COLLOQUIUM MATHEMATICUM

ON SOLUTIONS OF FUNCTIONAL EQUATIONS DETERMINING SUBSEMIGROUPS OF L_{4}^{1}

BY
JANINA CHODUKOWSKA (Stalowa Wola) and ZBIGNIEW MARCINIAK (Warszawa)

Abstract

Let L_{4}^{1} be the group of 4 -jets at zero of diffeomorphisms f of \mathbb{R} with $f(0)=0$. Identifying jets with sequences of derivatives, we determine all subsemigroups of L_{4}^{1} consisting of quadruples $\left(x_{1}, f\left(x_{1}, x_{4}\right), g\left(x_{1}, x_{4}\right), x_{4}\right) \in(\mathbb{R} \backslash\{0\}) \times \mathbb{R}^{3}$ with continuous functions $f, g:(\mathbb{R} \backslash\{0\}) \times \mathbb{R} \rightarrow \mathbb{R}$. This amounts to solving a set of functional equations.

1. Introduction. The groups L_{s}^{n} arise when studying jets of local diffeomorphisms of \mathbb{R}^{n} in the following way. Let $j^{s} f$ be the s-jet of a diffeomorphism f defined in a neighborhood of $0 \in \mathbb{R}^{n}$ and satisfying $f(0)=0$. We consider the set L_{s}^{n} of all such jets equipped with the group operation

$$
\left(j^{s} f\right) \circ\left(j^{s} g\right)=j^{s}(f \circ g), \quad \text { where } \quad(f \circ g)(x)=f(g(x)) .
$$

Any jet $j^{s} f$ can be identified with the sequence of partial derivatives at 0 of f of orders $1, \ldots, s$. Therefore, L_{s}^{n} can be identified with a set of real sequences (see [3]). In those terms, the group L_{s}^{1} can be given the following algebraic description. As a set, we have $L_{s}^{1}=\mathbb{R}_{0} \times \mathbb{R}^{s-1}$, where $\mathbb{R}_{0}=\mathbb{R} \backslash\{0\}$. The product is defined as

$$
\left(x_{1}, \ldots, x_{s}\right) \circ\left(y_{1}, \ldots, y_{s}\right)=\left(z_{1}, \ldots, z_{s}\right)
$$

where for $m=1, \ldots, s$ we have

$$
z_{m}=\sum_{k=1}^{m} x_{k} \sum\left\{A_{u} \cdot y_{1}^{u_{1}} \cdots y_{m}^{u_{m}}: u_{i} \in \mathbb{N} \cup\{0\}, \sum_{i=1}^{m} u_{i}=k, \sum_{i=1}^{m} i u_{i}=m\right\}
$$

and $A_{u}=m!/ \prod_{i=1}^{m} u_{i}!(i!)^{u_{i}}$ (Faà di Bruno's formula).
In particular, multiplication in L_{4}^{1} is given by the following formula:

$$
\begin{gather*}
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \circ\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\left(z_{1}, z_{2}, z_{3}, z_{4}\right), \tag{1}\\
z_{1}=x_{1} y_{1}, \quad z_{2}=x_{1} y_{2}+x_{2} y_{1}^{2}, \quad z_{3}=x_{1} y_{3}+3 x_{2} y_{1} y_{2}+x_{3} y_{1}^{3}, \\
z_{4}=x_{1} y_{4}+4 x_{2} y_{1} y_{3}+3 x_{2} y_{2}^{2}+6 x_{3} y_{1}^{2} y_{2}+x_{4} y_{1}^{4} .
\end{gather*}
$$

Papers [3]-11] describe certain subsemigroups of L_{s}^{1} for $2 \leq s \leq 5$, consisting of tuples for which one of the coordinates is a function of the

[^0]others. In [4, Section 4], subsemigroups of L_{4}^{1} consisting of elements of the form $\left(x_{1}, f\left(x_{1}, x_{4}\right), f\left(x_{1}, x_{4}\right), x_{4}\right)$ were described in terms of a certain system of functional equations. In [10] subsemigroups of L_{4}^{1} consisting of elements of the form $\left(x_{1}, f\left(x_{1}, x_{4}\right), g\left(x_{1}, x_{4}\right), x_{4}\right)$ were studied with some additional restrictions on f and g. In all solutions, the functions f and g depended on x_{1} only.

In this paper we generalize those results. In particular, we show that there do exist solutions depending on both variables x_{1}, x_{4}.

Main Theorem 1. All subsemigroups of L_{4}^{1}, consisting of quadruples $\left(x_{1}, f\left(x_{1}, x_{4}\right), g\left(x_{1}, x_{4}\right), x_{4}\right) \in \mathbb{R}_{0} \times \mathbb{R}^{3}$ with continuous functions $f, g:$ $\mathbb{R}_{0} \times \mathbb{R} \rightarrow \mathbb{R}$ belong to one of the families

$$
\begin{aligned}
& P_{a, b}=\left\{\left(x_{1}, f_{a b}\left(x_{1}, x_{4}\right), g_{a b}\left(x_{1}, x_{4}\right), x_{4}\right)\right\}, \quad a, b \in \mathbb{R}, \\
& Q_{c, d}=\left\{\left(x_{1}, f_{c d}\left(x_{1}, x_{4}\right), g_{c d}\left(x_{1}, x_{4}\right), x_{4}\right)\right\}, \quad c \in[0,+\infty), d \in \mathbb{R},
\end{aligned}
$$

where

$$
\begin{aligned}
f_{a b}\left(x_{1}, x_{4}\right)= & a\left(x_{1}-x_{1}^{2}\right), \quad g_{a b}\left(x_{1}, x_{4}\right)=\frac{3}{2} a^{2} x_{1}\left(1-x_{1}\right)^{2}+b\left(x_{1}-x_{1}^{3}\right) \\
f_{c d}\left(x_{1}, x_{4}\right)= & x_{1} \sqrt[3]{q+\sqrt{q^{2}+p^{3}}}+x_{1} \sqrt[3]{q-\sqrt{q^{2}+p^{3}}} \\
g_{c d}\left(x_{1}, x_{4}\right)= & \frac{3}{2} x_{1} \sqrt[3]{2 q^{2}+p^{3}+2 q \sqrt{q^{2}+p^{3}}} \\
& +\frac{3}{2} x_{1} \sqrt[3]{2 q^{2}+p^{3}-2 q \sqrt{q^{2}+p^{3}}}+c\left(4-3 x_{1}-6 x_{1}^{2}+3 x_{1}^{3}\right)
\end{aligned}
$$

with $p\left(x_{1}\right)=\frac{2}{3} c\left(3 x_{1}-2 x_{1}^{-1}\right)$ and $q\left(x_{1}, x_{4}\right)=\frac{1}{6} x_{1}^{-1} x_{4}+d\left(1-x_{1}^{3}\right)$.

2. Auxiliary results

LEmmA 1. Let $\Phi: \mathbb{R}_{0} \times \mathbb{R} \times \mathbb{R}_{0} \times \mathbb{R} \rightarrow \mathbb{R}$ be any function. If $F: \mathbb{R}_{0} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
F\left(x_{1} \cdot y_{1}, \Phi\left(x_{1}, x_{2}, y_{1}, y_{2}\right)\right)=x_{1}^{k} F\left(y_{1}, y_{2}\right)+y_{1}^{l} F\left(x_{1}, x_{2}\right)
$$

for some $k \neq l$ and $F\left(1, x_{2}\right) \equiv 0$ then $F\left(x_{1}, x_{2}\right)=a\left(x_{1}^{k}-x_{1}^{l}\right)$ for some constant a.

Proof. The substitution $x_{1} \mapsto y_{1}^{-1}$ gives

$$
0=y_{1}^{-k} F\left(y_{1}, y_{2}\right)+y_{1}^{l} F\left(y_{1}^{-1}, x_{2}\right)
$$

hence

$$
\begin{equation*}
F\left(y_{1}^{-1}, x_{2}\right)=-y_{1}^{-k-l} F\left(y_{1}, y_{2}\right) \quad \text { for all } y_{1} \in \mathbb{R}_{0}, x_{2}, y_{2} \in \mathbb{R} \tag{2}
\end{equation*}
$$

When we switch $y_{1} \leftrightarrow y_{1}^{-1}$ and rename $x_{2} \mapsto z_{2}, y_{2} \mapsto x_{2}$, we get

$$
\begin{equation*}
F\left(y_{1}, z_{2}\right)=-y_{1}^{k+l} F\left(y_{1}^{-1}, x_{2}\right) \tag{3}
\end{equation*}
$$

Substituting (2) into (3), we obtain $F\left(y_{1}, z_{2}\right)=-y_{1}^{k+l}\left[-y_{1}^{-k-l} F\left(y_{1}, y_{2}\right)\right]=$ $F\left(y_{1}, y_{2}\right)$, i.e., F does not depend on the second variable: $F\left(x_{1}, x_{2}\right)=\phi\left(x_{1}\right)$. The original equation reduces to $\phi\left(x_{1} \cdot y_{1}\right)=x_{1}^{k} \phi\left(y_{1}\right)+y_{1}^{l} \phi\left(x_{1}\right)$. The interchange $x_{1} \leftrightarrow y_{1}$ gives the equality $x_{1}^{k} \phi\left(y_{1}\right)+y_{1}^{l} \phi\left(x_{1}\right)=y_{1}^{k} \phi\left(x_{1}\right)+x_{1}^{l} \phi\left(y_{1}\right)$, hence

$$
\frac{\phi\left(y_{1}\right)}{y_{1}^{k}-y_{1}^{l}}=\frac{\phi\left(x_{1}\right)}{x_{1}^{k}-x_{1}^{l}}=a, \quad \text { a constant } .
$$

Therefore $F\left(x_{1}, x_{2}\right)=\phi\left(x_{1}\right)=a\left(x_{1}^{k}-x_{1}^{l}\right)$.
For a fixed linear transformation of the real plane, one can investigate (see [1], [2]), for which functions F the graph $\{(x, y): y=F(x)\}$ remains invariant under this transformation. This question easily translates into the functional equation $F(F(t))=p \cdot F(t)-q \cdot t$ for some $p, q \in \mathbb{R}$. We will be interested in continuous solutions of such equations. For example, we have

Lemma 2. All continuous solutions of the equation $F(F(t))=2 F(t)-t$ are of the form $F(t)=t+c$ for some $c \in \mathbb{R}$.

Proof. Let us write $F(t)=t+h(t)$. Then $h(t+h(t))=h(F(t))=$ $F(F(t))-F(t)=F(t)-t=h(t)$, i.e., h satisfies Euler's equation. From [1, Thm. 14.5] it follows that continuous solutions of this equation are constant. Hence $F(t)=t+c$ for some constant $c \in \mathbb{R}$.

In the proof of the main result we will consider continuous functions F satisfying

$$
\begin{equation*}
F(F(t))=p \cdot F(t)-q \cdot t \tag{4}
\end{equation*}
$$

where $p>0, q>0$ and the equation $\lambda^{2}-p \lambda+q=0$ has real roots λ_{1}, λ_{2} satisfying $1 \leq \lambda_{1}<\lambda_{2}$.

Lemma 3. Let a continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ satisfy equation (4) and $F(0)=0$. Then
(i) For any $t_{2}>t_{1}$ we have $F\left(t_{2}\right)-F\left(t_{1}\right) \geq \lambda_{1}\left(t_{2}-t_{1}\right)$.
(ii) F is a homeomorphism of the real line onto itself.
(iii) Let $\varepsilon \in\{-1,+1\}$. If $F(\varepsilon t) \not \equiv \lambda_{1} \varepsilon$ for $t \geq 0$ then for any $\beta \in\left(\lambda_{1}, \lambda_{2}\right)$ there exists a sequence $0<t_{n} \rightarrow+\infty$ such that $\varepsilon F\left(\varepsilon t_{n}\right)>\beta t_{n}$ for $n \geq 1$.
Proof. Notice that F is 1-1. In fact, if $F\left(t_{1}\right)=F\left(t_{2}\right)$ then $q t_{1}=p F\left(t_{1}\right)-$ $F\left(F\left(t_{1}\right)\right)=p F\left(t_{2}\right)-F\left(F\left(t_{2}\right)\right)=q t_{2}$, i.e., $t_{1}=t_{2}$.

From the continuity it follows that F is a monotonic function, vanishing at 0 only. Hence, for positive t we have either $F(t)<0$ or $F(t)>0$. In the first case we would have $F(t)>0$ for negative t and hence for any $t>0$ we get $0<F(F(t))=p F(t)-q t<0$, a contradiction. Therefore F is increasing. Take any $t_{2}>t_{1}$. Then $p\left(F\left(t_{2}\right)-F\left(t_{1}\right)\right)-q\left(t_{2}-t_{1}\right)=$ $F\left(F\left(t_{2}\right)\right)-F\left(F\left(t_{1}\right)\right)>0$, hence $F\left(t_{2}\right)-F\left(t_{1}\right)>(q / p)\left(t_{2}-t_{1}\right)$. Suppose that
for some $\alpha>0$ the inequality $F\left(t_{2}\right)-F\left(t_{1}\right)>\alpha\left(t_{2}-t_{1}\right)$ holds for all $t_{2}>t_{1}$. Then

$$
\begin{aligned}
p\left(F\left(t_{2}\right)-F\left(t_{1}\right)\right)-q\left(t_{2}-t_{1}\right) & =F\left(F\left(t_{2}\right)\right)-F\left(F\left(t_{1}\right)\right) \\
& >\alpha\left(F\left(t_{2}\right)-F\left(t_{1}\right)\right)>\alpha^{2}\left(t_{2}-t_{1}\right)
\end{aligned}
$$

hence $F\left(t_{2}\right)-F\left(t_{1}\right)>\frac{\alpha^{2}+q}{p}\left(t_{2}-t_{1}\right)$. Define $\alpha_{1}=q / p$ and $\alpha_{n+1}=\left(\alpha_{n}^{2}+q\right) / p$. By induction it follows that $F\left(t_{2}\right)-F\left(t_{1}\right)>\alpha_{n}\left(t_{2}-t_{1}\right)$ for all $t_{2}>t_{1}$ and $n \geq 1$. It is easy to see that $\alpha_{n}<\lambda_{1}$ for all $n \geq 1$. It follows that the sequence $\left(\alpha_{n}\right)$ is increasing and bounded, hence convergent and $\lim \alpha_{n}=\lambda_{1}$. Therefore $F\left(t_{2}\right)-F\left(t_{1}\right) \geq \lambda_{1}\left(t_{2}-t_{1}\right)$ for all $t_{2}>t_{1}$, which proves (i).

By setting $t_{1}=0$ we get $F(t) \geq \lambda_{1} t$ for all $t \geq 0$. By setting $t_{2}=0$ we obtain $F(t) \leq \lambda_{1} t$ for all $t \leq 0$. Consequently, we obtain (ii): F is a homeomorphism of \mathbb{R} onto itself.

To prove (iii), fix $\varepsilon= \pm 1$. Notice that the above inequality can be written as $\varepsilon F(\varepsilon t) \geq \lambda_{1} t$ for $t \geq 0$. Suppose for some $\lambda_{1}<\beta<\lambda_{2}$ the desired sequence $\left(t_{n}\right)$ does not exist. Then there exists $t_{0} \geq 0$ such that $\varepsilon F(\varepsilon t) \leq \beta t$ for all $t \geq t_{0}$. Define $\beta_{1}=\beta$ and $\beta_{n+1}=q \cdot\left(p-\beta_{n}\right)^{-1}$. It is easy to check that $\lambda_{1}<\beta_{n}<\lambda_{2}<p$. We show by induction that $\varepsilon F(\varepsilon t) \leq \beta_{n} t$ for all $t \geq t_{0}$ and $n \in \mathbb{N}$. For $n=1$ this is clear. Suppose it is true for n. Notice that for $t \geq t_{0}$ we have $\varepsilon F(\varepsilon t) \geq \lambda_{1} t>t \geq t_{0}$, hence $\varepsilon F(F(\varepsilon t)) \leq \beta_{n} \varepsilon F(\varepsilon t)$ for $t \geq t_{0}$. But then

$$
p \varepsilon F(\varepsilon t)-q \varepsilon^{2} t=\varepsilon F(F(\varepsilon t)) \leq \beta_{n} \varepsilon F(\varepsilon t) \quad \text { implies } \quad \varepsilon F(\varepsilon t) \leq \beta_{n+1} t
$$

The sequence $\left(\beta_{n}\right)$ is decreasing and hence convergent to λ_{1}. It follows that $\varepsilon F(\varepsilon t) \leq \lambda_{1} t$ for all $t \geq t_{0}$. This implies that $\varepsilon F(\varepsilon t)=\lambda_{1} t$ for $t \geq t_{0}$.

Let $t_{1}=\inf \left\{t>0: \varepsilon F(\varepsilon t)=\lambda_{1} t\right\}$. If $t_{1}>0$ then pick any $\gamma \in\left(\lambda_{1}, \lambda_{2}\right)$. By the continuity of F, we can find $t_{2} \in\left(0, t_{1}\right)$ such that $\varepsilon F(\varepsilon t) \leq \gamma t$ for $t \geq t_{2}$. But then $\varepsilon F(\varepsilon t)=\lambda_{1} t$ for $t \geq t_{2}$ by the previous paragraph applied to $\beta=\gamma$, contradicting the definition of t_{1}. Hence $t_{1}=0$ and $F(\varepsilon t) \equiv \lambda_{1} \varepsilon t$ for $t \geq 0$, a contradiction.

Lemma 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with $f(0)=0$ satisfying the equation

$$
\begin{align*}
f(\Delta(x, y)) & =f(y)+f(x) \\
\Delta(x, y) & =x+y+9 f(x) f(y)^{2}+9 f(x)^{2} f(y) \tag{5}
\end{align*}
$$

Then either $f \equiv 0$, or f is a homeomorphism of the real line and $f^{-1}(t)=$ $3 t^{3}+a t$ for some $a \geq 0$.

Proof. Obviously the constant function $f \equiv 0$ satisfies the equation. Now suppose that f is not constant. Notice that if $f(t)=0$ for all $t>0$ then for such t we have $\Delta(-t, t)=0$ and $f(-t)=f(-t)+f(t)=f(\Delta(-t, t))=$
$f(0)=0$, so $f \equiv 0$. Thus $f(t) \neq 0$ for some $t>0$. Analogously one can show that $f(t) \neq 0$ for some $t<0$.

Set $F(t)=\Delta(t, t)$. Then we have $f(F(t))=2 f(t)$ and

$$
\begin{aligned}
F(F(t)) & =2 F(t)+18 f(F(t))^{3}=2 F(t)+18 \cdot 8 f(t)^{3} \\
& =2 F(t)+8(F(t)-2 t)=10 F(t)-16 t .
\end{aligned}
$$

Thus F is a continuous solution of the equation $F(F(x))=10 F(x)-16 x$ and $F(0)=0$. Moreover, $\lambda^{2}-10 \lambda+16$ has roots 2 and 8. By Lemma 3(i), for any $t_{2}>t_{1}$ we have $F\left(t_{2}\right)-F\left(t_{1}\right) \geq 2\left(t_{2}-t_{1}\right)$, hence $2 t_{2}+18 f\left(t_{2}\right)^{3}-$ $2 t_{1}-18 f\left(t_{1}\right)^{3} \geq 2\left(t_{2}-t_{1}\right)$. It follows that $f\left(t_{2}\right)^{3} \geq f\left(t_{1}\right)^{3}$ and $f\left(t_{2}\right) \geq f\left(t_{1}\right)$.

We prove that f is not bounded from above. Suppose the contrary and take any $M>18 \sup \{f(t)\}^{3}$. Then $F(t)<2 t+M$ for all $t>0$. Pick any $\beta \in(2,8)$. There exists $t_{0}>0$ such that $\beta t>2 t+M$ for $t>t_{0}$. Because $F(t) \not \equiv 2 t$ for $t>0$, Lemma 3 (iii) yields a sequence $t_{n} \rightarrow+\infty$ with $F\left(t_{n}\right)>\beta t_{n}$. Pick $t_{N}>t_{0}$. Then $2 t_{N}+M>F\left(t_{N}\right)>\beta t_{N}>2 t_{N}+M$, a contradiction. In the same way, using Lemma 3(iii) with $\varepsilon=-1$, one proves that f is not bounded from below. Hence f maps the real line onto itself.

It follows that $f(t)=0$ for $t=0$ only. For suppose that $f(z)=0$ for some $z \neq 0$. Then for any x we have $\Delta(x, z)=x+z$ and $f(x+z)=f(x)$. Therefore $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and periodic, hence bounded, a contradiction.

It follows that f is an odd function. In fact, for any x we can find y so that $f(y)=-f(x)$, as f is onto. Then $\Delta(x, y)=x+y$ and $f(x+y)=$ $f(\Delta(x, y))=f(x)+f(y)=0$. It follows that $x+y=0$, hence $y=-x$ and so $f(-x)=-f(x)$ for all $x \in \mathbb{R}$.

Now we can prove that f is strictly increasing, in particular it is a homeomorphism of the real line. If not, f has a constant value c on some interval (r, s). Then f also has the constant value $-c$ on the interval $(-s,-r)$. For any $x \in(r, s), y \in(-s,-r)$ we have $\Delta(x, y)=x+y+9 c^{2} \cdot(-c)+9 c \cdot(-c)^{2}=x+y$ and $f(x+y)=f(\Delta(x, y))=f(x)+f(y)=c+(-c)=0$. It follows that f has infinitely many zeros, a contradiction. This proves that f is $1-1$, hence a homeomorphism.

Let $g=f^{-1}$. Substitute $x=g(u), y=g(v)$ in equations (5). We get

$$
f(\Delta(g(u), g(v)))=u+v, \quad \Delta(g(u), g(v))=g(u)+g(v)+9 u v^{2}+9 u^{2} v
$$

hence

$$
g(u+v)=g f\left(\Delta(g(u), g(v))=\Delta(g(u), g(v))=g(u)+g(v)+9 u v^{2}+9 u^{2} v\right.
$$

Substitute $g(t)=3 t^{3}+h(t)$. Then $3(u+v)^{3}+h(u+v)=3 u^{3}+h(u)+3 v^{3}+$ $h(v)+9 u v^{2}+9 u^{2} v$. It follows that h is a continuous solution of the Cauchy equation $h(u+v)=h(u)+h(v)$, hence $h(t)=a t$ and $f^{-1}(t)=3 t^{3}+a t$. It must be $a \geq 0$, as f is a homeomorphism. It is easy to verify that any such function solves our equation.
3. Proof of the Main Theorem. A subset $P=\left\{\left(x_{1}, f\left(x_{1}, x_{4}\right), g\left(x_{1}\right.\right.\right.$, $\left.\left.\left.x_{4}\right), x_{4}\right): x_{1} \in \mathbb{R}_{0}, x_{4} \in \mathbb{R}\right\} \subset L_{4}^{1}$ is a subsemigroup iff for any $x_{1}, y_{1} \in \mathbb{R}_{0}$ and $x_{4}, y_{4} \in \mathbb{R}$,

$$
\left(x_{1}, f\left(x_{1}, x_{4}\right), g\left(x_{1}, x_{4}\right), x_{4}\right) \circ\left(y_{1}, f\left(y_{1}, y_{4}\right), g\left(y_{1}, y_{4}\right), y_{4}\right) \in P
$$

which, using (1), translates to the following system of functional equations:

$$
\begin{gather*}
f\left(x_{1} y_{1}, \Delta\right)=x_{1} f\left(y_{1}, y_{4}\right)+y_{1}^{2} f\left(x_{1}, x_{4}\right) \tag{6}\\
g\left(x_{1} y_{1}, \Delta\right)=x_{1} g\left(y_{1}, y_{4}\right)+3 y_{1} f\left(x_{1}, x_{4}\right) f\left(y_{1}, y_{4}\right)+y_{1}^{3} g\left(x_{1}, x_{4}\right) \tag{7}\\
\Delta=\Delta\left(x_{1}, x_{4}, y_{1}, y_{4}\right)=x_{1} y_{4}+4 y_{1} f\left(x_{1}, x_{4}\right) g\left(y_{1}, y_{4}\right) \tag{8}\\
+3 f\left(x_{1}, x_{4}\right) f\left(y_{1}, y_{4}\right)^{2}+6 y_{1}^{2} g\left(x_{1}, x_{4}\right) f\left(y_{1}, y_{4}\right)+x_{4} y_{1}^{4}
\end{gather*}
$$

Elementary (but rather tedious) calculations show that the subsemigroups $P_{a, b}$ and $Q_{c, d}$, defined in the formulation of the Main Theorem, satisfy this system of equations. We shall prove that they exhaust the list of subsemigroups of L_{4}^{1} of the desired form.

We can make this system more symmetric, by substituting

$$
g(u, v)=h(u, v)+\frac{3}{2 u} f(u, v)^{2}
$$

where $h: \mathbb{R}_{0} \times \mathbb{R} \rightarrow \mathbb{R}$ is a new unknown function. This leads to a new system

$$
\begin{gather*}
f\left(x_{1} y_{1}, \Delta^{\prime}\left(x_{1}, x_{4}, y_{1}, y_{4}\right)\right)=x_{1} f\left(y_{1}, y_{4}\right)+y_{1}^{2} f\left(x_{1}, x_{4}\right) \tag{9}\\
h\left(x_{1} y_{1}, \Delta^{\prime}\left(x_{1}, x_{4}, y_{1}, y_{4}\right)\right)=x_{1} h\left(y_{1}, y_{4}\right)+y_{1}^{3} h\left(x_{1}, x_{4}\right) \tag{10}\\
\Delta^{\prime}\left(x_{1}, x_{4}, y_{1}, y_{4}\right)= \tag{11}\\
x_{1} y_{4}+x_{4} y_{1}^{4}+y_{1} f\left(x_{1}, x_{4}\right) h\left(y_{1}, y_{4}\right) \\
\\
+6 y_{1}^{2} f\left(y_{1}, y_{4}\right) h\left(x_{1}, x_{4}\right)+9 f\left(x_{1}, x_{4}\right) f\left(y_{1}, y_{4}\right)^{2} \\
\\
+\frac{9 y_{1}^{2}}{x_{1}} f\left(x_{1}, x_{4}\right)^{2} f\left(y_{1}, y_{4}\right)
\end{gather*}
$$

Let us write $\widetilde{f}(u)=f(1, u), \widetilde{h}(u)=h(1, u), \widetilde{\Delta}(u, v)=\Delta^{\prime}(1, u, 1, v)$. When we plug $x_{1}=1$, $y_{1}=1$ into equations (9)-(11), we get

$$
\begin{align*}
\widetilde{f}\left(\widetilde{\Delta}\left(x_{4}, y_{4}\right)\right)= & \widetilde{f}\left(y_{4}\right)+\widetilde{f}\left(x_{4}\right), \tag{12}\\
\widetilde{h}\left(\widetilde{\Delta}\left(x_{4}, y_{4}\right)\right)= & \widetilde{h}\left(y_{4}\right)+\widetilde{h}\left(x_{4}\right), \tag{13}\\
\widetilde{\Delta}\left(x_{4}, y_{4}\right)= & y_{4}+x_{4}+4 \widetilde{f}\left(x_{4}\right) \widetilde{h}\left(y_{4}\right)+6 \widetilde{f}\left(y_{4}\right) \widetilde{h}\left(x_{4}\right) \tag{14}\\
& +9 \widetilde{f}\left(x_{4}\right) \widetilde{f}\left(y_{4}\right)^{2}+9 \widetilde{f}\left(x_{4}\right)^{2} \widetilde{f}\left(y_{4}\right) .
\end{align*}
$$

Now the proof splits into two cases: Case I: \widetilde{f} is constant and Case II: \widetilde{f} is not constant.
4. Case I: \tilde{f} is constant. From (12) it follows that $\tilde{f} \equiv 0$. Lemma 1 applied to (6) implies that $f\left(x_{1}, x_{4}\right)=a\left(x_{1}-x_{1}^{2}\right)$.

Now we determine h. Equation (14) reduces to $\widetilde{\Delta}\left(x_{4}, y_{4}\right)=x_{4}+y_{4}$, and from (13) and the continuity of \widetilde{h} it follows that $\widetilde{h}(u)=C u$ for some constant $C \in \mathbb{R}$. We will show that $C=0$. To this end, fix $\mu \in \mathbb{R}_{0}$ and substitute in (10)-(11) the values $x_{1}=\mu, y_{1}=\mu^{-1}$:

$$
\begin{aligned}
C \cdot \Delta^{\prime}\left(\mu, x_{4}, \mu^{-1}, y_{4}\right)= & \mu h\left(\mu^{-1}, y_{4}\right)+\mu^{-3} h\left(\mu, x_{4}\right) \\
\Delta^{\prime}\left(\mu, x_{4}, \mu^{-1}, y_{4}\right)= & \mu y_{4}+\mu^{-4} x_{4}+4 a(1-\mu) h\left(\mu^{-1}, y_{4}\right) \\
& +6 a\left(\mu^{-3}-\mu^{-4}\right) h\left(\mu, x_{4}\right)
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
{[4 a C-(4 a C+1) \mu] h\left(\mu^{-1}\right.} & \left., y_{4}\right)+C \mu y_{4} \\
& =[6 a C-(6 a C-1) \mu] \mu^{-4} h\left(\mu, x_{4}\right)-C \mu^{-4} x_{4}
\end{aligned}
$$

It follows that the left hand side does not depend on y_{4} and the right hand side does not depend on x_{4}. If $a C \neq 0$, then for $\mu=4 a C /(4 a C+1)$ or for $\mu=6 a C /(6 a C-1)$ (at least one of these numbers is well defined) it would not be the case. Therefore $a C=0$ and

$$
\begin{equation*}
-\mu h\left(\mu^{-1}, y_{4}\right)+C \mu y_{4}=\mu^{-3} h\left(\mu, x_{4}\right)-C \mu^{-4} x_{4} \tag{15}
\end{equation*}
$$

We switch the sides, $x_{4} \leftrightarrow y_{4}$ and $\mu \leftrightarrow \mu^{-1}$ in (15):

$$
\begin{equation*}
\mu^{3} h\left(\mu^{-1}, y_{4}\right)-C \mu^{4} y_{4}=-\mu^{-1} h\left(\mu, x_{4}\right)+C \mu^{-1} x_{4} \tag{16}
\end{equation*}
$$

When we add (15) multiplied by μ^{2} to (16), we get $C\left(\mu^{3}-\mu^{4}\right) y_{4}=$ $C\left(\mu^{-1}-\mu^{-2}\right) x_{4}$ for all $x_{4}, y_{4} \in \mathbb{R}$ and $\mu \in \mathbb{R}_{0}$. It follows that $C=0$.

We have just proved that $h(1, v) \equiv 0$. From Lemma 1 it follows that $h\left(x_{1}, x_{4}\right)=b\left(x_{1}-x_{1}^{3}\right)$ for some constant b. In particular, in Case I, we have proved that

$$
\begin{aligned}
& f\left(x_{1}, x_{4}\right)=a\left(x_{1}-x_{1}^{2}\right) \\
& g\left(x_{1}, x_{4}\right)=\frac{3}{2 x_{1}} f\left(x_{1}, x_{4}\right)^{2}+h\left(x_{1}, x_{4}\right)=\frac{3}{2} a^{2} x_{1}\left(1-x_{1}\right)^{2}+b\left(x_{1}-x_{1}^{3}\right)
\end{aligned}
$$

as desired.
5. Case II: \tilde{f} is not constant. Let us notice that the function \tilde{f} attains value 0 . To see this, we substitute $x_{1}=-1, y_{1}=-1, x_{4}=t, y_{4}=t$ into (9) and (11), where t is a new variable. We obtain $f\left(1, \Delta^{\prime}(-1, t,-1, t)\right)=0$, $\Delta^{\prime}(-1, t,-1, t)=2 f(-1, t) h(-1, t)$, hence

$$
\begin{equation*}
\widetilde{f}(2 f(-1, t) \cdot h(-1, t))=0 \quad \text { for all } t \in \mathbb{R} \tag{17}
\end{equation*}
$$

In particular, there exists $z \in \mathbb{R}$ such that $\widetilde{f}(z)=0$. We plug $y_{4}=z$ in (12)-(14) to get

$$
\begin{align*}
\widetilde{f}\left(\widetilde{\Delta}\left(x_{4}, z\right)\right) & =\widetilde{f}\left(x_{4}\right) \tag{18}\\
\widetilde{h}\left(\widetilde{\Delta}\left(x_{4}, z\right)\right) & =\widetilde{h}(z)+\widetilde{h}\left(x_{4}\right), \tag{19}\\
\widetilde{\Delta}\left(x_{4}, z\right) & =z+x_{4}+4 \widetilde{f}\left(x_{4}\right) \widetilde{h}(z) \tag{20}
\end{align*}
$$

Consider $G(u)=\widetilde{\Delta}(u, z)$. From (18) and (20) we get $G(G(u))=z+G(u)+$ $4 \widetilde{f}(G(u)) \widetilde{h}(z)=z+G(u)+4 \widetilde{f}(u) \widetilde{h}(z)=2 G(u)-u$. From Lemma 2 it follows that $G(u)=u+c$ for some $c \in \mathbb{R}$. Therefore $z+x_{4}+4 \widetilde{f}\left(x_{4}\right) \widetilde{h}(z)=\widetilde{\Delta}\left(x_{4}, z\right)=$ $G\left(x_{4}\right)=x_{4}+c$, i.e., $\widetilde{f}\left(x_{4}\right) \widetilde{h}(z)$ is a constant. Because by assumption \tilde{f} is not constant, it follows that $\widetilde{h}(z)=0$. Hence equations (18) and (20) reduce to

$$
\begin{equation*}
\widetilde{f}\left(x_{4}+z\right)=\widetilde{f}\left(x_{4}\right) \tag{21}
\end{equation*}
$$

which holds for any $x_{4} \in \mathbb{R}$ and any $z \in \mathbb{R}$ such that $\widetilde{f}(z)=0$.
Our objective is to prove that $\widetilde{h} \equiv 0$. To this end, consider $\phi(t)=$ $f(-1, t) h(-1, t)$. Then equation (17) reads $\widetilde{f}(2 \phi(t))=0$ for all $t \in \mathbb{R}$. We check that the (continuous) function ϕ is constant. In fact, otherwise the image of 2ϕ contains an open interval I which, by (17), is contained in the zero set of \widetilde{f}. Let r be the middle point of this interval and let 2ε be its length. Then for $\left|x_{4}\right|<\varepsilon$ we have $r+x_{4} \in I$, hence by $(21): \widetilde{f}\left(x_{4}\right)=\widetilde{f}\left(x_{4}+r\right)=0$. This means that \widetilde{f} vanishes in the ε-neighborhood of 0 . Equation (21) then says that \widetilde{f} is locally constant, hence $\widetilde{f} \equiv 0$. This contradicts our standing assumption that \tilde{f} is not constant. Therefore $\phi(t)$ is a constant function, equal to, say, m.

Now we use equations (9)-(10). First we plug in $x_{1}=-1, y_{1}=1$, to obtain

$$
\begin{align*}
& f\left(-1, \Delta^{\prime}\left(-1, x_{4}, 1, y_{4}\right)\right)=-\widetilde{f}\left(y_{4}\right)+f\left(-1, x_{4}\right) \tag{22}\\
& h\left(-1, \Delta^{\prime}\left(-1, x_{4}, 1, y_{4}\right)\right)=-\widetilde{h}\left(y_{4}\right)+h\left(-1, x_{4}\right) \tag{23}
\end{align*}
$$

We multiply (22) and (23) and use the relation $f(-1, t) h(-1, t)=m$:

$$
\begin{gather*}
m=\widetilde{f}\left(y_{4}\right) \widetilde{h}\left(y_{4}\right)-\widetilde{f}\left(y_{4}\right) h\left(-1, x_{4}\right)-f\left(-1, x_{4}\right) \widetilde{h}\left(y_{4}\right)+m \\
\widetilde{f}\left(y_{4}\right) \widetilde{h}\left(y_{4}\right)=\widetilde{f}\left(y_{4}\right) h\left(-1, x_{4}\right)+f\left(-1, x_{4}\right) \widetilde{h}\left(y_{4}\right) \tag{24}
\end{gather*}
$$

Now we apply the same trick, but this time we plug in $x_{1}=1, y_{1}=-1$, to obtain

$$
\begin{align*}
& f\left(-1, \Delta^{\prime}\left(1, x_{4},-1, y_{4}\right)\right)=f\left(-1, y_{4}\right)+\widetilde{f}\left(x_{4}\right) \tag{25}\\
& h\left(-1, \Delta^{\prime}\left(1, x_{4},-1, y_{4}\right)\right)=h\left(-1, y_{4}\right)-\widetilde{h}\left(x_{4}\right) \tag{26}
\end{align*}
$$

As before, we multiply (25) and (26):

$$
\begin{align*}
m= & m-f\left(-1, y_{4}\right) \widetilde{h}\left(x_{4}\right)+\widetilde{f}\left(x_{4}\right) h\left(-1, y_{4}\right)-\widetilde{f}\left(x_{4}\right) \widetilde{h}\left(x_{4}\right) \\
& \widetilde{f}\left(x_{4}\right) h\left(-1, y_{4}\right)=f\left(-1, y_{4}\right) \widetilde{h}\left(x_{4}\right)+\widetilde{f}\left(x_{4}\right) \widetilde{h}\left(x_{4}\right) \tag{27}
\end{align*}
$$

Let us switch x_{4} with y_{4} in (27):

$$
\begin{equation*}
\widetilde{f}\left(y_{4}\right) h\left(-1, x_{4}\right)=f\left(-1, x_{4}\right) \widetilde{h}\left(y_{4}\right)+\widetilde{f}\left(y_{4}\right) \widetilde{h}\left(y_{4}\right) . \tag{28}
\end{equation*}
$$

When we add equations (24) and (28), cancellations occur and we are left with

$$
f\left(-1, x_{4}\right) \widetilde{h}\left(y_{4}\right)=0 \quad \text { for all } x_{4}, y_{4} \in \mathbb{R} .
$$

If $\widetilde{h} \not \equiv 0$ then $f\left(-1, x_{4}\right) \equiv 0$ and we see from (28) that

$$
\begin{equation*}
\tilde{f}\left(y_{4}\right) \cdot\left(\widetilde{h}\left(y_{4}\right)-h\left(-1, x_{4}\right)\right) \equiv 0 . \tag{29}
\end{equation*}
$$

By assumption, $\widetilde{f}\left(y_{4}\right)$ is not constant; therefore we can find $y_{4}=\xi$ so that $\tilde{f}(\xi) \neq 0$. Then (29) implies that $h\left(-1, x_{4}\right)=\widetilde{h}(\xi)$, i.e., $h\left(-1, x_{4}\right)$ is a constant function. Moreover, its constant value is equal to $\widetilde{h}(\xi)$ for any ξ such that $\widetilde{f}(\xi) \neq 0$. Hence \widetilde{h} is constant on the set $\{\xi: \widetilde{f}(\xi) \neq 0\}$. However, we have earlier observed that $\widetilde{h}(z)=0$ whenever $\widetilde{f}(z)=0$. From the continuity of \widetilde{h} it then follows that $\widetilde{h} \equiv 0$. From Lemma 1 we get $h\left(x_{1}, x_{4}\right)=b\left(x_{1}-x_{1}^{3}\right)$ for some constant $b \in \mathbb{R}$.

It remains to determine f. A substitution $\widetilde{h}=0$ in (14) yields

$$
\begin{aligned}
\widetilde{f}\left(\widetilde{\Delta}\left(x_{4}, y_{4}\right)\right) & =\widetilde{f}\left(y_{4}\right)+\widetilde{f}\left(x_{4}\right), \\
\widetilde{\Delta}\left(x_{4}, y_{4}\right) & =y_{4}+x_{4}+9 \widetilde{f}\left(x_{4}\right) \widetilde{f}\left(y_{4}\right)^{2}+9 \widetilde{f}\left(x_{4}\right)^{2} \widetilde{f}\left(y_{4}\right) .
\end{aligned}
$$

Moreover, $h(-1,0)=0$, hence from (17) it follows that $\tilde{f}(0)=0$, i.e., \tilde{f} satisfies the assumptions of Lemma 4. As \widetilde{f} is not constant, it follows that it is a homeomorphism with $\widetilde{f}^{-1}(t)=3 t^{3}+6 c t$ for some $c \geq 0$.

Now we return to equations (9) and (11) and use the formula $h\left(x_{1}, x_{4}\right)=$ $b\left(x_{1}-x_{1}^{3}\right)$:

$$
\begin{align*}
f\left(x_{1} y_{1}, \Delta^{\prime}\left(x_{1},\right.\right. & \left.\left.x_{4}, y_{1}, y_{4}\right)\right)=x_{1} f\left(y_{1}, y_{4}\right)+y_{1}^{2} f\left(x_{1}, x_{4}\right), \tag{30}\\
\Delta^{\prime}\left(x_{1}, x_{4}, y_{1}, y_{4}\right)= & x_{1} y_{4}+x_{4} y_{1}^{4}+4 b\left(y_{1}^{2}-y_{1}^{4}\right) f\left(x_{1}, x_{4}\right) \tag{31}\\
& +6 b y_{1}^{2}\left(x_{1}-x_{1}^{3}\right) f\left(y_{1}, y_{4}\right) \\
& +9 f\left(x_{1}, x_{4}\right) f\left(y_{1}, y_{4}\right)^{2}+\frac{9 y_{1}^{2}}{x_{1}} f\left(x_{1}, x_{4}\right)^{2} f\left(y_{1}, y_{4}\right) .
\end{align*}
$$

When we set $x_{1}=y_{1}^{-1}$, we get

$$
\begin{aligned}
\widetilde{f}\left(\Delta^{\prime}\left(y_{1}^{-1}, x_{4}, y_{1}, y_{4}\right)\right)= & y_{1}^{-1} f\left(y_{1}, y_{4}\right)+y_{1}^{2} f\left(y_{1}^{-1}, x_{4}\right), \\
\Delta^{\prime}\left(y_{1}^{-1}, x_{4}, y_{1}, y_{4}\right)= & y_{1}^{-1} y_{4}+x_{4} y_{1}^{4}+4 b\left(y_{1}^{2}-y_{1}^{4}\right) f\left(y_{1}^{-1}, x_{4}\right) \\
& +6 b\left(y_{1}-y_{1}^{-1}\right) f\left(y_{1}, y_{4}\right) \\
& +9 f\left(y_{1}^{-1}, x_{4}\right) f\left(y_{1}, y_{4}\right)^{2}+9 y_{1}^{3} f\left(y_{1}^{-1}, x_{4}\right)^{2} f\left(y_{1}, y_{4}\right) .
\end{aligned}
$$

We apply \widetilde{f}^{-1} to the first equation:

$$
\begin{aligned}
\Delta^{\prime}\left(y_{1}^{-1}, x_{4}, y_{1}, y_{4}\right)= & 3\left[y_{1}^{-1} f\left(y_{1}, y_{4}\right)+y_{1}^{2} f\left(y_{1}^{-1}, x_{4}\right)\right]^{3} \\
& +6 c\left[y_{1}^{-1} f\left(y_{1}, y_{4}\right)+y_{1}^{2} f\left(y_{1}^{-1}, x_{4}\right)\right]
\end{aligned}
$$

After using the formula for Δ^{\prime}, expanding the third power and some cancellations, we get

$$
\begin{aligned}
& y_{1}^{4} x_{4}+\left[4 b\left(y_{1}^{2}-y_{1}^{4}\right)-6 c y_{1}^{2}\right] f\left(y_{1}^{-1}, x_{4}\right)-3 y_{1}^{6} f\left(y_{1}^{-1}, x_{4}\right)^{3}= \\
& \quad-y_{1}^{-1} y_{4}+\left[6 c y_{1}^{-1}-6 b\left(y_{1}-y_{1}^{-1}\right)\right] f\left(y_{1}, y_{4}\right)+3 y_{1}^{-3} f\left(y_{1}, y_{4}\right)^{3} .
\end{aligned}
$$

Notice that the left hand side does not depend on y_{4}, while the right hand side does not depend on x_{4}. Hence both sides depend on y_{1} only:

$$
\begin{align*}
l\left(y_{1}^{-1}\right) & =y_{1}^{4} x_{4}+\left[4 b\left(y_{1}^{2}-y_{1}^{4}\right)-6 c y_{1}^{2}\right] f\left(y_{1}^{-1}, x_{4}\right)-3 y_{1}^{6} f\left(y_{1}^{-1}, x_{4}\right)^{3} \tag{32}\\
r\left(y_{1}\right) & =-y_{1}^{-1} y_{4}+\left[6 c y_{1}^{-1}-6 b\left(y_{1}-y_{1}^{-1}\right)\right] f\left(y_{1}, y_{4}\right)+3 y_{1}^{-3} f\left(y_{1}, y_{4}\right)^{3} . \tag{33}
\end{align*}
$$

Let us plug $y_{1}=u^{-1}, x_{4}=v$ in (32) and $y_{1}=u, y_{4}=v$ in (33):

$$
\begin{aligned}
l(u) & =u^{-4} v+\left[4 b\left(u^{-2}-u^{-4}\right)-6 c u^{-2}\right] f(u, v)-3 u^{-6} f(u, v)^{3} \\
r(u) & =-u^{-1} v+\left[6 c u^{-1}-6 b\left(u-u^{-1}\right)\right] f(u, v)+3 u^{-3} f(u, v)^{3}
\end{aligned}
$$

Notice that $u^{3} l(u)+r(u)=(-2 b-6 c)\left(u-u^{-1}\right) f(u, v)$, which implies that the expression $(b+3 c)\left(u-u^{-1}\right) f(u, v)$ does not depend on v. If $b+3 c \neq 0$ then for each fixed $u \neq \pm 1$ the function $f(u, \cdot)$ is constant. But then for any $v_{1} \neq v_{2}$ we get $\widetilde{f}\left(v_{1}\right)=f\left(1, v_{1}\right)=\lim f\left(1+1 / n, v_{1}\right)=\lim f\left(1+1 / n, v_{2}\right)=$ $f\left(1, v_{2}\right)=\widetilde{f}\left(v_{2}\right)$, a contradiction, as \widetilde{f} is a bijection. Therefore $b=-3 c$ and

$$
r(u)=-u^{-1} v+6 c\left(3 u-2 u^{-1}\right) f(u, v)+3 u^{-3} f(u, v)^{3} .
$$

Let $p(u)=\frac{2}{3} c\left(3 u-2 u^{-1}\right)$ and $q(u, v)=\frac{1}{6}\left(u^{-1} v+r(u)\right)$. Then

$$
\begin{equation*}
u^{-3} f(u, v)^{3}=-3 p(u) f(u, v)+2 q(u, v) \tag{34}
\end{equation*}
$$

We use (34) in the cube of equation (30):

$$
\begin{aligned}
&\left(x_{1} y_{1}\right)^{-3}\left(x_{1} f\left(y_{1}, y_{4}\right)+y_{1}^{2} f\left(x_{1}, x_{4}\right)\right)^{3}=\left(x_{1} y_{1}\right)^{-3} f\left(x_{1} y_{1}, \Delta^{\prime}\right)^{3} \\
&=-3 p\left(x_{1} y_{1}\right) f\left(x_{1} y_{1}, \Delta^{\prime}\right)+2 q\left(x_{1} y_{1}, \Delta^{\prime}\right) \\
&=-3 p\left(x_{1} y_{1}\right)\left[x_{1} f\left(y_{1}, y_{4}\right)+y_{1}^{2} f\left(x_{1}, x_{4}\right)\right] \\
&+\frac{1}{3} r\left(x_{1} y_{1}\right)+\frac{1}{3}\left(x_{1} y_{1}\right)^{-1} \Delta^{\prime}\left(x_{1}, x_{4}, y_{1}, y_{4}\right)
\end{aligned}
$$

When we expand the left hand side and use (31), we get, after reductions,

$$
\begin{aligned}
\left(x_{1} y_{1}\right)^{-3} & \left(x_{1}^{3} f\left(y_{1}, y_{4}\right)^{3}+y_{1}^{6} f\left(x_{1}, x_{4}\right)^{3}\right) \\
= & -3 p\left(x_{1} y_{1}\right)\left(x_{1} f\left(y_{1}, y_{4}\right)+y_{1}^{2} f\left(x_{1}, x_{4}\right)\right)+\frac{1}{3} r\left(x_{1} y_{1}\right)+\frac{1}{3}\left(x_{1} y_{1}\right)^{-1} \\
& \times\left[x_{1} y_{4}+x_{4} y_{1}^{4}-12 c\left(y_{1}^{2}-y_{1}^{4}\right) f\left(x_{1}, x_{4}\right)-18 c y_{1}^{2}\left(x_{1}-x_{1}^{3}\right) f\left(y_{1}, y_{4}\right)\right]
\end{aligned}
$$

After applying (34) to the left hand side, we get, after reductions,

$$
\begin{array}{rl}
\frac{1}{3} r\left(y_{1}\right)+\frac{1}{3} y_{1}^{3} r & r\left(x_{1}\right)-\frac{1}{3} r\left(x_{1} y_{1}\right) \\
= & \left(3 p\left(x_{1}\right) y_{1}^{3}-3 p\left(x_{1} y_{1}\right) y_{1}^{2}-4 c x_{1}^{-1}\left(y_{1}-y_{1}^{3}\right)\right) f\left(x_{1}, x_{4}\right) \\
& +\left(3 p\left(y_{1}\right)-3 p\left(x_{1} y_{1}\right) x_{1}-6 c y_{1}\left(1-x_{1}^{2}\right)\right) f\left(y_{1}, y_{4}\right) \equiv 0
\end{array}
$$

hence we are left with

$$
r\left(x_{1} y_{1}\right)=y_{1}^{3} r\left(x_{1}\right)+r\left(y_{1}\right)
$$

By Lemma 1, we have $r\left(x_{1}\right)=6 d\left(1-x_{1}^{3}\right)$ for some constant d.
Because

$$
f\left(x_{1}, x_{4}\right)^{3}+3 x_{1}^{3} p\left(x_{1}\right) f\left(x_{1}, x_{4}\right)-2 x_{1}^{3} q\left(x_{1}, x_{4}\right)=0
$$

where $p\left(x_{1}\right)=\frac{2}{3} c\left(3 x_{1}-2 x_{1}^{-1}\right)$ and $q\left(x_{1}, x_{4}\right)=\frac{1}{6} x_{1}^{-1} x_{4}+d\left(1-x_{1}^{3}\right)$, by the Cardano formulas we get

$$
f\left(x_{1}, x_{4}\right)=x_{1} \sqrt[3]{q+\sqrt{q^{2}+p^{3}}}+x_{1} \sqrt[3]{q-\sqrt{q^{2}+p^{3}}}
$$

Finally,

$$
\begin{aligned}
g\left(x_{1}, x_{4}\right)= & \frac{3}{2 x_{1}} f\left(x_{1}, x_{4}\right)^{2}-3 c\left(x_{1}-x_{1}^{3}\right) \\
= & \frac{3}{2} x_{1}\left[\sqrt[3]{2 q^{2}+p^{3}+2 q \sqrt{q^{2}+p^{3}}}+\sqrt[3]{2 q^{2}+p^{3}-2 q \sqrt{q^{2}+p^{3}}}\right] \\
& +c\left(4-3 x_{1}-6 x_{1}^{2}+3 x_{1}^{3}\right)
\end{aligned}
$$

Acknowledgments. Research of Z. Marciniak was partially supported by the Polish KBN grant No. 1 P03A 00526.

REFERENCES

[1] J. Aczel and S. Gołąb, Remarks on one parameter subsemigroups of the affine group and their homo and isomorphisms, Aequationes Math. 4 (1970), 1-11.
[2] M. Kuczma, Functional Equations in a Single Variable, Monografie Mat. 46, Państwowe Wydawnictwo Naukowe, Warszawa, 1968.
[3] S. Midura, Sur la détermination de certains sous-groupes du groupe L_{s}^{1} à l'aide d'équations fonctionnelles, Dissertationes Math. 105 (1973).
[4] -, Sur la détermination de certains sous-groupes du groupe L_{4}^{1} à l'aide d'équations fonctionnelles, Aequationes Mat. 15 (1977), 285-286.
[5] -, Sur la détermination de certains sous-groupes du groupe L_{2}^{1} et L_{3}^{1} determinés à l'aide d'équations fonctionnelles, Rocznik Naukowo-Dydaktyczny WSP w Rzeszowie 7/62 (1985), 37-50.
[6] -, Sur les solutions des équations fonctionnelles qui déterminent certains sous-demi-groupes à deux paramètres du groupe L_{4}^{1}, Demonstratio Math. 23 (1990), 6981.
[7] -, On subsemigroups of the group L_{6}^{1}, Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. 14 (1992), 67-81.
[8] S. Midura, On subgroups of the group L_{5}^{1}, Demonstratio Math. 27 (1994), 133-144.
[9] -, On solutions of systems of functional equations determining some subsemigroups of the group L_{6}^{1}, ibid. 29 (1996), 579-590.
[10] -, On solutions of some systems of functional equations, ibid. 31 (1998), 299-304.
[11] S. Midura and J. Zygo, On subsemigroups of the group L_{5}^{1}, Zeszyty Naukowe WSP w Rzeszowie 1 (1990), 109-122.

Janina Chodukowska
Al. Jana Pawła II 3/72
37-450 Stalowa Wola, Poland

Zbigniew Marciniak
Institute of Mathematics
Warsaw University Banacha 2
02-097 Warszawa, Poland E-mail: zbimar@mimuw.edu.pl

[^0]: 2010 Mathematics Subject Classification: 39B72, 37C05.
 Key words and phrases: jets of local diffeomorphism, subsemigroup, functional equation.

