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DECOMPOSITIONS OF CYCLIC ELEMENTS
OF LOCALLY CONNECTED CONTINUA

BY

D. DANIEL (Beaumont, TX)

Abstract. Let X denote a locally connected continuum such that cyclic elements
have metrizable Gδ boundary in X. We study the cyclic elements of X by demonstrating
that each such continuum gives rise to an upper semicontinuous decomposition G of X
into continua such that X/G is the continuous image of an arc and the cyclic elements
of X correspond to the cyclic elements of X/G that are Peano continua.

1. Introduction. In Section IV of [15], G. T. Whyburn develops the
theory of cyclic elements of a metric continuum. In [6], B. Lehman ex-
tends much of Whyburn’s results to connected, locally connected, Hausdorff
spaces. The reader is referred to the survey by B. McAllister [8] for an out-
line of the development of cyclic element theory up to 1980. In addition to
the utility of cyclic element theory to the study and classification of Peano
continua, it has also been very useful in the study of non-metric continua.
Among others, Nikiel [9]–[11] and Nikiel, Tuncali and Tymchatyn [12] have
utilized cyclic element theory in studies of continuous Hausdorff images of
generalized arcs.

Many of the standard techniques and constructions in the theory of up-
per semicontinuous decompositions are not applicable to the collection of
cyclic elements of a locally connected continuum simply because the cyclic
elements need not be disjoint. As a result, decompositions of continua often
fail to preserve the intrinsic cut point structure and thus the cyclic element
structure of the base continua. If, however, X is a locally connected contin-
uum and cyclic elements are Gδ in X and have metrizable boundary in X,
we demonstrate that X does give rise to an upper semicontinuous decom-
position G of X into continua such that X/G is the continuous image of an
arc and such that the cyclic elements of X are in 1-1 correspondence with
the cyclic elements of X/G. Furthermore, the cyclic elements of X/G are
Peano subcontinua of X/G.
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The boundary conditions on X are quite strong. However, if one wishes
to utilize such a decomposition in the setting of continuous images of com-
pact ordered spaces (which was the basis for the author’s interest) then the
boundary conditions are in fact necessary. For example, it is shown in [3]
that an IOK (see Section 2) M is metrizable if and only if M is separable
and M may be embedded as a closed Gδ subset of some locally connected
continuum Y .

These results (particularly those in Section 3) generalize a similar con-
struction (proof of Lemma 4 of [14]) of L. B. Treybig. It should also be noted
that a related unpublished study has been done by B. Pearson [13].

2. Preliminaries. All spaces are assumed to be Hausdorff. A com-
pactum is a compact space. A continuum is a connected compactum. A
space X is said to be an IOK if it is the continuous image of some compact
ordered space K. If K is also connected, then X is said to be an IOC. An
arc is a continuum X which admits a linear ordering such that the order
topology coincides with the given topology.

If U is a cover of a space X and A ⊆ X then the star of A is denoted
Star(A,U) and is defined by Star(A,U) =

⋃
{u ∈ U : A ∩ u 6= ∅}. If U and

V are covers of X then U is a star refinement of V if and only if for each
u ∈ U there is some v ∈ V such that Star(u, U) ⊆ v.

A point p of connected space X is said to separate X if X − {p} is not
connected. If S, T , and R are non-empty subsets of X then S is said to
separate T and R if X − S is the union of two mutually separated sets T ′

and R′ such that T ⊆ T ′ and R ⊆ R′. A cyclic element C of a continuum X
is a subcontinuum of X that is maximal with respect to the property that
no point separates C. If a cyclic element C of X is non-degenerate, C is said
to be a true cyclic element of X. Otherwise, we say that C is a degenerate
cyclic element of X.

3. Structure theorems. We begin by establishing some structural the-
orems concerning locally connected continua. Throughout this section, X is
a locally connected continuum and Y is a closed subset of X with metric
Gδ boundary in X.

The proof of Lemma 1 below may be found in [2].

Lemma 1. There is a sequence {Un} of X-open sets and a sequence
{Hn} of finite covers of Y by connected X-open sets such that

(i) Y =
⋂
Un =

⋂
Cl(Un) and

X ⊇ Cl(U1) ⊇ U1 ⊇ Cl(U2) ⊇ U2 ⊇ Cl(U3) ⊇ U3 ⊇ · · · ,
(ii) Hn+1 is a star-refinement of Hn for each n ≥ 1,
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(iii) δ(h ∩ Bd(Y )) ≤ (1/3)n for each h ∈ Hn,
(iv) if p ∈ Bd(Y ), {p} =

⋂
Star(p,Hn),

(v) if h ∈ Hn then h does not intersect both Un+1 and X − Un.

Lemma 2. Under the conditions of the previous lemma, it may be as-
sumed that for each Hn and g ∈ Hn there exists a p ∈ Bd(g)−Cl(

⋃
h) where

the union is over all h ∈ Hn such that h 6= g.

Proof. By selecting and relabeling an appropriate subsequence of {Un},
we may assume that

U1 ⊇ Cl
(⋃

H1

)
⊇
⋃
H1 ⊇ Cl(U2) ⊇ U2 ⊇ Cl

(⋃
H2

)
⊇
⋃
H2 ⊇ · · · .

Fix n ≥ 1 and suppose Hn = {g1, . . . , gj}. Select j distinct points x1, . . . , xj
such that xi ∈ gi−Cl(Un+1) for each i = 1, . . . , j. Apply normality to obtain
disjoint open setsB1 andO1 such that x1 ∈ B1 andO1 ⊇ Cl(Un+1)∪ (X−g1)
∪ {x2, . . . , xj}. Apply normality again to obtain disjoint open sets B2 and
O2 such that x2 ∈ B2 and

O2 ⊇ Cl(Un+1) ∪ (X − g2) ∪ {x3, . . . , xj} ∪ Cl(B1).

Assume that Bm and Om are defined for all m such that 2 ≤ m < j.
Apply normality to obtain disjoint open sets Bm+1 and Om+1 such that
xm+1 ∈ Bm+1 and

Om+1 ⊇ Cl(Un+1) ∪ (X − gm+1) ∪ {xm+2, . . . , xj} ∪ Cl
( m⋃
i=1

Bi

)
.

For each i = 1, . . . , j, select an open neighborhood Ai of xi so that Cl(Ai)
⊆ Bi. Then for each i = 1, . . . , j we have xi ∈ Ai ⊆ Cl(Ai) ⊆ Bi ⊆ Cl(Bi) ⊆
gi − Cl(Un+1).

Now suppose that k and k′ are distinct natural numbers and k < k′. Then
Ok ⊇ Cl(Bk′) and Ok ∩ Cl(Bk) = ∅, and therefore Cl(Bk) ∩ Cl(Bk′) = ∅.
For each i = 1, . . . , j, define Hni = {h : h is a component of (gi −Cl(Ai))−
Cl(
⋃
l 6=iBl) and h ∩ Y 6= ∅}. Let H ′n =

⋃j
i=1Hni . Then, by construction,

there exists, for each h ∈ Hni ⊆ H ′n, a point y ∈ Bd(h) ∩ Bd(Ai) such that
y 6∈ Cl(

⋃
{h′ : h′ ∈ H ′n and h′ 6= h}).

In the following four results, let {Un} and {Hn} denote the sequence of
open sets and the sequence of finite covers, respectively, as constructed in
the preceding two lemmas. Also, we set G = {h : h ⊆ X, h =

⋂
n Star(x,Hn)

for some x ∈ Y } ∪ {{z} : z ∈ X − Y }.
Lemma 3. The elements of G partition X into continua.

Proof. Define a relationR onX by xRy if and only if x ∈
⋂
n Star(y,Hn).

Trivially, R is reflexive. Suppose xRy. Then for each n, there is an hn ∈ Hn

such that x, y ∈ hn. Therefore, y ∈
⋂
n Star(x,Hn) and R is symmetric.
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Now suppose that xRy and yRz. For each n, there exist hn+1, gn+1 ∈ Hn+1

such that without loss of generality x, y ∈ hn+1 and y, z ∈ gn+1. Since
hn+1 ∪ gn+1 ⊆ Star(y,Hn+1) ⊆ gn for some gn ∈ Hn, we have x, z ∈ gn.
Then x ∈

⋂
n Star(z,Hn) so that xRz and R is transitive. R is therefore

an equivalence relation on X, and G is clearly the set of R-equivalence
classes. If x ∈ X and n is a natural number then Star(x,Hn+2) ⊆ hn+1 ⊆
Cl(hn+1) ⊆ Star(hn+1, Hn+1) ⊆ hn ⊆ Star(x,Hn) for some hn ∈ Hn and
some hn+1 ∈ Hn+1. Therefore,

⋂
Star(x,Hn) =

⋂
Cl(Star(x,Hn)) so that

each element of G is a continuum.

Lemma 4. G is an upper semicontinuous decomposition of X into con-
tinua.

Proof. Suppose x ∈ g ∈ G and g ⊆ U with U open in X. There exists a
natural number n such that Cl(Star(x,Hn)) ⊆ U . Let y ∈ Star(x,Hn+2)−g.
Note that Star(y,Hn+2) ⊆ hn+1 for some hn+1 ∈ Hn+1. But x ∈ hn+1 and
Star(x,Hn+1) ⊆ U . Therefore, if y ∈ k ∈ G then k ⊆ U .

Theorem 5. Let φ : X → X/G denote the natural map. Then X/G is
a locally connected continuum and φ(Y ) is metrizable.

Proof. Since the set {Star(x,Hn) : x ∈ Y } is countable, the set B =
{K : K = {h ∈ G : h ⊆ Star(x,Hn) for some fixed x ∈ Y and fixed natural
number n} and

⋃
K is open in Y } is a countable basis for φ(Y ).

4. Application to cyclic elements. We consider applications of the
results of the previous section to the collection of cyclic elements of a locally
connected continuum. Although several of the results hold in a more general
setting (e.g. Lemmas 6 and 7), we assume throughout this section that X
is a locally connected continuum such that each cyclic element of X has
metrizable Gδ boundary in X.

A straightforward modification of the proofs of Theorems 6 and 7 (pages
313–315) of [5] yields the following lemma.

Lemma 6. Each cyclic element E of X is locally connected.

Lemma 7. Let E be a cyclic element of X. If a ∈ E and B and C are
disjoint connected subsets of E such that a 6∈ Cl(B)∪Cl(C) then there exists
a connected neighborhood N of a such that N is open in X and N does not
separate B from C in E.

Proof. By normality, there exist disjoint connected X-open sets U and
V such that a 6∈ U ∪ V , Cl(B) ⊆ U and Cl(C) ⊆ V . For each x ∈ E −
(U ∪ V ∪ {a}), select an open connected neighborhood N(x) of x such that
a 6∈ Cl(N(x)) and Cl(N(x))∩(Cl(B)∪Cl(C)) = ∅. ThenM = U∪V ∪{N(x) :
x ∈ E−(U∪V ∪{a})} is a cover of E−{a} by X-open sets. Select b ∈ B and
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c ∈ C. Then there is a chain M ′ = {M1, . . . ,Mk} ⊆M from b to c. Clearly,
both U and V must be elements of M ′. Then Cl(

⋃
M ′) is a continuum in

X that does not contain a. By normality, we may then select an X-open
connected neighborhood N of a such that N ∩ Cl(

⋃
M ′) = ∅.

It is well-known that a point being Gδ in a compact space is sufficient
for first countability of the space at the point. This condition clearly holds
for each point of the boundary of each cyclic element of X. The following
lemma is then immediate.

Lemma 8. Let E be a cyclic element of X and p ∈ Bd(E). Then X is
first countable at p.

Lemma 9. Let E be a cyclic element of X. There exists a sequence {Gn}
of finite covers of E by connected X-open sets such that Gn+1 is a star
refinement of Gn for each n ≥ 1, δ(g ∩ Bd(E)) ≤ (1/3)n for each g ∈ Gn,
and if h and k are elements of Gn such that Cl(h) ∩ Cl(k) = ∅ then no
element of Gn+1 separates h from k in E.

Proof. For each point p ∈ Bd(E), let N1(p) denote an open connected
neighborhood of p such that δ(N1(p)∩Bd(E)) ≤ 1/3. For q ∈ Int(E), select
an open connected neighborhood M1(q) such that Cl(M1(q)) ∩ Bd(E) = ∅.
Select a finite subcover G1 of E by elements of {N1(p) : p ∈ Bd(E)} ∪
{M1(p) : p 6∈ Bd(E)}. Now suppose that Gn has been constructed and if
1 ≤ m < n then Gm and Gm+1 satisfy the lemma. Let g ∈ Gn and define
Sn(g) = {{u,w}: u and w are elements of Gn such that Cl(u) ∩ Cl(w) = ∅
and g− (u∪w) separates u from w in E}. If Sn(g) = ∅ then g of course does
not separate any pair of elements of Gn. If Sn(g) 6= ∅ then apply Lemma 7
to obtain for each p ∈ g an open connected neighborhood L(p) of p so
that L(p) does not separate u and w for all {u,w} ∈ Sn(g), L(p) ⊆ g, and if
p ∈ Bd(E) then δ(L(p)∩Bd(E)) ≤ (1/3)n+1. Let R denote a star refinement
of {g ∈ Gn : Sn(g) = ∅} with the additional property that if p ∈ Bd(E)
then each element r of R containing p satisfies δ(r ∩ Bd(E)) ≤ (1/3)n+1.
Set G′′n+1 = R ∪ {L(p) : p ∈ g for some g ∈ Gn and Sn(g) 6= ∅}. Then let
G′n+1 be a star refinement of G′′n+1 and let Gn+1 be a finite cover of E by
elements of G′n+1.

A straightforward (although lengthy and tedious) adaptation of the
proofs of several previous results yields the following.

Corollary 10. For each cyclic element E of X, there is a sequence
{Un} of X-open sets and a sequence {Gn} of finite covers of E by connected
X-open sets satisfying the conclusions of each of Lemmas 1, 2, and 9.

Theorem 11. For each cyclic element E of X, there exists an upper
semicontinuous decomposition G(E) of E into continua such that E/G(E)
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is a locally connected metric continuum such that no point separates E/G(E)
and if p ∈ Bd(E) then {p} ∈ G(E).

Proof. Select and fix a cyclic element E of X. Suppose that {Gn} is the
sequence of finite covers of E as in the previous corollary. Define G(E) =
{S ⊆ E : S =

⋂
Star(x,Gn) for some x ∈ E}. That G(E) is an upper semi-

continuous decomposition of E into continua follows from Lemma 4, and
that E/G(E) is a locally connected metric continuum follows from Theo-
rem 5. By construction, each boundary point of E is a singleton element of
G(E).

We now show that no point separates E/G(E). Assume not. Then there
exists an x ∈ E and Y =

⋂
Star(x,Gn) ∈ G(E) such that Y separates

E/G(E). Then E/G(E) − {Y } = S1 ∪ S2 where S1 and S2 are mutually
separated and each is non-empty. Suppose that y1 ∈ S1 and y2 ∈ S2. If t ∈ Y
then there exists a natural number k and y′ ∈ Gk such that Star(t, Gk+1) ⊆
y′ ∈ Gk and so that some component K of E − y′ contains y1 and y2. Let
φE : E → E/G(E) denote the natural mapping. Then φE(K) is a connected
subset of E/G(E)− {Y } containing y1 and y2, a contradiction.

For each cyclic element E of X, let G(E) denote the upper semicontinu-
ous decomposition of E as in the previous theorem. Let φE : E → E/G(E)
denote the natural mapping. Define G = {g : g ∈ G(E) for some true cyclic
element E of X} ∪ {{x} for each degenerate cyclic element {x} of X}.

Theorem 12. E′ is a cyclic element of X/G if and only if E′ = E/G(E)
for some cyclic element E of X.

Proof. (⇐) E′ is connected and has no cut point by Theorem 11. Suppose
F ′ is a cyclic element of X/G such that F ′ properly contains E′. Then there
exists some cyclic element F of X such that φ−1

F (F ′) is connected and has no
cut point. Then F properly contains E, a contradiction to the maximality
of E.

(⇒) Let p be any point of E′. There exists a cyclic element E of X such
that φ−1

E (p) ⊆ E. If q ∈ E/G(E) then p and q are contained in a connected
subset of X/G having no cut point. Therefore, q ∈ E′ so that E/G(E) ⊆ E′.
Now suppose that r ∈ E′ − E/G(E). Then there exists a cyclic element F
of X such that F 6= E and φ−1

F (r) is defined. There exists a point t such that
t separates p and r in X. Then φF (t) is a cut point of E′, a contradiction.
Therefore, E′ ⊆ E/G(E).

Lemma 13. Let E be a true cyclic element of X and x ∈ Bd(E). Suppose
that x ∈ U where U is open in X. Then there exist at most a finite number
of true cyclic elements of X that both contain x and intersect X − U .

Proof. Each true cyclic element of X is contained in Cl(K) for exactly
one component K of X − {x}. Also, each such component K intersects at
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most one cyclic element containing x. By the local connectivity of X, at
most finitely many such components K may intersect X − U for any open
set U containing x.

Theorem 14. Let E be a cyclic element of X. Then the set {x ∈ E :
there exists a cyclic element D distinct from E such that x ∈ D} is countable.

Proof. Let {Un : n = 1, 2, . . . } be a collection of X-open sets such that⋂
n Un = E. By an argument similar to that of Lemma 13, there are only

countably many components K of X − E that meet X − Un for some n.
The set X − E therefore has countably many components. If D is a cyclic
element that meets E but is distinct from E then D is contained in Cl(K)
for exactly one component K of X − E. Any such K may contain at most
one such cyclic element D.

Lemma 15. Let p ∈ Bd(D) for some cyclic element D of X and suppose
p ∈ U with U open in X. Suppose also that {Bn} is local basis at p of
connected open sets such that U ⊇ Cl(B1) ⊇ B1 ⊇ Cl(B2) ⊇ B2 ⊇ · · · .
Then there is no sequence {hn} of elements of G such that

(i) for each i, hi ∩Bi 6= ∅ and hi ∩ (X − U) 6= ∅,
(ii)

⋃
hi ⊆

⋃
F , where F = {F : F is a true cyclic element of X,

p 6∈ F}.
Proof. Assume such a sequence exists. We consider two cases.

Case 1. Suppose infinitely many elements of {hn} are contained in a
single true cyclic element E of X; suppose

⋃
k hnk ⊆ E. Then it follows that

E contains a non-degenerate subcontinuum H such that H is the sequential
limiting set of {hnk} and such that p ∈ H. Then p ∈ Bd(E), a contradiction.

Case 2. Suppose no single true cyclic element of X contains infinitely
many elements of {hn}. Then there exist infinitely many distinct true cyclic
elements F1, F2, . . . such that Fi ∩ Bi 6= ∅ and Fi ∩ (X − U) 6= ∅ for all i.
We then obtain a contradiction by employing an argument similar to that
used in the proof of Lemma 13.

Lemma 16. Let p ∈ Bd(E) for some true cyclic element E of X and
suppose p ∈ U with U open in X. Then there exists a collection Q of elements
of G and an open set O such that p ∈ O ⊆

⋃
Q ⊆ U .

Proof. By the previous lemmas, there is an open connected neighbor-
hood B at p such that only finitely many cyclic elements of X both contain
p and meet X − U , and such that if F is a cyclic element of X that does
not contain p then no element g ∈ G(F ) may intersect both B and X − U .
Define Q = {g ∈ G : g ⊆ U} and suppose {Cn} is a countable local basis at
p of connected open sets such that B ⊇ Cl(C1) ⊇ C1 ⊇ Cl(C2) ⊇ C2 ⊇ · · · .
Now assume that no such open set O exists. Then there exists a sequence
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{pn} such that {pn} converges to p and pn ∈ X −
⋃
Q for each n. We may

clearly assume that pn ∈ Cn for each n. Each pn must be contained in some
gn ∈ G. Each gn belongs to G(En) for some cyclic element En of X. Since
each gn contains pn ∈ Cn ⊆ B and gn ∩ (X − U) 6= ∅, we may assume
without loss of generality that En = F for each n. Since G(F ) is upper
semicontinuous, there is a relatively open set W in F that contains p such
that W ⊆ U , and if g ∈ G(F ) and g ∩W 6= ∅ then g ⊆ B ∩ F . This implies
that gn ⊆ B ∩ F ⊆ U for some n, a contradiction.

Theorem 17. G is an upper semicontinuous decomposition of X into
continua, each cyclic element of X/G is a Peano continuum, and X/G is
an IOC.

Proof. Suppose g ∈ G and g ⊆ U with U open in X. We consider three
cases.

Case 1. Suppose that g = {p}, where p ∈ Bd(E) for some true cyclic
element E of X. By the previous lemma, there is a collection Q of elements
of G and an X-open set O such that p ∈ O ⊆

⋃
Q ⊂ U .

Case 2. Suppose g ⊆ Int(E) for some true cyclic element E of X. Since
G(E) is upper semicontinuous, there is an E-open set O′ such that O′ ⊆ U ,
and if h ∈ G and h ∩O′ 6= ∅ then h ⊆ U .

Case 3. Suppose that g = {p} and p 6∈ E for any true cyclic element E
of X. Then there exists an open set W such that p ∈W and no true cyclic
element of X intersects both W and U −W . Then no element of G that
intersects W also intersects X − U .

Local connectivity of cyclic elements of X/G follows from Lemma 6 and
metrizability thereof follows from Theorem 5. X/G is an IOC by a result of
Cornette [1].

Finally we demonstrate an application of the results of this section in
light of recent results on liftings of quotient mappings. We continue to as-
sume that X is a locally connected continuum such that each cyclic element
of X has metrizable Gδ boundary in X. Also, let X/G be the decomposition
of Theorem 17 with φ : X → X/G the natural mapping.

Theorem (Theorem 1 of Daniel, Nikiel, Treybig, Tuncali, and Tym-
chatyn [4]). Let Z be a locally connected continuum and H an upper semi-
continuous decomposition of Z such that

(i) each g ∈ H is connected and has zero-dimensional boundary,
(ii) each g ∈ H is a continuous image of an ordered compactum.

If the quotient space Z/H is the continuous image of an ordered continuum
then so too is Z.
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Corollary 18. If each g ∈ G is an IOK and has zero-dimensional
boundary in X then X is an IOC.

Proof. For each true cyclic element C of X, φ(C) is a Peano continuum
and is therefore perfectly normal. Hence φ−1(g) has closed, zero-dimensional,
Gδ boundary in X for each g ∈ G. It follows from Mardešić [7] that Bd(g)
is in fact metrizable for each g ∈ G. Then each cyclic element is an IOC by
the Theorem above. It then follows from a result of J. Cornette [1] that X
is an IOC.

We chose to include the proof above because it reveals slightly more of
the structure of the elements of G, but an alternate proof is given simply
by recalling the result of Cornette [1] and then directly applying the result
above from [4].
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