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TOTALLY UMBILICAL SUBMANIFOLDS IN SOME
SEMI-RIEMANNIAN MANIFOLDS

BY

STANIS LAW EWERT-KRZEMIENIEWSKI (Szczecin)

Abstract. We investigate totally umbilical submanifolds in manifolds satisfying some
curvature conditions of either recurrent or pseudosymmetry type in the sense of Ryszard
Deszcz and derive the respective condition for submanifolds. We also prove some relations
involving the mean curvature and the Weyl conformal curvature tensor of submanifolds.
Some examples are discussed.

1. Introduction. Let M be a totally umbilical submanifold of a semi-
Riemannian manifold N. There are several results of the following type:
if a tensor field T̃ that comes from the metric of the manifold N satisfies
on N some relation, then the analogous relation is satisfied on M by the
tensor field T arrising in the same way from the induced metric. Moreover,
the Weyl conformal curvature tensor C of the submanifold M satisfies the
equation

LC = 0,

where L is some quantity depending on the mean curvature vector field h
([3], [7], [11], [12], [14], [15], [18], [17], [19]).

In this paper we deal with results of the above type.
The paper is organized as follows. Basic definitions, notations and con-

ventions are presented in Section 2. In Section 3 we give in local coordinates
all formulas necessary for further computations. In Section 4 we review some
known results and give new ones. Section 5 provides some examples. In the
next sections we give the proofs of the new results.

All manifolds under consideration are assumed to be connected, smooth,
Hausdorff and their metrics need not be definite.

2. Notation and conventions. Suppose that N is a manifold, n =
dimN ≥ 3, g̃ is a semi-Riemannian metric on N and ∇̃ is its Levi-Civita
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connection. Throughout the paper we adopt the convention that the quan-
tity derived from the metric of the manifold N is marked with a tilde˜ .
If T̃ is such a quantity, then T denotes the projection of T̃ on a subman-
ifold while T is the analogue of T̃ obtained from the induced metric. The
Riemann curvature tensor R̃ is a trilinear multiplication in the Lie algebra
X(N) of vector fields on N defined by

R̃(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z,

so that in the local coordinate system we have

R(∂k, ∂j)∂i = Rhijk∂h = (∂kΓ hij − ∂jΓ hik + Γ hksΓ
s
ij − Γ hjsΓ sik)∂h,

where the indices h, i, j, k, r, s run through the range 1, . . . , n.
With R̃ we associate the (0, 4) Riemann curvature tensor R̃ setting

R̃(X,Y, Z, V ) = g̃(R̃(X,Y )Z, V )

with components Rhijk = ghrR
r
ijk.

In terms of n local orthogonal vector fields X1, . . . , Xn,

S̃(Y,Z) =
n∑
j=1

R̃(Xj , Y, Z,Xj)
g̃(Xj , Xj)

defines the Ricci tensor S̃ of type (0, 2) with local components Rij = Rrijr.
For symmetric (0, 2) tensors A and B their Kulkarni–Nomizu product

A ∧B is given by

(A ∧B)(U,X, Y, V ) = A(X,Y )B(U, V )−A(X,V )B(U, Y )
+A(U, V )B(X,Y )−A(U, Y )B(X,V ).

Then the Weyl conformal curvature tensor C̃ of type (0, 4) is defined as

C̃ = R̃− 1
n−2 g̃ ∧ S̃ + r

2(n−1)(n−2) g̃ ∧ g̃,

with components Chijk, r being the scalar curvature of N.
We extend the action of ∧ to tensors B of type (0, 4) with symmetries

B(U,X, Y, V ) = B(X,U, Y, V ) = −B(U,X, V, Y )

setting

(A ∧B)(U,X, Y, V, Z,W )

= A(X,Y )B(U, V, Z,W )−A(X,V )B(U, Y, Z,W )
+A(U, V )B(X,Y, Z,W )−A(U, Y )B(X,V, Z,W ).

We also put

(A ∨B)(U,X, Y, V ) = A(X,Y )B(U, V )−A(X,V )B(U, Y )
+A(U, Y )B(X,V )−A(U, V )B(X,Y ).
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For a trilinear multiplication P of vector fields, skew-symmetric in the
first two arguments, let P be a (0, 4) tensor associated with P by

P (X,Y, Z, V ) = g̃(P(X,Y )Z, V ).

One extends the endomorphism P(X,Y ) to a derivation P(X,Y )· of the Lie
algebra of tensor fields on N assuming it commutes with contractions and
setting

P(X,Y ) · f = 0,

f being a function on N , and

(P ·T )(X1, X2, . . . , Xk;X,Y ) = (P(X,Y ) · T )(X1, X2, . . . , Xk)
= −T (P(X,Y )X1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1,P(X,Y )Xk),

T being a (0, k) tensor, k ≥ 1. In the case P = R̃ we obtain the well known
Ricci identity:

(R̃·T )(X1, X2, . . . , Xk;X,Y )

= ∇̃Y ∇̃XT (X1, X2, . . . , Xk)− ∇̃X∇̃Y T (X1, X2, . . . , Xk).

In the same manner, for a symmetric tensor B of type (0, 2) and its
associated B,

B(X,Y ) = g̃(BX,Y ),

we define B · T by

(B·T )(X1, X2, . . . , Xk)
= −T (BX1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1,BXk).

Thus, in local components, we have for example

(C̃·R̃)hijklm = RrijkC
r
hlm +RhrjkC

r
ilm +RhirkC

r
jlm +RhijrC

r
klm,(1)

(C̃·S̃)hklm = RrkC
r
hlm +RhrC

r
klm.

For a (0, 2) tensor A on N we define

(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y.

If, moreover, A is symmetric and T is of type (0, k), k ≥ 1, we define the
tensor Q(A, T ) of type (0, k + 2) setting

Q(A, T )(X1, X2, . . . , Xk;X,Y ) = ((X ∧A Y ) · T )(X1, X2, . . . , Xk)
= −T ((X ∧A Y )X1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk).
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We easily find that

Q(A, C̃)(U, V,W,Z;X,Y )

= A(U,X)C̃(Y, V,W,Z) +A(V,X)C̃(U, Y,W,Z) +A(W,X)C̃(U, V, Y, Z)

+A(Z,X)C̃(U, V,W, Y )−A(U, Y )C̃(X,V,W,Z)−A(V, Y )C̃(U,X,W,Z)

−A(W,Y )C̃(U, V,X,Z)−A(Z, Y )C̃(U, V,W,X).

We have

(2) Q(g, C̃)(∂h, ∂i, ∂j , ∂k; ∂l, ∂m)=(Q(g, C̃))hijklm=ghlCmijk−ghmClijk
+ gilChmjk − gimChljk + gjlChimk − gjmChilk + gklChijm − gkmChijl.

More details can be found for example in [1] and [5].
Observe that for a given vector field, say pr∂r, and arbitrary coordinate

vector fields ∂h, ∂i, ∂j , ∂k, ∂m we have

(3) (((pr∂r) ∧ ∂m) · C̃)(∂h, ∂i, ∂j , ∂k)

= phCmijk + piChmjk + pjChimk + pkChijm

− ghmprCrijk − gimprChrjk − gjmprChirk − gkmprChijr.

Finally, for a symmetric (0, 2) tensor field B and its associated B, we define
a (0, k + 2) tensor field Q(B,A, T ) setting

Q(B,A, T )(X1, X2, . . . , Xk;X,Y ) = (B(X ∧A Y ) · T )(X1, X2, . . . , Xk).

Thus, for the Ricci tensor S̃, in local coordinates we have

Q(S̃, g, C̃)(∂h, ∂i, ∂j , ∂k; ∂l, ∂m) = (Q(S̃, g, C̃))hijklm
= ghlR

r
mCrijk − ghmRrlCrijk + gilR

r
mChrjk − gimRrlChrjk

+ gjlR
r
mChirk − gjmRrlChirk + gklR

r
mChijr − gkmRrlChijr.

The next lemma summarizes some of the properties of the operators we
have defined.

Lemma 1. Let K be a (0, 4) tensor with the symmetries

K(X1, X2, X3, X4) = −K(X2, X1, X3, X4) = K(X3, X4, X1, X2),

g a metric tensor, A, B, T, K (0, 2) tensors and G = 1
2g ∧ g.

Then the following identities hold:

G ·K = Q(g,K),(4)
K ·G = 0,
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(g ∧ T ) ·K = Q(T, g,K) +Q(T,K), T symmetric,(5)
K · (g ∧ T ) = g ∧ (K · T ),

Q(g,G) = 0,
Q(g, g ∧ T ) = −Q(T,G), T symmetric,(6)
g ∧ (g ∨ T ) = −Q(T,G),(7)
g ∧ (K ∨ T ) = Q(K, g ∧ T )− T ∧ (K ∨ g), T symmetric,(8)
g ∧ (T ∨K) = Q(T, g ∧K)−K ∧ (T ∨ g), K symmetric,

0 = Q(A,B ∧ T ) +Q(B, T ∧A) +Q(T,A ∧B),
A,B, T symmetric,

K ∨ T = −(T ∨K),
K ∧ T = T ∧K.

Proof. Direct calculations.

Lemma 2. Let K be a Riemann curvature tensor, K = Ricc(K), K =
Tr(K). Then

Q(T, g, C) = Q(T, g,K) + 1
m−2Q(T, g ∧K)

− 1
(m−1)(m−2)KQ(T,G) + 1

m−2Q(K,T,G)− 1
m−2g ∧ (K ∨ T ),

m being the dimension of the manifold.

Proof. Direct calculations.

3. Preliminaries. Let (N, g̃) be a manifold covered by a system of
coordinate neighbourhoods {U ;xr}. We denote by gij , Γ

k
ij , Rhijk, Rij , r,

Chijk the components of the metric tensor g̃, the Christoffel symbols, the
curvature tensor R̃, the Ricci tensor S̃, the scalar curvature and the Weyl
conformal curvature tensor C̃ of (N, g̃) respectively. Here and throughout,
the indices h, i, j, k, l, m, r, s, t, u, v run over the range 1, . . . , n. Let
(M, g) be an m-dimensional manifold covered by a system of coordinate
neighbourhoods {V ; ya} immersed in (N, g̃) and let xr = xr(ya) be the local
expression of the immersion F. Then the local components gab of the induced
metric tensor of (M, g) are related to grs by gab = grsB

r
aB

s
b , where Br

a =
∂xr/∂ya. In what follows we shall adopt the convention

Brs
ab = Br

aB
s
b , Brst

abc = Br
aB

s
bB

t
c, Brstu

abcd = Br
aB

s
bB

t
cB

u
d .

We denote by Γ cab, Kabcd, Kbc, K, Cabcd the components of the Christoffel
symbols, the curvature tensor, the Ricci tensor, the scalar curvature and the
Weyl conformal curvature tensor C of (M, g). Here and below, the indices
a, b, c, d, e, f, g run over the range 1, . . . ,m, m < n.
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The van der Waerden–Bortolotti covariant derivative of Br
a is given by

(9) Br
a;b = ∇bBr

a = ∂bB
r
a + Γ rstB

st
ba −Br

cΓ
c
ba,

where the semicolon denotes covariant differentiation with respect to the
metric of the submanifold.

The vector field h = Hr∂r, where

(10) Hr = 1
mg

ef∇eBr
f ,

is called the mean curvature vector of (M, g). Using (9) and the equation

Γ abc = (∂cBr
b + Γ rstB

st
cb)B

u
d g

dagru,

we obtain on (M, g) the relation

(11) grsH
rBs

a = 0.

Let N r
x , x, y, z = m + 1, . . . , n, be mutually orthogonal unit vectors

normal to M. Then

(12) grsN
r
xN

s
x = ex, grsN

r
xN

s
y = 0, x 6= y, grsN

r
xB

s
a = 0

and

(13) grs = Brs
abg

ab +
∑
x

exN
r
xN

s
x,

where ex is the indicator of the vector N r
x .

The Schouten curvature tensor Hr
ab of M is defined by Hr

ab = ∇bBr
a. The

second fundamental form Habx is related to H i
ab by H i

ab =
∑

x exHabxN
i
x.

If

(14) Hr
ab = gabH

r,

then M is called a totally umbilical submanifold of N. Then Habx = gabHx,
where Hy = HrN s

ygrs, and

Hr =
∑
x

exHxN
r
x .

Furthermore, on a totally umbilical submanifold the Gauss, Codazzi and
Weingarten equations take the form ([17], [19])

(15) Kabcd = RrstuB
rstu
abcd +H(gbcgad − gbdgac),

(16) RrstuN
r
xB

stu
bcd = gbcAdx − gbdAcx

and

(17) N s
z;a = −HzB

s
a +

∑
y

eyLazyN
s
y

respectively, where the mean curvature H is given by

H = grsH
rHs =

∑
x

exHxHx,
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and

(18) Aax = ∂aHx +
∑
y

eyLayxHy, Lazy = grsN
r
yN

s
z;a.

Moreover, we have ([17], [19])

(19) RrstuH
rBstu

bcd = 1
2(gbcHd − gbdHc), Hc = H;c,

Kabcd;e = Rrstu,vB
rstuv
abcde +He(gbcgad − gbdgac)(20)

+ 1
2 [Ha(gbcged − gbdgec) +Hb(gecgad − gedgac)

+Hc(gbegad − gbdgae) +Hd(gbcgae − gbegac)]

and

(21) Hr
;a = −HBr

a +
∑
y

eyAayN
r
y .

Letting

Ebc = RhijkH
hBij

bcH
k, Abc =

∑
x

exAbxAcx, Hae = H;ae,

from the results of [19, p. 108] we find

HKabce = Rrstu,vB
rst
abcH

uBv
e + gaeEbc − gbeEac +Aaegbc −Abegac(22)

+H2(gaegbc − gbegac)− 1
2(Haegbc −Hbegac).

Formulas for C̃, corresponding to (19) and (22), are

(23) CrstuH
rBstu

bcd = gbcMd − gbdMc,

(24) Crstu,vH
rBstuv

bcde = HKebcd − Ebcgde + Ebdgce − gbcAde + gbdAce

−H2(gbcged − gbdgec) + 1
2(gbcHde − gbdHce)− 1

n−2(gbcPde − gbdPce),

where

(25) Mc = 1
2Hc − 1

n−2RruH
rBu

c , Pae = Rru,vB
r
aH

uBv
e

and

Chijk = Rhijk − 1
n−2(gijRhk − gikRhj + ghkRij − ghjRik)(26)

+ r
(n−1)(n−2)(gijghk − gikghj).

Lemma 3 ([7, Lemma 1]). Let M (dimM ≥ 4) be a totally umbilical sub-
manifold of a manifold N. Then the components Cabcd of the Weyl conformal
curvature tensor C of M satisfy the relation

Cabcd = Cabcd − 1
m−2(gbcTad − gbdTac + gadTbc − gacTbd)

+ P
(m−1)(m−2)(gbcgad − gbdgac),
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where

Cabcd = CrstuB
rstu
abcd, Tab = Kab − m−2

n−2RrsB
rs
ab,

P = K + (m− 1)(m− 2)H + (m−1)(m−2)
(n−1)(n−2) r.

Lemma 4. Let C be a generalized curvature tensor and a, b be 1-forms.

(a) ([23]) If

beCabcd + aaCebcd + abCaecd + acCabed + adCabce = 0

then
(be + 2ae)Cabcd = 0.

(b) If, moreover, C is a trace free generalized curvature tensor and for
some Ψ ∈ R, Ψ 6= n− 1,

(27) ΨaeCabcd + aaCebcd + abCaecd + acCabed + adCabce

− gaearCrbcd − gbearCarcd − gcearCabrd − gdearCabcr = 0,

then
(Ψ + 2)aeCabcd = 0.

Proof. Transvecting (27) with gde and using the Bianchi identity, we get
(Ψ − n+ 1)apCabcp = 0, which, together with part (a), yields (b).

4. Review of old and new results

4.1. Pseudosymmetry and recurrent type conditions. Let N be
a manifold, g̃ denote a Riemannian or semi-Riemannian metric on N and
∇̃ be its Levi-Civita connection. A (0, k) tensor field T̃ on N is said to be
recurrent if for all vector fields X, Xj , Yj , j = 1, . . . , k, on N ,

∇̃X T̃ (X1, . . . , Xk)T̃ (Y1, . . . , Yk) = T̃ (X1, . . . , Xk)∇̃X T̃ (Y1, . . . , Yk).

It follows that at each point of the set UeT = {x ∈ N : T̃ (x) 6= 0} there exists
a unique 1-form a such that

∇̃X T̃ (X1, . . . , Xk) = a(X)T̃ (X1, . . . , Xk).

In [24] Roter proved the existence of manifolds with recurrent covariant
derivative of the Riemann curvature tensor R̃, i.e. such that

(28) ∇̃Y ∇̃XR̃ = a(Y )∇̃XR̃

for some 1-form a at each point x ∈ N at which ∇̃XR̃ 6= 0. Hence,

(29) ∇̃Y ∇̃XR̃− ∇̃X∇̃Y R̃ = a(Y )∇̃XR̃− a(X)∇̃Y R̃.
It is clear that condition (28), resp. (29), yields an analogous condition for
the Weyl conformal curvature tensor C̃:

(30) ∇̃Y ∇̃XC̃ = a(Y )∇̃XC̃,
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resp.

(31) ∇̃Y ∇̃XC̃ − ∇̃X∇̃Y C̃ = a(Y )∇̃XC̃ − a(X)∇̃Y C̃.

It is also well known that the condition

∇̃XR̃ = a(X)R̃

implies

(32) ∇̃XC̃ = a(X)C̃.

Moreover, the class of manifolds satisfying either of the above conditions is
contained in the class characterized by

∇̃Y ∇̃XC̃ = b(X,Y )C̃

and in the class of those satisfying

(33) ∇̃Y ∇̃XC̃ − ∇̃X∇̃Y C̃ = a(X,Y )C̃ + Ã((X ∧eg Y ) · C̃)

for some function Ã on N and (0, 2) tensor field a. In this connection we
have

Theorem 5 ([17], [19]). Let M be a totally umbilical submanifold im-
mersed in a manifold N and let F be the immersion. If condition (32) holds
on N, then on M we have:

(a) ∇F∗XC = a(F∗X)C.
(b) HC = 0.

Theorem 6 ([15]). Let M be a totally umbilical submanifold immersed
in a manifold N and suppose that

∇̃Y ∇̃XC̃ − ∇̃X∇̃Y C̃ = 0, X, Y ∈ X(N).

Then, on M,

(34) AeyCabcd = 0.

Moreover, on some neighbourhood of each point x ∈M such that C(x) 6= 0,
the vectors ∇aHr, a = 1, . . . ,m, are tangent to M and the mean curvature
is constant:

∇aHr = −HBr
a, H = const.

Theorem 7 ([7, Lemma 2]). Let M be a totally umbilical submanifold
immersed in a manifold N and let F be the immersion. If condition (33)
holds on N, then for any X,Y ∈ X(M) we have

∇F∗Y∇F∗XC −∇F∗X∇F∗Y C
= c(F∗X,F∗Y )C + (Ã−H)((F∗X ∧eg F∗Y ) · C).

We shall prove
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Theorem 8. Let M be a totally umbilical submanifold immersed in a
manifold N and let F be the immersion. If the condition (33) holds on N,
then the Weyl conformal curvature tensor C of the manifold M satisfies

0 = PeyCabcd +AayCebcd +AbyCaecd +AcyCabed +AdyCabce(35)
− gaeAgyCgbcd − gbeAgyCagcd − gceAgyCabgd − gdeAgyCabcg,

where Pey = arsB
r
aN

s
y , A

g
y = ggdAdy, and

(36) P gyCgbcd = (m− 1)AgyCgbcd.

If, moreover, one of the following conditions is satisfied on M :

ahk = 0, Pey = 0, Pey = αAey, α 6= m− 1,

then, on M,

(37) AayCebcd = 0.

As a consequence, if C(x) 6= 0, x ∈M, then on some neighbourhood of x we
obtain

∇aHr = −HBr
a, H = const.

Another class is formed by manifolds for which the Weyl conformal cur-
vature tensor C̃ satisfies

(38) ∇̃Y ∇̃XC̃ − ∇̃X∇̃Y C̃ = a(Y )∇̃XC̃ − a(X)∇̃Y C̃ + Ã((X ∧eg Y ) · C̃).

This includes manifolds satisfying (28)–(31). For such manifolds we shall
prove

Theorem 9. Let M be a totally umbilical submanifold immersed in a
manifold N and let F be the immersion. If condition (38) holds on N, then
for any X,Y ∈ X(M) we have:

(a) ∇F∗Y∇F∗XC −∇F∗X∇F∗Y C

= a(F∗Y )∇F∗XC − a(F∗X)∇F∗Y C + (Ã−H)((F∗X ∧g F∗Y ) · C).

(b) Moreover, the Weyl conformal curvature tensor C of the manifold
M satisfies

0 = 2HyaeCabcd − Py∇eCabcd
+AayCebcd +AbyCaecd +AcyCabed +AdyCabce

− gaeAgyCgbcd − gbeAgyCagcd − gceAgyCabgd − gdeAgyCabcg,
and

2Hya
fCfbcd + Py∇fCfbcd = (m− 1)AfyCfbcd, Py = asN

s
y.

At any point such that Py = asN
s
y 6= 0, there exist a 1-form p and a

vector b such that for all vectors X ∈ TxM ,

∇XC = p(X)⊗ C + (b ∧X) · C.
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A semi-Riemannian manifold (N, g), dimM ≥ 3, is said to be pseu-
dosymmetric ([5, Section 3.1]; [25]; [1]) if at every point of N the tensors
R̃ · R̃ and Q(g, R̃) are linearly dependent. This is equivalent to

(39) R̃ · R̃ = L eRQ(g̃, R̃)

on the set U eR = {x ∈M : R̃(x) 6= 0}, L eR being a function on U eR.
If dimN ≥ 4 and the tensors R̃ · C̃, Q(g̃, C̃) are linearly dependent

at every point of Ñ , the manifold is said to be Weyl-pseudosymmetric
([5, Section 4.1]; [1]). Thus (N, g) is Weyl-pseudosymmetric if and only
if

(40) R̃ · C̃ = L eCQ(g̃, C̃)

on the set U eC , L eC being a function on U eC . The conditions (39) and (40) are
equivalent on the subset U eC if either N is a 4-dimensional warped product
manifold or dimN ≥ 5 ([5, Sections 9.2 and 9.3]). Therefore (39) and (40)
can be considered as special cases of either (33) or (38). We have

Theorem 10 ([3, Propositions 2 and 4]). Let M be a totally umbili-
cal submanifold immersed in a manifold N and let F be the immersion. If
condition (40) holds on N, then on M we have:

(a) R · C = (L eC −H)Q(g, C).
(b) Relation (34) is satisfied.

A semi-Riemannian manifold (N, g), dimN ≥ 4, is said to be a manifold
with pseudosymmetric Weyl tensor ([5, Section 12.6]) if at every point of
N the tensors C̃ · C̃ and Q(g, C̃) are linearly dependent. This is equivalent
to

(41) C̃ · C̃ = L eCQ(g̃, C̃)

on the set U eC , L eC being a function on U eC .
Finally, we consider a manifold N such that the tensors C̃ ·R̃ and Q(g, C̃)

are linearly dependent at every point of N . This condition is equivalent to

(42) C̃ · R̃ = L eCQ(g̃, C̃)

on the set U eC . We shall prove

Theorem 11. Let M be a totally umbilical submanifold immersed in a
manifold N and let F be the immersion. If one of the conditions (41) or
(42) holds on N, then on M we have:

(a)

(43) C · C + 1
m−2Q(T,C) + 1

m−2Q(T, g, C) =
(

P
(m−1)(m−2) + L eC)Q(g, C),
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where g is the metric tensor on M induced from the one on N, T =
S − m−2

n−2 S (cf. Lemma 3).
(b)

UfyCabcd = 0,

where
Ufy = Afy − 1

n−2RrsB
r
fN

s
y .

Hence, if C(x) 6= 0, x ∈ M, then on some neighbourhood of x we
obtain

∇aHk = −HBk
a + 1

n−2

∑
y

(eyRrsBr
fN

s
y )Nk

y ,

∇aH = 2
n−2RrsB

r
aH

s.

The condition C̃ · C̃ = L eCQ(g̃, C̃) on an ambient space is not preserved
on a totally umbilical submanifold. However, we have

Theorem 12. Let J̃ be a symmetric (0, 2) tensor on a manifold N and

C̃ · C̃ + 1
n−2Q(J̃ , C̃) + 1

n−2Q(J̃ , g̃, C) = L eCQ(g̃, C̃).

Then, on a totally umbilical submanifold M,

C · C + 1
m−2Q(T + J,C) + 1

m−2Q(T + J, g, C)

=
(

P
(m−1)(m−2) + L eC)Q(g, C).

4.2. Some equivalences. In this section and in Sections 6.3–6.5, the
symbols AR, UC, AU , AC, UR, AF and UF represent tensors obtained
by applying various bilinear pairings to the factors A, C, U, F and R. To
simplify the notation, components of such tensors will be written without
parentheses (so that, for instance, ARydef stands for (AR)ydef etc.).

Theorem 13. Let M be a totally umbilical submanifold isometrically
immersed in a manifold N and suppose that on N one of the conditions
(33), (38), (41), (42) is satisfied. Let Tdy be a tensor of mixed type on M
given by

T ey = Aex = ∂eHx +
∑
y

eyLeyxHy in case (33),

T ey = Aey+arBr
eHy in case (38),

Tex = Uex = Aex − 1
n−2RpuN

p
xB

u
e in case (41) and (42)

and put
ARydef = −ARydfe =

∑
x

exTdxRqrvwN
q
xN

r
yB

vw
ef .

Then
TeyCabcd = 0
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if and only if

(44) ARydef + 1
m−1(gdeAR a

y fa − gdfAR a
y eaAR

a
y ea) = 0.

A version of the above theorem can be stated as follows. Define

ARdef = −ARdfe =
∑
x

exTdxRqrvwN
q
xH

rBvw
ef

with Tdx as above.

Theorem 14. Let M be a totally umbilical submanifold isometrically
immersed in a manifold N and suppose that on N one of the conditions
(33), (38), (41), (42) is satisfied. Then on M the equality

(45) ARcef + 1
m−1(gceARafa − gcfARaea) = 0

is equivalent to

∇H ⊗ C = 0 in case (33),(46)
(∇F∗XH + 2Ha(F∗X))⊗ C = 0 in case (38),(47)

and

(48) M ⊗ C = 0 in cases (41) and (42),

where M = 1
2∇H −

1
n−2∇Fy(hyS), y denotes the interior product and S

is the Ricci tensor of the submanifold (cf. (25)).

In the next section we shall give an application of the last theorem.
From the definitions of ARycef and ARcef we get immediately

Remark 15. (44) and (45) hold on an arbitrary hypersurface of N.

A manifold Ñ is said to be of quasi-constant curvature if R̃ =
a
2 g̃ ∧ g̃ + bg̃ ∧ (v ⊗ v) for a 1-form v, a, b being functions on Ñ . Then
C̃ = 0 and R̃ · R̃ = (a+ bvyv)Q(g̃, R̃).

Remark 16. ARycef = 0 and, consequently, ARdef = 0 on every sub-
manifold in a manifold of quasi-constant curvature.

4.3. Quasi-recurrent type conditions. For tensors a of type (0, 1)
and R of type (0, 4) we put

D(a,R)(W )(X,Y, U, V ) = 2a(W )R(X,Y, U, V ) + a(X)R(W,Y,U, V )
+ a(Y )R(X,W,U, V ) + a(U)R(X,Y,W, V ) + a(V )R(X,Y, U,W ).

Let G̃ be the (0, 4) tensor field given by

G̃ = 1
2 g̃ ∧ g̃.

Theorem 17 ([13]). Let M be a totally umbilical submanifold immersed
in a manifold N and let F be the immersion. If the condition

(49) ∇̃W R̃ = D(a, R̃)(W ) +D(b, G̃)(W )
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holds on N for any W ∈ X(N), then on M we have:

(a) ∇F∗WK = D(a,K)(F∗W )+D(c,G)(F∗W ), where c(F∗W ) = b(F∗W )
−Ha(F∗W ) + 1

2∇F∗WH, W ∈ X(M).
(b) (H − a(h))C = 0.

A manifold whose curvature tensor satisfies (49) is called extended quasi-
recurrent ([22], [20], [21]).

For a (1, 3) tensor field T , its associated T and (0, 1) tensor field A let

M(A, T )(W )(X,Y, U, V )

= g̃(W,X)(T ·A)(Y, U, V ) + g̃(W,Y )(T ·A)(X,V, U)

+ g̃(W,U)(T ·A)(V,X, Y ) + g̃(W,V )(T ·A)(U, Y,X),

where
(T ·A)(X,Y, Z) = −A(T (X,Y )Z).

Observe that

D(a, T )(∂m)−M(g̃, T )(∂m) = 2a(∂m)⊗ T + (α ∧ ∂m) · T,

where a(X) = g̃(α,X) for all vector fields X.

Theorem 18 ([12, Theorems 5 and 6]). Let M be a totally umbilical
submanifold immersed in a manifold N and let F be the immersion. If the
condition

(50) ∇̃XC̃ = v(X)C̃ +D(a, C̃)(X)

holds on N for any X ∈ X(N), then on M we have:

(a) ∇F∗XC = v(F∗X)C +D(a,C)(F∗X)−M(a,C)(F∗X), X ∈ X(M).
(b) (H − a(h))C = 0.

We shall prove

Theorem 19. The statements of Theorem 18 remain true if (50) is
replaced with

∇̃XC̃ = v(X)C̃ +D(a, C̃)(X)−M(a, C̃)(X).

5. Examples

5.1. A manifold satisfying (30). Let a manifold N = Rn, n ≥ 4, be
endowed with the metric g̃ given by

(51) gijdx
idxj = Q(dx1)2 + kabdx

adxb + 2dx1dxn,

where
Q = [Akab +Bcab +Ddab]xaxb,
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A, B, D being functions depending on x1 only, and kab = kab = eaδab,
|ea| = 1, cab = eaδab for a, b 6= n− 1, cn−1,n−1 = en−1(3−n), dab = eaδab for
a, b 6= 2, d22 = e2(3− n).

The only components of the Riemann curvature tensor R̃ and the Weyl
conformal curvature tensor C̃ which may not vanish are

R1221 = 1
2e2[A+B + (3− n)D], R1ff1 = 1

2ef [A+B +D],

R1,n−1,n−1,1 = 1
2en−1[A+ (3− n)B +D],

C1ff1 = 1
2ef [B +D], f = 3, . . . , n− 2, if n 6= 4,(a)

C1221 = 1
2e2[B + (3− n)D],(b)

C1,n−1,n−1,1 = 1
2en−1[(3− n)B +D].(c)

Moreover, the only components of their covariant derivatives of an arbi-
trary order k which may not vanish are those related to∇k1R̃ = ∂k1 R̃, ∇k1C̃ =
∂k1 C̃. For n = 4 the tensor field C̃ is recurrent. For more detailed computa-
tions see [10].

We shall say that the Weyl conformal curvature tensor C̃ of a manifold N
satisfies (30) in an essential way if it satisfies (30) and neither C̃ is recurrent
nor R̃ satisfies (28).

Theorem 20. For each n > 4 there exists a non-conformally flat man-
ifold N, dimN = n, with the following properties:

(i) The Weyl conformal curvature tensor C̃ satisfies (30) in an essen-
tial way.

(ii) The scalar curvature of N vanishes.
(iii) The Ricci tensor is recurrent.
(iv) N is semi-symmetric, hence conformally semi-symmetric.

Moreover, for each m= 4, 5, . . . , n−1, there exists a manifold M, dimM=m,
isometrically immersed in N as a totally umbilical submanifold having the
above described properties of the ambient space.

Proof. Consider the manifold (Rn, g̃), with metric g̃ given by (51) and
suppose C̃ 6= 0. Applying (30) to the pairs of components (a)–(b) , (b)–(c),
(c)–(a) respectively, we get

[B +D]′ = M1[B + (3− n)D]′,
[B + (3− n)D]′ = M2[(3− n)B +D]′,

[B +D]′ = M3[(3− n)B +D]′,

Mj being constants. For n > 4 straightforward computations show that C̃
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satisfies (30) if and only if either

D′ = M1−1
(n−3)M1+1B

′, M2 = −1
(n−4)M1+1 , M3 = M1M2,

(n− 4)M1 6= −1, (n− 3)M1 6= −1, M1 = const,

or

B′ = 0, (n− 3)M1 = −1, M2 = 3− n, M3 = 1, D arbitrary,

or

D′ = 0, M1 = 1, (n− 3)M2 = (n− 3)M3 = −1, B arbitrary.

For the case n = 4, the condition holds if and only if

D′ = M1−1
M1+1B

′, M1 6= −1, M2 = −1, M1 +M3 = 0, M1 = const.

R̃ does not satisfy (28) if and only if one of the following inequalities hold:

A′′B′ 6= A′B′′, A′′D′ 6= A′D′′,

[A′′(B′ −D′)−A′(B′′ −D′′)]− (n− 4)(B′D′′ −B′′D′) 6= 0.

C̃ is not recurrent if and only if n > 4 and D′B − DB′ 6= 0. Letting for
example B = ex

1
, D = 1, A = e2x

1
we get a manifold with nowhere vanishing

tensor C̃ satisfying (30) in an essential way.
Finally, (ii)–(iv) are satisfied by [10, Lemma 1].
Let U be an open subset of Rm, m < n, covered by the coordinate

system (y1, . . . , ym), and consider the immersion of U in N = Rn, n > 4,
given xp = yp, p, q = 1, 2, l + 1, . . . , n, l < n − 1, xa = Ca, a = 3, . . . , l,
Ca being constant, l = n −m + 2. For the metric h on U induced from g̃
on N, with components hpq, we have hpq = gpq|U and U is totally geodesic.
This completes the proof.

5.2. Manifolds satisfying (40)–(42). Let N = Vn−m ×F Vm be a
warped product manifold with warping function F. Then on a neighbour-
hood of each point there exists a coordinate system in which the metric g
has the form

gijdx
idxj = gαβdx

αdxβ + Fgabdx
adxb,(52)

∂agαβ = ∂aF = 0, ∂αgab = 0,

i, j = 1, . . . , n, α, β = 1, . . . , n−m, a, b = n−m+ 1, . . . , n.
According to [16, Theorem 1], the immersion xα = uα, xa = Ca, defines a

totally geodesic submanifold in N, while that with xα = Cα, x
a = ya defines

a totally umbilical submanifold in N, Cj being constants. In particular, if
F = const, both Vn−m and Vm are totally geodesic.

In [2] examples of pseudosymmetric (m = n − 1) and non-pseudosym-
metric (m = n− 2) warped product manifolds with pseudosymmetric Weyl
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tensor are given. An example of a compact pseudosymmetric but non-
semisymmetric (R · R 6= 0) warped product Sn−m ×F Sm, m ≤ n − 2,
with pseudosymmetric Weyl tensor is presented in [6]. Further examples
of warped product manifolds realizing pseudosymmetry type conditions are
given in [9, Theorem 4.1] and [8, Example 5.1]. We shall prove

Lemma 21. Each warped product manifold M admits a totally umbilical
submanifold such that the mean curvature vector h = Hr∂r satisfies the
condition

(53) RhijkH
iBj

cB
k
d = 0,

where Bj
c = ∂xj/∂yc and Rhijk are the components of the curvature ten-

sor R̃.

Proof. Let f be an immersion into the warped product manifold (52)
given by xα = Cα, x

a = ya, Cα being constants. By the use of (9) and
(10) we find Hα = −1

2g
αβ∂βF, H

a = 0. On the other hand, the only
components of the Riemann curvature tensor R̃ which may not vanish are
Rαβγδ, Rαbcδ, Rabcd ([4]).

By the above results and Theorem (14) we get immediately

Proposition 22. There exist totally umbilical submanifolds which are
not totally geodesic realizing (53). Consequently, there exist manifolds re-
alizing the pseudosymmetry type condition (40) or (41) or (42) that admit
totally umbilical submanifolds satisfying (46) or (48) or, respectively, (48).

6. Proofs

6.1. Proof of Theorem 8. From (16) and (26) we readily get

(54) CrijkN
r
xB

ijk
bcd = gbcUdx − gbdUcx,

where

(55) Ufy = Afy − 1
n−2RrsB

r
fN

s
y .

Transvecting (2) with Bhijkl
abcdeN

m
y , we get

(56) Q(g, C̃)hijklmB
hijkl
abcdeN

m
y =UayGebcd+UbyGaecd+UcyGabed+UdyGabce.

Put

Pay = arsB
r
aN

s
y ,

Fadey=Fdaey=
∑
x

ex(UaxRxdey+UdxRxaey), Rxdey=RhijkN
h
xB

ij
deN

k
y .(57)
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Transvecting (33) with Bhijkl
abcdeN

m
y , we obtain

(58) gaeA
g
yCgbcd + gbeA

g
yCagcd + gceA

g
yCabgd + gdeA

g
yCabcg

−AayCebcd −AbyCaecd −AcyCabed −AdyCabce

+ gbcFadey − gbdFacey + gadFbcey − gacFbdey − PeyCabcd

+ Ã(UayGebcd + UbyGaecd + UcyGabed + UdyGabce) = 0.

Making use of Lemma 3 and contracting the resulting equation with gbc we
get

(59) (m− 2)Fadey +
(
gbcFbcey + P−T g

g

m−2 Pey
)
gad +AgyTgagde +AgyTgdgae

− PeyTad −AayTde −AdyTae
− Ã[(m− 2)(gaeUdy + gdeUay) + 2gadUey)] = 0,

whence, by contraction with gad, we find

(60) gbcFbcey = 2ÃUey + 1
m−2

(
T gg − mP

2(m−1)

)
Pey.

Now, from (59) and (60), we get

Fadey = Ã(gaeUdy + gdeUay)

+ 1
m−2

[(
Tad − P

2(m−1)gad
)
Pey −AgyTgagde −AgyTgdgae +AayTde +AdyTae

]
.

Applying the last equation to (58), in virtue of Lemma 3, we readily find
(35) and (36). This completes the proof of the first part of the theorem. The
final statements are consequences of (37), (21) and (18).

6.2. Proof of Theorem 9. To prove Theorem 9 we shall need the
following

Lemma 23. Let M, dimM > 2, be a totally umbilical submanifold im-
mersed isometrically in a manifold N. Then at any point x ∈M there exist
tensors Sade = Sdae and Vxad = Vxda such that the following decompositions
hold:

(61)
Chijk,lB

hijkl
abcde = Kabcd;e − gbcSade + gbdSace − gadSbce + gacSbde,

Chijk,lB
hijk
abcdN

l
x = 2HxKabcd − gbcVxad + gbdVxac − gadVxbc + gacVxbd.

Proof. If we put

Sade = 1
2(gadHe + gedHa + gaeHd) + 1

n−2

(
Rhk,lB

hkl
ade − 1

2(n−1)r,lB
l
egad

)
,

then the first formula results from (20) and (26). To prove the second one
differentiate covariantly (16) with respect to ∂e. By the use of (17), (16),
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(14) and (15) we obtain

Rhijk,lN
h
xB

ijkl
bcde =HxKebcd −HHxGebcd − gbcLxed + gbdLxec

+gbe(Txcd−Txdc)+gceTxbd−gdeTxbc+gbcAdx;e−gbdAcx;e,
where

Lxed =
∑
y

eyLexyAdy, Txed = RhijkN
h
xB

ij
edH

k.

Transvecting Rhijk,l = Rlkhi,j +Rljih,k with Bhijk
abcdN

l
x, making use of the last

identity and (26), we get (61), where

Vxad = Lxda + Txda −Aax;d + Sadx +HHxgad

and
Sadx = 1

n−2

(
Rij,k − 1

2(n−1)gijr,k
)
Bij
adN

k
x .

Summing (61) cyclically over (b, c, d), adding the resulting equations and
contracting the sum with gad, we readily get Vxad = Vxda.

Proof of Theorem 9. In local coordinates, (38) takes the form

CrijkR
r
hlm + ChrjkR

r
ilm + ChirkR

r
jlm + ChijrR

r
klm = amChijk,l − alChijk,m

+ Ã[ghlCmijk − ghmClijk + gilChmjk − gimChljk
+ gjlChimk − gjmChilk + gklChijm − gkmChijl].

By transvecting with Bhijkl
abcdeN

m
y and the use of (13), (16), (54)–(57), we

obtain

gaeA
g
yCgbcd + gbeA

g
yCagcd + gceA

g
yCabgd + gdeA

g
yCabcg

−AayCebcd −AbyCaecd −AcyCabed −AdyCabce + gbcFadey

− gbdFacey + gadFbcey − gacFbdey − ayChijk,lBhijkl
abcde + aeChijk,mB

hijk
abcdN

m
y

− Ã(UayGebcd + UbyGaecd + UcyGabed + UdyGabce) = 0,

where ae = arB
r
e , ay = arN

r
y . Hence, making use of Lemmas 3 and 23, we

can follow step by step the proof of Theorem 7 ([7, Lemma 2]) to obtain
Theorem 9(b). Similarly, by transvecting with Bhijklm

abcdef , following the proof
of Theorem 8, we get Theorem 9(a).

6.3. Proof of Theorem 11. First we sketch the proof of (a) in the
case (41). Let U be the (0, 2) tensor with the components

Udf =
∑
x

exUdxUfx,

where Udx are defined by (55). By the definition of the operator “·” we have

(62) (C̃ ·C̃)hijklm = (CrijkCshlm+ChrjkCsilm+ChirmCsjlm+ChijrCsklm)grs.
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Transvecting (41) with Bhijklm
abcdef , by the use of (62), (2), (13), (54) and (55),

we get
C · C +Q(U,G) = L eCQ(g, C)

on M, whence, from Lemma 3, we obtain

(63) C · C + 1
m−2Q(Z,G) + 1

m−2Q(T,C) + 1
m−2Q(T, g, C)

+ 1
m−2g ∧ (C · T ) =

(
L eC + P

(m−1)(m−2)

)
Q(g, C),

where Z is the tensor of type (0, 2) with the components

Zde = (m− 2)Ued − 1
m−2TadT

a
e +

(
L eC + P

(m−1)(m−2)

)
Tde.

Contraction of (63) with gbc yields C · T = g ∨Z, which, applied to (63), in
virtue of (7), completes the proof of (a).

To prove (b), by transvection of (41) with Bhijkl
abcdeN

m
y and the use of (62),

(13), (16), (55) and (56) we get

gaeU
g
yCgbcd + gbeU

g
yCagcd + gceU

g
yCabgd + gdeU

g
yCabcg

− UayCebcd − UbyCaecd − UcyCabed − UdyCabce

+ gbcUCadey − gbdUCacey + gadUCbcey − gacUCbdey
− L eC(UayGebcd + UbyGaecd + UcyGabed + UdyGabce) = 0,

where

UCadey =UCdaey =
∑
x

ex(UaxCxdey+UdxCxaey), Cxdey =ChijkN
h
xB

ij
deN

k
y .

Now, the proof follows that of Theorem 8.
In the case (42) the proof of part (a) is quite similar. By transvecting

(42) with Bhijklm
abcdef and the use of (1), (2), (13), (15) and (16) we get

C ·K −Q(AU,G) = L eCQ(g, C),

where
AUef =

∑
x

AaxUex,

with Udx defined by (55), K being the Riemann curvature tensor of M . Since

C = C + 1
m−2g ∧ T −

1
(m−1)(m−2)G

(cf. Lemma 3), using (5), (4), (7) and (6), we obtain

(64) C ·K + 1
m−2Q(T,G) + 1

m−2Q(T,K) + 1
m−2Q(T, g,K) + 1

m−2Q(T,G)

= L eCQ(g, C) + P
(m−1)(m−2)Q(g,K) +Q(AU,G).

Contracting the last equation with gbc we find

(65) (C ·K)adef = −2(AUef −AUfe)gad − (g ∨ S)adef + 1
m−2(K ∨ T )adef ,
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where we have put

S = (m− 2)AU − P
(m−1)(m−2)K − L eCT + 1

m−2KyT.

Contracting (65) with gad we obtain

(66) AUef = AUfe.

Substituting in (64)

K = C + 1
m−2g ∧K −

1
(m−1)(m−2)KG

and applying (65), (66), (8), (6) and Lemma 2, we obtain (43).
On the other hand, by transvecting (42) with Bhijkl

abcdeN
m
y and the use of

(1), (56), (13), (15) and (16) we get

(67) gaeU
g
yKgbcd + gbeU

g
yKagcd + gceU

g
yKabgd + gdeU

g
yKabcg

− UayKebcd − UbyKaecd − UcyKabed − UdyKabce

+ gbcACadey − gbdACacey + gadACbcey − gacACbdey
− L eC(UayGebcd + UbyGaecd + UcyGabed + UdyGabce) = 0,

where

ACadey =ACdaey =
∑
x

ex(AaxCxdey+AdxCxaey), Cxdey =ChijkN
h
xB

ij
deN

k
y .

Contracting (67) with gbc and gbcgad we get, respectively,

(m− 2)ACadey + gadACbceyg
bc + (gaeK

g
d + gdeK

g
a)Ugy − 2L eCgadUey

−[(m− 2)L eCgae +Kae]Udy − [(m− 2)L eCgde +Kde]Uay = 0,

ACbceyg
bc = 2L eCUey,

whence

ACadey = 1
m−2 [(m− 2)L eC(gaeUdy + gdeUay)

+KdeUay +KaeUdy − (gaeK
g
d + gdeK

g
a)Ugy].

Applying the last identity to (67) we easily find

UayCebcd + UbyCaecd + UcyCabed + UdyCabce

− gaeUgyCgbcd − gbeUgyCagcd − gceUgyCabgd − gdeUgyCabcg = 0,

which, together with Lemma 4, completes the proof.

6.4. Proof of Theorem 14. Except for condition (42), the proofs of
equivalences in Theorem 14 are technically less complicated than the ones
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in Theorem 13 and are quite similar. Therefore, we prove Theorem 14 first
and omit the proofs in the case of Theorem 13, except for (42).

6.4.1. Equivalence of (45) and (46). We begin with two identities use-
ful throughout this section. Applying the Ricci identity to Crstu,[vw] and
transvecting with HrBstuvw

bcdef , by the use of (13), (16), (19), (23), (54) and
(55) we get

(68) Crstu,[vw]H
rBstuvw

bcdef

= 1
2HeCfbcd − 1

2HfCebcd + gbcMaK
a
def − gbdMaK

a
cef

+ gbcURdef − gbdURcef − gbeARfcd + gbfARecd

− gceAFfbd + gcfAFebd + gdeAFfbc − gdfAFebc
−H[Me(gbdgfc − gbcgfd)−Mf (gbdgec − gbcged)],

where

URdef = −URdfe =
∑
x

exUdxRqrvwN
q
xH

rBvw
ef ,

ARdef = −ARdfe =
∑
x

exAdxRqrvwN
q
xH

rBvw
ef ,(69)

AFfbd =
∑
x

exAfxFbdx, Fbdx = CrstpH
rBst

bdN
p
x .

By the use of the first Bianchi identity we readily obtain

(70) ARedf = AFedf −AFefd.

Transvecting Q(g, C̃)rstuvw with HrBstuvw
bcdef , in virtue of (11) and (23), we

find

(71) Q(g, C̃)rstuvwHrBstuvw
bcdef =Me(gbdgfc−gbcgfd)−Mf (gbdgec−gbcged).

Lemma 24. Let

Zcbf = 1
m−2

[
ARcbf +ARfbc + gcbARf + gbfARc − 2

m−1gcfARb
]
,

ARf = ARafa = ARafbg
ab.

Under the assumptions of Theorem 8, the relation

1
2HbCcdef = − gbcARdef + gbdARcef − gbeARfcd + gbfARecd(72)

+ gceZdbf − gcfZdbe + gdfZcbe − gdeZcbf

holds on M.
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Proof. Transvecting (33) with HrBstuvw
bcdef , by the use of (68) and (71), we

get

(73) 1
2HeCfbcd − 1

2HfCebcd + gbcURdef − gbdURcef − gbeARfcd
+ gbfARecd + gbcMaK

a
def − gbdMaK

a
cef

− gceAFfbd + gcfAFebd + gdeAFfbc − gdfAFebc

= (H + Ã)[Me(gbdgfc − gbcgfd)−Mf (gbdgec − gbcged)]
+ aef (gbcMd − gbdMc).

Contracting (73) with gbc, in virtue of Lemma 3, we get

(m− 1)MaK
a
dfe = AFefd −AFfed −ARedf +ARfde

− (m− 1)aefMd + (m− 1)URdef − gdfQe + gdeQf − 1
2HfTde + 1

2HeTdf ,

where Qe = AFe + P−T
2(m−2)He − (m − 1)(H + Ã)Me, AFe = AFeabg

ab, T =
Tabg

ab. Substituting into (73) we have

(74) 1
2HfCbecd − 1

2HeCbfcd − gbeARfcd + gbfARecd

− gdf
(
AFebc − 1

2(m−2)HeTbc
)

+ gde
(
AFfbc − 1

2(m−2)HfTbc
)

+ gcf
(
AFebd − 1

2(m−2)HeTbd
)
− gce

(
AFfbd − 1

2(m−2)HfTbd
)

+ 1
m−1gbd

[
AFefc−AFfec−ARecf +ARfce+ 1

2(m−2)(HfTce−HeTcf )

− gcf
(
AFe − 1

2(m−2)HeT ) + gce(AFf − 1
2(m−2)HfT

)]
− 1

m−1gbc
[
AFefd−AFfed −ARedf +ARfde+ 1

2(m−2)(HfTde−HeTdf )

− gdf (AFe − 1
2(m−2)HeT ) + gde

(
AFf − 1

2(m−2)HfT
)]

= 0.

Notice that the term containing aef vanished.
Contracting the last equation with gcf and gbf we get two different equa-

tions involving HaCadbe and HaCaecd respectively. Making the necessary
changes of indices and eliminating HaCadbe we obtain

(75) −AFcde +AFced − (m2 − 3m+ 1)AFdce −AFdec
+ (m− 2)(AFecd −AFedc)− 2ARcde − (m− 3)ARdce

+ (m2 − 2m− 1)ARecd + gce((m− 2)AFdaa −AF ada −ARaad)
+ (m− 1)(gcdARaae − gceAF aad + gdeAF

a
ac − gdeAF aca)

+ 1
2H

aTadgce − 1
2THdgce + m−1

2 HdTce = 0,
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whence, alternating in (c, e), we find

m−3
m−1 [AFcde −AFced +AFecd −AFedc +m(AFdec −AFdce)

+ (m+ 1)(ARcde +ARecd)− 2ARdce]
+ gde(AF aac−AF aca−ARaac)−gdc(AF aae−AF aea−ARaae) = 0.

Applying (70) in the last equality we easily obtain

(76) ARdef +ARfde +ARefd = 0.

Moreover, applying (70) and (76) to (75) we find

AFdce = −1
m−2

[
ARcde − (m− 1)ARecd + gcdARe + m−2

m−1(AF aad −AFdaa)gce
− 2

m−1gceARd + gdeARc − 1
2(m−1)(H

aTad − THd)gce − 1
2HdTce

]
,

which, together with (74), yields

(77) m−2
2 (HeCbfcd −HfCbecd)

= gbc
[
2ARdef +ARedf +ARfed + m+3

m−1(gdeARf − gdfARe)
]

− gbd
[
2ARcef +ARecf +ARfec + m+3

m−1(gceARf − gcfARe)
]

+ gde[ARbcf + (m− 1)ARcbf − gcfARb]
− gce[ARbdf + (m− 1)ARdbf − gdfARb]
+ gcf [ARbde + (m− 1)ARdbe − gdeARb]
− gdf [ARbce + (m− 1)ARcbe − gceARb]
+ gbf [(m− 2)ARecd + gecARd − gedARc]
− gbe[(m− 2)ARfcd + gfcARd − gfdARc],

where we have putARe = ARaea. Summing (77) cyclically in (b, e, f), adding
the resulting equations and subtracting (77) we get (72).

We are going back to the proof of Theorem 14.

Proof. Suppose ∇H ⊗ C = 0 on M. Contracting (72) with gbd and
using (76), we easily get ARcef + 1

m−1(gceARf − gcfARe) = 0. Conversely,
the last equality applied to (72) gives ∇H ⊗ C = 0.

6.4.2. Equivalence of (45) and (47). The proof is quite similar to the
last one.

6.4.3. Equivalence of (45) and (48). To prove it we shall need the fol-
lowing

Lemma 25. Let

Zcbf = 1
m−2

[
UCcbf + UCfbc + gcbUCf + gbfUCc − 2

m−1gcfUCb
]
,

UCf = UCafa = UCafbg
ab.
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Under the assumptions of Theorem 11, the relation

MbCcdef = − gbcUCdef + gbdUCcef − gbeUCfcd + gbfUCecd(78)
+ gceZdbf − gcfZdbe + gdfZcbe − gdeZcbf

holds on M.

Proof. Put

UCdef = −UCdfe =
∑
x

exUdxCqrvwN
q
xH

rBvw
ef ,

UFdef =
∑
x

exUdxFefx =
∑
x

exUdxCqrvwH
qBrv

efN
w
x .

Transvecting (41) with HrBijklm
bcdef , by the use of (13), (69), (71) and (25), we

obtain

MeCfbcd −MfCebcd

+ gbcUCdef − gbdUCcef − gbeUCfcd + gbfUCecd + gbcMaC
a
def

− gbdMaC
a
cef − gceUFfbd + gcfUFebd + gdeUFfbc − gdfUFebc

= L eC [Me(gbdgfc − gbcgfd)−Mf (gbdgec − gbcged)].

Following, step by step, the proof of Lemma 24 we complete the proof of (78).
Consequently, by the last lemma, we get the equivalence of (45)

and (48).

6.5. Proof of Theorem 13 in the case (42). Let

URydef = −URydfe =
∑
x

exUdxRqrvwN
q
xN

r
yB

vw
ef ,

ARydef = −ARydfe =
∑
x

exAdxRqrvwN
q
xN

r
yB

vw
ef ,(79)

AFyfbd =
∑
x

exAfxFybdx, Fybdx = CrstpN
r
yB

st
bdN

p
x .

By the Bianchi identity we have

(80) URydef = AFydef −AFydfe.

Transvecting (42) with Nh
yB

ijklm
bcdef and using (79) we obtain

(81) − UfyKebcd + UeyKfbcd + (H − L eC)(UfyGebcd − UeyGfbcd)
− gbdAgyCgcef +gbcA

g
yCgdef +gbcARydef −gbdARycef −gbeURyfcd

+ gbfURyecd−gceAFyfbd+gcfAFyebd+gdeAFyfbc−gdfAFyebc = 0.
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Contracting (81) with gbc, by Lemma 3, we obtain

(82) AFyefd −AFyfed + (m− 1)ARydef + gdeAFyf − gdfAFye
+ URyfde − URyedf + (m− 1)(H − L eC)(gdeUfy − gdfUey)
+KdfUey −KdeUfy − (m− 1)AgyCdgef + m−1

m−2(TdeAfy − TdfAey)
+ gde

[
m−1
m−2A

g
yTfg − P

m−2Afy
]
− gdf

[
m−1
m−2A

g
yTeg − P

m−2Aey
]

= 0,

where AFyf = AFyfbcg
bc. Solving (82) for AgyCdgef and substituting into

(81) we find

(83) 1
m−1 [gbc(AFyfed −AFyefd)− gbd(AFyfec −AFyefc)]

− gce
(
AFyfbd − 1

m−1gbdAFyf
)

+ gcf
(
AFyebd − 1

m−1gbdAFye
)

+ gde
(
AFyfbc − 1

m−1gbcAFyf
)
− gdf

(
AFyebc − 1

m−1gbcAFye
)

+ 1
m−2 [gbc(URyedf − URyfde)− gbd(URyecf − URyfce)]

+ 1
m−1 [gbc(UfyKed − UeyKfd)− gbd(UfyKec − UeyKfc)]

+ gbfURyecd − gbeURyfcd + UeyKfbcd − UfyKebcd = 0.

In the next step we contract (83) with gcf and gbf . Changing in the
second equation the indices (c, d, e) to (b, e, d), subtracting the resulting
equation from the first one and applying the identity (80) we get

(84) 3
m−1(AFybed−AFybde)+ m2−m−3

m−1 (AFydeb−AFydbe)+ m2−2m−2
m−1 AFyebd

− m−4
m−1AFyedb + gbd

[
m
m−1AFyage −

2
m−1AFyaeg −

m−2
m−1AFyeag

]
gag

+ gbe(AFyadg −AFyagd)gag + gde(AFyabg −AFyagb)gag

+ K
m−1gbdUey −KbdUey − 1

m−1gbdK
g
eUgy = 0.

Alternating (84) in (b, d) we readily find

(AFybde −AFybed) + (AFydeb −AFydbe) + (AFyebd −AFyedb) = 0,

whence, by (80),

(85) URybde + URydeb + URyebd = 0.

Contracting (84) with gbd we find

mKg
eUgy = (m−2)(m+1)AFyaeggag−(m−2)(AFyagegag+AFyeaggag)+KUey,

which, applied to (84), yields

KbdUey = 3
m−1(AFybed −AFybde) + m2−m−3

m−1 (AFydeb −AFydbe)

+ m2−2m−2
m−1 AFyebd − m−4

m−1AFyedb + m−2
m gbd(AFyage −AFyaeg −AFyeag)gag

+ gbe(AFyadg −AFyagd)gag + gde(AFyabg −AFyagb)gag + K
mgbdUey.
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Substituting it in (83) and making use of (80) and (85) gives us

(86) UfyCebcd − UeyCfbcd
= gbfURyecd − gbeURyfcd + 3

m−2(gbcURydef − gbdURycef )

− gceBybdf + gdeBybcf + gcfBybde − gdfBybce − 2
m−2GcdefVyb

+ 1
m−1(GbcefVyd −GbdefVyc) + m+3

(m−1)(m−2)(GebcdVyf −GfbcdVye),

where we have put

Vye = URyaegg
ag, Bybdf = 1

m−2 [URybdf + (m− 1)URydbf ].

Finally, contracting (86) with gbf , by the use of (85), we easily come to the
required conclusion. This completes the proof.

6.6. Proof of Theorem 19

Lemma 26. Suppose that

(87) ∇̃XC̃ = v(X)C̃ +D(a, C̃)(X) +M(b, C̃)(X)

on N. Then
T · b = −T · a.

Proof. By the assumption, in a local coordinate system, (87) takes the
form

Chijk,l = plChijk + ahClijk + aiChljk + ajChilk + akChijl(88)
+ ghlb

rCrijk + gilb
rChrjk + gjlb

rChirk + gklb
rChijr,

where pl = vl + 2al. By contracting with ghl, we get Crijk,r = (pr + ar +
mbr)Crijk. On the other hand, summing (88) cyclically in (j, k, l) and con-
tracting with ghl we obtain Crijk,r = (pr − 2ar + (m − 3)br)Crijk. Hence
arCrijk + brCrijk = 0.

Proof of Theorem 19. To prove the first part of the theorem we modify
the proof of [12, Theorem 6].

On M define tensors

pa = prB
r
a, aa = arB

r
a, re = (r,r − prr)Br

e , Sabe = (Rrs,t − ptRrs)Brst
abc.

We apply (26) to the components Chijk and Chijk,l in (88) to obtain

(89) Rhijk,l − plRhijk − 1
n−2 [gij(Rhk,l − plRhk)− gik(Rhj,l − plRhj)

+ ghk(Rij,l−plRij)−ghj(Rik,l−plRik)] + r,l−plr
(n−1)(n−2)(gijghk−gikghj)

= ahClijk + aiChljk + ajChilk + akChijl

− ghlarCrijk − gilarChrjk − gjlarChirk − gklarChijr.
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In virtue of (13) and Lemma 3 we have

arCsijkg
rsBijk

bcd = aeCfbcdg
ef +

∑
x
exarN

r
xCsijkN

s
xB

ijk
bcd(90)

= afC
f
bcd + 1

m−2 [gbctd − gbdtc + adTbc − acTbd]

− P
(m−1)(m−2)(gbcad − gbdac) + gbcTd − gbdTc

for some (0, 1) tensor td.
Transvecting (89) with Bhijkl

abcde, then applying (15), (20) and (90), in virtue
of Lemma 3, we get

(91) Kabcd;e − peKabcd + (Hpe −He)gabcd

− 1
2 [HaGebcd +HbGaecd +HcGabed +HdGabce]

− 1
n−2 [gbcSade − gbdSace + gadSbce − gacSbde] + re

(n−1)(n−2)Gabcd

= 1
m−2 [aa(gbcTed − gbdTec) + ab(gadTec − gacTed) + ac(gadTbe − gbdTae)

+ ad(gbcTae − gacTbe)] + aaCebcd + abCaecd + acCabed + adCabce

− gaeafCfbcd − gbeafCafcd − gceafCabfd − gdeafCabcf
+
(
Ta − 1

m−2 ta
)
Gebcd +

(
Tb − 1

m−2 tb
)
Gaecd

+
(
Tc − 1

m−2 tc
)
Gabed +

(
Td − 1

m−2 td
)
Gabce.

On the other hand, from the Gauss equation (15) and (20) we have

Kabcd;e − peKabcd = (Rhijk,l − plRhijk)Bhijkl
abcde

+ (He−peH)(gbcgad− gbdgac) + 1
2 [HaGebcd+HbGaecd+HcGabed+HdGabce],

whence, by transvecting with gbc and the use of (13) we obtain

(92) Kad;e − peKad = Sade −
∑
x

ex(Rhijk,l − plRhijk)Bhkl
adeN

i
xN

j
x

+ (m− 1)(He − peH)gad + 1
2 [(m− 2)(Haged +Hdgae) + 2Hegad].

Let

Eed =
∑
x

exRhijkB
h
eN

i
xN

j
xB

k
d , Fe =

∑
x

ex(Rij,l − plRij)N i
xN

j
xB

l
e,

α =
∑
x

exRijN
i
xN

j
x, Σe =

∑
x

exaiN
i
x

(
Aax − 1

n−2RhjB
h
aN

j
x

)
.

Notice that the Gauss equation yields

(93) Ead = Rad −Kad + (m− 1)Hgad.



TOTALLY UMBILICAL SUBMANIFOLDS 297

Then, in virtue of (26) and (12), we have

Med =
∑
x

exClijkB
l
eN

i
xN

j
xB

k
d

= Eed − 1
n−2 [(n−m)Red + αged] + (n−m)r

(n−1)(n−2)ged

= m−2
n−2Red −Ked + (m− 1)Hged − α

n−2ged + (n−m)r
(n−1)(n−2)ged,∑

x

exaiN
i
xChljkB

hl
aeN

j
xB

k
d = gadΣe − gedΣa.

Transvecting (89) with Bhkl
adeN

i
xN

j
x, by the use of (12) and (13), we obtain∑

x

ex(Rhijk,l − plRhijk)Bhkl
adeN

i
xN

j
x = 2gadΣe − gedΣa − geaΣd

+ n−m
n−2 Sade + 1

n−2gadFe−
n−m

(n−1)(n−2)regad + aaMed + adMea + geaQd + gedQa

for some (0, 1) tensor Q. Substituting the last relation into (92) we obtain

(94) Kad;e − peKad = m−2
n−2 Sade −

1
n−2gadFe + n−m

(n−1)(n−2)regad

− geaQd − gedQa − aaMed − adMea − 2gadΣe + gedΣa + geaΣd

+ (m− 1)(He − peH)gad + 1
2 [(m− 2)(Haged +Hdgae) + 2Hegad].

Observe that Sadegad = re − Fe.
Then, transvecting (94) with gad, we find that for some (0, 1) tensor Z,

Fe = − n−2
2(m−1)(K;e − peK) + 1

2

[
m−2
m−1 + m(n−m)

(n−1)(m−1)

]
re + Ze

+ (n− 2)[m2 (He − peH) +He −Σe],

which, by substituting into (94), yields

(95) 1
n−2Sade = 1

m−2(Kad,e − peKad)− 1
2(m−1)(m−2)(Ke − peK)gad

+ 1
m−2 [gadΣe − gedΣa − geaΣd]− 1

2(He − peH)gad − 1
2(Haged +Hdgae)

+ 1
2(n−1)(n−2)regad + 1

m−2(geaQd + gedQa + aaMed + adMea) + 1
m−2Zegad.

Substituting (95) into (91) and making use of (93) and the definition of Tad
we obtain

Cabcd;e = peCabcd + aaCebcd + abCaecd + acCabed + adCabce(96)
+ veGabcd + (zaGebcd + zbGaecd + zcGabed + zdGabce)
+ aa(gedUbc − gecUbd) + ab(gecUad − gedUbc)
+ ac(gbeUad − gaeUbd) + ad(gaeUbc − gbeUac)

for some 1-forms ve and ze on M, while Uad = 1
m−2Tad.
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Contracting (96) with gae and gaegbc we get

Cebcd;e = (pe + ae)Cebcd + gbcvd − gbdvc(97)

+m(gbczd − gbdzc) +m(Ubcad − Ubdac)
and

(98) (m− 1)vd +m(m− 1)zd +mUad −mtd = 0,

respectively, while summing (96) cyclically in (c, d, e) and contracting the
resulting equality with gae and gaegbc we obtain

(99) Cebcd;e

= (pe − 2ae)Cebcd − (m− 2)(gbcvd − gbdvc) + 2(m− 2)(gbczd − gbdzc)
+ (m− 3)(Ubcad − Ubdac) + U(gbcad − gbdac)− gbctd + gbdtc

and

(100) 2(m− 1)zd + 2Uad − 2td − (m− 1)vd = 0,

where U = Uadg
ad and td = aeUed. Solving (98) and (100) we find td =

(m − 1)zd + Uad, vd = 0. Finally, subtracting (97) from (99), in virtue of
the last relations, we obtain

aeC
e
bcd = −(gbczd − gbdzc)− (Ubcad − Ubdac),

which, by substituting into (96), ends the proof of Theorem 19(a). The proof
of (b) is exactly the same as the proof of [12, Theorem 5].

REFERENCES

[1] M. Belkhelfa, R. Deszcz, M. G logowska, M. Hotloś, D. Kowalczyk and L. Verstrae-
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