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SEMI-RIEMANNIAN MANIFOLDS
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STANISLAW EWERT-KRZEMIENIEWSKI (Szczecin)

Abstract. We investigate totally umbilical submanifolds in manifolds satisfying some
curvature conditions of either recurrent or pseudosymmetry type in the sense of Ryszard
Deszcz and derive the respective condition for submanifolds. We also prove some relations
involving the mean curvature and the Weyl conformal curvature tensor of submanifolds.
Some examples are discussed.

1. Introduction. Let M be a totally umbilical submanifold of a semi-
Riemannian manifold N. There are several results of the following type:
if a tensor field T' that comes from the metric of the manifold N satisfies
on N some relation, then the analogous relation is satisfied on M by the
tensor field T arrising in the same way from the induced metric. Moreover,
the Weyl conformal curvature tensor C of the submanifold M satisfies the
equation

LC =0,

where L is some quantity depending on the mean curvature vector field h
(B), [, [, [2], [, [5), [18], {7, [19]).

In this paper we deal with results of the above type.

The paper is organized as follows. Basic definitions, notations and con-
ventions are presented in Section 2. In Section 3 we give in local coordinates
all formulas necessary for further computations. In Section 4 we review some
known results and give new ones. Section 5 provides some examples. In the
next sections we give the proofs of the new results.

All manifolds under consideration are assumed to be connected, smooth,
Hausdorff and their metrics need not be definite.

2. Notation and conventions. Suppose that N is a manifold, n =
dim N > 3, g is a semi-Riemannian metric on N and V is its Levi-Civita
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connection. Throughout the paper we adopt the convention that the quan-
tity derived from the metric of the manifold N is marked with a tilde ™
If T is such a quantity, then T' denotes the projection of 7' on a subman-
ifold while T" is the analogue of T" obtained from the induced metric. The
Riemann curvature tensor R is a trilinear multiplication in the Lie algebra
X(N) of vector fields on N defined by
R(X,Y)Z = [Vx,Vy|Z = Vix v Z
so that in the local coordinate system we have
R(0k,0;)0i = R" ;3.0n = (OxT; — 0,1 + T T — T T5)On,
where the indices h, i, j, k, 7, s rTun through the range 1,...,n.
With R we associate the (0,4) Riemann curvature tensor R setting
R(X,Y,Z,V) =§(R(X,Y)Z,V)

with components Rp;jr = ghTRTijk.

In terms of n local orthogonal vector fields Xi,..., X,
I
~ R(X;,Y, Z,X,)
S(Y,Z) = L
jz::l 9(X;, X;)

defines the Ricci tensor S of type (0,2) with local components R;; = RrijT.
For symmetric (0,2) tensors A and B their Kulkarni-Nomizu product
A A B is given by

(ANB)(U,X,Y,V)=A(X,Y)B(U,V) - AX,V)B(U,Y)
+ AU, V)B(X,Y)—- AU, Y)B(X,V).
Then the Weyl conformal curvature tensor C of type (0,4) is defined as
C=R-50AS+ o159 N,
with components Ch;jx, 7 being the scalar curvature of N.
We extend the action of A to tensors B of type (0,4) with symmetries
B(U,X,Y,V)=B(X,U,Y,V)=-B(U,X,V,Y)
setting
(ANB)(U,X,Y,V,Z W)
=AX,Y)B(U,V,Z W) - AX,V)B(U,Y,Z,W)
+ AU, V)B(X,Y,Z,W)—- AU, Y)B(X,V,Z,W).
We also put
(AVB)(U,X,Y,V)=AX,Y)B(U,V) - AX,V)B(U,Y)
+ AU, Y)B(X,V)—- A(U,V)B(X,Y).
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For a trilinear multiplication P of vector fields, skew-symmetric in the
first two arguments, let P be a (0,4) tensor associated with P by

P(X,Y,Z,V)=49(P(X,Y)Z,V).

One extends the endomorphism P(X,Y) to a derivation P(X,Y")- of the Lie
algebra of tensor fields on N assuming it commutes with contractions and
setting

P(X,Y) - f=0,
f being a function on N, and
(P.T)(XMXQ; e 7Xk;X7 Y) - (P(X7Y> : T)<X17X27 cee 7Xk)
=-TPX,Y)X1,Xo,..., X)) — - =T (X1,..., Xp—1,P(X, V) X}),

T being a (0, k) tensor, k > 1. In the case P = R we obtain the well known
Ricci identity:

(E.T)(Xl')XQa s 7Xk7 X7 Y)
= VyVxT(X1,Xa, ..., X)) — VxVyT(X1, Xo, ..., Xp).

In the same manner, for a symmetric tensor B of type (0,2) and its
associated B,

B(X,Y)=94(BX,Y),
we define B - T by
(BT)(X1,Xa,...,Xx)
=-TBX1,Xo, ..., Xg)— - —T(Xy,..., Xp_1, BXx).
Thus, in local components, we have for example
(1) (C-R)nijhim = RrijkClim + RhrikClim + RhirkClim, + BhijrCrim,
(C-S)nkim = RerClpm + RirClin-
For a (0,2) tensor A on N we define
(X AMaY)Z =AY, 2)X — A(X, Z)Y.

If, moreover, A is symmetric and 7" is of type (0,k), k > 1, we define the
tensor Q(A,T) of type (0, k + 2) setting

QA T) (X1, Xa, ..., X3 X,Y) = (X AaY) - T) (X1, Xo, ..., X)
= _T((X NA Y)XlaXQa cee an) - T(Xla ey Xpo1, (X NA Y)Xk)
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We easily find that

QA,C)U,V,W, Z; X,Y)
= A(U,X)C(Y,V,W, Z) + A(V,X)C(U,Y,W, Z) + AW, X)C(U,V,Y, Z)
+AZ, X)OU, V,W,Y) — A(U,Y)C(X,V,W, Z) — A(V,Y)C(U, X, W, Z)

We have

(2)  Q(g,C)(On, 0,0, Ok; O, Om) = (Q(g, C)) hijrim = niCmijk — Ghm Clijk
+ 9iChmjk — 9imChijk + 951 Chimk — 9imChitk + 9kiChijm — JkmChiji-

More details can be found for example in [I] and [5].

Observe that for a given vector field, say p"0,, and arbitrary coordinate
vector fields O, 0;, 0;, Ok, O, we have

(3)  (((p"0r) A\ Op) - C)(On, 0i, 0, Ok,)
= PhCmijk + PiChmjk + PjChimk + PkChijm
— ghm?" Crijk — 9imP Chrjk — 9jmP" Chirk — JkmP" Chijr-

Finally, for a symmetric (0, 2) tensor field B and its associated B, we define
a (0,k + 2) tensor field Q(B, A, T) setting

Q(Ba A’T)(XMXZ’ cee 7Xk;X7 Y) = (B(X NA Y) : T)(Xla X27 s >Xl€)
Thus, for the Ricci tensor S , in local coordinates we have
Q(S. 9, C)(Oh,0:, 05, 01 01, 0m) = (Q(S, 9, C))nighim

= gl Crijk — 9m B Criji + 9 Ry Chrjk — 9im R Chrjk
+ 951 R0, Chirk — 9imB] Chirk: + 9By Chijr — Gem R Chijir-

The next lemma summarizes some of the properties of the operators we
have defined.

LEMMA 1. Let K be a (0,4) tensor with the symmetries
K(X17 X27 X37 X4) - _K(X27 X17 X37 X4) == K(X37 X47 X17 X2)7
g a metric tensor, A, B, T, K (0,2) tensors and G = %g A g.
Then the following identities hold:
K-G=0,
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(5) GNT) - K=Q(T,9,K)+Q(T,K), T symmetric,
K-(gAT):gA(K-T),
Qlg,G) =
(6) Qg,gNT) = fQ(T G), T symmetric,
(7) gA(gVT)=-Q(T,G),
(8) gNEVT)=Q(K,gNT)—TAN(KVg), T symmetric,
ANTVEK)=Q(T,gNK)—KAN(TVyg), K symmetric,
=QA,BAT)+Q(B, TNA)+ Q(T,ANB),
A, B, T symmetric,
KVT=—(TVEK),
KANT=TAhNK.

Proof. Direct calculations. =

LEMMA 2. Let K be a Riemann curvature tensor, K = Ricc(K), K =
Tr(K). Then

Q(T,Q,C) :Q(T gvK)—f_i (T g/\K)
~ ey EQ(T,G) + 5Q(K, T,G) — ;a9 AE V),

m being the dimension of the mamfold.

Proof. Direct calculations. =

3. Preliminaries. Let (N,g) be a manifold covered by a system of
coordinate neighbourhoods {U;2"}. We denote by g;;, I, U, Rhijk, Rij, 7,
Chijr the components of the metric tensor g, the Christoffel symbols, the
curvature tensor E, the Ricci tensor S , the scalar curvature and the Weyl
conformal curvature tensor C' of (N, g) respectively. Here and throughout,
the indices h, ¢, j, k, I, m, r, s, t, u, v run over the range 1,...,n. Let
(M,g) be an m-dimensional manifold covered by a system of coordinate
neighbourhoods {V; y*} immersed in (NN, g) and let " = " (y*) be the local
expression of the immersion F. Then the local components g3 of the induced
metric tensor of (M, g) are related to g,s by ga = grsB;B;, where B}, =
0x" /Oy®. In what follows we shall adopt the convention

w = BiBi, B = BiB;B;, By = ByB;B.Bj.

abc —

We denote by I, Kupeds Kpe, K, Cypeq the components of the Christoffel
symbols, the curvature tensor, the Ricci tensor, the scalar curvature and the
Weyl conformal curvature tensor C' of (M, g). Here and below, the indices
a, b, ¢, d, e, f, g run over the range 1,...,m, m < n.
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The van der Waerden-Bortolotti covariant derivative of B, is given by
(9) wp = VoBy = 0uB; + I, By — Bi I,

where the semicolon denotes covariant differentiation with respect to the
metric of the submanifold.
The vector field h = H"9,, where

(10) H" = L4V, By,

is called the mean curvature vector of (M, g). Using @D and the equation
Ty = (0:By + T4 B%) Big™ gra

we obtain on (M, g) the relation

(11) grsH' B3 = 0.

Let NI, z,y, 2z = m+ 1,...,n, be mutually orthogonal unit vectors
normal to M. Then

(12) grsN;Ng = g, grsN;Ngj =0, z 7é Y, grsN;;Bas =0
and

(13) 7"5 ab_i_zemNr

where e, is the indicator of the vector N T

The Schouten curvature tensor H, of M is defined by H], = V;,Bj,. The
second fundamental form H,,, is related to H p by Héb =Y . exHupy N i

If

(14) Hyy, = gapH",
then M is called a totally umbilical submanifold of N. Then H,p, = gop Hy,
where H, = HTNyngS, and

= e H,Nj.

Furthermore, on a totally umbilical submanifold the Gauss, Codazzi and
Weingarten equations take the form ([17], [19])

(15) Kabcd = RrstuBgle&L + H(gbcgad - gbdgac)a
(16) R’I“StuN;Blfzg = gbcAd:L‘ - gbdAcm
and
(17) Ni,=—H.Bj+ > eyLazyN;
)

respectively, where the mean curvature H is given by

H =g, HH = e,H,H,,
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and
(18) Az = 0aHy + Y eyLayeHy, Lazy = grsNy N3,
Y
Moreover, we have ([17], [19])
(19) RrstuHrBlfglL = %(gbCHd - gdec), Hc = H;Ca
(20) Kabedze = RrstuoBhiede + He(gbeGad — Gvdac)
+ %[Ha (gbcged - gbdgec) + Hb(gecgad - gedgac)
+ Hc(gbe.gad - gbdgae) + Hd(gbcgae - gbegac)]
and
(21) Hj,=—HB,+ Y e,AqyN;.
Y
Letting

)

Epe = RhiijhBé];Hk7 Ape = Z e;tAbeca:; Hoe = Hge,
x

from the results of [19] p. 108] we find
(22) HEK pee = Rrstu,ngiZHuBg + JaeEpe — goeFac + Aaegbc - Abegac
+ H2 (gaegbc - gbegac) - %(Haegbc - Hbegac)-
Formulas for a corresponding to and 1) are
(23) CrstuHrBlfég = goeMq — gpaM.,
(24) Crstu,vHngég: = HKebcd - Ebcgde + Ebdgce - gbcAde + gbdAce
—H*(gheGed — Goadec) + 3(gocHae — goaHee) — 725 (gocPac — goaPec),
where
(25) M.=1iH.— R, H BY, Ps = Ry B,H"B!

and
(26) Chiji = Rniji — =25 (9ijBuk — ginBnj + gneRij — gnjRik)
+ =gy (9iink = GikGh;)-

LEMMA 3 (|7, Lemma 1]). Let M (dim M > 4) be a totally umbilical sub-
manifold of a manifold N. Then the components Cupeq of the Weyl conformal
curvature tensor C' of M satisfy the relation

Cabcd - éabcd - ﬁ(gbcTad - gdeac + gadTbc - gachd>
+ szm_g)(gbcgad — 9bdJac);
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where
éabcd = CrstuBgi?é, Tab = Kab - %_QQRTSBQ£7
m—1)(m—2
P:K+(m—1)(m—2)H+mr.

LEMMA 4. Let C be a generalized curvature tensor and a, b be 1-forms.

(a) ([23]) If
beCabed + @aCebed + abCoaecd + acCabed + adCabee = 0
then
(be + 2a¢)Caped = 0.
(b) If, moreover, C is a trace free generalized curvature tensor and for
someV € R, W#n—1,
(27) YaeCaped + @aCebed + abCaced + acCabed + adClabee
— 9ae@ Crocd — Goe@ Carcd — gee@' Cabrd — gae@” Caper = 0,
then
(W + 2)aeCabcd =0.

Proof. Transvecting with g% and using the Bianchi identity, we get
(¥ —n + 1)aPCgpep = 0, which, together with part (a), yields (b). =

4. Review of old and new results

4.1. Pseudosymmetry and recurrent type conditions. Let N be
a manifold, g denote a Riemannian or semi-Riemannian metric on N and
V be its Levi-Civita connection. A (0, k) tensor field 7" on N is said to be
recurrent if for all vector fields X, X;, Y;, j=1,...,k, on N,
VxT(X1,..., Xe) TV, ..., Vo) =T(X1,..., X)) VxT(Y1,...,Y}).

It follows that at each point of the set Uz = {x € N : T'(x) # 0} there exists
a unique 1-form a such that

VxT(X1,...,Xp) = a(X)T(X1, ..., Xp).
In [24] Roter proved the existence of manifolds with recurrent covariant
derivative of the Riemann curvature tensor R, i.e. such that

(28) 6}/6){& = a(Y)%XfE
for some 1-form a at each point x € N at which v X]:? # 0. Hence,
(29) VyVxR—VxVyR=a(Y)VxR — a(X)VyR.

It is clear that condition , resp. , yields an analogous condition for
the Weyl conformal curvature tensor C':

(30) 6)/%)(5’ = a(Y)ﬁxé,
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resp.
(31) VyVxC —VxVyC =a(Y)VxC — a(X)VyC.
It is also well known that the condition
VxR =a(X)R
implies
(32) VxC = a(X)C.

Moreover, the class of manifolds satisfying either of the above conditions is
contained in the class characterized by

VyVxC =b(X,Y)C
and in the class of those satisfying
(33) VyVxC = VxVyC =a(X,Y)C + A(X 7;Y) - C)

for some function A on N and (0,2) tensor field a. In this connection we
have

THEOREM 5 ([I7], [19]). Let M be a totally umbilical submanifold im-
mersed in a manifold N and let F' be the immersion. If condition holds
on N, then on M we have:

(a) Vp,xC = a(F.X)C.

(b) HC = 0.

THEOREM 6 ([15]). Let M be a totally umbilical submanifold immersed
i a manifold N and suppose that

63/6){5—6)(63/6:0, X7Y€%(N).

Then, on M,

(34) Aeycabcd =0.

Moreover, on some neighbourhood of each point x € M such that C(x) # 0,
the vectors VoH", a = 1,...,m, are tangent to M and the mean curvature

15 constant:
V.H" = —-HBj;, H = const.

THEOREM 7 ([7, Lemma 2]). Let M be a totally umbilical submanifold
immersed i a manifold N and let F' be the immersion. If condition
holds on N, then for any X,Y € X(M) we have

VEyVexC —=VExVEyC
= ¢(F.X,F.Y)C + (A - H)((F.X Aj E.Y) - O).
We shall prove
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THEOREM 8. Let M be a totally umbilical submanifold immersed in a
manifold N and let F be the immersion. If the condition holds on N,
then the Weyl conformal curvature tensor C' of the manifold M satisfies

(35) 0= Peycabcd + Aaycebcd + Abycaecd + AcyCabed + Adycabce
- gaeAZCgbcd - gbeAgCagcd - gceAZCabgd - gdeAZCabcga
where Pey = ars BuN;, Aj = 991 Agy, and
(36) P:[/chbcd =(m— 1)A3€Cgbcd-
If, moreover, one of the following conditions is satisfied on M :
apr, =0, Py =0, Py=oaAy, aoa#Fm-—1,
then, on M,
(37) AuyCepea = 0.

As a consequence, if C(x) # 0, x € M, then on some neighbourhood of x we
obtain
VoH" = —-HBj;, H = const.

Another class is formed by manifolds for which the Weyl conformal cur-
vature tensor C satisfies

(38) VyVxC —VxVyC =a(Y)VxC —a(X)VyC + A((X A;Y) - O).
This includes manifolds satisfying 7. For such manifolds we shall

prove

THEOREM 9. Let M be a totally umbilical submanifold immersed in a
manifold N and let F' be the immersion. If condition holds on N, then
for any X,Y € X(M) we have:

(a) VEyVexC = Ve xVEyC
= a(F.Y)VixC — a(F,X)Ve,yC + (A — H)(F.X Ay F.Y) - O).

(b) Moreover, the Weyl conformal curvature tensor C of the manifold
M satisfies

0 =2Hya:.Cupcd — PyVeCaped
+ AayCebed + ApyCaccd + AcyCabed + AdyClabee
— 9ae Ay Cybed — Gbe A Caged — Jee AYCabgd — gde Ay Cabeg
and
2H,a’ Cpyea + P,V CJ, = (m — 1) A Cppea, P, = asN,
At any point such that Py = asNy # 0, there exist a 1-form p and a
vector b such that for all vectors X € T, M,

VxC=p(X)®C+(bAX)-C.
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A semi-Riemannian manifold (N, g), dim M > 3, is said to be pseu-
dosymmetric ([5, Section 3.1]; [25]; [1]) if at every point of N the tensors
R - R and Q(g, R) are linearly dependent. This is equivalent to

(39) R-R=LzQ®F,R)
on the set Uy = {x € M : R(z) # 0}, Lz being a function on Ug.

If dim N > 4 and the tensors R - C, Q(g, C) are linearly dependent
at every point of N, the manifold is said to be Weyl-pseudosymmetric
([B, Section 4.1]; [I]). Thus (N, g) is Weyl-pseudosymmetric if and only
if
(40) R-C=LzQ(9,C)
on the set Uz, Lz being a function on Ug. The conditions and are
equivalent on the subset Ug if either N is a 4-dimensional warped product

manifold or dim N > 5 (5, Sections 9.2 and 9.3]). Therefore and (|40
can be considered as special cases of either or . We have

THEOREM 10 ([3, Propositions 2 and 4]). Let M be a totally umbili-
cal submanifold immersed in a manifold N and let F' be the immersion. If
condition holds on N, then on M we have:

(a) R-C = (Lg - H)Q(g,C).
(b) Relation is satisfied.

A semi-Riemannian manifold (N, g), dim N > 4, is said to be a manifold
with pseudosymmetric Weyl tensor ([0, Section 12.6]) if at every point of

N the tensors C - C' and Q(g, C) are linearly dependent. This is equivalent
to

(41) C-C=LzQ@0)
on the set Uz, Lz being a function on Ug.

Finally, we consider a manifold N such that the tensors C- R and Q(g, C )
are linearly dependent at every point of V. This condition is equivalent to

(42) C-R=LzQ(5C)
on the set Uz. We shall prove

THEOREM 11. Let M be a totally umbilical submanifold immersed in a
manifold N and let F be the immersion. If one of the conditions (41)) or
holds on N, then on M we have:

(a)
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where g is the metric tensor on M induced from the one on N, T' =
S —m=23G (f. Lemma.
(b)
UfyCabcd = 07
where
1
Upy = Ay = HRTSB;N;'

Hence, if C(x) # 0, x € M, then on some neighbourhood of x we
obtain

VoH" = —~HBF + 15 (eyReBFNy)Ny,
Y
V.H = 2R, ,B,H".

The condition C - C = LzQ(g, 6’) on an ambient space is not preserved
on a totally umbilical submanifold. However, we have

THEOREM 12. Let J be a symmetric (0,2) tensor on a manifold N and

C-C+;5Q0.0) + :5Q(7,3,0) = LsQ(5. C).
Then, on a totally umbilical submanifold M,
C-C+ QT+ J,0)+ QT+ J,9,C)
= (m=nm=y T Le)Q(9: ).

4.2. Some equivalences. In this section and in Sections 6.3-6.5, the
symbols AR, UC, AU, AC, UR, AF and UF represent tensors obtained
by applying various bilinear pairings to the factors A, C, U, F and R. To
simplify the notation, components of such tensors will be written without
parentheses (so that, for instance, ARyq.s stands for (AR)yqcs etc.).

THEOREM 13. Let M be a totally umbilical submanifold isometrically
immersed in a manifold N and suppose that on N one of the conditions

, , , is satisfied. Let Ty, be a tensor of mized type on M
given by

Tey = Acx = 0cHy + Z eyLeys Hy  in case ,

Y

Tey = Aey+arB H,y n case ,
Tew = Uey = Ay — ﬁRpuNﬁBé‘ n case and
and put
ARyger = —ARygpe = Y _ €xTuaRgrow NN, BY.
X
Then

TeyCabcd =0
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if and only if
(44) ARyies + 77 (9ae AR 1 — 9af AR, AR c) = 0.
A version of the above theorem can be stated as follows. Define
ARgey = —ARgfe = Z ez Tae Ryrow NFH Bey

with Ty, as above.

THEOREM 14. Let M be a totally umbilical submanifold isometrically
immersed in a manifold N and suppose that on N one of the conditions

, , , 1s satisfied. Then on M the equality

(45) ARcef + -1 (gee AR o — gef AR q) = 0

s equivalent to

(46) VH®C=0 in case (33,

(47) (VexH +2Ha(F.X))®@C =0 in case (38),
and

(48) M®C=0 in cases and (42)),

where M = $VH — L VF,(haS), o denotes the interior product and S
is the Ricci tensor of the submanifold (cf. )

In the next section we shall give an application of the last theorem.
From the definitions of AR..; and AR..y we get immediately

REMARK 15. (44) and hold on an arbitrary hypersurface of NN.

A manifold N is said to be of quasi-constant curvature if R =
SgNg+bg A (v®w) for a 1-form v, a, b being functions on N. Then

C=0and R-R = (a+ bvw)Q(7J,R).

REMARK 16. ARy = 0 and, consequently, ARg.;y = 0 on every sub-
manifold in a manifold of quasi-constant curvature.

4.3. Quasi-recurrent type conditions. For tensors a of type (0,1)
and R of type (0,4) we put

D(a, R)Y(W)(X,Y,U,V) =2a(W)R(X,Y,U, V) 4+ a(X)R(W,Y,U,V)
+aY)R(X,W,U,V) 4+ a(U)R(X,Y,W,V) 4+ a(V)R(X,Y, U W).
Let G be the (0,4) tensor field given by
G=1Gn7.
THEOREM 17 ([13]). Let M be a totally umbilical submanifold immersed
i a manifold N and let F' be the immersion. If the condition

(49) ViR = D(a, R)(W) + D(b,G)(W)
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holds on N for any W € X(N), then on M we have:

(a) Ve,wK = D(a, K)(F,W)+D(c, G)(F W), where c(F,W) = b(E, W)
— Ha(FE,W) + iV wH, W € X(M).
(b) (H — a(h))C = 0.

A manifold whose curvature tensor satisfies is called extended quasi-
recurrent ([22], [20], [21]).

For a (1,3) tensor field 7, its associated 7" and (0, 1) tensor field A let
M(A,T)(W)(X,Y,U,V)
=g, X)(T- A)Y,U, V) +gW,Y)(T - A)(X,V,U)
+gW,UNT - A)(V, X,Y) + g(W, V(T - A)(U,Y, X),

where

(T-A)(X,)Y,Z2)=-A(T(X,Y)Z).
Observe that
D(a,T)(Om) — M(G,T)(0m) = 2a(0p) @T 4+ (a A Op) - T,
where a(X) = g(a, X) for all vector fields X.

THEOREM 18 ([12, Theorems 5 and 6]). Let M be a totally umbilical
submanifold itmmersed in a manifold N and let F be the immersion. If the
condition

(50) VxC =v(X)C + D(a,C)(X)
holds on N for any X € X(N), then on M we have:

(a) Vp,xC = v(F,X)C + D(a,C)(F.X) — M(a,C)(F,X), X € X(M).
(b) (H — a(h))C = 0.

We shall prove

THEOREM 19. The statements of Theorem remain true if 18
replaced with

VxC =v(X)C + D(a,C)(X) — M(a,C)(X).

5. Examples

5.1. A manifold satisfying (30]). Let a manifold N = R", n > 4, be
endowed with the metric g given by

(51) gz‘jdﬂfidl'j = Q(dl’l)z + kabdxadxb + 2ala;1d:v"7

where
Q = [Akyy, + Begy + Ddgy)za?,
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A, B, D being functions depending on z! only, and ke = k% = eqdu,
lea] =1, cap = €q0gp for a, b # n—1, cpo1pn—1 = €n—1(3—n), dop = €a0qp for
a, b# 2, dog = ez(3 —n).
The only components of the Riemann curvature tensor R and the Weyl
conformal curvature tensor C' which may not vanish are
R1221:%€2[A+B+(3—R)D], leﬁ:%ef[A—FB—i-D],
Rin-1n-11= 3en-1[A+ (3—n)B+ D],

(a) Cifp1=3ef[B+ D], f=3,...,n=2, ifn+#4,
(b) 01221 = %62[3 + (3 — n)D],
(c) Cin-1n-11 = 3en-1[(3 —n)B+ D].

Moreover, the only components of their covariant derivatives of an arbi-
trary order k which may not vanish are those related to VfR = 0¥ R, V¥C =
8{“5’ . For n = 4 the tensor field C is recurrent. For more detailed computa-
tions see [10].

We shall say that the Weyl conformal curvature tensor C of a manifold N
satisfies in an essential way if it satisfies and neither C' is recurrent
nor R satisfies .

THEOREM 20. For each n > 4 there exists a non-conformally flat man-
ifold N, dim N = n, with the following properties:

(i) The Weyl conformal curvature tensor C satisfies 1’ in an essen-
tial way.
(ii) The scalar curvature of N vanishes.
(iii) The Ricci tensor is recurrent.
(iv) N is semi-symmetric, hence conformally semi-symmetric.

Moreover, for eachm=4,5,...,n—1, there exists a manifold M, dim M =m,
isometrically immersed in N as a totally umbilical submanifold having the
above described properties of the ambient space.

Proof. Consider the manifold (R", g), with metric g given by and

suppose C # 0. Applying to the pairs of components (a)—(b) , (b)—(c),
(c)—(a) respectively, we get

(B + D], = M;[B+ (3— n)D],,
[B+ (3 —n)D) = M3[(3—n)B+ D],
[B + D) = Ms[(3 —n)B + D],

M; being constants. For n > 4 straightforward computations show that C
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satisfies if and only if either

_ Mi—1 . -1 .
D' = (n—3)1M1+1B,’ My = =it M3 = My Mo,
(n—4)M; # -1, (n—3)M; # —1, M = const,

or
B =0, (n—3M;=-1, My=3-n, Mz=1, D arbitrary,
or
D=0, My=1, (n—-3)My=(n-3)Ms=—1, B arbitrary.
For the case n = 4, the condition holds if and only if

D' = %i:&B/’ My # -1, My=-1, M +M3=0, M; = const.

R does not satisfy if and only if one of the following inequalities hold:
A//B/ # AIB/I A//D/ # AID//
[A//(B/ _ D/) _ A/(B// _ D”)] _ (n _ 4)(B/D// _ B//D/) # O

C is not recurrent if and only if n > 4 and D’B — DB’ # 0. Letting for
example B = e“’cl, D=1 A= 2! we get a manifold with nowhere vanishing
tensor C' satisfying in an essential way.

Finally, (ii)—(iv) are satisfied by [10, Lemma 1].

Let U be an open subset of R™, m < n, covered by the coordinate
system (y!,...,y™), and consider the immersion of U in N = R", n > 4,
given 2’ =yP, p, q=1, 2, I+ 1,...,n, Il<n—1, 2 =C,,a=3,...,1,
C, being constant, [ = n — m + 2. For the metric h on U induced from g
on N, with components /4, we have hyq = gpqu and U is totally geodesic.
This completes the proof. =

5.2. Manifolds satisfying —. Let N =V,_m Xxp V,, be a
warped product manifold with warping function F. Then on a neighbour-
hood of each point there exists a coordinate system in which the metric g
has the form

(52) gijdxid:nj = gaﬁdz:adxﬁ + Fgapdzdz?,
aagaﬁ = 0,F =0, OaGab = 0,

h,ij=1,....n,a,06=1,....n—m,a,b=n—m-+1,...,n.

According to [16, Theorem 1], the immersion 2% = u®, z, = C,, defines a
totally geodesic submanifold in N, while that with 2 = C,, ® = y* defines
a totally umbilical submanifold in N, C) being constants. In particular, if
F = const, both V,,_,, and V,,, are totally geodesic.

In [2] examples of pseudosymmetric (m = n — 1) and non-pseudosym-
metric (m = n — 2) warped product manifolds with pseudosymmetric Weyl
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tensor are given. An example of a compact pseudosymmetric but non-
semisymmetric (R - R # 0) warped product S™™ ™ xp S™ m < n — 2,
with pseudosymmetric Weyl tensor is presented in [6]. Further examples
of warped product manifolds realizing pseudosymmetry type conditions are
given in [9, Theorem 4.1] and [8, Example 5.1]. We shall prove

LEMMA 21. FEach warped product manifold M admits a totally umbilical
submanifold such that the mean curvature vector h = H"0, satisfies the
condition

(53) Ryij H'BIBY = 0,
where B} = 0x7 /0y and Rp;ji are the components of the curvature ten-

sor R.

Proof. Let f be an immersion into the warped product manifold
given by z¢ = Cy, 2% = y? C, being constants. By the use of @ and
we find H* = —%gaﬁﬁgF, H® = 0. On the other hand, the only

components of the Riemann curvature tensor R which may not vanish are
Raﬁ'yéa Rapes, Rabed ([4}) u

By the above results and Theorem we get immediately

PROPOSITION 22. There exist totally umbilical submanifolds which are
not totally geodesic realizing . Consequently, there exist manifolds re-

alizing the pseudosymmetry type condition or or that admit
totally umbilical submanifolds satisfying or or, respectively, (48)).

6. Proofs

6.1. Proof of Theorem From and we readily get

(54) C’/‘z]kN;Bgis = gcUdz — paUcz,
where
(55) Ufy = Afy - ﬁRTé’B;N;'

Transvecting with BZ;gSéN;”, we get
~ hiikl
(56) Q(97 C)hijklmBa;ZdeN;n = UayGebcd + UbyGaecd + UcyGabed + UdyGabce-
Put
Pay = arngNgja

(57) Fadey = Fdaey = Z ex(UaJ:Rxdey+ deRa:aey)y Rmdey = ha]kNg?BZIJEN;
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Transvecting with BZ;iSiN . we obtain
(58)  9aeAYC gbed + Goe AYCaged + Gee AYCabgd + 9de AYClabeg
— AayCeped — AbyClaccd — AcyCabed — AdyCabee
+ gbeFadey — GbiFacey + GaaFocey — JacFodey — PeyCabed
+ A(UayGeped + UnyGaced + UeyGaved + UayGapee) = 0.
Making use of Lemma [3| and contracting the resulting equation with g%

get

(59) (M — 2)Fagey + (9" Foeey + Pey)gad + AJTyagde + AJTgagae

- PeyTad — AayTae — AgyTae

- Z[(m — 2)(gaeUdy + 9aeUay) + 29aaUey)] =0
whence, by contraction with ¢%¢, we find

(60) 9" Fheey = 24U, + s (T4 — 2(261))]3@'
Now, from and , we get

Fadey = g(gandy + gdeUay)
+ ﬁ [(Tad 2(m— 1)gad) — AY Tgagde Angdgae + Aadee =+ AdyTae] .

Applying the last equation to (| E, in virtue of Lemma |3] we readily find
and . This completes the proof of the first part of the theorem. The
final statements are consequences of , and . m

6.2. Proof of Theorem [9] To prove Theorem [J we shall need the
following

LEMMA 23. Let M, dim M > 2, be a totally umbilical submanifold im-
mersed isometrically in a manifold N. Then at any point x € M there exist

tensors Sgde = Sqae 0nd Viaq = Vida such that the following decompositions
hold:

(61) Ch’bjk‘ lBabcde Kabcd e gchade =+ gdeace - gadSbce + gachde7
hi
Chijk lBabile =2H Kabcd - gchzad + gbdvfcac - gadvxbc + gacvzbd-

Proof. If we put
Sade = %(gadHe + gedHa + gaeHd) (th lB ( )T‘ lBegad)

then the first formula results from and . To prove the second one
differentiate covariantly with respect to J.. By the use of , ,
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and we obtain
ikl
Rhijk’lN:?Bé‘ide = HxKebcd - HHxGebcd — gbched + gde:Cec
T e (TICd o Tde) + 9eeTabd — gdeLrve + gbcAdac;e - gbdAcm;ea

where
hij rk
Lyeq = Z eyLeacyAdyy Tred = RhijkNx BeziH .

Yy
. . hijk n7l
Transvecting Rpijri = Riknij + Rijin e with By N,

identity and , we get , where
and = Lmda + Txda - Aax;d + Sadx + Hngad

making use of the last

and
1 1 ij Ak
Sade = 75 (Rijk — 50019170 BNV -
Summing cyclically over (b, ¢, d), adding the resulting equations and
contracting the sum with ¢%¢, we readily get Vioaq = Vida. ®

Proof of Theorem @ In local coordinates, takes the form
CrijeRhim + Chrjk Ripn, + Chirk Rjp + Chijr Ry, = amChijrn — @Chijim

+ AlgniCrmiji — 9hmCuik + 9itChmij. — GimChiji
+ 9j1Chimk — 9imChitk + 9k1Chijm — JkmChiji]-
By transvecting with Bg;ggi]\f;” and the use of , , 7, we
obtain
9ae AJC ghed + Goe AYCaged + Gee AYCabgd + 9ae AYC abeg
— AayClebed — AbyClaccd — AcyCabed — AdyCabee + GoeFadey
— GbiFacey + GadFeey — GacFodey — ayChije i BIIM 4 aeChijk,mBZZ£§N£l
— A(UayGepea + UbyGaced + UeyGaved + UdyGabee) = 0,
where a. = a, B’

¢» ay = apNy. Hence, making use of Lemmas [3| and ﬁ we
can follow step by step the proof of Theorem [7| ([7, Lemma 2]) to obtain
Theorem |§|(b) Similarly, by transvecting with BZZiSZ}, following the proof
of Theorem [§ we get Theorem [9[(a). =

6.3. Proof of Theorem First we sketch the proof of (a) in the
case (41). Let U be the (0,2) tensor with the components

Ug = Zedefo;m

T

where Uy, are defined by . By the definition of the operator “-” we have
(62) (a'é)hijklm = (Crijkcshlm+chrjkcsilm+Chirmcsjlm+0hijrosklm)grs-
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Transvecting with ngggé?, by the use of , , , and ,

we get
on M, whence, from Lemma [3] we obtain
(63) 00—1—7 (ZG)+7 (TC)—I—i (T,q,C)
+ g AC-T) = (Lg + grymey) QL9 ©),
where Z is the tensor of type (0,2) with the components
Zge = (m —2)Upq — 5ToaTe + (Lg + W)Td&
Contraction of (63) with ¢*¢ yields C'-T = gV Z, which, applied to , in
virtue of (7] completes the proof of (a )
To prove b), by transvection of (41)) with B%ggéN ™ and the use of ,
@, (19, ) and (D) we eet
YGae Uy C(gbcal + Gbe Uy Cagcd + gceUgéabgd + gdeUgéabcg
- Uayéebcd - Ubyéaecd - Ucyéabed - Udyéabce
+ gchCadey - gdeCacey + gadUCbcey - gacUdeey
Lé(UayGebcd + UbyGaecd + UcyGabed + UdyGabce) = 07

where

UCadey = Ucdaey = Z em(Uaxéxdey‘i'deéxaey)a Czdey = ChzgthBw Nk

Now, the proof follows that of Theorem [§] I
In the case . ) the proof of part is quite similar. By transvecting

with Bsgjijé? and the use of , ), , and 1) we get
T K — QAU,G) = LzQ(g, ),
where

AUef = Z Aatema

with Uy, defined by , K being the Riemann curvature tensor of M. Since
C=C+_1s9NT- mG
(cf. Lemma [3)), using (§), (4), (7) and (6]), we obtain
(64) C-K+ - 2Q(T G)+ QT K)+ —5Q(T, 9, K) + —5Q(T, G)
= L@Q(Q, C) + WQ(Q, K) + Q(AU, G).
Contracting the last equation with g*¢ we find
(65) (C- K)ades = —2(AUcs — AUse)gad = (9V S)ades + 773 (K V T)adef
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where we have put

S =(m—2)AU — K— LT+ 5K T,

(m )( -2)=
Contracting with ¢** we obtain

(66) AUy = AUy,.
Substituting in

and applying (65) . . @ and Lemma' we obtain

On the other hand by transvecting (42) with BZZiSéN ™ and the use of

. . . andweget
(67)  gaeUy Kgbea + goeUy Kaged + geeUy Kabgd + 9aeUy Kabeg

— UayKevcd — UpyKaeed — UeyKabed — Udgy K abee

+ 9bcACadey — 9bdACacey + 9adAChcey — JacAChdey

— Lz(UayGebed + UnyGaced + UeyGaved + UdyGabee) = 0,
where

ACadey = ACdaey = Z ex(Aaxé$dey+Adzéxaey)v é:vdey = Chzjk:NgiLB;jeN;j

T

Contracting with ¢*¢ and ¢*°¢?® we get, respectively,
(m — 2)ACudey + 9adACheey 9™ + (9ae K + gae K9)Ugy — 2L 590dUey
—[(m —2)L&gae + Kae)Uay — [(m — 2) Lzgae + KaelUay = 0,
ACheeyg™ = 2LzUy,

whence

ACudey = =5 [(m = 2) L(9acUay + 9aeUay)
+ KaeUay + KaeUdy — (9ae K3 + gac K3 Uygy ).
Applying the last identity to we easily find
UayCebed + UpyClaccd + UeyCoabed + UdyClabee
— 9aeU;) Cgbed — 9beUy Caged — 9eeUy Cabgd — 9aeUy Cabeg = 0,
which, together with Lemma [4 completes the proof. m

6.4. Proof of Theorem Except for condition , the proofs of
equivalences in Theorem [14] are technically less complicated than the ones
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in Theorem [13| and are quite similar. Therefore, we prove Theorem [14] first
and omit the proofs in the case of Theorem except for (42]).

6.4.1. Equivalence of (49]) and (@) We begin with two identities use-
ful throughout this section. Applying the Rlcc1 1dent1ty to Crstu Uw and

transvectlng with HTB,fig:}”, by the use of , , 1 , , ) and
we get

(68)  Crotu,fvu) H" Biegef
= 5HeC rpcd — 5HpClobed + gocMa K p — graMa KL s
+ gocURdef — goaU Reep — goe AR fea + gof ARecd
— 9ee AFpva + gef AFevd + gae AF toc — gar AFepe
— H[Me(gsagse — gocgsa) — My (gvdgec — oeged)l,

where

URges = —URgpe = Z exUdg Rgrow NAHBLY

xT

(69) ARges = —ARgre = _ ex Ay Ryrow NVH BLY,

T

AFfpg =Y exArsFoas,  Foaw = CrspH BiiN?.
x

By the use of the first Bianchi identity we readily obtain
(70) ARedf = AFedf — AFefd.

Transvecting Q(g, é)rstuvw with H TBg’zgg}”, in virtue of and , we
find

(71) Q(g, O)rstuvw H" Bis?¥ = Me(ghag e — Goedsa) — My (gbagec — Gocled)-
LEMMA 24. Let
Zevg = 25 [ARas + ARppe + g ARy + gof AR: — —25 g0, ARy,
ARy = ARy = ARy
Under the assumptions of Theorem[8], the relation
(72) SHyCoter = — GocARudes + GpaARces — Goe ARfed + ghf ARecd
+ GeeZavf — Jef Ldbe + Jdf Leve — Gde Lebf

holds on M.
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Proof. Transvecting with H ’"Bgﬁgg}“, by the use of and , we
get

1 o _1 o _ _
2
(73) H.Ctpeq — 5HiCopea + goeU Ricf — gpaU Reef — ghe AR fed
+ gof ARecd + goe Ma Ko p — goa MoK g
— Gee AFrpq + gef Al evd + gae AF poe — gar A epe
= (H + A)[Mc(goagsc — goedra) — My (gbagec — Goeed)]
+ acf(gpeMa — gpale).
Contracting with g%, in virtue of Lemma [3| we get
(m — I)MaKgfe = AFefd — AFfed — ARedf =+ ARfde
— (m = 1)acg Mg+ (m — 1)URges — garQe + 9aeQf — 3 HTae + 3He Ty,
where Q. = AF, + 525 T)H (m —1)(H + AYM,, AF, = AF.¢%, T =
Tabg . Substituting into we have
(74)  $H{Checa — 3H becd — Gre AR fed + gop ARecd
— ga (AFope — (m 3m—2) He Thc) + gae (AFgpe — 5m )HfTbc)
+ gef (AFepa — (m som—ay He Thi) — gee (AF g — (m ) HTyq)
+ mgbd [AFefc - AFfec - ARecf + ARfce + W(Hche - Hech)
— 9ef (AFe — gpgy HeT) + gee(AFy — 5 )HfT)]
— L ge[AFefg— AFfeq — AReqy +ARfde + 2 )(Hdee H.Ty)
— gar(AFe — gy HeT) + gae (AFy — g HfT)] = 0.

Notice that the term containing a.y vanished.

Contracting the last equation with ¢¢/ and ¢®/ we get two different equa-
tions involving H*Cygpe and H%Clyeeq respectively. Making the necessary
changes of indices and eliminating H*C/ 4. we obtain

(75)  — AF.ge + AF.eq — (m* —3m 4 1)AF e — AF 4,
+ (m —2)(AFeca — AFeac) — 2ARge — (M — 3) ARjgee
+ (m* = 2m — 1)ARcea + gee((m — 2)AFye® — AF® 4y — AR" 44)
+ (m — 1)(gea AR ae — Gee AF " qq + gae AF o — gae AF " cq)
+ $H Toagce — 3T Hagee + "5 HyTee = 0,
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whence, alternating in (c, e), we find

M=3[AFpge — AFpeq + AFeeg — AFege + m(AFgec — AFye.)

+ (m +1)(ARcge + ARcca) — 2ARqc]

+ gde(AF"ac — AF%cq — AR ac) = gac(AF " ae — AF%cq — AR%c) =0.
Applying in the last equality we easily obtain
(76) ARger + ARjyge + ARcpq = 0.
Moreover, applying and to we find
AFyee = =5 [ARcqe — (m — 1)ARceq + gegARe + =2 (AF®1q — AFy,")gee

— 290 ARg + gae ARc — m(HuTad — THg)gee — 3HaTve],

which, together with , yields

(77)  252(HeChpeq — HyChecq)
= gbc[2ARges + ARcqs + ARjfeq + %ﬁ(gdeARf — gafAR.)]

— gbd[2ARces + AReep + ARjec + ™3 (gee ARy — gepAR.)]
+ gae[ARvef + (m — 1)ARpp — gep ARy

— Gee [ARbdf + (m — l)ARdbf — gdeRb]

+ gef[ARbde + (M — 1) ARape — gae AR

— 9af[ARbce + (m — 1) ARcpe — gee ARy

+ gof[(m —2)ARceq + gec ARq — gea AR.]

— grel(m — 2)ARjcq + grc ARy — graAR.],

where we have put AR, = AR%,. Summing cyclically in (b, e, f), adding
the resulting equations and subtracting we get . "

We are going back to the proof of Theorem

Proof. Suppose VH ® C' = 0 on M. Contracting with ¢"? and
using , we easily get AR..; + ﬁ(gceARf — gefAR.) = 0. Conversely,
the last equality applied to gives VH®C =0. n

6.4.2. Equivalence of (@ and . The proof is quite similar to the
last one.

6.4.3. FEquivalence of and (@ To prove it we shall need the fol-
lowing

LEMMA 25. Let
Zeyg = A5 [UCus + UChbe + gaUCs + gopUCe — —259.,UCh)
UC; =UC%, = UCuppg™.
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Under the assumptions of Theorem[11], the relation
(78)  MyCegey = — gveUClcs + gpaUCees — gbeUClrea + gofUCecd
+ geeZavf — Yef Ldbe T 9df Leve — GdeZLebf
holds on M.
Proof. Put

UCdef = _UCdfe = Z 6dequrva§HT :}H7

UFdef - Zedea: efr = Zedequrva Brv

Transvecting with H ’"BZZSZ}L, by the use of . and 1 ), we

obtain
M.C tpea — MyCeped
+ 96cUCdes — 96aUCles — goeUCled + 9oyUCecd + goeMaCle s
— 96aMaCles — 9eeUFpoa + gefUFepa + gacU Frve — 9apU Feve
= La[Me(gsagse — gocdra) — My (gbagec — gveGed))-

Following, step by step, the proof of Lemmawe complete the proof of .
Consequently, by the last lemma, we get the equivalence of (45))

and . ]

6.5. Proof of Theorem in the case (42)). Let
URydef = _URydfe Z erd:c qrow NrBef ’
(79) ARyges = —ARygpe = Z ex Ado Rgrow NIN, BLY,
AFyfbd = Z efom ybdzx Fybdx = CrstpNyTBgéNg
x
By the Bianchi identity we have
Transvecting with N, hBéjcfli? and using we obtain

(81) = UpyKeped + UeyK ppea + (H — Lz)(UpyGeped — UeyG foed)
- gbdAgg/égcef + gbcAZg/égdef + gbcARydef - gbdARycef - gbeURyfcd
+ 90U Ryecd — 9ee AFy fod + Gef AFyevd + gae AFy foc — 9af AFyepe = 0.
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Contracting with g%, by Lemma we obtain
(82)  AFyctda — AFyfea+ (m — 1)ARyges + 9ac AFyr — gap AFye
+URyfge — URyeqr + (m — 1)(H — Lé)(gdeUfy — 9afUey)
+ KgUey — KaeUpy — (m — 1) A9Cger + 25 (TueApy — Ty Acy)
+ Yae [%Angg - %Afy] — 9df [%AgTeg - %Aey} =0,
where AF,; = AFybegbc. Solving for AJCases and substituting into
we find
(83) A 5lgc(AFyfed — AFyera) — goa(AFypec — AF )]
— gee (AFyp0a — 5 90aAF ) + gy (AFyeba — -7 90aAFye)
+ gae (AFypoc — 5 90cAFyf) — gap (AFyebe — 5 gocAFye)
+ L5 [90e(URyeqs — URyrae) — goa(URyecs — URyjee)]
+ g 96 (UpyKea = UeyK ra) — goa(UpyKee — Uey K gc)]
+ 9bfU Ryecd — gbeU Ry fed + Uey K gocd — Uy Kebea = 0.

In the next step we contract with ¢¢/ and ¢®/. Changing in the
second equation the indices (c,d,e) to (b,e,d), subtracting the resulting
equation from the first one and applying the identity we get

(84) 2 (AFped— AFypae) + o= (AFy gy — AFyape) + 202 A, 4
— B2 AFyeap + 9od [ 727 AFyage — 77 AFyacg — 22 AFyeag] g
+ 9ve(AFyadg — AFyaga) 9™ + gae(AFyarg — AFyagy) g™
+ L ghiUey — KpaUey — 25 90aK Uy, = 0.

Alternating in (b, d) we readily find

(AFypge — AFypeq) + (AFygep — AFyape) + (AFyepqg — AFyeap) = 0,

whence, by ,

(85) U Rypae + URyaes + U Ryepa = 0.

Contracting with ¢** we find

mEZUgy = (m—2)(m+1)AFyaegg*—(m—2)(AFyageg*'+AFyeagg™)+ K Uey,

which, applied to (84]), yields

KpaUey = =25 (AFyped — AFypae) + mi,:lnf‘g (AFyqer — AFyape)

2_ _ _ _
+ %AFyebd - %AFyedb + mTZ.gbd(AFyage - AFyaeg - AFyeag)gag
+ Gbe (AFyadg - AFyagd)gag + 9de (AFyabg - AFyagb)gag + %gdeey-
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Substituting it in and making use of and gives us
(86)  UryCeved — UeyClved
= goURyecd — GoeU Ry fea + =25 (96U Rydes — Goal Rycey)
— GeeBypar + 9de Bybes + Gy Byvde — 9af Bybee — 25 Gedes Vo
+ L (GreerVya — GodesVye) + %(Gebcdvyf — G ppeaVye)s
where we have put
Vye = URyacgg™,  Bybay = 75U Rypay + (m — DU Ryapy]-

Finally, contracting with ¢®f, by the use of , we easily come to the
required conclusion. This completes the proof. »

6.6. Proof of Theorem [19]

LEMMA 26. Suppose that
(87) VxC = v(X)C + D(a,C)(X) + M(b,C)(X)
on N. Then
T-b=-T-a.
Proof. By the assumption, in a local coordinate system, takes the

form
(88) Chijk,g = PiChijk + anClijk + aiChijk + a;Chik + axChiji
+ gb" Crijr. + 9iad" Chrjic + 951" Chirk + grad” Chijr,

where p; = v; + 2q;. By contracting with ¢, we get Clikr = (P +a +
mb")Chriji. On the other hand, summing cyclically in (j, k,1) and con-
tracting with ¢™ we obtain C[jkm = (p" — 2a" + (m — 3)b")Cy;ji. Hence
a"Crijr +0"Crijr, = 0. m

Proof of Theorem[19. To prove the first part of the theorem we modify
the proof of [12, Theorem 6].

On M define tensors
t

c*

Pa = pngv Qg = ang, Te = (T,r - pTT)Bga Sabe = (Rrs,t - pths)Bgi
We apply to the components Ch;jr and Chjr, in to obtain
(89)  Rhnijiy — PiRnijk — —5(9ij (Ruky — piRik) — gik(Rujy — piRnj)
+ gnk(Rijp — piRij) — gng(Rikg — piRik)] + %(gijghk — 9ikGhj)
= apCliji + a;Chijk + a;Chik + arChiji
— gna" Criji — 9@ Chrji — 910" Chirk — gr1a” Chijr-
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In virtue of and Lemma (3| we have

) - -
(90)  a;Clijrg™ Byly = acCveag” + 3 ecar Ny Coiji N3 Bily
xr

=ar Cl{cd + ﬁ[gbctd — gpate + aqTpe — acThq)

- szm_z)(gbcad — gvdac) + gveTa — gvale

for some (0,1) tensor ¢4.

Transvecting with BZ;Z% then applying , and 1@| in virtue
of Lemma [3] we get

(91)  Kapedie — PeKabed + (Hpe — He)Gabed
— HHoGeped + HyGaeed + HeGapea + HaG apee]
— L5 [96eSade — GbaSace + GadSbce — JacShae) + D)=z Cabed
= L laa(gecTea — gpaTec) + ap(gadTec — gacTea) + ac(gaaTve — goaTuc)
+ aa(gveTue — JacTve)] + aaCebed + abCaccd + acCabed + dClabce
— 90! Cpped — gbe@’ Cafed — geea’ Capga — gaea’ Coper
+ (T — 25t0) Gevea + (Ty — —25t) Gaecd
+ (Te — 5te) Gapea + (T — 5ta) Gavee-
On the other hand, from the Gauss equation and we have
Kapedse — Delabed = (Rhijr, — szhijk)Bszgsé
+ (He — pe H)(9bcGad — Gvadac) + 3 [HaGebea + HyGaecd + HeGaped + HaGapee
whence, by transvecting with g* and the use of (13| we obtain
(92)  Kage — peKad = Sade — Zex(Rhijk,l — piRyijx) BEYLNE NI

x
+ (m - 1)(He - peH)gad =+ %[(m - 2)(Haged + Hd.gae) + 2Hegad]-
Let

Eeq = ZethljkBgNaZ:NiBgr F, = Zex(Rij,l _ Ple‘j)Ni«NiBé,
B T
a= ZeleJN;N:‘ljﬂ 26 = ZexaiN;‘ (Aax - ﬁRh]BgNgj)
T T

Notice that the Gauss equation yields

(93) FEui= Rog— Koqg + (m - l)Hgad.
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Then, in virtue of and , we have
Meg = exCiiji BLN,N] B
x
1 %) (n—m)r

= FEeq — —5[(n — m)Req + agea] + -1)(n—2)Jed

(n—m)r

= 7;Zf_g]ied — Keq + (m - 1)ngd - ﬁged + mgedv
Z exa;N:Ciji B NIBY = g,aXe — geaZa.
xX

Transvecting with ngéN;N%, by the use of and , we obtain
> ex(Rnijis — piRnij) BUie NeNT = 2gaa Xe = geaXa — Gea X
x

+ % ade T ﬁgadFe - %T&gad +agMeq + agMeq + geaQd + gedQa
for some (0,1) tensor @. Substituting the last relation into we obtain
(94) Kode — peKad = %Sade - ﬁgadFe + %Tegad

- gean - gean - aaMed - adMea - 2gad26 + gedza + geazd
+ (m - 1)(He - peH)gad + %[(m - 2)(Haged + Hdgae) + 2Hegad]'

Observe that Sggeg®® = re — F.
Then, transvecting with ¢g?¢, we find that for some (0,1) tensor Z,

Fo= = oi2n (K = peK) + 5 [255 + 255 ) re + 2o
+ (n—2)[3(He — peH) + He — 5],
which, by substituting into , yields
(95)  L5Suae = 15 (Kade — PeKaa) — W(Ke — PeK)Gad
+ 7550900 %e = gedXa — gea¥Xa) — 5(He — peH )gad — 5(Haged + Hagac)
+ m%gad + —15(9eaQa + 9edQa + aaMeq + aaMea) + —25 ZeGag.
Substituting into and making use of and the definition of T,q4

we obtain

(96) Cabcd;e = pecabcd + aaCebcd + abCaecd + acCabed + adCabce
+ veGabcd + (ZaGebcd + ZbGaecd + ZcGabed + ZdGabce)
+ aa(geaUpe — gecUsbd) + ap(gecUad — gedUsc)
+ ac(gbeUad - ganbd) + ad(ganbc - gbeUac)

for some 1-forms v, and z, on M, while U,q = ﬁTad.
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Contracting with ¢g¢ and ¢%¢" we get

(97) Chedgze = (Pe + ae)Cheg + GocVd — GbdVe
+ m(gbezd — goaze) + m(Upeaq — Upaac)
and
(98) (m —1)vg +m(m — 1)zq + mUaqg — mty =0,
respectively, while summing cyclically in (¢, d, e) and contracting the
resulting equality with ¢ and ¢%¢¢" we obtain
(99)  Chedie
= (Pe — 20¢)Cheq — (M = 2)(gbeVd — Goave) + 2(m — 2)(Gbezd — Ghdzc)
+ (m = 3)(Uscad — Upaac) + U(ghe@a — god@e) — goctd + Godte

and
(100) 2(m —1)zqg+2Uaq — 2ty — (m — 1)vg = 0,

where U = Uyq¢® and tg = a®U,q. Solving and (100) we find t; =
(m — 1)zq + Uag, vqg = 0. Finally, subtracting from (99), in virtue of
the last relations, we obtain

aeChog = —(gvezd — gvaze) — (Upcaq — Upgac),

which, by substituting into , ends the proof of Theorem (a). The proof
of (b) is exactly the same as the proof of [12, Theorem 5]. m
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