# COLLOQUIUM MATHEMATICUM <br> <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">VOL. 119</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2010</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">NO. 2</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| VOL. 119 | 2010 | NO. 2 |
| :--- | :--- | :--- |</table-markdown></div> 

## A WIENER TYPE THEOREM FOR $\left(U(p, q), H_{n}\right)$

BY<br>LINDA SAAL (Córdoba)


#### Abstract

It is well known that $\left(U(p, q), H_{n}\right)$ is a generalized Gelfand pair. Applying the associated spectral analysis, we prove a theorem of Wiener Tauberian type for the reduced Heisenberg group, which generalizes a known result for the case $p=n, q=0$.


1. Introduction. A classical Tauberian theorem due to Wiener (see e.g. [7]) states that a closed ideal $J$ of the convolution algebra $L^{1}\left(\mathbb{R}^{n}\right)$ is the full algebra if and only if there exists $g \in J$ such that $\widehat{g}(\xi) \neq 0$ for every $\xi \in \mathbb{R}^{n}$, where $\widehat{g}$ denotes the Fourier transform of $g$. Equivalently, given $g \in L^{1}\left(\mathbb{R}^{n}\right)$, the smallest closed, translation-invariant subspace generated by $g$ is $L^{1}\left(\mathbb{R}^{n}\right)$ if and only if $\widehat{g}(\xi) \neq 0$ for every $\xi \in \mathbb{R}^{n}$.

Analogues of Wiener's theorem have been proved in the context of Heisenberg groups.

Let us consider the Heisenberg group $H_{n}$ defined by $H_{n}=\mathbb{C}^{n} \times \mathbb{R}$ with group law $(z, t)\left(z^{\prime}, t^{\prime}\right)=\left(z+z^{\prime}, t+t^{\prime}-\frac{1}{2} \operatorname{Im} z . \overline{z^{\prime}}\right)$ where $z . \overline{z^{\prime}}=\sum_{j=1}^{n} z_{j} \overline{z_{j}^{\prime}}$. Then the unitary group $U(n)$ acts on $H_{n}$ by automorphisms, in the natural way, $g \cdot(z, t)=(g z, t)$. It is well known that $\left(U(n), H_{n}\right)$ is a Gelfand pair, that is, the convolution algebra $L_{U(n)}^{1}\left(H_{n}\right)$ of $U(n)$-invariant, integrable functions on $H_{n}$ is commutative. Its spectrum is identified, via integration, with the set of bounded spherical functions. In [5], it is proved that if $J$ is a closed ideal of $L_{U(n)}^{1}\left(H_{n}\right)$ and if for each bounded spherical function $\varphi$, there exists $f \in J$ such that $\langle f, \varphi\rangle:=\int_{H_{n}} f(z, t) \varphi(z, t) d z d t \neq 0$, then $J=L_{U(n)}^{1}\left(H_{n}\right)$.

The motion group of the Heisenberg group is $G=U(n) \ltimes H_{n}$ (semidirect product) acting on $L^{1}\left(H_{n}\right)$ in the canonical way. For $f \in L^{1}\left(H_{n}\right)$ and $g \in G$, let $f^{g}(z, t)=f(g .(z, t))$ and let $V_{f}$ be the smallest closed subspace spanned by $\left\{f^{g}: g \in G\right\}$. In [6] sufficient conditions on $f$ are given in order to get $V_{f}=L^{1}\left(H_{n}\right)$. Moreover, a similar problem is considered in [11, Th. 4.2.4] for $f \in L^{p}\left(H_{n}^{r}\right)$ (for some range of $p$ ), where $H_{n}^{r}$ denotes the reduced Heisenberg group $H_{n} / \Gamma, \Gamma=\{0\} \times 2 \pi \mathbb{Z}$.

[^0]In this article, we study a similar problem but considering $U(p, q), p+q$ $=n, p, q \geq 1$, in place of $U(n)$ (which is isomorphic to $U(n, 0)$ ).

For $z, w \in \mathbb{C}^{n}$, we set $B(z, w)=\sum_{j=1}^{p} z_{j} \bar{w}_{j}-\sum_{j=p+1}^{n} z_{j} \bar{w}_{j}$ and we write, for $x \in \mathbb{R}^{n}, x=\left(x^{\prime}, x^{\prime \prime}\right)$ with $x^{\prime} \in \mathbb{R}^{p}, x^{\prime \prime} \in \mathbb{R}^{q}$. So, $\mathbb{R}^{2 n}$ can be identified with $\mathbb{C}^{n}$ by $\varphi\left(x^{\prime}, x^{\prime \prime}, y^{\prime}, y^{\prime \prime}\right)=\left(x^{\prime}+i y^{\prime}, x^{\prime \prime}-i y^{\prime \prime}\right), x^{\prime}, y^{\prime} \in \mathbb{R}^{p}, x^{\prime \prime}, y^{\prime \prime} \in \mathbb{R}^{q}$. Via $\varphi$, the form $-\operatorname{Im} B(z, w)$ agrees with the standard symplectic form on $\mathbb{R}^{2(p+q)}$, and so $H_{n}$ is isomorphic to $\mathbb{C}^{n} \times \mathbb{R}$ with the product $(z, t)(w, s)=$ $\left(z+w, t+s-\frac{1}{2} \operatorname{Im} B(z, w)\right)$. From now on, we will use freely this identification. We note that $U(p, q)=\{g \in G l(n, \mathbb{C}): B(g z, g w)=B(z, w)\}$ and so it acts on $H_{n}$, by automorphisms, by $g \cdot(z, t)=(g z, t)$. Let

$$
X_{j}=-\frac{1}{2} y_{j} \frac{\partial}{\partial t}+\frac{\partial}{\partial x_{j}}, \quad Y_{j}=\frac{1}{2} x_{j} \frac{\partial}{\partial t}+\frac{\partial}{\partial y_{j}}, \quad j=1, \ldots, n, \quad T=\frac{\partial}{\partial t}
$$

denote the standard basis of the Heisenberg Lie algebra. Then the algebra of left invariant and $U(p, q)$-invariant differential operators on $H_{n}$ is generated by $T$ and $L=\sum_{j=1}^{p}\left(X_{j}^{2}+Y_{j}^{2}\right)-\sum_{j=p+1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right)$. The pair $\left(U(p, q), H_{n}\right)$ is a generalized Gelfand pair and the corresponding harmonic analysis has been developed in [1], [2], 4].

There, the associated spherical distributions were computed: for $\lambda \in$ $\mathbb{R}-\{0\}$ and $k \in \mathbb{Z}$, there exists a tempered $U(p, q)$, invariant distribution (on $H_{n}$ ) $S_{\lambda, k}$ satisfying

$$
\begin{equation*}
L S_{\lambda, k}=-|\lambda|(2 k+p-q) S_{\lambda, k}, \quad i T S_{\lambda, k}=\lambda S_{\lambda, k} \tag{1.1}
\end{equation*}
$$

and, for $\nu \in \mathbb{R}$, there exists a tempered $U(p, q)$-invariant distribution $S_{\nu}$ such that

$$
\begin{equation*}
L S_{\nu}=\nu S_{\nu}, \quad i T S_{\nu}=0 \tag{1.2}
\end{equation*}
$$

Up to a constant, $S_{\lambda, k}$ is the unique tempered solution of (1.1) (see [2]). In contrast, the solution space of $\sqrt[1.2]{ }$ in $\mathcal{S}^{\prime}\left(H_{n}\right)$ is one-dimensional for $\nu \neq 0$, and for $\nu=0$ it is two-dimensional, generated by $S_{0}$ and the trivial solution 1 (see [4]).

For $f$ in the Schwartz space $\mathcal{S}\left(H_{n}\right)$, the Plancherel inversion formula provides the spectral decomposition

$$
f=\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty} f * S_{\lambda, k}|\lambda|^{n} d \lambda
$$

For the reduced Heisenberg group we have a similar spectral analysis. Indeed, we write $H_{n}^{r}=\mathbb{R}^{n} \times \mathbb{R}^{n} \times S^{1}$, where $S^{1}=\left\{e^{i \theta}: \theta \in \mathbb{R}\right\}$. The algebra of left invariant and $U(p, q)$-invariant differential operators on $H_{n}^{r}$ is generated by $L$ and $\bar{T}:=\partial / \partial \theta$, and the associated eigendistributions are given by $S_{l, k}:=S_{\lambda, k}$ for $\lambda=l \in \mathbb{Z}$ and $S_{\nu}, \nu \in \mathbb{R}$.

Theorem (cf. [11, Theorem 4.2.4]). Let $K$ be a $U(p, q)$-invariant function in $L^{\infty}\left(H_{n}^{r}\right)$ and let $J=\left\{g \in L^{1}\left(H_{n}^{r}\right): g * K=0\right\}$. Assume that
(i) for all $k, l \in \mathbb{Z}, l \neq 0$, there exists $g \in J$ such that $g * S_{l, k} \neq 0$,
(ii) for each real $\nu$, there exists $g \in J$ such that $g * S_{\nu} \neq 0$.

Then $K=0$ (and $J=L^{1}\left(H_{n}\right)$ ).
For the proof of the Theorem, we cannot argue as in Th. 4.2.4 of [11], since there is no nontrivial $U(p, q)$-invariant, integrable function on $H_{n}$.

Instead, we use some results obtained in 3, pertaining to a Plancherel inversion formula.
2. Preliminaries. Let us introduce some notation and recall some known facts. For $p, q \geq 1, p+q=n$, the space $\mathcal{S}^{\prime}\left(\mathbb{C}^{n}\right)^{U(p, q)}$ of $U(p, q)$ invariant, tempered distributions on $\mathbb{C}^{n}$ was described in [10]. There, the space $\mathcal{H}$ of functions $\varphi: \mathbb{R} \rightarrow \mathbb{C}$ such that $\varphi(\tau)=\varphi_{1}(\tau)+\tau^{n-1} H(\tau) \varphi_{2}(\tau)$, $\varphi_{1}, \varphi_{2} \in \mathcal{S}(\mathbb{R})$, was introduced (where $H$ denotes the Heaviside function, i.e. $\left.H(\tau)=\chi_{(0, \infty)}(\tau)\right) . \mathcal{H}$ is endowed with a suitable Fréchet topology, and there is a linear, continuous and surjective map $N: \mathcal{S}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{H}$ whose adjoint $N^{\prime}: \mathcal{H}^{\prime} \rightarrow \mathcal{S}^{\prime}\left(\mathbb{C}^{n}\right)^{U(p, q)}$ is a homeomorphism.

For $f \in \mathcal{S}\left(H_{n}\right)$, we will write $N f(\tau, t)$ for $N(f(\cdot, t))(\tau)$. We have

$$
\begin{equation*}
N f(\tau, t)=\int_{B(z, z)=\tau} f(z, t) d \sigma_{\tau}(z) \tag{2.1}
\end{equation*}
$$

where $d \sigma_{\tau}(z)$ denotes a surface measure on the hyperboloid $B(z, z)=\tau$ such that

$$
\begin{equation*}
\int_{H_{n}} f(z, t) d z d t=\frac{1}{2^{n}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} N f(\tau, t) d \tau d t \tag{2.2}
\end{equation*}
$$

(cf. (2.12) in [2]).
In order to give explicit expressions for the distributions $S_{\lambda, k}$ we recall the definition of the Laguerre polynomials. For nonnegative integers $m, \alpha$ let $L_{m}^{\alpha}(\tau)$ (see e.g. 9, pp. 99-101]) be given by

$$
L_{m}^{0}(\tau)=\sum_{j=0}^{m}\binom{m}{j}(-1)^{j} \frac{\tau^{j}}{j!}, \quad L_{m-1}^{\alpha+1}(\tau)=-\frac{d}{d \tau} L_{m}^{\alpha}(\tau) .
$$

It is well known that the family $\left\{e^{-\tau / 2} L_{m}^{0}(\tau)\right\}_{m \geq 0}$ is an orthonormal basis of $L^{2}(0, \infty)$.

The distributions $S_{\lambda, k}$ can be written as

$$
S_{\lambda, k}=F_{\lambda, k} \otimes e^{-i \lambda t}
$$

where $F_{\lambda, k} \in \mathcal{S}^{\prime}\left(\mathbb{C}^{n}\right)^{U(p, q)}$. Thus, there exists $T_{\lambda, k} \in \mathcal{H}^{\prime}$ such that

$$
\left\langle F_{\lambda, k}, g\right\rangle=\left\langle T_{\lambda, k}, N g\right\rangle
$$

Explicitly,

$$
\left\langle F_{\lambda, k}, g\right\rangle=\left\langle\left(L_{k-q+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto \frac{2}{|\lambda|} e^{-\tau / 2} N g\left(\frac{2}{|\lambda|} \tau\right)\right\rangle
$$

for $k \geq 0, \lambda \neq 0$, and for $k<0, \lambda \neq 0$,

$$
\left\langle F_{\lambda, k}, g\right\rangle=\left\langle\left(L_{-k-p+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto \frac{2}{|\lambda|} e^{-\tau / 2} N g\left(-\frac{2}{|\lambda|} \tau\right)\right\rangle
$$

Associated to the bilinear form $B$, we introduce the "Fourier transform" $\mathcal{F}_{B}$ defined on $L^{1}\left(\mathbb{C}^{n}\right)$ by

$$
\begin{equation*}
\left(\mathcal{F}_{B} f\right)(u)=\int_{H_{n}} e^{i \operatorname{Re} B(u, z)} f(z) d z \tag{2.3}
\end{equation*}
$$

For $\nu \in \mathbb{R}$, let

$$
\left\langle S_{\nu}^{0}, f\right\rangle=\int_{B(u, u)=v} \int_{\mathbb{C}^{n}} e^{i \operatorname{Re} B(u, z)} f(z) d z d \sigma_{\nu}(u)
$$

where $d \sigma_{v}(u)$ is the surface measure on $B(u, u)=v$, involved in 2.1). In other words, $S_{\nu}^{0}=\mathcal{F}_{B}\left(d \sigma_{\nu}\right)$.

For $g \in \mathcal{S}\left(H_{n}\right)$, the distributions $S_{\nu}$ are given by (see [4])

$$
\begin{equation*}
\left\langle S_{\nu}, g\right\rangle=\int_{B(u, u)=\nu H_{n}} \int_{i \operatorname{Re} B(u, z)} g(z, t) d z d t d \sigma_{\nu}(u) \tag{2.4}
\end{equation*}
$$

In [3] a generalized spherical transform on the Schwartz space on $H_{n}$ is defined: for $g \in \mathcal{S}\left(H_{n}\right), \mathcal{F} g:(\mathbb{R}-\{0\}) \times \mathbb{Z} \rightarrow \mathbb{C}$ is given by

$$
\mathcal{F}(g)(\lambda, k)=\left\langle S_{\lambda, k}, g\right\rangle
$$

It is proved that $\operatorname{Ker} N=\operatorname{Ker} \mathcal{F}$, the image of $\mathcal{F}$ is described and an inversion Plancherel formula is obtained, recovering $N g$ in terms of $\mathcal{F}(g)(\lambda, k)$. In order to state the formula, we introduce more notation.

For $m:(\mathbb{R}-\{0\}) \times \mathbb{Z} \rightarrow \mathbb{C}$, we set

$$
\begin{aligned}
m^{*}(\lambda, k) & = \begin{cases}m(\lambda, k) & \text { if } k \geq 0 \\
(-1)^{n} m(\lambda, k) & \text { if } k<0\end{cases} \\
m^{* *}(\lambda, k) & = \begin{cases}m(\lambda, k) & \text { if } k<0 \\
(-1)^{n} m(\lambda, k) & \text { if } k \geq 0\end{cases}
\end{aligned}
$$

Also we define

$$
\begin{aligned}
& E(m)(\lambda, k)=\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} m(\lambda, k-l) \\
& \widetilde{E}(m)(\lambda, k)=\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} m(\lambda, k+l)
\end{aligned}
$$

In the following proposition we state the main results proved in [3, Section 4], concerning the Plancherel inversion formula.

Proposition 2.1. Let $g \in \mathcal{S}\left(H_{n}\right)$ and set $m(\lambda, k)=\mathcal{F}(g)(\lambda, k)$.
(i) For $\tau \geq 0$,

$$
N g(\tau, \widehat{\lambda})=(-1)^{n-1} \frac{|\lambda|}{2} \sum_{k \geq 0} E\left(m^{*}\right)(\lambda, k+q) L_{k}^{0}(|\lambda \tau| / 2) e^{-|\lambda| \tau / 4}
$$

and for $\tau<0$,

$$
N g(\tau, \widehat{\lambda})=(-1)^{n-1} \frac{|\lambda|}{2} \sum_{k \geq 0} \widetilde{E}\left(m^{* *}\right)(\lambda,-k-p) L_{k}^{0}(-|\lambda| \tau / 2) e^{|\lambda| \tau / 4}
$$

(ii) Let $D$ be the operator defined on the space of polynomial functions by $D L_{k}^{0}=L_{k}^{0}-L_{k-1}^{0}$ for $k \geq 1$ and $D 1=1$. Then for $k \geq 0$ and $m \geq 0$,

$$
D^{m}\left(L_{k}^{0}\right)=\sum_{j=0}^{\min (m, k)}(-1)^{j}\binom{m}{j} L_{k-j}^{0}
$$

(see [4, Lemma 4.3]). Moreover, for $k \geq n-1$,

$$
D^{n-1}\left(L_{k}^{0}\right)(\tau)=(-1)^{n-1} \frac{1}{(n-1)!} \tau^{n-1} \mathcal{L}_{k-(n-1)}^{n-1}(\tau)
$$

(see [4, Lemma 4.4]).
(iii) For $\tau \geq 0$,

$$
\begin{gathered}
N g(\tau, \widehat{\lambda})=\xi_{1}(\tau, \widehat{\lambda})+\eta_{1}(\tau, \widehat{\lambda}) \quad \text { where } \\
\xi_{1}(\tau, \widehat{\lambda})=\frac{(-1)^{n-1}}{(n-1)!} \frac{|\lambda|}{2} \sum_{k \geq q} m(\lambda, k)\left(\frac{|\lambda| \tau}{2}\right)^{n-1} \mathcal{L}_{k-q}^{n-1}(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4} \\
\eta_{1}(\tau, \widehat{\lambda})=\frac{|\lambda|}{2} \sum_{-p+1 \leq k \leq q-1} m^{*}(\lambda, k)\left(D^{n-1} L_{k-q+n-1}^{0}\right)(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4}
\end{gathered}
$$

Similarly, for $\tau \leq 0$,

$$
N g(\tau, \widehat{\lambda})=\xi_{2}(\tau, \widehat{\lambda})+\eta_{2}(\tau, \widehat{\lambda}) \quad \text { where }
$$

$$
\begin{aligned}
& \xi_{2}(\tau, \widehat{\lambda})=\frac{(-1)^{n-1}}{(n-1)!} \frac{|\lambda|}{2} \sum_{k \leq-p} m(\lambda, k)(|\lambda| \tau / 2)^{n-1} \mathcal{L}_{-k-p}^{n-1}(-|\lambda| \tau / 2) e^{|\lambda| \tau / 4} \\
& \eta_{2}(\tau, \widehat{\lambda})=\frac{|\lambda|}{2} \sum_{-p+1 \leq k \leq q-1} m^{* *}(\lambda, k)\left(D^{n-1} L_{-k-p+n-1}^{0}\right)(-|\lambda| \tau / 2) e^{|\lambda| \tau / 4}
\end{aligned}
$$

Moreover, by taking the Fourier transform in the variable $t$, we can write $\xi_{1}(\tau, t)=\tau^{n-1} \widetilde{\xi}_{1}(\tau, t)$ (resp. $\xi_{2}(\tau, t)=\tau^{n-1} \widetilde{\xi}_{2}(\tau, t)$ ) and the series defining $\widetilde{\xi_{1}}$ converges absolutely and uniformly on $[0, \infty] \times \mathbb{R}$ (resp. on $[-\infty, 0] \times \mathbb{R})[4$, Th. 4.5]).

We now consider $g \in \mathcal{S}\left(H_{n}^{r}\right)$. We recall that, for $l \in \mathbb{Z}$, the Fourier coefficients of $t \mapsto N g(\tau, t)$ are given by

$$
N g(\tau, \widehat{l})=\frac{1}{2 \pi} \int_{0}^{2 \pi} N g(\tau, t) e^{-i l t} d t
$$

and

$$
N g(\tau, t)=\sum_{l \neq 0} N g(\tau, \widehat{l}) e^{i l t}+N g(\tau, \widehat{0})
$$

is the corresponding Fourier expansion.
By adapting the results of Proposition 2.1 to Schwartz functions on the reduced Heisenberg group, we see that for $\tau \geq 0$,

$$
N g(\tau, t)=\xi_{1}(\tau, t)+\eta_{1}(\tau, t)+N g(\tau, \widehat{0})
$$

where

$$
\begin{equation*}
\xi_{1}(\tau, t)=\frac{(-1)^{n-1}}{(n-1)!} \sum_{l \neq 0} \frac{|l|}{2} \sum_{k \geq q} m(l, k)(|l| \tau / 2)^{n-1} \mathcal{L}_{k-q}^{n-1}(|l| \tau / 2) e^{-|l| \tau / 4} e^{i l t} \tag{2.5}
\end{equation*}
$$

$$
\eta_{1}(\tau, t)=\sum_{l \neq 0} \frac{|l|}{2} \sum_{-p+1 \leq k \leq q-1} m^{*}(l, k)\left(D^{n-1} L_{k-q+n-1}^{0}\right)(|l| \tau / 2) e^{-|l| \tau / 4} e^{i l t}
$$

and for $\tau \leq 0$,

$$
N g(\tau, t)=\xi_{2}(\tau, t)+\eta_{2}(\tau, t)+N g(\tau, \widehat{0})
$$

with

$$
\xi_{2}(\tau, t)=\frac{(-1)^{n-1}}{(n-1)!} \sum_{l \neq 0} \frac{|l|}{2} \sum_{k \leq-p} m(l, k)(|l| \tau / 2)^{n-1} \mathcal{L}_{-k-p}^{n-1}(-|l| \tau / 2) e^{|l| \tau / 4} e^{i l t}
$$

$$
\begin{equation*}
\eta_{2}(\tau, t)=\sum_{l \neq 0} \frac{|l|}{2} \sum_{-p+1 \leq k \leq q-1} m^{* *}(l, k)\left(D^{n-1} L_{-k-p+n-1}^{0}\right)(-|l| \tau / 2) e^{|l| \tau / 4} e^{i l t} \tag{2.6}
\end{equation*}
$$

Furthermore, the series involved in (2.5) and (2.6) converge absolutely and uniformly.

Let $\Psi_{l, k}^{n-1}(\tau, t):=\mathcal{L}_{k-q}^{n-1}(|l| \tau / 2) e^{-|l| \tau / 4} e^{i l t}$. Let $K$ be a $U(p, q)$-invariant function in $L^{\infty}\left(H_{n}^{r}\right)$. We set $\widetilde{K}(\tau, t):=K(z, t)$ if $B(z, z)=\tau$. We also set $K_{0}(z)=K(z, \widehat{0})$ and let $K_{00}$ be the distribution given by

$$
\begin{equation*}
\left\langle K_{00}, g\right\rangle=\int_{H_{n}^{r}} K(z, \widehat{0}) g(z, t) d z d t \tag{2.7}
\end{equation*}
$$

that is, $\left\langle K_{00}, g\right\rangle=\left\langle K_{0} \otimes 1_{t}, g\right\rangle$.
We also define, for $l \neq 0,-p+1 \leq k \leq q-1$,

$$
\begin{aligned}
& a_{l, k}(K)=\frac{|l|}{2} \int_{0}^{2 \pi}\left(\int_{0}^{\infty} \widetilde{K}(\tau, t)\left(D^{n-1} L_{k-q+n-1}^{0}\right)(|l| \tau / 2) e^{-|l| \tau / 4} e^{i l t} d \tau\right) d t \\
& b_{l, k}(K)=\frac{|l|}{2} \int_{0}^{2 \pi}\left(\int_{-\infty}^{0} \widetilde{K}(\tau, t)\left(D^{n-1} L_{-k-p+n-1}^{0}\right)(-|l| \tau / 2) e^{|l| \tau / 4} e^{i l t} d \tau\right) d t
\end{aligned}
$$

Proposition 2.2. Assume that $K$ is a $U(p, q)$-invariant function in $L^{\infty}\left(H_{n}^{r}\right)$. Then, in the distribution sense,

$$
K=\sum_{k \in \mathbb{Z}} \sum_{l \neq 0} c_{l, k}(K) S_{l, k}+K_{00}
$$

where, for fixed $l \neq 0$ : if $k \geq q$,

$$
\begin{equation*}
c_{l, k}(K)=\frac{(-1)^{n-1}}{(n-1)!}\left(\frac{|l|}{2}\right)^{n} \int_{0}^{2 \pi}\left(\int_{0}^{\infty} \tau^{n-1} \Psi_{l, k-q}^{n-1}(|l| \tau / 2, t) \widetilde{K}(\tau, t) d \tau\right) d t \tag{2.8}
\end{equation*}
$$

if $k \leq-p$,

$$
\begin{align*}
& c_{l, k}(K)  \tag{2.9}\\
& =\frac{(-1)^{n-1}}{(n-1)!}\left(\frac{|l|}{2}\right)^{n} \int_{0}^{2 \pi}\left(\int_{-\infty}^{0} \tau^{n-1} \Psi_{l,-k-p}^{n-1}(-|l| \tau / 2, t) \widetilde{K}(\tau, t) d \tau\right) d t
\end{align*}
$$

if $0 \leq k \leq q-1$,

$$
c_{l, k}(K)=a_{l, k}(K)+(-1)^{n} b_{l, k}(K)
$$

and if $-p+1 \leq k \leq-1$,

$$
c_{l, k}(K)=(-1)^{n} a_{l, k}(K)+b_{l, k}(K)
$$

Proof. By 2.2), for $g \in \mathcal{S}\left(H_{n}^{r}\right)$ we have

$$
\begin{aligned}
\langle K, g\rangle & :=\int_{H_{n}^{r}} K(z, t) g(z, t) d z d t=\int_{0}^{2 \pi}\left(\int_{-\infty}^{+\infty} N(K g)(\tau, t) d \tau\right) d t \\
& =\int_{0}^{2 \pi}\left(\int_{-\infty}^{+\infty} \widetilde{K}(\tau, t) N g(\tau, t) d \tau\right) d t .
\end{aligned}
$$

Also

$$
\begin{aligned}
\int_{-\infty}^{+\infty} \widetilde{K}(\tau, t) N g(\tau, t) d \tau= & \int_{0}^{+\infty} \widetilde{K}(\tau, t) \xi_{1}(\tau, t) d \tau+\int_{0}^{+\infty} \widetilde{K}(\tau, t) \eta_{1}(\tau, t) d \tau \\
& +\int_{-\infty}^{0} \widetilde{K}(\tau, t) \xi_{2}(\tau, t) d \tau+\int_{-\infty}^{0} \widetilde{K}(\tau, t) \eta_{2}(\tau, t) d \tau \\
& +\int_{-\infty}^{+\infty} \widetilde{K}(\tau, t) N g(\tau, \widehat{0}) d \tau
\end{aligned}
$$

Since the series (2.5) and (2.6) converge uniformly, and since $\tau^{n-1} \Psi_{l, k}^{n-1}(\tau, t) \in \mathcal{S}\left(H_{n}^{r}\right)$, the dominated convergence theorem implies that

$$
\left\langle\widetilde{K}, \xi_{1}\right\rangle=\sum_{l \neq 0, k \geq q} c_{l, k}(K)\left\langle S_{l, k}, g\right\rangle, \quad\left\langle\tilde{K}, \xi_{2}\right\rangle=\sum_{l \neq 0, k \leq-p} c_{l, k}(K)\left\langle S_{l, k}, g\right\rangle,
$$

where $c_{l, k}(K)$ are given by $(2.8)$ and $(2.9)$, respectively.
Also, taking account of the definition of $m^{*}$ and $m^{* *}$, we can see that

$$
\left\langle\widetilde{K}, \eta_{1}\right\rangle+\left\langle\widetilde{K}, \eta_{2}\right\rangle=\sum_{l \neq 0,-p+1 \leq k \leq q-1} c_{l, k}(K)\left\langle S_{l, k}, g\right\rangle,
$$

with the desired expression for $c_{l, k}(K),-p+1 \leq k \leq q-1$.
Finally,

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{-\infty}^{+\infty} \widetilde{K}(\tau, t) N g(\tau, \widehat{0}) d \tau d t & =\int_{-\infty}^{+\infty} \widetilde{K}(\tau, \widehat{0}) N g(\tau, \widehat{0}) d \tau \\
& =\int_{-\infty}^{+\infty} N(K g)(\tau, \widehat{0}) d \tau=\left\langle K_{00}, g\right\rangle
\end{aligned}
$$

where the last equality again follows from (2.2).
Proposition 2.3. Let $K$ and $c_{l, k}(K)$ be as in Proposition 2.2. Assume that for $l \neq 0, c_{l, k}(K)=0$ for all $k \in \mathbb{Z}$. Then $K(z, \widehat{l})=0$ for a.e. $z$.

Proof. Indeed, for $k \geq q$,

$$
\begin{aligned}
0=c_{l, k}(K) & =\frac{(-1)^{n-1}}{(n-1)!}\left(\frac{|l|}{2}\right)^{n} \int_{0}^{2 \pi}\left(\int_{0}^{\infty} \tau^{n-1} \Psi_{l, k-q}^{n-1}(|l| \tau / 2, t) \widetilde{K}(\tau, t) d \tau\right) d t \\
& =\frac{(-1)^{n-1}}{(n-1)!} \int_{0}^{\infty} s^{n-1} \mathcal{L}_{k-q}^{n-1}(s) e^{-s / 2} \widetilde{K}(2 s /|l|, \widehat{l}) d s
\end{aligned}
$$

Since, with a suitable normalization, the Laguerre polynomials $\left\{L_{m}^{n-1}(s)\right\}_{m \geq 0}$ form an orthonormal basis of $L^{2}\left((0, \infty), s^{n-1} e^{-s / 2} d s\right)$ (see [9, p. 100]), and since $\widetilde{K}(s, \widehat{l}) \in L^{2}\left((0, \infty), s^{n-1} e^{-s / 2} d s\right)$, we have $\widetilde{K}(s, \widehat{l})=0$ for a.e. $s \geq 0$.

With the same argument, $c_{l, k}(K)=0$ for $k \leq-p$ implies that $\widetilde{K}(s, \widehat{l})=0$ for a.e. $s \leq 0$. Thus $K(z, \widehat{l})=0$ for a.e. $z$.

Remark 2.4. We observe that

$$
\begin{aligned}
\left(g * K_{00}\right)\left(z, e^{i t}\right) & =\int_{\mathbb{C}^{n}} \int_{0}^{2 \pi} g\left(z-w, e^{i(t-s-\operatorname{Im} B(z, w))}\right) K(w, \widehat{0}) d s d w \\
& =\int_{\mathbb{C}^{n}} g(z-w, \widehat{0}) K(w, \widehat{0}) d w=\left(g(\cdot, \widehat{0}) \star K_{0}\right)(z)
\end{aligned}
$$

where $\star$ denotes the convolution product on $\mathbb{C}^{n}$.
3. The proof of the Theorem. For $l \neq 0$, we denote by $\pi_{l}$ the Schrödinger representation of $H_{n}^{r}$ on $L^{2}\left(\mathbb{R}^{n}\right)$, determined by $\pi_{l}(0,0, t)=e^{i l t}$, and we set $E_{l}(\varphi, \psi)(x, y, t):=\left\langle\pi_{l}(x, y, t) \varphi, \psi\right\rangle$, the matrix entry of $\pi_{l}$ associated to the vectors $\varphi, \psi$. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with $\alpha_{i} \in \mathbb{N} \cup\{0\}$, let $\|\alpha\|=\sum_{i=1}^{p} \alpha_{i}-\sum_{i=p+1}^{n} \alpha_{i}$. We pick the orthonormal basis of $L^{2}\left(\mathbb{R}^{n}\right)$ given by $h_{\alpha}(x)=h_{\alpha_{1}}\left(x_{1}\right) \ldots h_{\alpha_{n}}\left(x_{n}\right)$ where $h_{j}$ denotes the $j$ th Hermite function.

The Plancherel formula for $g \in \mathcal{S}\left(H_{n}^{r}\right)$ asserts that (see [11, Ch. 1])

$$
\begin{aligned}
g(x, y, t)= & \frac{1}{(2 \pi)^{n+1}} \sum_{l \neq 0} \operatorname{tr}\left(\pi_{l}(g) \pi_{l}(x, y, t)^{-1}\right)|l|^{n}+g(x, y, \widehat{0}) \\
= & \frac{1}{(2 \pi)^{n+1}} \sum_{l \neq 0}|l|^{n} \sum_{\alpha, \beta}\left\langle g, E_{l}\left(h_{\alpha}, h_{\beta}\right)\right\rangle_{L^{2}\left(H_{n}^{r}\right)} E_{l}\left(h_{\alpha}, h_{\beta}\right)(x, y, t) \\
& +g(x, y, \widehat{0})
\end{aligned}
$$

where $\langle,\rangle_{L^{2}\left(H_{n}^{r}\right)}$ denotes the inner product on $L^{2}\left(H_{n}^{r}\right)$ and the series converge uniformly. Furthermore, for $l \neq 0$,

$$
E_{l}\left(h_{\alpha}, h_{\beta}\right)(x, y, t)=e^{i l t} \varphi_{\alpha, \beta}(x, y)
$$

where $\left\{\varphi_{\alpha, \beta}\right\}_{\alpha, \beta}$ is an orthonormal basis of $\mathbb{R}^{2 n}$ (see [8, Lemma 6.1]).

Also,

$$
\int_{H_{n}^{r}} E_{l}\left(h_{\alpha}, h_{\beta}\right)(z, t) g(z, \widehat{0}) d z d t=\left(\int_{\mathbb{C}^{n}} \varphi_{\alpha, \beta}(z) g(z, \widehat{0}) d z\right)\left(\int_{0}^{2 \pi} e^{i l t} d t\right)=0 .
$$

Since

$$
\left(g * E_{l}\left(h_{\alpha}, h_{\alpha}\right)\right)(x, y, t)=\sum_{\beta}\left\langle g, E_{l}\left(h_{\alpha}, h_{\beta}\right)\right\rangle_{L^{2}\left(H_{n}^{r}\right)} E_{l}\left(h_{\alpha}, h_{\beta}\right)(x, y, t)
$$

and since $S_{l, k}=2^{-n-1} \sum_{\|\alpha\|=k} E_{l}\left(h_{\alpha}, h_{\alpha}\right)$ (see [2]), we have the orthogonal decomposition

$$
g(x, y, t)=\sum_{l \neq 0, k \in \mathbb{Z}}|l|^{n}\left(g * S_{l, k}\right)(x, y, t)+g(z, \widehat{0}) .
$$

Assume that $g \in J$. By hypothesis, we have $g * K=0$. Thus Proposition 2.2 and Remark 2.4 imply that

$$
0=g * K=\sum_{k \in Z} \sum_{l \neq 0} c_{l, k}(K)\left(g * S_{l, k}\right)+\left(g(\cdot, \widehat{0}) \star K_{0}\right) .
$$

By the formula above, this is the Fourier series expansion of $g * K$, so

$$
\begin{equation*}
c_{l, k}(K)\left(g * S_{l, k}\right)=0 \quad \text { for } l \neq 0, k \in \mathbb{Z}, \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
g(\cdot, \widehat{0}) \star K_{0}=0 . \tag{3.2}
\end{equation*}
$$

Since for $l \neq 0, k \in \mathbb{Z}$, hypothesis (i) of the Theorem asserts that there exists $g \in J$ such that $g * S_{l, k} \neq 0$, we conclude that $c_{l, k}(K)=0$.

Thus, by Proposition 2.3, $K(z, \widehat{l})=0$ for a.e. $z \in \mathbb{C}^{n}$ and all $l \neq 0$.
In order to finish the proof of the Theorem, we must prove that $K(z, \widehat{0})$ $=0$ for a.e. $z$.

For $\mu \in \mathcal{S}^{\prime}\left(\mathbb{C}^{n}\right)$, we denote by $\operatorname{supp} \mu$ the support of $\mu$. Let $\mathcal{F}_{B}$ be defined by $(2.3)$. We recall that $S_{\nu}^{0}=\mathcal{F}_{B}\left(d \sigma_{\nu}\right)$, where $d \sigma_{\nu}$ denotes the surface measure on $B_{\nu}:=\{z: B(z, z)=\nu\}$.

Proposition 3.1. Let $K_{0}$ be a $U(p, q)$-invariant function in $L^{\infty}\left(\mathbb{C}^{n}\right)$ and let $J_{0}=\left\{f \in L^{1}\left(\mathbb{C}^{n}\right): f \star K_{0}=0\right\}$. Assume that for each real $\nu$, there exists $f \in J_{0}$ such that $f \star S_{\nu}^{0} \neq 0$. Then $K_{0}(z)=0$ for a.e. $z \in \mathbb{C}^{n}$.

Proof. Since $\mathcal{F}_{B}(f \star h)=\mathcal{F}_{B}(f) \mathcal{F}_{B}(h)$ we follow the lines of the proof of the classical Wiener Theorem (see [7]) to obtain

$$
\begin{equation*}
\operatorname{supp} \mathcal{F}_{B}\left(K_{0}\right) \subset \bigcap_{f \in J_{0}}\left\{\xi \in \mathbb{C}^{n}: \mathcal{F}_{B}(f)(\xi)=0\right\} . \tag{3.3}
\end{equation*}
$$

Since $K_{0}$ is a $U(p, q)$-invariant function, $\mathcal{F}_{B}\left(K_{0}\right)$ is a $U(p, q)$-invariant distribution. Assume, by contradiction, that $\xi_{0} \in \operatorname{supp} \mathcal{F}_{B}\left(K_{0}\right)$ and $B\left(\xi_{0}\right)$
$=\nu$. Then $B_{\nu} \subset \operatorname{supp} \mathcal{F}_{B}\left(K_{0}\right)$. Thus, by (3.3), $\mathcal{F}_{B}(f)(\xi)=0$ for all $\xi \in B_{\nu}$ and all $f \in J_{0}$.

On the other hand, we have assumed that for each $\nu \in \mathbb{R}$, there exists $f \in J_{0}$ such that $f \star S_{\nu}^{0} \neq 0$. For this $f$ we have

$$
\left\langle\mathcal{F}_{B}\left(f \star S_{\nu}^{0}\right), \varphi\right\rangle=\left\langle\mathcal{F}_{B}(f) \mathcal{F}_{B}\left(S_{\nu}^{0}\right), \varphi\right\rangle=\int_{B_{\nu}} \mathcal{F}_{B}(f)(\xi) \varphi(\xi) d \sigma_{\nu}(\xi)=0
$$

This is a contradiction and we conclude that $\operatorname{supp} \mathcal{F}_{B}\left(K_{0}\right)$ is empty and $K_{0}=0$.

Let $K_{0}(z)=K(z, \widehat{0})$ and let $J_{0}$ be as in Proposition 3.1. We observe that by 3.2$), g \in J$ implies that $g(\cdot, \widehat{0}) \in J_{0}$. Also, by hypothesis (ii) of the Theorem, for $\nu \in \mathbb{R}$, there exists $g \in \mathcal{S}\left(H_{n}^{r}\right)$ such that $g * S_{\nu} \neq 0$. By 2.4, $\left(g * S_{\nu}\right)(z, t)=\left(g(, \widehat{0}) \star S_{\nu}^{0}\right)(z)$, so Proposition 3.1 implies that $K_{0}(z)=0$ and the Theorem is proved.

The converse of the Theorem is stated in the following
Remark 3.2. For $\lambda \neq 0, k \in \mathbb{Z}$, there exists $f \in \mathcal{S}\left(H_{n}\right)$ such that $\left\langle S_{\lambda, k}, f\right\rangle \neq 0$.

Indeed, let

$$
f_{\lambda}(z)=e^{-|\lambda||z|^{2} / 4} L_{|k|}^{n-1}\left(|\lambda||z|^{2} / 2\right) \quad \text { and } \quad f(z, t)=\int_{-\infty}^{\infty} f_{\lambda}(z) e^{-i \lambda t} d \lambda
$$

(see [2, p. 343]). For $\nu \in \mathbb{R}$, let $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$ be a nonnegative function such that $\varphi(\rho, \tau)=1$ on a neighborhood of $(|\nu|, \nu)$ and let $f(z)=\varphi\left(|z|^{2}, B(z)\right)$. Then $S_{\nu}^{0}\left(\mathcal{F}_{B} f\right)=N f(\nu) \neq 0$ by 2.1.

Acknowledgements. This research was partially supported by CONICET, FONCyT and SeCyT.

## REFERENCES

[1] G. van Dijk and K. Mokni, Harmonic analysis on a class of generalized Gelfand pairs associated with hyperbolic spaces, Russian J. Math. Phys. 5 (1998), 167-178.
[2] T. Godoy and L. Saal, $L^{2}$ spectral decomposition on the Heisenberg group associated to the action of $U(p, q)$, Pacific J. Math. 193 (2000), 327-353.
[3] -, 一, A spherical transform on Schwartz functions on the Heisenberg group associated to the action of $U(p, q)$, Colloq. Math. 106 (2006), 231-255.
[4] —, 一, On the spectrum of the generalized Gelfand pair $\left(U(p, q), H_{n}\right), p+q=n$, Math. Scand. 105 (2009), 171-187.
[5] A. Hulanicki and F. Ricci, A Tauberian theorem and tangential convergence for boundary harmonic functions on balls in $\mathbb{C}^{n}$, Invent. Math. 62 (1980), 325-331.
[6] R. Rawat, A theorem of Wiener-Tauberian type for $L^{1}\left(H_{n}\right)$, Proc. Indian Acad. Sci. 106 (1996), 369-377.
[7] W. Rudin, Functional Analysis, McGraw-Hill, 1973.
[8] R. Strichartz, Harmonic analysis as spectral theory of Laplacians, J. Funct. Anal. 87 (1989), 51-148.
[9] G. Szegö, Orthogonal Polynomials, Colloq. Publ. 23, Amer. Math. Soc., 1939.
[10] A. Tengstrand, Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand. 8 (1960), 201-218.
[11] S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progr. Math. 159, Birkhäuser, 1998.

Linda Saal
Facultad de Matemática, Astronomía y Física
Universidad Nacional de Córdoba
and
CIEM-CONICET, Ciudad Universitaria
5000 Córdoba, Argentina
E-mail: saal@mate.uncor.edu

Received 4 September 2008;
revised 9 March 2009


[^0]:    2010 Mathematics Subject Classification: Primary 43A80; Secondary 22E30.
    Key words and phrases: Wiener Tauberian theorem, Heisenberg group.

