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Abstract. For n ≥ 1, given an n-dimensional locally (n − 1)-connected compact
space X and a finite Borel measure µ without atoms at isolated points, we prove that for
a generic (in the uniform metric) continuous map f : X → X, the set of points which
are chain recurrent under f has µ-measure zero. The same is true for n = 0 (skipping the
local connectedness assumption).

1. Introduction. Chain recurrent points have been introduced by
C. Conley [7]. They play an important role in the theory of attractors and
in several other aspects of topological dynamics of a continuous map f on a
compact metric space X. The key theorem here is Conley’s Decomposition
Theorem which says that the space X decomposes into the chain recurrent
set CR(f) (see §2 for definition) and the rest, where the action is gradient-
like (see [7] for definition; roughly speaking, each orbit in this part heads
“one way” from some repeller A∗ toward its dual attractor A). Moreover,
the set CR(f) is the intersection over all attractors A of A ∪A∗ ([7]). Note
that the chain recurrent set contains all nonwandering points, including the
“genuine” recurrent points x (i.e., such that x belongs to the closure of its
forward orbit), minimal subsets and periodic orbits.

Another motivation for studying chain recurrent sets in this particular
context (of n-dimensional locally (n − 1)-connected spaces) is provided by
two other results. The first one is Pugh’s Closing Lemma, which allows one
to replace chain recurrent points by periodic ones (by slightly perturbing
the map):

Theorem ([13]). Let (X, d) be an n-dimensional locally (n−1)-connected
compact metric space, where n ≥ 0 (for n = 0, skip the local connectedness
assumption), and f : X → X be a map. If x ∈ CR(f), then for every ε > 0,
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there exists a map g : X → X such that d(f, g) < ε (where d is the uniform
distance) and x is a periodic point of g.

The second is the result by Block and Franke [4, Theorem H], which
characterizes the case where all chain recurrent points are nonwandering, in
terms of stability of the nonwandering set under perturbations:

Theorem ([4]). Let (X, d) be an n-dimensional locally (n−1)-connected
compact metric space, where n ≥ 0 (for n = 0, skip the local connectedness
assumption), and f : X → X be a map. Then Ω(f) = CR(f) if and only if
f does not permit Ω-explosions; that is, for every ε > 0 there exists a δ > 0
such that if g : X → X with d(f, g) < δ, then each point of Ω(g) belongs
to the ε-neighborhood of Ω(f). Here Ω(h) means the nonwandering set of a
map h.

It is hence quite important to know how large the set CR(f) is. If it
is small, the gradient-like behavior dominates in the system, which makes
the dynamics rather nonchaotic. In many systems the chain recurrent set
indeed turns out to be small; for example, Franzová [9] proved that if X is
the interval then for a generic (in the uniform metric) continuous maps the
chain recurrent set has Lebesgue measure zero.

In this paper we will generalize that result to all n-dimensional locally
(n − 1)-connected compact spaces and any finite Borel measures without
atoms at isolated points. This includes all measures on compact mani-
folds and on polyhedra. The same is proved to hold on any compact zero-
dimensional space, which can be thought of as the case n = 0 in the main
result. We also discuss some other (topological) properties of the set CR(f).

2. Preliminaries. We now give the terminology and notation needed
in what follows. A map on X is a continuous function f : X → X from
a space X to itself; f0 is the identity map, and for every n ≥ 0, fn+1 =
fn ◦ f . The dimension dimX of a space X means the covering dimension
(see [8] and [12]). By a graph, we mean a connected one-dimensional compact
polyhedron.

We let f : X → X be a map from a compact metric space (X, d) to
itself. Let x, y ∈ X. An ε-chain from x to y is a finite sequence of points
{x0, x1, . . . , xn} of X such that x0 = x, xn = y and d(f(xi−1), xi) < ε for
i = 1, . . . , n. We say x can be chained to y if for every ε > 0 there exists an
ε-chain from x to y, and we say x is chain recurrent if it can be chained to
itself. The set of all chain recurrent points is called the chain recurrent set
of f and denoted by CR(f). The following two lemmas are basic properties
of the chain recurrent set of a map.
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Lemma 2.1 ([3, p. 114]). The chain recurrent set CR(f) is closed and
f(CR(f)) = CR(f).

Lemma 2.2 ([3, p. 117]). CR(f) = CR(f |CR(f)); that is, every chain
recurrent point remains chain recurrent for the restriction of f to CR(f).

We need the next lemma by Block and Franke which gives a characteristic
property of chain recurrent points.

Lemma 2.3 ([4, Theorem A]). Let f : X → X be a map on a compact
metric space X and x ∈ X. Then x 6∈ CR(f) if and only if there exists an
open set U of X such that x 6∈ U , f(x) ∈ U and f(ClU) ⊆ U .

We state fundamental facts from geometric topology. A space X is said
to be locally (n− 1)-connected if for every x ∈ X and every neighborhood U
of x in X, there exists a neighborhood V ⊆ U of x in X such that every map
f : Sk → V extends to a map f̃ : Bk+1 → U for every 0 ≤ k ≤ n− 1, where
Sk and Bk+1 stand for the unit k-dimensional sphere and the unit (k + 1)-
dimensional ball of the (k + 1)-dimensional Euclidean space, respectively.
We recall a characteristic property of locally (n− 1)-connected spaces; it is
slightly rephrased here.

Lemma 2.4 ([5, p. 80], [10, p. 150]). Let X be a compact metric space
and n ∈ N. Then X is locally (n−1)-connected if and only if for every ε > 0,
there exists a δ > 0 such that for every map ϕ : A→ X from a closed set A
of a compact metric space Z with dimZ rA ≤ n and diam[Imϕ] < δ, there
exists an extension ϕ̃ : Z → X of ϕ satisfying diam[Im ϕ̃] < ε.

3. Nullity of the chain recurrent set for a generic map and a
given measure. Here is our main result.

Theorem 3.1. Let (X, d) be an n-dimensional locally (n− 1)-connected
compact metric space, where n ≥ 0 (for n = 0 we simply skip the local
connectedness assumption), and µ be a finite Borel measure on X without
atoms at the isolated points of X. Then the set of maps on X with the chain
recurrent set of µ-measure zero is residual in the space of all maps on X.

Remark 1. The interval case modulo Lebesgue measure of the theorem
above was proved by Franzová [9].

Proof. Initially we only assume that X is compact metric. Fix any finite
Borel measure µ, ε > 0, and a continuous map f : X → X. By regularity
of µ, the set CR(f) can be approximated up to ε in measure from above by
an open set, say C. If x ∈ XrC then x is not chain recurrent, so Lemma 2.3
applies. By making the set U in that lemma slightly smaller we obtain an
open set Ux such that x 6∈ ClUx, f(x) ∈ Ux and f(ClUx) ⊆ Ux. Thus the
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graph of f |XrC is covered by the open sets (XrClUx)×Ux. By compactness
of the graph, a finite collection (say, consisting of Ui = Uxi , i = 1, . . . , k)
of such sets covers this graph. It is now clear that for any perturbation g
of f sufficiently close to f in the uniform distance, the graph of g is covered
by the same collection, and the property g(ClUi) ⊆ Ui is maintained. Using
the other direction of Lemma 2.3 this implies that the chain recurrent set
for g is contained in C, hence its measure is not larger than µ(CR(f)) + ε.
The above implies that µ(CR(f)) < ε is an open property (1) of f , and the
property µ(CR(f)) = 0 is of type Gδ.

It remains to prove that the property µ(CR(f)) < ε is (for every ε > 0)
dense in the space of maps. Here we will need the assumptions made on X.
Let δ < ε be as in Lemma 2.4 (or δ = ε in the case n = 0) and let ξ < δ/2
be such that d(x, y) < ξ implies d(f(x), f(y)) < δ/2 (by uniform continuity
of f). Let {zi | i = 1, . . . , p} be a ξ/2-net in X avoiding any atoms of µ
(such exists, since possible atoms of µ are not isolated in X). Using the
standard fact that there exists a basis of the topology consisting of sets
whose boundaries have µ-measure zero, we can easily choose disjoint open
neighborhoods Vi of zi, each of diameter not larger than ξ, whose union
has full measure. Using regularity again, we can find open sets Wi 3 zi
with ClWi ⊆ Vi which cover all of X but a set of measure ε. In case X
is zero-dimensional we choose the sets Vi without boundary (i.e., Vi both
closed and open), and we simply let Wi = Vi.

We can now create a perturbation g within 2ε-distance from f and whose
chain recurrent set has small measure. For each i ∈ {1, . . . , p}, let m(i) ∈
{1, . . . , p} be such that d(f(zi), zm(i)) < δ/2. On each ClWi we define g
by g(x) = zm(i), and we let g = f on the complement of the union of
the Vi’s. Note that the distance between f and g (where defined) is at
most δ, and the image g(ClVi) (where defined) has diameter at most δ.
Thus, using Lemma 2.4 (separately on each ClVi), we can extend the map
to a continuous map g on the whole of ClVi so that the range has diameter
at most ε. (In case X has dimension zero there is nothing to do in this step.)
The definition is consistent where the sets ClVi overlap, since they overlap
only on the boundaries, and the map coincides with f there. For the same
reason g is continuous everywhere. Its uniform distance from f is now not
larger than δ + ε < 2ε. It remains to notice that within the open sets Wi

only the points zi may be chain recurrent; any other point is sent together
with a neighborhood to this finite set. Thus CR(g) is contained in the union
of {z1, . . . , zp} (whose measure is zero) and the complement of the union of
the Wi’s, which has measure at most ε.

(1) This short proof was kindly suggested by the referee.
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We note that a manifold and a polyhedron are locally contractible. The
n-dimensional universal Menger compactum M2n+1

n is obtained by a pro-
cess of successively deleting cubes from the (2n + 1)-cube (see [8, p. 96],
[2], [11]). When n = 0, we obtain the Cantor set, and when n = 1, the
Menger curve (which is referred to as the Menger sponge in the fractal lit-
erature). A compact n-dimensional Menger manifold is a compact metric
space locally homeomorphic to the n-dimensional universal Menger com-
pactum M2n+1

n . A topological characterization of a compact n-dimensional
Menger manifold obtained by Bestvina [2] (cf. Anderson [1] for n = 1) is: a
compact metric space X is an n-dimensional Menger manifold if and only
if it is n-dimensional, locally (n − 1)-connected, and satisfies the disjoint
n-cells property. Kato et al. [11] studied measure-theoretic properties of the
dynamics of Menger manifolds.

Corollary 3.2. Let X be either a manifold, Menger manifold or poly-
hedron with no isolated points, compact and n-dimensional, where n∈N,
and µ be a finite Borel measure on X. Then the set of maps on X with the
chain recurrent set of µ-measure zero is residual in the space of all maps
on X.

We give an application of the main theorem to dynamical systems of
graph maps.

Theorem 3.3. Let G be a graph. Then the set of maps on G with the
chain recurrent set being totally disconnected is residual in the space of all
maps on G.

Proof. Take a finite Borel measure µ on G which is locally positive (i.e.,
each nonempty open set has a positive µ-measure). We note that any mea-
surable set in G with a nondegenerate connected component has a positive
µ-measure, because it has nonempty interior. Therefore, it follows from the
main theorem that a generic map has the chain recurrent set totally discon-
nected.

Motivated by the result above, we discuss the relation between the
chain recurrent set and its connectivity. We need some definitions. A map
f : X → X is said to be chain transitive if for every x, y ∈ X, x can be
chained to y. A complete negative trajectory of a point x ∈ X with respect
to a surjective map f : X → X is an infinite sequence {xn} with x0 = x
and f(xn) = xn−1 for n ∈ N ([3, p. 101]). We note that a complete negative
trajectory has a limit point by compactness, and the limit point belongs to
the chain recurrent set.

The next is a slight extension of Theorem 2.8 in [6] to the case of the
chain recurrent sets of arbitrary surjective maps.
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Proposition 3.4. Let f : X → X be a surjective map on a compact
metric space (X, d). If the restriction f |CR(f) : CR(f) → CR(f) is chain
transitive, then CR(f) = X.

Proof. The strategy of our proof comes from [6, Theorem 2.8].
Let x ∈ X and ε > 0. We shall construct an ε-chain from x to it-

self. Since any limit points of a complete negative/positive trajectory of
x with respect to f belong to the chain recurrent set, we have k, ` ∈ N,
{x−k, x−k+1, . . . , x−1, x0 = x} ⊆ X and y, z ∈ CR(f) such that f(xi) = xi+1

for −k ≤ i ≤ −1, d(x−k, y) < ε and d(f `(x), z) < ε. Since f |CR(f) : CR(f)→
CR(f) is chain transitive, there exists an ε-chain {z0 = z, z1, . . . , zm = y′}
⊆ CR(f) from z to y′, where y′ ∈ CR(f) with f(y′) = y (note that
f(CR(f)) = CR(f) by Lemma 2.1). Then we obtain an ε-chain from x
to itself by considering

{x, f(x), . . . , f `−1(x), z, z1, . . . , zm = y′, x−k, . . . , x−1, x}.

Therefore, we conclude CR(f) = X.

Proposition 3.5. Let f : X → X be a surjective map on a compact
metric space (X, d). If the chain recurrent set CR(f) of f is connected, then
CR(f) = X.

Proof. By Proposition 3.4, it suffices to show that g ≡ f |CR(f) : CR(f)
→ CR(f) is chain transitive.

We recall an equivalence relation on CR(f). For ε > 0, we define a
relation on CR(f) by x

ε∼ y if there exist two ε-chains from x to y and
from y to x with respect to g. Since CR(f) = CR(g) by Lemma 2.2, we
see that it is an equivalence relation. For x ∈ CR(f) and ε > 0, we put
Cε(x) = {y ∈ CR(f) | x ε∼ y}. Then the collection {Cε(x) | x ∈ CR(f)}
gives a partition of CR(f). We note that Cε(x) is open in CR(f). Therefore,
by connectedness of CR(f), we have CR(f) = Cε(x) for all x ∈ CR(f) and
ε > 0. This shows that f |CR(f) : CR(f)→ CR(f) is chain transitive.

Remark 2. If f : X → X is surjective and CR(f) 6= X, then CR(f)
must be disconnected by Proposition 3.5. Using a similar argument to that
in the proof of Theorem 3.1 (without measure considerations), we find that
the property CR(f) 6= X is generic if X is an n-dimensional locally (n− 1)-
connected compact metric space, where n ≥ 0 (for n = 0, skip the local
connectedness condition, but on a further condition: “with an accumulation
point”).

Question. Is the disconnectedness (or total disconnectedness) property
of the chain recurrent set generic?
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4. Remarks

Remark 3. Analogous results to Theorem 3.1, Corollary 3.2 and Theo-
rem 3.3 hold for the nonwandering set of a map, because the chain recurrent
set contains the nonwandering set.

Remark 4. The main theorem is false if µ has an atom at an isolated
point of X, because that point is an element of CR(g) for any map g which
is sufficiently close to the identity map.

Remark 5. It is well known that any f -invariant finite measure µ is
supported by the set of recurrent points. In particular µ(CR(f)) > 0. This
implies that with all the assumptions of Theorem 3.1, a generic map f does
not preserve a given finite measure µ.
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