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ON SOLUTIONS OF FUNCTIONAL EQUATIONS DETERMINING
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4
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Abstract. Let L1
4 be the group of 4-jets at zero of diffeomorphisms f of R with

f(0) = 0. Identifying jets with sequences of derivatives, we determine all subsemigroups of
L1

4 consisting of quadruples (x1, f(x1, x4), g(x1, x4), x4) ∈ (R \ {0})× R3 with continuous
functions f, g : (R \ {0})×R→ R. This amounts to solving a set of functional equations.

1. Introduction. The groups Lns arise when studying jets of local dif-
feomorphisms of Rn in the following way. Let jsf be the s-jet of a diffeo-
morphism f defined in a neighborhood of 0 ∈ Rn and satisfying f(0) = 0.
We consider the set Lns of all such jets equipped with the group operation

(jsf) ◦ (jsg) = js(f ◦ g), where (f ◦ g)(x) = f(g(x)).

Any jet jsf can be identified with the sequence of partial derivatives at
0 of f of orders 1, . . . , s. Therefore, Lns can be identified with a set of real
sequences (see [3]). In those terms, the group L1

s can be given the following
algebraic description. As a set, we have L1

s = R0×Rs−1, where R0 = R\{0}.
The product is defined as

(x1, . . . , xs) ◦ (y1, . . . , ys) = (z1, . . . , zs)

where for m = 1, . . . , s we have

zm =
m∑
k=1

xk
∑{

Au · yu1
1 · · · y

um
m : ui ∈ N ∪ {0},

m∑
i=1

ui = k,
m∑
i=1

iui = m
}

and Au = m!/
∏m
i=1ui!(i!)

ui (Faà di Bruno’s formula).
In particular, multiplication in L1

4 is given by the following formula:

(x1, x2, x3, x4) ◦ (y1, y2, y3, y4) = (z1, z2, z3, z4),(1)

z1 = x1y1, z2 = x1y2 + x2y
2
1, z3 = x1y3 + 3x2y1y2 + x3y

3
1,

z4 = x1y4 + 4x2y1y3 + 3x2y
2
2 + 6x3y

2
1y2 + x4y

4
1.

Papers [3]–[11] describe certain subsemigroups of L1
s for 2 ≤ s ≤ 5,

consisting of tuples for which one of the coordinates is a function of the
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others. In [4, Section 4], subsemigroups of L1
4 consisting of elements of the

form (x1, f(x1, x4), f(x1, x4), x4) were described in terms of a certain system
of functional equations. In [10] subsemigroups of L1

4 consisting of elements
of the form (x1, f(x1, x4), g(x1, x4), x4) were studied with some additional
restrictions on f and g. In all solutions, the functions f and g depended on
x1 only.

In this paper we generalize those results. In particular, we show that
there do exist solutions depending on both variables x1, x4.

Main Theorem 1. All subsemigroups of L1
4, consisting of quadruples

(x1, f(x1, x4), g(x1, x4), x4) ∈ R0 × R3 with continuous functions f, g :
R0 × R→ R belong to one of the families

Pa,b = {(x1, fab(x1, x4), gab(x1, x4), x4)}, a, b ∈ R,
Qc,d = {(x1, fcd(x1, x4), gcd(x1, x4), x4)}, c ∈ [0,+∞), d ∈ R,

where

fab(x1, x4) = a(x1 − x2
1), gab(x1, x4) =

3
2
a2x1(1− x1)2 + b(x1 − x3

1),

fcd(x1, x4) = x1
3

√
q +

√
q2 + p3 + x1

3

√
q −

√
q2 + p3,

gcd(x1, x4) =
3
2
x1

3

√
2q2 + p3 + 2q

√
q2 + p3

+
3
2
x1

3

√
2q2 + p3 − 2q

√
q2 + p3 + c(4− 3x1 − 6x2

1 + 3x3
1),

with p(x1) = 2
3c(3x1 − 2x−1

1 ) and q(x1, x4) = 1
6x
−1
1 x4 + d(1− x3

1).

2. Auxiliary results

Lemma 1. Let Φ : R0×R×R0×R→ R be any function. If F : R0×R→ R
satisfies

F (x1 · y1, Φ(x1, x2, y1, y2)) = xk1F (y1, y2) + yl1F (x1, x2)

for some k 6= l and F (1, x2) ≡ 0 then F (x1, x2) = a(xk1 − xl1) for some
constant a.

Proof. The substitution x1 7→ y−1
1 gives

0 = y−k1 F (y1, y2) + yl1F (y−1
1 , x2),

hence

(2) F (y−1
1 , x2) = −y−k−l1 F (y1, y2) for all y1 ∈ R0, x2, y2 ∈ R.

When we switch y1 ↔ y−1
1 and rename x2 7→ z2, y2 7→ x2, we get

(3) F (y1, z2) = −yk+l1 F (y−1
1 , x2).
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Substituting (2) into (3), we obtain F (y1, z2) = −yk+l1 [−y−k−l1 F (y1, y2)] =
F (y1, y2), i.e., F does not depend on the second variable: F (x1, x2) = φ(x1).
The original equation reduces to φ(x1 · y1) = xk1φ(y1) + yl1φ(x1). The inter-
change x1 ↔ y1 gives the equality xk1φ(y1) + yl1φ(x1) = yk1φ(x1) + xl1φ(y1),
hence

φ(y1)
yk1 − yl1

=
φ(x1)
xk1 − xl1

= a, a constant.

Therefore F (x1, x2) = φ(x1) = a(xk1 − xl1).
For a fixed linear transformation of the real plane, one can investigate (see

[1], [2]), for which functions F the graph {(x, y) : y = F (x)} remains invari-
ant under this transformation. This question easily translates into the func-
tional equation F (F (t)) = p · F (t) − q · t for some p, q ∈ R. We will be
interested in continuous solutions of such equations. For example, we have

Lemma 2. All continuous solutions of the equation F (F (t)) = 2F (t)− t
are of the form F (t) = t+ c for some c ∈ R.

Proof. Let us write F (t) = t + h(t). Then h(t + h(t)) = h(F (t)) =
F (F (t))− F (t) = F (t)− t = h(t), i.e., h satisfies Euler’s equation. From [1,
Thm. 14.5] it follows that continuous solutions of this equation are constant.
Hence F (t) = t+ c for some constant c ∈ R.

In the proof of the main result we will consider continuous functions F
satisfying
(4) F (F (t)) = p · F (t)− q · t
where p > 0, q > 0 and the equation λ2 − pλ + q = 0 has real roots λ1, λ2

satisfying 1 ≤ λ1 < λ2.
Lemma 3. Let a continuous function F : R→ R satisfy equation (4) and

F (0) = 0. Then

(i) For any t2 > t1 we have F (t2)− F (t1) ≥ λ1(t2 − t1).
(ii) F is a homeomorphism of the real line onto itself.
(iii) Let ε ∈ {−1,+1}. If F (εt) 6≡ λ1εt for t ≥ 0 then for any β ∈ (λ1, λ2)

there exists a sequence 0 < tn → +∞ such that εF (εtn) > βtn for
n ≥ 1.

Proof. Notice that F is 1-1. In fact, if F (t1) = F (t2) then qt1 = pF (t1)−
F (F (t1)) = pF (t2)− F (F (t2)) = qt2, i.e., t1 = t2.

From the continuity it follows that F is a monotonic function, vanishing
at 0 only. Hence, for positive t we have either F (t) < 0 or F (t) > 0. In
the first case we would have F (t) > 0 for negative t and hence for any
t > 0 we get 0 < F (F (t)) = pF (t) − qt < 0, a contradiction. Therefore
F is increasing. Take any t2 > t1. Then p(F (t2) − F (t1)) − q(t2 − t1) =
F (F (t2))−F (F (t1)) > 0, hence F (t2)−F (t1) > (q/p)(t2− t1). Suppose that



184 J. CHODUKOWSKA AND Z. MARCINIAK

for some α > 0 the inequality F (t2)−F (t1) > α(t2− t1) holds for all t2 > t1.
Then

p(F (t2)− F (t1))− q(t2 − t1) = F (F (t2))− F (F (t1))

> α(F (t2)− F (t1)) > α2(t2 − t1),

hence F (t2)−F (t1) > α2+q
p (t2−t1). Define α1 = q/p and αn+1 = (α2

n+q)/p.
By induction it follows that F (t2) − F (t1) > αn(t2 − t1) for all t2 > t1 and
n ≥ 1. It is easy to see that αn < λ1 for all n ≥ 1. It follows that the
sequence (αn) is increasing and bounded, hence convergent and limαn = λ1.
Therefore F (t2)− F (t1) ≥ λ1(t2 − t1) for all t2 > t1, which proves (i).

By setting t1 = 0 we get F (t) ≥ λ1t for all t ≥ 0. By setting t2 = 0 we
obtain F (t) ≤ λ1t for all t ≤ 0. Consequently, we obtain (ii): F is a homeo-
morphism of R onto itself.

To prove (iii), fix ε = ±1. Notice that the above inequality can be written
as εF (εt) ≥ λ1t for t ≥ 0. Suppose for some λ1 < β < λ2 the desired sequence
(tn) does not exist. Then there exists t0 ≥ 0 such that εF (εt) ≤ βt for all
t ≥ t0. Define β1 = β and βn+1 = q · (p − βn)−1. It is easy to check that
λ1 < βn < λ2 < p. We show by induction that εF (εt) ≤ βnt for all t ≥ t0
and n ∈ N. For n = 1 this is clear. Suppose it is true for n. Notice that
for t ≥ t0 we have εF (εt) ≥ λ1t > t ≥ t0, hence εF (F (εt)) ≤ βnεF (εt) for
t ≥ t0. But then

pεF (εt)− qε2t = εF (F (εt)) ≤ βnεF (εt) implies εF (εt) ≤ βn+1t.

The sequence (βn) is decreasing and hence convergent to λ1. It follows that
εF (εt) ≤ λ1t for all t ≥ t0. This implies that εF (εt) = λ1t for t ≥ t0.

Let t1 = inf{t > 0 : εF (εt) = λ1t}. If t1 > 0 then pick any γ ∈ (λ1, λ2).
By the continuity of F , we can find t2 ∈ (0, t1) such that εF (εt) ≤ γt for
t ≥ t2. But then εF (εt) = λ1t for t ≥ t2 by the previous paragraph applied
to β = γ, contradicting the definition of t1. Hence t1 = 0 and F (εt) ≡ λ1εt
for t ≥ 0, a contradiction.

Lemma 4. Let f : R → R be a continuous function with f(0) = 0 satis-
fying the equation

f(∆(x, y)) = f(y) + f(x),

∆(x, y) = x+ y + 9f(x)f(y)2 + 9f(x)2f(y).
(5)

Then either f ≡ 0, or f is a homeomorphism of the real line and f−1(t) =
3t3 + at for some a ≥ 0.

Proof. Obviously the constant function f ≡ 0 satisfies the equation. Now
suppose that f is not constant. Notice that if f(t) = 0 for all t > 0 then
for such t we have ∆(−t, t) = 0 and f(−t) = f(−t) + f(t) = f(∆(−t, t)) =
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f(0) = 0, so f ≡ 0. Thus f(t) 6= 0 for some t > 0. Analogously one can show
that f(t) 6= 0 for some t < 0.

Set F (t) = ∆(t, t). Then we have f(F (t)) = 2f(t) and

F (F (t)) = 2F (t) + 18f(F (t))3 = 2F (t) + 18 · 8f(t)3

= 2F (t) + 8(F (t)− 2t) = 10F (t)− 16t.

Thus F is a continuous solution of the equation F (F (x)) = 10F (x) − 16x
and F (0) = 0. Moreover, λ2 − 10λ + 16 has roots 2 and 8. By Lemma 3(i),
for any t2 > t1 we have F (t2) − F (t1) ≥ 2(t2 − t1), hence 2t2 + 18f(t2)3 −
2t1−18f(t1)3 ≥ 2(t2− t1). It follows that f(t2)3 ≥ f(t1)3 and f(t2) ≥ f(t1).

We prove that f is not bounded from above. Suppose the contrary and
take any M > 18 sup{f(t)}3. Then F (t) < 2t + M for all t > 0. Pick
any β ∈ (2, 8). There exists t0 > 0 such that βt > 2t + M for t > t0.
Because F (t) 6≡ 2t for t > 0, Lemma 3(iii) yields a sequence tn → +∞ with
F (tn) > βtn. Pick tN > t0. Then 2tN + M > F (tN ) > βtN > 2tN + M , a
contradiction. In the same way, using Lemma 3(iii) with ε = −1, one proves
that f is not bounded from below. Hence f maps the real line onto itself.

It follows that f(t) = 0 for t = 0 only. For suppose that f(z) = 0 for some
z 6= 0. Then for any x we have∆(x, z) = x+z and f(x+z) = f(x). Therefore
f : R→ R is continuous and periodic, hence bounded, a contradiction.

It follows that f is an odd function. In fact, for any x we can find y so
that f(y) = −f(x), as f is onto. Then ∆(x, y) = x + y and f(x + y) =
f(∆(x, y)) = f(x) + f(y) = 0. It follows that x+ y = 0, hence y = −x and
so f(−x) = −f(x) for all x ∈ R.

Now we can prove that f is strictly increasing, in particular it is a hom-
eomorphism of the real line. If not, f has a constant value c on some interval
(r, s). Then f also has the constant value −c on the interval (−s,−r). For any
x ∈ (r, s), y ∈ (−s,−r) we have∆(x, y) = x+y+9c2 ·(−c)+9c·(−c)2 = x+y
and f(x + y) = f(∆(x, y)) = f(x) + f(y) = c + (−c) = 0. It follows that f
has infinitely many zeros, a contradiction. This proves that f is 1-1, hence
a homeomorphism.

Let g = f−1. Substitute x = g(u), y = g(v) in equations (5). We get

f(∆(g(u), g(v))) = u+ v, ∆(g(u), g(v)) = g(u) + g(v) + 9uv2 + 9u2v,

hence

g(u+ v) = gf(∆(g(u), g(v)) = ∆(g(u), g(v)) = g(u) + g(v) + 9uv2 + 9u2v.

Substitute g(t) = 3t3 +h(t). Then 3(u+ v)3 +h(u+ v) = 3u3 +h(u)+3v3 +
h(v) + 9uv2 + 9u2v. It follows that h is a continuous solution of the Cauchy
equation h(u+ v) = h(u) + h(v), hence h(t) = at and f−1(t) = 3t3 + at. It
must be a ≥ 0, as f is a homeomorphism. It is easy to verify that any such
function solves our equation.
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3. Proof of the Main Theorem. A subset P = {(x1, f(x1, x4), g(x1,
x4), x4) : x1 ∈ R0, x4 ∈ R} ⊂ L1

4 is a subsemigroup iff for any x1, y1 ∈ R0

and x4, y4 ∈ R,

(x1, f(x1, x4), g(x1, x4), x4) ◦ (y1, f(y1, y4), g(y1, y4), y4) ∈ P,

which, using (1), translates to the following system of functional equations:

f(x1y1, ∆) = x1f(y1, y4) + y2
1f(x1, x4),(6)

g(x1y1, ∆) = x1g(y1, y4) + 3y1f(x1, x4)f(y1, y4) + y3
1g(x1, x4),(7)

(8) ∆ = ∆(x1, x4, y1, y4) = x1y4 + 4y1f(x1, x4)g(y1, y4)

+ 3f(x1, x4)f(y1, y4)2 + 6y2
1g(x1, x4)f(y1, y4) + x4y

4
1.

Elementary (but rather tedious) calculations show that the subsemigroups
Pa,b and Qc,d, defined in the formulation of the Main Theorem, satisfy this
system of equations. We shall prove that they exhaust the list of subsemi-
groups of L1

4 of the desired form.
We can make this system more symmetric, by substituting

g(u, v) = h(u, v) +
3
2u
f(u, v)2,

where h : R0×R→ R is a new unknown function. This leads to a new system

f(x1y1, ∆
′(x1, x4, y1, y4)) = x1f(y1, y4) + y2

1f(x1, x4),(9)

h(x1y1, ∆
′(x1, x4, y1, y4)) = x1h(y1, y4) + y3

1h(x1, x4),(10)

∆′(x1, x4, y1, y4) = x1y4 + x4y
4
1 + y1f(x1, x4)h(y1, y4)(11)

+ 6y2
1f(y1, y4)h(x1, x4) + 9f(x1, x4)f(y1, y4)2

+
9y2

1

x1
f(x1, x4)2f(y1, y4).

Let us write f̃(u) = f(1, u), h̃(u) = h(1, u), ∆̃(u, v) = ∆′(1, u, 1, v). When
we plug x1 = 1, y1 = 1 into equations (9)–(11), we get

f̃(∆̃(x4, y4)) = f̃(y4) + f̃(x4),(12)

h̃(∆̃(x4, y4)) = h̃(y4) + h̃(x4),(13)

∆̃(x4, y4) = y4 + x4 + 4f̃(x4)h̃(y4) + 6f̃(y4)h̃(x4)(14)

+ 9f̃(x4)f̃(y4)2 + 9f̃(x4)2f̃(y4).

Now the proof splits into two cases: Case I: f̃ is constant and Case II: f̃
is not constant.

4. Case I: f̃ is constant. From (12) it follows that f̃ ≡ 0. Lemma 1
applied to (6) implies that f(x1, x4) = a(x1 − x2

1).
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Now we determine h. Equation (14) reduces to ∆̃(x4, y4) = x4 + y4, and
from (13) and the continuity of h̃ it follows that h̃(u) = Cu for some constant
C ∈ R. We will show that C = 0. To this end, fix µ ∈ R0 and substitute in
(10)–(11) the values x1 = µ, y1 = µ−1:

C ·∆′(µ, x4, µ
−1, y4) = µh(µ−1, y4) + µ−3h(µ, x4),

∆′(µ, x4, µ
−1, y4) = µy4 + µ−4x4 + 4a(1− µ)h(µ−1, y4)

+ 6a(µ−3 − µ−4)h(µ, x4).

Consequently,

[4aC − (4aC + 1)µ]h(µ−1, y4) + Cµy4

= [6aC − (6aC − 1)µ]µ−4h(µ, x4)− Cµ−4x4.

It follows that the left hand side does not depend on y4 and the right hand
side does not depend on x4. If aC 6= 0, then for µ = 4aC/(4aC + 1) or for
µ = 6aC/(6aC − 1) (at least one of these numbers is well defined) it would
not be the case. Therefore aC = 0 and

(15) − µh(µ−1, y4) + Cµy4 = µ−3h(µ, x4)− Cµ−4x4.

We switch the sides, x4 ↔ y4 and µ↔ µ−1 in (15):

(16) µ3h(µ−1, y4)− Cµ4y4 = −µ−1h(µ, x4) + Cµ−1x4.

When we add (15) multiplied by µ2 to (16), we get C(µ3 − µ4)y4 =
C(µ−1 − µ−2)x4 for all x4, y4 ∈ R and µ ∈ R0. It follows that C = 0.

We have just proved that h(1, v) ≡ 0. From Lemma 1 it follows that
h(x1, x4) = b(x1 − x3

1) for some constant b. In particular, in Case I, we have
proved that

f(x1, x4) = a(x1 − x2
1),

g(x1, x4) =
3

2x1
f(x1, x4)2 + h(x1, x4) =

3
2
a2x1(1− x1)2 + b(x1 − x3

1),

as desired.

5. Case II: f̃ is not constant. Let us notice that the function f̃ attains
value 0. To see this, we substitute x1 = −1, y1 = −1, x4 = t, y4 = t into
(9) and (11), where t is a new variable. We obtain f(1, ∆′(−1, t,−1, t)) = 0,
∆′(−1, t,−1, t) = 2f(−1, t)h(−1, t), hence

(17) f̃(2f(−1, t) · h(−1, t)) = 0 for all t ∈ R.

In particular, there exists z ∈ R such that f̃(z) = 0. We plug y4 = z in
(12)–(14) to get
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f̃(∆̃(x4, z)) = f̃(x4),(18)

h̃(∆̃(x4, z)) = h̃(z) + h̃(x4),(19)

∆̃(x4, z) = z + x4 + 4f̃(x4)h̃(z).(20)

Consider G(u) = ∆̃(u, z). From (18) and (20) we get G(G(u)) = z+G(u) +
4f̃(G(u))h̃(z) = z+G(u)+4f̃(u)h̃(z) = 2G(u)−u. From Lemma 2 it follows
that G(u) = u+c for some c ∈ R. Therefore z+x4+4f̃(x4)h̃(z) = ∆̃(x4, z) =
G(x4) = x4 +c, i.e., f̃(x4)h̃(z) is a constant. Because by assumption f̃ is not
constant, it follows that h̃(z) = 0. Hence equations (18) and (20) reduce to

(21) f̃(x4 + z) = f̃(x4),

which holds for any x4 ∈ R and any z ∈ R such that f̃(z) = 0.
Our objective is to prove that h̃ ≡ 0. To this end, consider φ(t) =

f(−1, t)h(−1, t). Then equation (17) reads f̃(2φ(t)) = 0 for all t ∈ R. We
check that the (continuous) function φ is constant. In fact, otherwise the im-
age of 2φ contains an open interval I which, by (17), is contained in the zero
set of f̃ . Let r be the middle point of this interval and let 2ε be its length.
Then for |x4| < ε we have r+ x4 ∈ I, hence by (21): f̃(x4) = f̃(x4 + r) = 0.
This means that f̃ vanishes in the ε-neighborhood of 0. Equation (21) then
says that f̃ is locally constant, hence f̃ ≡ 0. This contradicts our standing
assumption that f̃ is not constant. Therefore φ(t) is a constant function,
equal to, say, m.

Now we use equations (9)–(10). First we plug in x1 = −1, y1 = 1, to
obtain

f(−1, ∆′(−1, x4, 1, y4)) = −f̃(y4) + f(−1, x4),(22)

h(−1, ∆′(−1, x4, 1, y4)) = −h̃(y4) + h(−1, x4).(23)

We multiply (22) and (23) and use the relation f(−1, t)h(−1, t) = m:

(24)
m = f̃(y4)h̃(y4)− f̃(y4)h(−1, x4)− f(−1, x4)h̃(y4) +m,

f̃(y4)h̃(y4) = f̃(y4)h(−1, x4) + f(−1, x4)h̃(y4).

Now we apply the same trick, but this time we plug in x1 = 1, y1 = −1,
to obtain

f(−1, ∆′(1, x4,−1, y4)) = f(−1, y4) + f̃(x4),(25)

h(−1, ∆′(1, x4,−1, y4)) = h(−1, y4)− h̃(x4).(26)

As before, we multiply (25) and (26):

(27)
m = m− f(−1, y4)h̃(x4) + f̃(x4)h(−1, y4)− f̃(x4)h̃(x4),

f̃(x4)h(−1, y4) = f(−1, y4)h̃(x4) + f̃(x4)h̃(x4).
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Let us switch x4 with y4 in (27):

(28) f̃(y4)h(−1, x4) = f(−1, x4)h̃(y4) + f̃(y4)h̃(y4).

When we add equations (24) and (28), cancellations occur and we are left
with

f(−1, x4)h̃(y4) = 0 for all x4, y4 ∈ R.

If h̃ 6≡ 0 then f(−1, x4) ≡ 0 and we see from (28) that

(29) f̃(y4) · (h̃(y4)− h(−1, x4)) ≡ 0.

By assumption, f̃(y4) is not constant; therefore we can find y4 = ξ so that
f̃(ξ) 6= 0. Then (29) implies that h(−1, x4) = h̃(ξ), i.e., h(−1, x4) is a con-
stant function. Moreover, its constant value is equal to h̃(ξ) for any ξ such
that f̃(ξ) 6= 0. Hence h̃ is constant on the set {ξ : f̃(ξ) 6= 0}. However, we
have earlier observed that h̃(z) = 0 whenever f̃(z) = 0. From the continuity
of h̃ it then follows that h̃ ≡ 0. From Lemma 1 we get h(x1, x4) = b(x1−x3

1)
for some constant b ∈ R.

It remains to determine f . A substitution h̃ = 0 in (14) yields

f̃(∆̃(x4, y4)) = f̃(y4) + f̃(x4),

∆̃(x4, y4) = y4 + x4 + 9f̃(x4)f̃(y4)2 + 9f̃(x4)2f̃(y4).

Moreover, h(−1, 0) = 0, hence from (17) it follows that f̃(0) = 0, i.e., f̃
satisfies the assumptions of Lemma 4. As f̃ is not constant, it follows that
it is a homeomorphism with f̃−1(t) = 3t3 + 6ct for some c ≥ 0.

Now we return to equations (9) and (11) and use the formula h(x1, x4) =
b(x1 − x3

1):

(30) f(x1y1, ∆
′(x1, x4, y1, y4)) = x1f(y1, y4)+ y2

1f(x1, x4),

∆′(x1, x4, y1, y4) = x1y4 + x4y
4
1 + 4b(y2

1 − y4
1)f(x1, x4)(31)

+ 6by2
1(x1 − x3

1)f(y1, y4)

+ 9f(x1, x4)f(y1, y4)2 +
9y2

1

x1
f(x1, x4)2f(y1, y4).

When we set x1 = y−1
1 , we get

f̃(∆′(y−1
1 , x4, y1, y4)) = y−1

1 f(y1, y4) + y2
1f(y−1

1 , x4),
∆′(y−1

1 , x4, y1, y4) = y−1
1 y4 + x4y

4
1 + 4b(y2

1 − y4
1)f(y−1

1 , x4)
+ 6b(y1 − y−1

1 )f(y1, y4)
+ 9f(y−1

1 , x4)f(y1, y4)2 + 9y3
1f(y−1

1 , x4)2f(y1, y4).
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We apply f̃−1 to the first equation:

∆′(y−1
1 , x4, y1, y4) = 3[y−1

1 f(y1, y4) + y2
1f(y−1

1 , x4)]3

+ 6c[y−1
1 f(y1, y4) + y2

1f(y−1
1 , x4)].

After using the formula for ∆′, expanding the third power and some cancel-
lations, we get

y4
1x4 + [4b(y2

1 − y4
1)− 6cy2

1]f(y−1
1 , x4)− 3y6

1f(y−1
1 , x4)3 =

− y−1
1 y4 + [6cy−1

1 − 6b(y1 − y−1
1 )]f(y1, y4) + 3y−3

1 f(y1, y4)3.

Notice that the left hand side does not depend on y4, while the right hand
side does not depend on x4. Hence both sides depend on y1 only:

l(y−1
1 ) = y4

1x4 + [4b(y2
1 − y4

1)− 6cy2
1]f(y−1

1 , x4)− 3y6
1f(y−1

1 , x4)3,(32)

r(y1) = −y−1
1 y4 + [6cy−1

1 − 6b(y1 − y−1
1 )]f(y1, y4) + 3y−3

1 f(y1, y4)3.(33)

Let us plug y1 = u−1, x4 = v in (32) and y1 = u, y4 = v in (33):

l(u) = u−4v + [4b(u−2 − u−4)− 6cu−2]f(u, v)− 3u−6f(u, v)3,

r(u) = −u−1v + [6cu−1 − 6b(u− u−1)]f(u, v) + 3u−3f(u, v)3.

Notice that u3l(u)+r(u) = (−2b−6c)(u−u−1)f(u, v), which implies that
the expression (b+ 3c)(u− u−1)f(u, v) does not depend on v. If b+ 3c 6= 0
then for each fixed u 6= ±1 the function f(u, ·) is constant. But then for any
v1 6= v2 we get f̃(v1) = f(1, v1) = lim f(1 + 1/n, v1) = lim f(1 + 1/n, v2) =
f(1, v2) = f̃(v2), a contradiction, as f̃ is a bijection. Therefore b = −3c and

r(u) = −u−1v + 6c(3u− 2u−1)f(u, v) + 3u−3f(u, v)3.

Let p(u) = 2
3c(3u− 2u−1) and q(u, v) = 1

6(u−1v + r(u)). Then

(34) u−3f(u, v)3 = −3p(u)f(u, v) + 2q(u, v).

We use (34) in the cube of equation (30):

(x1y1)−3(x1f(y1, y4) + y2
1f(x1, x4))3 = (x1y1)−3f(x1y1, ∆

′)3

= − 3p(x1y1)f(x1y1, ∆
′) + 2q(x1y1, ∆

′)

= − 3p(x1y1)[x1f(y1, y4) + y2
1f(x1, x4)]

+
1
3
r(x1y1) +

1
3
(x1y1)−1∆′(x1, x4, y1, y4).

When we expand the left hand side and use (31), we get, after reductions,

(x1y1)−3(x3
1f(y1, y4)3 + y6

1f(x1, x4)3)

= − 3p(x1y1)(x1f(y1, y4) + y2
1f(x1, x4)) +

1
3
r(x1y1) +

1
3
(x1y1)−1

× [x1y4 + x4y
4
1 − 12c(y2

1 − y4
1)f(x1, x4)− 18cy2

1(x1 − x3
1)f(y1, y4)].
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After applying (34) to the left hand side, we get, after reductions,

1
3
r(y1) +

1
3
y3
1r(x1)−

1
3
r(x1y1)

=
(
3p(x1)y3

1 − 3p(x1y1)y2
1 − 4cx−1

1 (y1 − y3
1)
)
f(x1, x4)

+
(
3p(y1)− 3p(x1y1)x1 − 6cy1(1− x2

1)
)
f(y1, y4) ≡ 0,

hence we are left with
r(x1y1) = y3

1r(x1) + r(y1).

By Lemma 1, we have r(x1) = 6d(1− x3
1) for some constant d.

Because
f(x1, x4)3 + 3x3

1p(x1)f(x1, x4)− 2x3
1q(x1, x4) = 0

where p(x1) = 2
3c(3x1 − 2x−1

1 ) and q(x1, x4) = 1
6x
−1
1 x4 + d(1 − x3

1), by the
Cardano formulas we get

f(x1, x4) = x1
3

√
q +

√
q2 + p3 + x1

3

√
q −

√
q2 + p3.

Finally,

g(x1, x4) =
3

2x1
f(x1, x4)2 − 3c(x1 − x3

1)

=
3
2
x1

[
3

√
2q2 + p3 + 2q

√
q2 + p3 +

3

√
2q2 + p3 − 2q

√
q2 + p3

]
+ c(4− 3x1 − 6x2

1 + 3x3
1).
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