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A WIENER TYPE THEOREM FOR (U(p,q), H,)

LINDA SAAL (Cérdoba)

Abstract. It is well known that (U(p, q), Hy) is a generalized Gelfand pair. Applying
the associated spectral analysis, we prove a theorem of Wiener Tauberian type for the
reduced Heisenberg group, which generalizes a known result for the case p =n, ¢ = 0.

1. Introduction. A classical Tauberian theorem due to Wiener (see e.g.
[7]) states that a closed ideal J of the convolution algebra L*(R™) is the full
algebra if and only if there exists g € J such that g(£) # 0 for every £ € R,
where § denotes the Fourier transform of g. Equivalently, given g € L'(R"™),
the smallest closed, translation-invariant subspace generated by g is L(R")
if and only if g(&) # 0 for every & € R™.

Analogues of Wiener’s theorem have been proved in the context of Hei-
senberg groups.

Let us consider the Heisenberg group H,, defined by H, = C" x R with
group law (z,t)(2',t') = (z + 2/,t + t' — Im2.2’) where z.2/ = D i1 i
Then the unitary group U(n) acts on H, by automorphisms, in the nat-
ural way, g.(z,t) = (gz,t). It is well known that (U(n), H,) is a Gelfand
pair, that is, the convolution algebra L%](n) (Hy) of U(n)-invariant, integrable
functions on H,, is commutative. Its spectrum is identified, via integration,
with the set of bounded spherical functions. In [5], it is proved that if J is
a closed ideal of LlU(n) (H,) and if for each bounded spherical function ¢,
there exists f € J such that (f,¢) = {; f(z,t)p(z,t)dzdt # 0, then
J = LlU(n) (H,).

The motion group of the Heisenberg group is G = U(n) x H,, (semidirect
product) acting on L'(H,) in the canonical way. For f € L'(H,) and g € G,
let f9(z,t) = f(g.(2,t)) and let V; be the smallest closed subspace spanned
by {f9 : g € G}. In [6] sufficient conditions on f are given in order to get
V¢ = L'(H,). Moreover, a similar problem is considered in [11} Th. 4.2.4] for
f € LP(H)) (for some range of p), where H] denotes the reduced Heisenberg
group H, /I, I' = {0} x 27Z.
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In this article, we study a similar problem but considering U(p, q), p + ¢
=n, p,q > 1, in place of U(n) (which is isomorphic to U(n,0)).

For z,w € C", we set B(z,w) = Z?:l 2jW;—> %1 %W, and we write,
for z € R?, 2 = (2/,2") with 2’ € RP, 2” € R%. So, R?" can be identified
with C" by Sp(xlax//aylvy//) = (l’l + iy’,x” - iy”)a xlvy/ S RP’ 33”73/” € R%
Via ¢, the form —Im B(z,w) agrees with the standard symplectic form on
R2(P+9)  and so H,, is isomorphic to C® x R with the product (z,t)(w, s) =
(z+w, t+s—3 Im B(z,w)). From now on, we will use freely this identification.
We note that U(p,q) = {g € Gi(n,C) : B(gz,gw) = B(z,w)} and so it acts
on H,, by automorphisms, by g.(z,t) = (gz,t). Let

1 90 0 10 0 1 T_ 0
25t "o, T2 e Ty T T TG
denote the standard basis of the Heisenberg Lie algebra. Then the algebra of
left invariant and U (p, ¢)-invariant differential operators on H,, is generated
by T and L = Z?:l(XJZ + Y;Z) — Z?ZPH(XJZ + YJQ) The pair (U(p, q), Hy,)
is a generalized Gelfand pair and the corresponding harmonic analysis has

been developed in [1], [2], [4].

There, the associated spherical distributions were computed: for A\ €
R — {0} and k € Z, there exists a tempered U(p, q), invariant distribution
(on Hy) Sy satisfying

(1.1) LS)\J{ = —\)\](2k+p—q)SA,k, iTS)\’k Z)\S)“k

X;=

and, for v € R, there exists a tempered U(p, ¢)-invariant distribution S,
such that

(1.2) LS, =vS,, TS, =0.

Up to a constant, S) j is the unique tempered solution of (see [2]).
In contrast, the solution space of in §'(H,,) is one-dimensional for
v # 0, and for v = 0 it is two-dimensional, generated by Sy and the trivial
solution 1 (see [4]).
For f in the Schwartz space S(H,), the Plancherel inversion formula
provides the spectral decomposition
(o)
F=>_ 1 FxSularan.

k€Z —o0

For the reduced Heisenberg group we have a similar spectral analysis.
Indeed, we write H, = R" x R” x S, where S' = {e¥ : § € R}. The
algebra of left invariant and U (p, ¢)-invariant differential operators on H;,
is generated by L and T := /06, and the associated eigendistributions are
given by S = S\ for A\=1¢€ Z and S,, v € R.
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THEOREM (cf. [I1, Theorem 4.2.4)). Let K be a U(p, q)-invariant func-
tion in L°(H?) and let J = {g € L*(H") : g x K = 0}. Assume that

(i) for all k,l € Z, 1 # 0, there exists g € J such that g * Sy # 0,
(ii) for each real v, there exists g € J such that g * S, # 0.

Then K =0 (and J = L*(H,)).
For the proof of the Theorem, we cannot argue as in Th. 4.2.4 of [I1],
since there is no nontrivial U(p, g)-invariant, integrable function on H,,.
Instead, we use some results obtained in [3], pertaining to a Plancherel
inversion formula.

2. Preliminaries. Let us introduce some notation and recall some
known facts. For p,q > 1, p + ¢ = n, the space S'(C")VP9 of U(p,q)-
invariant, tempered distributions on C™ was described in [I0]. There, the
space H of functions ¢ : R — C such that ¢(7) = ¢1(7) + 7" LH(7)pa(7),
v1,02 € S(R), was introduced (where H denotes the Heaviside function,
i.e. H(T) = X(0,00)(7)). H is endowed with a suitable Fréchet topology, and
there is a linear, continuous and surjective map N : S(C") — H whose
adjoint N’ : H' — S'(C™)V(P9) is a homeomorphism.

For f € S(Hy), we will write N f(7,t) for N(f(-,t))(7). We have

(2.1) Nf(rt)= | f(zt)do-(2)
B(z,z)=T1
where do,(z) denotes a surface measure on the hyperboloid B(z, z) = 7 such
that
1 “+o00 +0oo
(2.2) | fzt)dzdt = o | | Nf(rt)drat
H, —00 —00
(cf. (2.12) in [2]).
In order to give explicit expressions for the distributions S) ; we recall

the definition of the Laguerre polynomials. For nonnegative integers m, «
let L% (7) (see e.g. [9, pp. 99-101]) be given by

0 _ - m j Tj a+1 _ d a
AR () [ e R )
7=0
It is well known that the family {e="/2LY (7)}m>0 is an orthonormal basis
of L%(0, 00).
The distributions S ; can be written as

Syp = Fyj ®e ™
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where F j, € S'(C")V(P9). Thus, there exists Ty j € H’ such that

(F)\,k‘a g> = <T>\,k7 Ng>

Explicitly,
2 2
0 n—1 —7/2
<F)\,kag> = <(qu+n1H)( )77-'_> We / Ng<w7->>
for k>0, A#£0, and for kK <0, A # 0,
_ 2 _, 2
<F/\,kag> = <(L0kp+n1H)(n 1)37—'_> We /2Ng<_w7—>>

Associated to the bilinear form B, we introduce the “Fourier transform”
Fp defined on L'(C") by

(2.3) (Fof)w) = | BB f(2) dz.
Hpy
For v € R, let
(9,1 =\ | eRePeAr(2)dzdoy,(u)
B(u,u)=vC"

where do,(u) is the surface measure on B(u,u) = v, involved in (2.1]). In
other words, SO = Fp(do,).
For g € S(H,,), the distributions S, are given by (see [4])

(2.4) (S,gy= | | BeBOAg(z 1) dzdt do, (u).
B(u,u)=v Hp

In [3] a generalized spherical transform on the Schwartz space on H, is
defined: for g € S(H,,), Fg: (R—{0}) x Z — C is given by

F(9) A k) = (Sx ks 9)-

It is proved that Ker N = Ker F, the image of F is described and an inver-
sion Plancherel formula is obtained, recovering Ng in terms of F(g)(\, k).
In order to state the formula, we introduce more notation.

For m : (R—{0}) x Z — C, we set

” k)_{m(/\,k) it k >0,
T TV mOG k) ik <0,
m(\, k) it k <0,

mT (A k) {(—1)"m()\,l<:) if k> 0.
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Also we define

n—1
E(m)(\ k) =3 (~1) <” ; 1>m()\, k1),

n—1
Em)(\k) =Y (1) (“ , 1) m(\k+1).

In the following proposition we state the main results proved in [3, Sec-
tion 4], concerning the Plancherel inversion formula.

PROPOSITION 2.1. Let g € S(Hy,) and set m(A\ k) = F(g)(\, k).

(i) For >0,
~ X
Ng(r.3) = (-1 2L S Blom) 0+ q) L1 rl /207,
k>0
and for T < 0,
Ng(r. 3 = (1A 5 2 Em™)(A\ —k — p)L(~[A|r/2)eMT%,
k>0

(ii) Let D be the operator defined on the space of polynomial functions
by DL% = Lg _L2—1 for k> 1 and D1 = 1. Then for k > 0 and
m > 0,

min(m,k)
m -
DI = Y <—1>J( j)sz
=0

(see [4, Lemma 4.3]). Moreover, for k> mn — 1,

n 1,n—1
T Geeen()

DL (r) = (~1)"!

(see [4, Lemma 4.4]).
(iii) For T >0,

NQ(T X) =& (m, A A) + (7, X) where
~ n 1|)\| |>\|7_ n—1 - s
&(T,\) = Z ( ) Ly (N7 /2)e Alr/4.

(n—1)! 2
N |)‘| n— —|\|T
m(rA) = > mTRD LY ) (AT /2)e N
—p+1<k<g—1

Similarly, for 7 <0,
Ng(r, X) = &(T, /):) + na(T, X) where
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a3 = S BL S i /2 52 A 20,
k<—p
(7. A) = ';' . mTARD LY ) (=T /2)e T

—p+1<k<q—1
Moreover, by taking the Fourier transform in the variable t, we can
write & (1,t) = 7"71E (1, 1) (resp. &(T,t) = TV & (1,1)) and the
series defining &1 converges absolutely and uniformly on [0,00] x R
(resp. on [—00,0] X R) [4, Th. 4.5]). =

We now consider ¢ € S(H)). We recall that, for [ € Z, the Fourier
coefficients of ¢t — Ng(7,t) are given by

2
Ny(r.0) = 5 | No(r.t)e= " dt,
0

and

Ng(r,t) =Y Ng(r,D)e" + Ng(,0)
140
is the corresponding Fourier expansion.
By adapting the results of Proposition 2.1 to Schwartz functions on the
reduced Heisenberg group, we see that for 7 > 0,

Ng(T,t) = gl(ﬂt) + 771(7-7t) +Ng(7_’6)

where
[ n— —|lT %
&(r,t) = n—l T Z‘ | > m( k) (/2" L (1T /2)e T e,
1#0 k>q
(2.5)
l n— —lT 2
=S w2 e,
1#0 —p+1<k<qg—1
and for 7 <0,
Ng(r,t) = &(7,t) + na(7,t) + Ng(r,0)
with
|l| n n T 7
Eo(T,t) = n_1,2 > om( k) ([ /2)" Ll (<[ /2)el T e,
10 =~ k<—p
(2.6)

l *k n— T 7
mE) =0 RO T L )l

1#0 ° —pti<k<q-1
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Furthermore, the series involved in ([2.5) and (2.6) converge absolutely
and uniformly.

Let Wﬁk_l(v', t) = EZ:;(]l|z/2)e_|”7/4e”t. Let K be a U(p, q)-invariant
function in L*°(Hy). We set K(7,t) := K(2,t) if B(z,2z) = 7. We also set
Ky(z) = K(#,0) and let Koo be the distribution given by

(2.7) (Koo, 9) = | K(2,0)9(z,t) dz dt,
H'f

n

that is, (Koo, 9) = (Ko ® 1¢,9).
We also define, for [ #0,—p+ 1<k <q-—1,

Cle; 2m oo 7_ t Dn 1Lk - 1)(|l|7_/2)e—\l|’r/4eiltd7_ dt,
q+
0 0
bk (K S ( S K(r0)(D" L py) (=l /2)e /A dr ) .
0 —oo

PROPOSITION 2.2. Assume that K is a U(p,q)-invariant function in
L>°(H]). Then, in the distribution sense,

K = chlk )Sik + Koo

k€Z 130

where, for fired | # 0: if k > q,

O N (T g - .
(2.8) ch(K):M(Z) (S)((S) (i /2, 0K (. ) dr ) di:

(2.9)  ax(K)

((nl 0 ( ’>n2§r( (S) Nl (/2 ) (7 t)dr )

- 0 —0o0
if0<k<gqg-—1,
cLie(K) = ap(K) + (=1)"by 1 (K);
and if —p+1<k< -1,

Cl,k(K) = (—1)"&17]@(}() + blyk(K).
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Proof. By (2.2)), for g € S(H],) we have

2w +o0
(K,g) = | K(z.t)g(z.t) d=dt = g( | NEg) (1) dT) dt
Hr 0 —oo
2w +oo _
- S(g K(T,t)Ng(T,t)dT)dt.
0 —oo
Also
+o0 5 +o0 " +o0 "
| Kr.t)Ng(r,t)ydr = | K(r.t)&(r,t)dr+ | K(r,t)ym(r.t)dr
—00 0 . i 0 ; i
+ | K(rt)&a(rtydr+ | K(r,t)p(r,t)dr
roo -
+ S K(1,t)Ng(r,0)dr.

Since the series (2.5) and (2.6) converge uniformly, and since
Y-l (7 ) € S(HE), the dominated convergence theorem implies that

(K,&) = > ar(E) Sk, 9), (K, &) = > arE) (S 9),

1#0,k>q 1#0,k<-p

where ¢ ;(K) are given by (2.8) and ((2.9), respectively.
Also, taking account of the definition of m* and m**, we can see that

(K 1) + (K, o) = > c1,e(K)(Sik, 9),
1£0, —p+1<k<q—1

with the desired expression for ¢; ,(K),—p+1 <k < q—1.
Finally,

21 +00 400
S S K(7,t)Ng(r,0)dr dt = S K(7,0)Ng(r,0)dr
0 —o0 —o0
400 R
= S N(Kg)(T,O) dr = <K007g>a

where the last equality again follows from (2.2)). =

PROPOSITION 2.3. Let K and c;;(K) be as in Proposition 2.2. Assume

~

that for 1 # 0, ¢, (K) =0 for all k € Z. Then K(z,1) =0 for a.e. z.
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Proof. Indeed, for k > g,

O™ U T /T aeim

0=t = U (5) 3 (72 R o ar) a
( 1)n 1080 n— 1£n 1( ) _5/2k(28/|l| T)dS
T (1) ’

Since, with a suitable normalization, the Laguerre polynomials { L™Y(s)} >0
form an orthonormal basis of L2((0,00),s" 'e=*/2 ds) (see [9, p. 100]), and

since K (s,1) € L2((0,00), s"Le™/2 ds), we have K(s,1) = 0 for a.e. 5 > 0.
With the same argument, ¢; ;,(K) = 0 for £ < —p implies that [N((s,lA) =0
for a.e. s <0. Thus K(z,l) =0 for a.e. z. m

REMARK 2.4. We observe that
21

(g4 Koo)(z¢) = | | gz — w, ei=—1m BGaD) K (1,0) ds du
Cn 0
= | g(z = w,0)K (w,0) dw = (g(-,0) * Ko) (=),

CTL

where x denotes the convolution product on C™.

3. The proof of the Theorem. For [ # 0, we denote by m the
Schrédinger representation of H on L2(R™), determined by m;(0,0,t) = et
and we set Ej(p,v)(x,y,t) := <7rl(:r Y, 1), 1), the matrix entry of m; asso-
ciated to the vectors o, 9. For a = (a1,...,ay) with o; € N U {0}, let
el = >0y i — 370,11 @i We pick the orthonormal basis of L?(R™) given
by ho(x) = ha,(21) ... ha, (xn) where h; denotes the jth Hermite function.

The Plancherel formula for g € S(H) asserts that (see [II, Ch. 1])

1 3 " =
g(.ﬁU yv 27‘(‘)" Ztr 7Tl 7Tl €, Y, ) 1)|l| +g(l‘ay70)
10
1
= @)t UMY (9, Euhas h)) 2y Ei(has his) (2, 9, )
1#0 a,B
+g(x,y,0)

where (, )2(gr) denotes the inner product on L2(H?) and the series con-
verge uniformly. Furthermore, for [ # 0,

Ey(ha, hg)(x,y,t) = e pn p(z,y)

where {¢a 5}a,s is an orthonormal basis of R*" (see [8, Lemma 6.1]).
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Also,
2T
S Ei(hq, hg)(z,t)g(z,ﬁ) dzdt = ( S goa”g(z)g(z,/()\) dz) (S et dt) =0.
Hr, cr 0
Since
(g * El(hav ha))($a Y, t) = Z<g¢ El(ha’ hﬁ)>L2(HZ;)El(hOH hﬁ)(l’, Y, t)

B
and since Sj = 2771 > jlall=k Ei(has ha) (see [2]), we have the orthogonal
decomposition
glx,y,t) = > |I"(g* Sie) (@, y,t) + 9(2,0).
1£0, keZ

Assume that g € J. By hypothesis, we have g x K = 0. Thus Proposi-
tion 2.2 and Remark 2.4 imply that

0=g*K =Y > ar(K)(g=Su) + (g(-0) x Ko).
keZ 140

By the formula above, this is the Fourier series expansion of g * K, so

(31) Cl,k(K)(g * Sl,k) =0 forl 7'é 0,keZ,
and
(3.2) g(-,0) x Ky = 0.

Since for | # 0, k € Z, hypothesis (i) of the Theorem asserts that there
exists g € J such that g xSy, # 0, we conclude that ¢; ,(K) = 0.

Thus, by Proposition 2.3, K(zj) =0 for a.e. z € C" and all [ # 0.

In order to finish the proof of the Theorem, we must prove that K (z,a)
=0 for a.e. z.

For p € S'(C™), we denote by supp u the support of u. Let Fp be de-
fined by (2.3)). We recall that SO = Fp(do,), where do,, denotes the surface
measure on B, := {z: B(z,2) = v}.

PRrROPOSITION 3.1. Let Ky be a U(p, q)-invariant function in L>(C")
and let Jo = {f € LY(C") : f x Ko = 0}. Assume that for each real v, there
exists f € Jo such that f x SO # 0. Then Ko(z) =0 for a.e. z € C™.

Proof. Since Fp(f xh) = Fp(f)Fp(h) we follow the lines of the proof
of the classical Wiener Theorem (see [7]) to obtain
(33) supp Fp(Ko) C () {¢ € C": Fp(f)(&) = 0}.
fedo

Since Ky is a U(p, q)-invariant function, Fp(Ky) is a U(p, q)-invariant
distribution. Assume, by contradiction, that &, € supp Fp(Koy) and B(&p)
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= v. Then B, C supp Fp(Kj). Thus, by (3.3), Fp(f)(§) =0 for all £ € B,
and all f € Jp.

On the other hand, we have assumed that for each v € R, there exists
f € Jo such that f*SY # 0. For this f we have

(Fa(f*S0), @) = (Fo(H)Fp(S0), @) = | Fo(f)(€e(&) do,(€) = 0.
By
This is a contradiction and we conclude that supp Fp(Kj) is empty and
Kyo=0.n

Let Ko(z) = K(z,0) and let Jy be as in Proposition 3.1. We observe
that by (3.2), g € J implies that g(-,0) € Jy. Also, by hypothesis (ii) of the
Theorem, for v € R, there exists g € S(H}) such that g S, # 0. By (2.4),
(9% 5,)(z,t) = (g9(,0) * S9)(2), so Proposition 3.1 implies that Ko(z) = 0
and the Theorem is proved. m

The converse of the Theorem is stated in the following

REMARK 3.2. For A # 0, k € Z, there exists f € S(H,) such that
(Sxks f) # 0.

Indeed, let
fa(e) = e MEPALAT (N 22/2) and f(z8) = | fa(z)e ™ d

(see [2, p. 343]). For v € R, let ¢ € C2°(R?) be a nonnegative function such
that ¢(p,7) = 1 on a neighborhood of (|v|,v) and let f(z) = ¢(|z|?, B(z)).

Then SU(Ff) = Nf(v) # 0 by 2.1).
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