xi \leq \varphi(n)<\xi+x_{m}\right\}$. (Recall that $X_{\kappa} \subset D$.) In view of $S_{m} \backslash D \subset N_{m}$ and (6.7) we have

$$
\lim _{m \rightarrow \infty} \frac{1}{x_{m}} \sum_{n \in S_{m} \backslash D} \frac{1}{n^{2}}=0
$$

In view of (6.1) and the definition of φ we have

$$
\lim _{m \rightarrow \infty} \frac{1}{x_{m}} \sum_{n \in S_{m} \cap X_{\kappa}} \frac{1}{n^{2}}=c_{\kappa}
$$

Since $S_{m} \cap D \backslash X_{\kappa}$ is a subset of $\bigcup_{k \neq \kappa}\left(X_{k} \cup Y_{k}\right)$, we have

$$
\lim _{m \rightarrow \infty} \frac{1}{x_{m}} \sum_{n \in S_{m} \cap D \backslash X_{\kappa}} \frac{1}{n^{2}}=0
$$

in view of (6.6) and the consideration involving the bound δ and the potential bound $\tilde{\delta}$. (Clearly, if ξ is not a limit point of $\left\{\xi_{1}, \xi_{2}, \ldots\right\}$ then $S_{m} \cap D \backslash X_{\kappa}=\emptyset$ for sufficiently large m.) Summing up,

$$
\lim _{m \rightarrow \infty} \frac{G_{\varphi}\left(\xi+x_{m}\right)-G_{\varphi}(\xi)}{x_{m}}=c_{\kappa}
$$

Analogously,

$$
\lim _{m \rightarrow \infty} \frac{G_{\varphi}(\xi)-G_{\varphi}\left(\xi-x_{m}\right)}{x_{m}}=c_{\kappa}
$$

and this finishes the proof of Theorem 7.

REFERENCES

[1] N. Calkin and H. Wilf, Recounting the rationals, Amer. Math. Monthly 107 (2000), 360-363.
[2] M. K. Fort, Jr., A theorem concerning functions discontinuous on a dense set, ibid. 58 (1951), 408-410.
[3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1960.
[4] M. Hata, Rational approximations to π and other numbers, Acta Arith. 63 (1993), 335-349.
[5] E. H. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, 1965.
[6] J. Paradís, P. Viader, and L. Bibiloni, A new singular function, Amer. Math. Monthly 118 (2011), 344-354.
[7] J. C. Oxtoby, Measure and Category, Springer, 1971.
[8] O. Perron. Die Lehre von den Kettenbrüchen, Vol. 1, Teubner, 1977.

Gerald Kuba
Institute of Mathematics
University of Natural Resources and Life Sciences
Wien, Austria
E-mail: gerald.kuba@boku.ac.at

Received 27 April 2011;
revised 31 August 2011

