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A WIENER TYPE THEOREM FOR (U(p, q), Hn)

BY

LINDA SAAL (Córdoba)

Abstract. It is well known that (U(p, q), Hn) is a generalized Gelfand pair. Applying
the associated spectral analysis, we prove a theorem of Wiener Tauberian type for the
reduced Heisenberg group, which generalizes a known result for the case p = n, q = 0.

1. Introduction. A classical Tauberian theorem due to Wiener (see e.g.
[7]) states that a closed ideal J of the convolution algebra L1(Rn) is the full
algebra if and only if there exists g ∈ J such that ĝ(ξ) 6= 0 for every ξ ∈ Rn,
where ĝ denotes the Fourier transform of g. Equivalently, given g ∈ L1(Rn),
the smallest closed, translation-invariant subspace generated by g is L1(Rn)
if and only if ĝ(ξ) 6= 0 for every ξ ∈ Rn.

Analogues of Wiener’s theorem have been proved in the context of Hei-
senberg groups.

Let us consider the Heisenberg group Hn defined by Hn = Cn × R with
group law (z, t)(z′, t′) = (z + z′, t + t′ − 1

2 Im z.z′) where z.z′ =
∑n

j=1 zjz
′
j .

Then the unitary group U(n) acts on Hn by automorphisms, in the nat-
ural way, g.(z, t) = (gz, t). It is well known that (U(n), Hn) is a Gelfand
pair, that is, the convolution algebra L1

U(n)(Hn) of U(n)-invariant, integrable
functions on Hn is commutative. Its spectrum is identified, via integration,
with the set of bounded spherical functions. In [5], it is proved that if J is
a closed ideal of L1

U(n)(Hn) and if for each bounded spherical function ϕ,
there exists f ∈ J such that 〈f, ϕ〉 :=

	
Hn

f(z, t)ϕ(z, t) dz dt 6= 0, then
J = L1

U(n)(Hn).
The motion group of the Heisenberg group is G = U(n)nHn (semidirect

product) acting on L1(Hn) in the canonical way. For f ∈ L1(Hn) and g ∈ G,
let fg(z, t) = f(g.(z, t)) and let Vf be the smallest closed subspace spanned
by {fg : g ∈ G}. In [6] sufficient conditions on f are given in order to get
Vf = L1(Hn). Moreover, a similar problem is considered in [11, Th. 4.2.4] for
f ∈ Lp(Hr

n) (for some range of p), where Hr
n denotes the reduced Heisenberg

group Hn/Γ, Γ = {0} × 2πZ.
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In this article, we study a similar problem but considering U(p, q), p+ q
= n, p, q ≥ 1, in place of U(n) (which is isomorphic to U(n, 0)).

For z, w ∈ Cn, we set B(z, w) =
∑p

j=1 zjwj−
∑n

j=p+1 zjwj and we write,
for x ∈ Rn, x = (x′, x′′) with x′ ∈ Rp, x′′ ∈ Rq. So, R2n can be identified
with Cn by ϕ(x′, x′′, y′, y′′) = (x′ + iy′, x′′ − iy′′), x′, y′ ∈ Rp, x′′, y′′ ∈ Rq.
Via ϕ, the form − ImB(z, w) agrees with the standard symplectic form on
R2(p+q), and so Hn is isomorphic to Cn × R with the product (z, t)(w, s) =
(z+w, t+s−1

2 ImB(z, w)). From now on, we will use freely this identification.
We note that U(p, q) = {g ∈ Gl(n,C) : B(gz, gw) = B(z, w)} and so it acts
on Hn, by automorphisms, by g.(z, t) = (gz, t). Let

Xj = −1
2
yj

∂

∂t
+

∂

∂xj
, Yj =

1
2
xj

∂

∂t
+

∂

∂yj
, j = 1, . . . , n, T =

∂

∂t

denote the standard basis of the Heisenberg Lie algebra. Then the algebra of
left invariant and U(p, q)-invariant differential operators on Hn is generated
by T and L =

∑p
j=1(X2

j + Y 2
j )−

∑n
j=p+1(X2

j + Y 2
j ). The pair (U(p, q), Hn)

is a generalized Gelfand pair and the corresponding harmonic analysis has
been developed in [1], [2], [4].

There, the associated spherical distributions were computed: for λ ∈
R − {0} and k ∈ Z, there exists a tempered U(p, q), invariant distribution
(on Hn) Sλ,k satisfying

(1.1) LSλ,k = −|λ|(2k + p− q)Sλ,k, iTSλ,k = λSλ,k

and, for ν ∈ R, there exists a tempered U(p, q)-invariant distribution Sν
such that

(1.2) LSν = νSν , iTSν = 0.

Up to a constant, Sλ,k is the unique tempered solution of (1.1) (see [2]).
In contrast, the solution space of (1.2) in S ′(Hn) is one-dimensional for
ν 6= 0, and for ν = 0 it is two-dimensional, generated by S0 and the trivial
solution 1 (see [4]).

For f in the Schwartz space S(Hn), the Plancherel inversion formula
provides the spectral decomposition

f =
∑
k∈Z

∞�

−∞
f ∗ Sλ,k|λ|n dλ.

For the reduced Heisenberg group we have a similar spectral analysis.
Indeed, we write Hr

n = Rn × Rn × S1, where S1 = {eiθ : θ ∈ R}. The
algebra of left invariant and U(p, q)-invariant differential operators on Hr

n

is generated by L and T := ∂/∂θ, and the associated eigendistributions are
given by Sl,k := Sλ,k for λ = l ∈ Z and Sν , ν ∈ R.
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Theorem (cf. [11, Theorem 4.2.4]). Let K be a U(p, q)-invariant func-
tion in L∞(Hr

n) and let J = {g ∈ L1(Hr
n) : g ∗K = 0}. Assume that

(i) for all k, l ∈ Z, l 6= 0, there exists g ∈ J such that g ∗ Sl,k 6= 0,
(ii) for each real ν, there exists g ∈ J such that g ∗ Sν 6= 0.

Then K = 0 (and J = L1(Hn)).
For the proof of the Theorem, we cannot argue as in Th. 4.2.4 of [11],

since there is no nontrivial U(p, q)-invariant, integrable function on Hn.

Instead, we use some results obtained in [3], pertaining to a Plancherel
inversion formula.

2. Preliminaries. Let us introduce some notation and recall some
known facts. For p, q ≥ 1, p + q = n, the space S ′(Cn)U(p,q) of U(p, q)-
invariant, tempered distributions on Cn was described in [10]. There, the
space H of functions ϕ : R → C such that ϕ(τ) = ϕ1(τ) + τn−1H(τ)ϕ2(τ),
ϕ1, ϕ2 ∈ S(R), was introduced (where H denotes the Heaviside function,
i.e. H(τ) = χ(0,∞)(τ)). H is endowed with a suitable Fréchet topology, and
there is a linear, continuous and surjective map N : S(Cn) → H whose
adjoint N ′ : H′ → S ′(Cn)U(p,q) is a homeomorphism.

For f ∈ S(Hn), we will write Nf(τ, t) for N(f(·, t))(τ). We have

(2.1) Nf(τ, t) =
�

B(z,z)=τ

f(z, t) dστ (z)

where dστ (z) denotes a surface measure on the hyperboloid B(z, z) = τ such
that

(2.2)
�

Hn

f(z, t) dz dt =
1
2n

+∞�

−∞

+∞�

−∞
Nf(τ, t) dτ dt

(cf. (2.12) in [2]).
In order to give explicit expressions for the distributions Sλ,k we recall

the definition of the Laguerre polynomials. For nonnegative integers m,α
let Lαm(τ) (see e.g. [9, pp. 99–101]) be given by

L0
m(τ) =

m∑
j=0

(
m

j

)
(−1)j

τ j

j!
, Lα+1

m−1(τ) = − d

dτ
Lαm(τ).

It is well known that the family {e−τ/2L0
m(τ)}m≥0 is an orthonormal basis

of L2(0,∞).
The distributions Sλ,k can be written as

Sλ,k = Fλ,k ⊗ e−iλt
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where Fλ,k ∈ S ′(Cn)U(p,q). Thus, there exists Tλ,k ∈ H′ such that

〈Fλ,k, g〉 = 〈Tλ,k, Ng〉.

Explicitly,

〈Fλ,k, g〉 =
〈

(L0
k−q+n−1H)(n−1), τ 7→ 2

|λ|
e−τ/2Ng

(
2
|λ|

τ

)〉
for k ≥ 0, λ 6= 0, and for k < 0, λ 6= 0,

〈Fλ,k, g〉 =
〈

(L0
−k−p+n−1H)(n−1), τ 7→ 2

|λ|
e−τ/2Ng

(
− 2
|λ|

τ

)〉
.

Associated to the bilinear form B, we introduce the “Fourier transform”
FB defined on L1(Cn) by

(2.3) (FBf)(u) =
�

Hn

eiReB(u,z)f(z) dz.

For ν ∈ R, let

〈S0
ν , f〉 =

�

B(u,u)=v

�

Cn
eiReB(u,z)f(z) dz dσν(u)

where dσv(u) is the surface measure on B(u, u) = v, involved in (2.1). In
other words, S0

ν = FB(dσν).
For g ∈ S(Hn), the distributions Sν are given by (see [4])

(2.4) 〈Sν , g〉 =
�

B(u,u)=ν

�

Hn

eiReB(u,z)g(z, t) dz dt dσν(u).

In [3] a generalized spherical transform on the Schwartz space on Hn is
defined: for g ∈ S(Hn), Fg : (R−{0})× Z→ C is given by

F(g)(λ, k) = 〈Sλ,k, g〉.

It is proved that KerN = KerF , the image of F is described and an inver-
sion Plancherel formula is obtained, recovering Ng in terms of F(g)(λ, k).
In order to state the formula, we introduce more notation.

For m : (R−{0})× Z→ C, we set

m∗(λ, k) =
{
m(λ, k) if k ≥ 0,
(−1)nm(λ, k) if k < 0,

m∗∗(λ, k) =
{
m(λ, k) if k < 0,
(−1)nm(λ, k) if k ≥ 0.
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Also we define

E(m)(λ, k) =
n−1∑
l=0

(−1)l
(
n− 1
l

)
m(λ, k − l),

Ẽ(m)(λ, k) =
n−1∑
l=0

(−1)l
(
n− 1
l

)
m(λ, k + l).

In the following proposition we state the main results proved in [3, Sec-
tion 4], concerning the Plancherel inversion formula.

Proposition 2.1. Let g ∈ S(Hn) and set m(λ, k) = F(g)(λ, k).

(i) For τ ≥ 0,

Ng(τ, λ̂) = (−1)n−1 |λ|
2

∑
k≥0

E(m∗)(λ, k + q)L0
k(|λτ |/2)e−|λ|τ/4,

and for τ < 0,

Ng(τ, λ̂) = (−1)n−1 |λ|
2

∑
k≥0

Ẽ(m∗∗)(λ,−k − p)L0
k(−|λ|τ/2)e|λ|τ/4.

(ii) Let D be the operator defined on the space of polynomial functions
by DL0

k = L0
k − L0

k−1 for k ≥ 1 and D1 = 1. Then for k ≥ 0 and
m ≥ 0,

Dm(L0
k) =

min(m,k)∑
j=0

(−1)j
(
m

j

)
L0
k−j

(see [4, Lemma 4.3]). Moreover, for k ≥ n− 1,

Dn−1(L0
k)(τ) = (−1)n−1 1

(n− 1)!
τn−1Ln−1

k−(n−1)(τ)

(see [4, Lemma 4.4]).
(iii) For τ ≥ 0,

Ng(τ, λ̂) = ξ1(τ, λ̂) + η1(τ, λ̂) where

ξ1(τ, λ̂) =
(−1)n−1

(n− 1)!
|λ|
2

∑
k≥q

m(λ, k)
(
|λ|τ

2

)n−1

Ln−1
k−q (|λ|τ/2)e−|λ|τ/4,

η1(τ, λ̂) =
|λ|
2

∑
−p+1≤k≤q−1

m∗(λ, k)(Dn−1L0
k−q+n−1)(|λ|τ/2)e−|λ|τ/4.

Similarly, for τ ≤ 0,

Ng(τ, λ̂) = ξ2(τ, λ̂) + η2(τ, λ̂) where
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ξ2(τ, λ̂) =
(−1)n−1

(n− 1)!
|λ|
2

∑
k≤−p

m(λ, k)(|λ|τ/2)n−1Ln−1
−k−p(−|λ|τ/2)e|λ|τ/4,

η2(τ, λ̂) =
|λ|
2

∑
−p+1≤k≤q−1

m∗∗(λ, k)(Dn−1L0
−k−p+n−1)(−|λ|τ/2)e|λ|τ/4.

Moreover, by taking the Fourier transform in the variable t, we can
write ξ1(τ, t) = τn−1ξ̃1(τ, t) (resp. ξ2(τ, t) = τn−1ξ̃2(τ, t)) and the
series defining ξ̃1 converges absolutely and uniformly on [0,∞]×R
(resp. on [−∞, 0]× R) [4, Th. 4.5]).

We now consider g ∈ S(Hr
n). We recall that, for l ∈ Z, the Fourier

coefficients of t 7→ Ng(τ, t) are given by

Ng(τ, l̂) =
1

2π

2π�

0

Ng(τ, t)e−ilt dt,

and

Ng(τ, t) =
∑
l 6=0

Ng(τ, l̂)eilt +Ng(τ, 0̂)

is the corresponding Fourier expansion.
By adapting the results of Proposition 2.1 to Schwartz functions on the

reduced Heisenberg group, we see that for τ ≥ 0,

Ng(τ, t) = ξ1(τ, t) + η1(τ, t) +Ng(τ, 0̂)

where

ξ1(τ, t) =
(−1)n−1

(n− 1)!

∑
l 6=0

|l|
2

∑
k≥q

m(l, k)(|l|τ/2)n−1Ln−1
k−q (|l|τ/2)e−|l|τ/4eilt,

(2.5)

η1(τ, t) =
∑
l 6=0

|l|
2

∑
−p+1≤k≤q−1

m∗(l, k)(Dn−1L0
k−q+n−1)(|l|τ/2)e−|l|τ/4eilt,

and for τ ≤ 0,

Ng(τ, t) = ξ2(τ, t) + η2(τ, t) +Ng(τ, 0̂)

with

ξ2(τ, t) =
(−1)n−1

(n− 1)!

∑
l 6=0

|l|
2

∑
k≤−p

m(l, k)(|l|τ/2)n−1Ln−1
−k−p(−|l|τ/2)e|l|τ/4eilt,

(2.6)

η2(τ, t) =
∑
l 6=0

|l|
2

∑
−p+1≤k≤q−1

m∗∗(l, k)(Dn−1L0
−k−p+n−1)(−|l|τ/2)e|l|τ/4eilt.
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Furthermore, the series involved in (2.5) and (2.6) converge absolutely
and uniformly.

Let Ψn−1
l,k (τ, t) := Ln−1

k−q (|l|τ/2)e−|l|τ/4eilt. Let K be a U(p, q)-invariant

function in L∞(Hr
n). We set K̃(τ, t) := K(z, t) if B(z, z) = τ. We also set

K0(z) = K(z, 0̂) and let K00 be the distribution given by

(2.7) 〈K00, g〉 =
�

Hr
n

K(z, 0̂)g(z, t) dz dt,

that is, 〈K00, g〉 = 〈K0 ⊗ 1t, g〉.
We also define, for l 6= 0,−p+ 1 ≤ k ≤ q − 1,

al,k(K) =
|l|
2

2π�

0

(∞�
0

K̃(τ, t)(Dn−1L0
k−q+n−1)(|l|τ/2)e−|l|τ/4eilt dτ

)
dt,

bl,k(K) =
|l|
2

2π�

0

( 0�

−∞
K̃(τ, t)(Dn−1L0

−k−p+n−1)(−|l|τ/2)e|l|τ/4eilt dτ
)
dt.

Proposition 2.2. Assume that K is a U(p, q)-invariant function in
L∞(Hr

n). Then, in the distribution sense,

K =
∑
k∈Z

∑
l 6=0

cl,k(K)Sl,k +K00

where, for fixed l 6= 0: if k ≥ q,

(2.8) cl,k(K) =
(−1)n−1

(n− 1)!

(
|l|
2

)n 2π�

0

(∞�
0

τn−1Ψn−1
l,k−q(|l|τ/2, t)K̃(τ, t) dτ

)
dt;

if k ≤ −p,

(2.9) cl,k(K)

=
(−1)n−1

(n− 1)!

(
|l|
2

)n 2π�

0

( 0�

−∞
τn−1Ψn−1

l,−k−p(−|l|τ/2, t)K̃(τ, t)dτ
)
dt;

if 0 ≤ k ≤ q − 1,

cl,k(K) = al,k(K) + (−1)nbl,k(K);

and if −p+ 1 ≤ k ≤ −1,

cl,k(K) = (−1)nal,k(K) + bl,k(K).
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Proof. By (2.2), for g ∈ S(Hr
n) we have

〈K, g〉 :=
�

Hr
n

K(z, t)g(z, t) dz dt =
2π�

0

(+∞�

−∞
N(Kg)(τ, t) dτ

)
dt

=
2π�

0

(+∞�

−∞
K̃(τ, t)Ng(τ, t) dτ

)
dt.

Also
+∞�

−∞
K̃(τ, t)Ng(τ, t) dτ =

+∞�

0

K̃(τ, t)ξ1(τ, t) dτ +
+∞�

0

K̃(τ, t)η1(τ, t) dτ

+
0�

−∞
K̃(τ, t)ξ2(τ, t) dτ +

0�

−∞
K̃(τ, t)η2(τ, t) dτ

+
+∞�

−∞
K̃(τ, t)Ng(τ, 0̂) dτ.

Since the series (2.5) and (2.6) converge uniformly, and since
τn−1Ψn−1

l,k (τ, t) ∈ S(Hr
n), the dominated convergence theorem implies that

〈K̃, ξ1〉 =
∑

l 6=0, k≥q
cl,k(K)〈Sl,k, g〉, 〈K̃, ξ2〉 =

∑
l 6=0, k≤−p

cl,k(K)〈Sl,k, g〉,

where cl,k(K) are given by (2.8) and (2.9), respectively.
Also, taking account of the definition of m∗ and m∗∗, we can see that

〈K̃, η1〉+ 〈K̃, η2〉 =
∑

l 6=0,−p+1≤k≤q−1

cl,k(K)〈Sl,k, g〉,

with the desired expression for cl,k(K),−p+ 1 ≤ k ≤ q − 1.
Finally,

2π�

0

+∞�

−∞
K̃(τ, t)Ng(τ, 0̂) dτ dt =

+∞�

−∞
K̃(τ, 0̂)Ng(τ, 0̂) dτ

=
+∞�

−∞
N(Kg)(τ, 0̂) dτ = 〈K00, g〉,

where the last equality again follows from (2.2).

Proposition 2.3. Let K and cl,k(K) be as in Proposition 2.2. Assume
that for l 6= 0, cl,k(K) = 0 for all k ∈ Z. Then K(z, l̂) = 0 for a.e. z.
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Proof. Indeed, for k ≥ q,

0 = cl,k(K) =
(−1)n−1

(n− 1)!

(
|l|
2

)n 2π�

0

(∞�
0

τn−1Ψn−1
l,k−q(|l|τ/2, t)K̃(τ, t) dτ

)
dt

=
(−1)n−1

(n− 1)!

∞�

0

sn−1Ln−1
k−q (s)e−s/2K̃(2s/|l|, l̂ ) ds.

Since, with a suitable normalization, the Laguerre polynomials {Ln−1
m (s)}m≥0

form an orthonormal basis of L2((0,∞), sn−1e−s/2 ds) (see [9, p. 100]), and
since K̃(s, l̂ ) ∈ L2((0,∞), sn−1e−s/2 ds), we have K̃(s, l̂ ) = 0 for a.e. s ≥ 0.

With the same argument, cl,k(K) = 0 for k ≤ −p implies that K̃(s, l̂ ) = 0
for a.e. s ≤ 0. Thus K(z, l̂ ) = 0 for a.e. z.

Remark 2.4. We observe that

(g ∗K00)(z, eit) =
�

Cn

2π�

0

g(z − w, ei(t−s−ImB(z,w)))K(w, 0̂) ds dw

=
�

Cn
g(z − w, 0̂)K(w, 0̂) dw = (g(·, 0̂) ? K0)(z),

where ? denotes the convolution product on Cn.

3. The proof of the Theorem. For l 6= 0, we denote by πl the
Schrödinger representation of Hr

n on L2(Rn), determined by πl(0, 0, t) = eilt,
and we set El(ϕ,ψ)(x, y, t) := 〈πl(x, y, t)ϕ,ψ〉, the matrix entry of πl asso-
ciated to the vectors ϕ,ψ. For α = (α1, . . . , αn) with αi ∈ N ∪ {0}, let
‖α‖ =

∑p
i=1 αi−

∑n
i=p+1 αi. We pick the orthonormal basis of L2(Rn) given

by hα(x) = hα1(x1) . . . hαn(xn) where hj denotes the jth Hermite function.
The Plancherel formula for g ∈ S(Hr

n) asserts that (see [11, Ch. 1])

g(x, y, t) =
1

(2π)n+1

∑
l 6=0

tr(πl(g)πl(x, y, t)−1)|l|n + g(x, y, 0̂)

=
1

(2π)n+1

∑
l 6=0

|l|n
∑
α,β

〈g,El(hα, hβ)〉L2(Hr
n)El(hα, hβ)(x, y, t)

+ g(x, y, 0̂)

where 〈 , 〉L2(Hr
n) denotes the inner product on L2(Hr

n) and the series con-
verge uniformly. Furthermore, for l 6= 0,

El(hα, hβ)(x, y, t) = eiltϕα,β(x, y)

where {ϕα,β}α,β is an orthonormal basis of R2n (see [8, Lemma 6.1]).
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Also,
�

Hr
n

El(hα, hβ)(z, t)g(z, 0̂) dz dt =
( �

Cn
ϕα,β(z)g(z, 0̂) dz

)(2π�

0

eilt dt
)

= 0.

Since

(g ∗ El(hα, hα))(x, y, t) =
∑
β

〈g,El(hα, hβ)〉L2(Hr
n)El(hα, hβ)(x, y, t)

and since Sl,k = 2−n−1
∑
‖α‖=k El(hα, hα) (see [2]), we have the orthogonal

decomposition

g(x, y, t) =
∑

l 6=0, k∈Z
|l|n(g ∗ Sl,k)(x, y, t) + g(z, 0̂).

Assume that g ∈ J. By hypothesis, we have g ∗ K = 0. Thus Proposi-
tion 2.2 and Remark 2.4 imply that

0 = g ∗K =
∑
k∈Z

∑
l 6=0

cl,k(K)(g ∗ Sl,k) + (g(·, 0̂) ? K0).

By the formula above, this is the Fourier series expansion of g ∗K, so

(3.1) cl,k(K)(g ∗ Sl,k) = 0 for l 6= 0, k ∈ Z,
and

(3.2) g(·, 0̂) ? K0 = 0.

Since for l 6= 0, k ∈ Z, hypothesis (i) of the Theorem asserts that there
exists g ∈ J such that g ∗ Sl,k 6= 0, we conclude that cl,k(K) = 0.

Thus, by Proposition 2.3, K(z, l̂ ) = 0 for a.e. z ∈ Cn and all l 6= 0.
In order to finish the proof of the Theorem, we must prove that K(z, 0̂)

= 0 for a.e. z.
For µ ∈ S ′(Cn), we denote by suppµ the support of µ. Let FB be de-

fined by (2.3). We recall that S0
ν = FB(dσν), where dσν denotes the surface

measure on Bν := {z : B(z, z) = ν}.
Proposition 3.1. Let K0 be a U(p, q)-invariant function in L∞(Cn)

and let J0 = {f ∈ L1(Cn) : f ? K0 = 0}. Assume that for each real ν, there
exists f ∈ J0 such that f ? S0

ν 6= 0. Then K0(z) = 0 for a.e. z ∈ Cn.

Proof. Since FB(f ? h) = FB(f)FB(h) we follow the lines of the proof
of the classical Wiener Theorem (see [7]) to obtain

(3.3) suppFB(K0) ⊂
⋂
f∈J0

{ξ ∈ Cn : FB(f)(ξ) = 0}.

Since K0 is a U(p, q)-invariant function, FB(K0) is a U(p, q)-invariant
distribution. Assume, by contradiction, that ξ0 ∈ suppFB(K0) and B(ξ0)
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= ν. Then Bν ⊂ suppFB(K0). Thus, by (3.3), FB(f)(ξ) = 0 for all ξ ∈ Bν
and all f ∈ J0.

On the other hand, we have assumed that for each ν ∈ R, there exists
f ∈ J0 such that f ? S0

ν 6= 0. For this f we have

〈FB(f ? S0
ν), ϕ〉 = 〈FB(f)FB(S0

ν), ϕ〉 =
�

Bν

FB(f)(ξ)ϕ(ξ) dσν(ξ) = 0.

This is a contradiction and we conclude that suppFB(K0) is empty and
K0 = 0.

Let K0(z) = K(z, 0̂) and let J0 be as in Proposition 3.1. We observe
that by (3.2), g ∈ J implies that g(·, 0̂) ∈ J0. Also, by hypothesis (ii) of the
Theorem, for ν ∈ R, there exists g ∈ S(Hr

n) such that g ∗ Sν 6= 0. By (2.4),
(g ∗ Sν)(z, t) = (g(, 0̂) ? S0

ν)(z), so Proposition 3.1 implies that K0(z) = 0
and the Theorem is proved.

The converse of the Theorem is stated in the following

Remark 3.2. For λ 6= 0, k ∈ Z, there exists f ∈ S(Hn) such that
〈Sλ,k, f〉 6= 0.

Indeed, let

fλ(z) = e−|λ| |z|
2/4Ln−1

|k| (|λ| |z|2/2) and f(z, t) =
∞�

−∞
fλ(z)e−iλt dλ

(see [2, p. 343]). For ν ∈ R, let ϕ ∈ C∞c (R2) be a nonnegative function such
that ϕ(ρ, τ) = 1 on a neighborhood of (|ν|, ν) and let f(z) = ϕ(|z|2, B(z)).
Then S0

ν(FBf) = Nf(ν) 6= 0 by (2.1).
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