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REFLEXIVELY REPRESENTABLE BUT NOT HILBERT

REPRESENTABLE COMPACT FLOWS AND

SEMITOPOLOGICAL SEMIGROUPS

BY

MICHAEL MEGRELISHVILI (Ramat-Gan)

Abstract. We show that for many natural topological groups G (including the group
Z of integers) there exist compact metric G-spaces (cascades for G = Z) which are re-
flexively representable but not Hilbert representable. This answers a question of T. Dow-
narowicz. The proof is based on a classical example of W. Rudin and its generalizations.
A crucial step in the proof is our recent result which states that every weakly almost
periodic function on a compact G-flow X comes from a G-representation of X on reflexive
spaces. We also show that there exists a monothetic compact metrizable semitopological
semigroup S which does not admit an embedding into the semitopological compact semi-
group Θ(H) of all contractive linear operators on a Hilbert space H (though S admits an
embedding into the compact semigroup Θ(V ) for certain reflexive V ).

1. Matrix coefficients and Eberlein groups

1.1. Preliminaries. Let X be a topological space and S be a semitopo-

logical semigroup (that is, the multiplication map S × S → S is separately
continuous). Let S ×X → X, (s, x) 7→ sx, be a (left) action of S on X. As
usual, we say that (S,X), or X (when S is understood), is an S-space if the
action is at least separately continuous. For topological groups we reserve
the symbol G. For group actions G-space, G-system or a G-flow will mean
that the action is jointly continuous.

As usual, (G,X) is (point) transitive means that X has a dense G-orbit.

Right actions (X,S) can be defined analogously. If Sop is the opposite

semigroup of S (with the same topology) then (X,S) can be treated canon-
ically as a left action (Sop, X) (and vice versa). A mapping h : S1 → S2

between semigroups S1 and S2 is said to be a co-homomorphism if h(st) =
h(t)h(s) for every s, t ∈ S1. This is equivalent to h being a usual homomor-
phism from S1 to Sop

2 . If, in addition, S1 and S2 carry some topologies and
h is a homeomorphism then we say that h is a co-isomorphism and S1 and
S2 are topologically co-isomorphic.

2000 Mathematics Subject Classification: 54H20, 54H15, 43A65.
Key words and phrases: enveloping semigroup, Fourier–Stieltjes algebra, matrix coef-

ficient, wap compactification, positive definite function, semitopological semigroup.

[383] c© Instytut Matematyczny PAN, 2008



384 M. MEGRELISHVILI

We say that an S-space X is a subdirect product of a class Γ of S-spaces
if X is an S-subspace of an S-product of some members from Γ .

All topological spaces are assumed to be Tikhonov, that is, Hausdorff
and completely regular. For every topological space X denote by C(X) =
C(X,K) the algebra of all bounded continuous K-valued functions on X
with respect to the sup-norm, where K is the real field R or the complex
field C. Recall the following very useful fact.

Lemma 1.1 (Grothendieck’s lemma). Let X be a compact space. Then a

bounded subset A of C(X) is weakly compact (for short , w-compact) iff A
is pointwise compact.

Let X be a compact S-flow. Denote by E := E(X) ⊂ XX the corre-
sponding (compact right topological) enveloping semigroup. It is the point-
wise closure of the set of translations {s̃ : X → X}s∈S in the product
space XX .

1.2. WAP functions and systems. A function f ∈ C(X) on an S-space
X is weakly almost periodic (wap, for short) if the orbit fS := {fs}s∈S of f
(with respect to the canonical right action C(X)×S → C(X), (ϕ, s) 7→ ϕs,
where (ϕs)(x) := ϕ(sx)) is relatively weakly compact in C(X). The set
WAP(X) of all wap functions on X is a closed subalgebra of C(X). In par-
ticular, we can consider S as a natural S-space X := S. The corresponding
algebra of wap functions will be denoted simply by WAP(S).

Remark 1.2. A bounded function f ∈ C(X) = C(X,K) on an S-space
X is wap iff it has the double limit property (DLP). This follows easily by
Grothendieck’s classical results (see Lemma 1.1 and Theorem A.4 of [2,
Appendix A]). Recall that DLP for the function f means precisely that for
every pair of sequences {sn}n∈N, {xm}m∈N in S and X respectively,

lim
m

lim
n
snxm = lim

n
lim
m
snxm

whenever both limits exist.

Definition 1.3 (Ellis and Nerurkar [10] for S := G). A compact S-space
X is weakly almost periodic (wap, for short) if WAP(X) = C(X).

Lemma 1.4 (Ellis and Nerurkar [10] for S := G). Let X be a compact

S-space. The following conditions are equivalent :

(1) (S,X) is wap.

(2) The enveloping semigroup E(X) of (S,X) consists of continuous

maps.

The following well known fact easily follows from Lemma 1.4.

Fact 1.5. If (S,X) is wap then the enveloping semigroup E(X) is a

compact semitopological semigroup.
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Every metrizable wap compact G-system X comes from representations
of (G,X) on reflexive Banach spaces (see Theorem 2.10(3) below).

For more details about wap functions on S-spaces (including the proof
of Lemma 1.4) see [19] or [27].

1.3. Representations of groups and operator topologies. Let V be a Ba-
nach space. Denote by Aut(V ) the group of all continuous linear automor-
phisms of V . Its subgroup of all linear surjective isometries V → V will
be denoted by Is(V ). In the present paper we consider only group repre-
sentations into Is(V ). More precisely, a representation (co-representation)
of a topological group G on a Banach space V is a homomorphism (resp.
co-homomorphism) h : G → Is(V ). One can endow Is(V ) with the strong

operator topology inherited from V V . Denote by Vw the space V in its weak
topology. The corresponding topology on Is(V ) inherited from V V

w is the
weak operator topology. Recall that a Banach space V is said to have the point

of continuity property (PCP) if every bounded weakly closed subset C ⊂ V
admits a point of continuity of the identity map (C,weak) → (C, norm) (see
for example [18, p. 55]). Every reflexive space has PCP.

Theorem 1.6 ([25]). Let V be a Banach space with PCP (e.g., reflexive).

(1) For every bounded subgroup H of Aut(V ) the weak and strong opera-

tor topologies coincide on H. Hence every weakly continuous (co)re-
presentation h : G→ Is(V ) on V with PCP is strongly continuous.

(2) The weak and strong operator topologies coincide on Is(V ).

1.4. Matrix coefficients

Definition 1.7. Let h : G → Is(V ) be a given co-representation of G
on V and

V ×G→ V, (v, g) 7→ vg := h(g)(v),

be the corresponding right action.

For every pair of vectors v ∈ V and ψ ∈ V ∗ there exists a canonically
associated matrix coefficient defined by

mv,ψ : G→ K, g 7→ 〈vg, ψ〉 = 〈v, gψ〉.

Denote by ṽ : Is(V ) → V , i 7→ ṽ(i) = i(v), the orbit map. Then the following
diagram commutes:

G

h
��

mv,ψ // K

Is(V )
ṽ // V

ψ

OO
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If h : G → Is(V ) is a representation (that is, a group homomorphism)
then it is natural to define a matrix coefficient mv,ψ by

mv,ψ : G→ K, g 7→ 〈gv, ψ〉 = 〈v, ψg〉.

If h : G → Is(H) is a continuous group representation into a Hilbert
space H and ψ = v, then the corresponding map g 7→ 〈gv, v〉 is a positive

definite function (pdf) on G. Denote by P (G) the set of all pdfs on G.
The converse is also true: every continuous pdf comes from some continuous
Hilbert representation (see for example [3]).

We say that a vector v ∈ V is norm (resp. weakly) G-continuous if the
corresponding orbit map ṽ : G → V , ṽ(g) = vg, defined through h : G →
Is(V ), is norm (resp., weakly) continuous. Similarly one can define a norm
G-continuous vector ψ ∈ V ∗ (with respect to the dual representation of G
on V ∗).

Note that if the co-representation h : G → Is(V ) is weakly continuous
(that is, each v ∈ V is weakly continuous) then mv,ψ ∈ C(G) for every
ψ ∈ V ∗ and v ∈ V .

Lemma 1.8. Let h : G→ Is(V ) be a weakly continuous co-representation

of G on V . For every ψ ∈ V ∗ and v ∈ V define

Lψ : V → C(G), Rv : V ∗ → C(G), where Lψ(v) = Rv(ψ) = mv,ψ.

Then

(1) Lψ and Rv are bounded linear operators.

(2) If ψ (resp., v ∈ V ) is norm G-continuous, then mv,ψ is left (resp.,
right) uniformly continuous on G.

(3) (Eberlein) If V is reflexive, then mv,ψ ∈ WAP(G).

Proof. See [27, Fact 3.5] and also Example 2.8 below.

Assertion (3) of this lemma comes from Eberlein. The converse is also
true: every wap function is a matrix coefficient of some (co-)representation
on a reflexive space (see Theorem 2.10(2) below).

1.5. Eberlein groups

Definition 1.9. Following Eymard [12] denote by B(G) = B(G,C) the
set of all matrix coefficients of Hilbert representations for the group G. This
is the collection of functions of the form

mu,v : G→ C, g 7→ 〈gu, v〉,

where we consider all possible continuous unitary representations h : G →
U(H) into complex Hilbert spaces H. Then B(G) is a subalgebra of C(G)
closed under pointwise multiplication and complex conjugation. This alge-
bra is called the Fourier–Stieltjes algebra of G (see, for example, [12, 22]).
Elements of this algebra will be called Fourier–Stieltjes functions on G.
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Analogously can be defined the real version B(G) = B(G,R) ⊂ C(G,R)
regarding real Hilbert space representations of G.

The algebra B(G) is rarely closed in C(G). Precisely, if G is locally
compact then B(G) is closed in C(G) iff G is finite. Clearly, the set P (G)
of positive definite functions on G is a subset of B(G) and every m ∈ B(G)
is a linear combination of some elements from P (G). Every positive definite
function is wap (see for example [3]). Hence always B(G) ⊂ WAP(G). The
question whether B(G) is dense in WAP(G) was raised by Eberlein (see
[31]) and leads to the following definition of Eberlein groups [22] (originally
defined for locally compact groups).

Definition 1.10 (Chou [5], Mayer [22]). A topological group G is called
an Eberlein group if the uniform closure cl(B(G)) (denoted by E(G) =
E(G,C)) of B(G) = B(G,C) in C(G) = C(G,C) is WAP(G) = WAP(G,C)
(or, equivalently, if every wap function on G can be uniformly approximated
by Fourier–Stieltjes functions).

Replacing C by R in this definition we get the real-valued version. In
this case one may say that G is R-Eberlein. However, the following lemma
shows that being R-Eberlein and Eberlein is the same.

Lemma 1.11. Let G be a topological group and f ∈ C(G,C). Consider

the canonical representation f(g) = f1(g)+if2(g) by two real-valued bounded

functions f1, f2 ∈ C(G,R).

(1) f1, f2 ∈ WAP(G,R) if and only if f ∈ WAP(G,C).
(2) f1, f2 ∈ B(G,R) if and only if f ∈ B(G,C).
(3) G is R-Eberlein if and only if G is Eberlein. That is, cl(B(G,R)) =

WAP(G,R) if and only if cl(B(G,C)) = WAP(G,C).

Proof. (1) Use for example DLP and Remark 1.2.
(2) If f1, f2 ∈ B(G,R) then there exist:

(a) two real Hilbert spaces H1 and H2;
(b) continuous unitary representations h1 : G → U(H1) and h2 :

G→ U(H2);
(c) vectors u1, v1 ∈ H1 and u2, v2 ∈ H2

such that f1(g) = 〈gu1, v1〉 and f2(g) = 〈gu2, v2〉. Consider the orthogonal
sum H := H1 ⊕ H2 of real Hilbert spaces and the complexification H0 :=
{a + ib | a, b ∈ H} of H. We have an induced unitary representation G →
U(H0) of G on the complex Hilbert space H0. Then f(g) = 〈gu, v〉, where
u := u1 + iu2 ∈ H0 and v := v1 + v2 ∈ H ⊂ H0.

Conversely, if f ∈ B(G,C) then there exist: a complex Hilbert space
H with its complex (sesquilinear) inner product 〈 , 〉, a continuous unitary
representation h : G → U(H) and two vectors u, v ∈ H such that f(g) =
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〈gu, v〉 for every g ∈ G. Denote by HR the corresponding real Hilbert space
with the real inner product H ×H → R, (x, y) 7→ Re(〈x, y〉). Now observe
that f1(g) = Re(〈gu, v〉) and f2(g) = Re(−i〈gu, v〉) = Re(〈gu, iv〉). This
proves that f1, f2 ∈ B(G,R).

(3) follows easily using (1) and (2).

Remark 1.12.

(a) By a result of Rudin [31] the group Z of all integers and the group
R of all reals are not Eberlein.

(b) More generally, Chou [5] proved that no locally compact noncompact
nilpotent group is Eberlein.

(c) By a result of Veech [37] every semisimple Lie group G with a fi-
nite center (e.g., G := SLn(R)) is Eberlein. In fact, WAP(G,C) =
C0(G,C) ⊕ C holds for G := SLn(R). It follows that WAP(G,R) =
C0(G,R) ⊕ R for G := SLn(R).

From now on, if not otherwise stated, we assume that K = R; in partic-

ular, all Banach spaces and algebras are assumed to be real.

2. Actions on reflexive Banach spaces. We recall some old and new
results about actions on reflexive spaces. Many of them can be found in [2],
[3], [9], [13], [25], [8], [36].

2.1. Dual actions. Let V be a Banach space. Denote by BV its closed
unit ball. The dual Banach space of V will be denoted by V ∗. For every
strongly continuous (co-)representation h : G → Is(V ) the corresponding
dual action of G on the weak star compact unit ball BV ∗ of the dual space
V ∗ is jointly continuous. Hence, BV ∗ becomes a G-system. Sometimes (but
not in general) this action is also jointly norm continuous, as follows from
the result below.

Theorem 2.1 ([23, Corollary 6.9]). Let V be an Asplund (e.g., reflexive)
Banach space. If a, not necessarily isometric, linear action π : G× V → V
is continuous then so is the dual action π∗ : V ∗×G→ V ∗, (fg)(v) = f(gv).

2.2. Representations of flows on Banach spaces. Denote by Θ(V ) the
semigroup of all contractive linear operators σ : V → V , ‖σ‖ ≤ 1. It is
a semitopological semigroup with respect to the weak operator topology.
Moreover, Θ(V ) is compact iff V is reflexive iff BV is weakly compact. The
compact semitopological semigroups Θ(V ) and Θ(V ∗) are topologically co-
isomorphic for every reflexive V . Indeed, the desired co-isomorphism is the
usual adjoint map.

The following definition of flow representations has already had some
significant applications [27, 14–16].
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Definition 2.2 (see [27]). Let S ×X → X be a separately continuous
action on X of a semitopological semigroup S.

(1) A continuous representation of (S,X) on a Banach space V is a pair

(h, α) : S ×X ⇉ Θ(V ) × V ∗

where h : S → Θ(V ) is a weakly continuous co-homomorphism
(equivalently, h : S → Θ(V )op is a homomorphism) of semigroups
and α : X → V ∗ is a weak star continuous bounded S-mapping with
respect to the dual action

S × V ∗ → V ∗, (sϕ)(v) := ϕ(h(s)(v)).

A continuous representation (h, α) is proper if α is a topological
embedding.

(2) (S,X) is reflexively representable if there exists a proper represen-
tation of (S,X) on a reflexive space V . A reflexively representable
compact flow is a dynamical version of Eberlein compacta in the
sense of Amir & Lindenstrauss. If we can choose V to be Hilbert,
then (S,X) is called Hilbert representable. The classes of Hilbert
representable and reflexively representable compact systems will be
denoted by Hilb and Ref respectively.

(3) (S,X) is called a Hilbert (resp., reflexively) approximable system if it
can be represented as a subdirect product of Hilbert (resp., reflexively)
representable systems. Denote by Hilbapp and Refapp the classes of
all Hilbert (resp., reflexively) approximable compact systems.

Remark 2.3.

(1) Let V be a reflexive (resp., Hilbert) space. As usual, denote by BV
and BV ∗ the weakly compact unit balls of V and V ∗ respectively.
Then the canonical separately continuous left actions (Θ(V )op, BV ∗)
and (Θ(V ), BV ) are reflexively (resp., Hilbert) representable. The
first case is immediate by our definitions. For the second case observe
that (Θ(V ), BV ) can be identified with (Θ(W )op, BW ∗) for W := V ∗.

(2) It follows that the definition of reflexive (resp., Hilbert) representabil-
ity can be simplified. Precisely, (S,X) is reflexively (resp., Hilbert)
representable iff there exists a continuous homomorphism h : S →
Θ(W ) and a weakly continuous embedding α : X →֒ BW such that
α(sx) = h(s)α(x), where W is reflexive (resp., Hilbert).

(3) Reflexive representability becomes especially simple for cascades. Let
(Z, X) be an invertible cascade induced by a self-homeomorphism
σ : X → X. Then (Z, X) is reflexively (resp., Hilbert) representable
if and only if there exist: a reflexive (resp., Hilbert) space V , a linear
isometric operator T ∈ Is(V ) and a topological embedding α : X →֒
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BV into the weakly compact unit ball BV such that α(σx) = Tα(x)
for every x ∈ X.

(3) Let S be a subsemigroup of the compact semitopological semigroup
Θ(V ) (with V reflexive). Consider the natural left action of S
on Θ(V ). Then this action is reflexively approximable. Indeed, it
can be approximated by actions of the form (S,BV ) (see proof of
Lemma 4.5).

Recall [34, 30] that every Hausdorff topological group G admits a proper
representation into a Banach space V . Namely, we can consider the algebra
V := RUC(G) of all right uniformly continuous functions on G. Indeed, the
mapping

h : G→ Is(RUC(G)), h(g)(f)(x) = f(g−1x),

is a topological group embedding (“Teleman’s representation”). Defining
h(g)(f)(x) = f(gx) we get a co-embedding h : G→ Is(RUC(G)).

Remark 2.4.

(1) It is easy to see that every right uniformly continuous function
f ∈ RUC(G) on G is a matrix coefficient of some continuous co-
representation h : G → Is(V ). In fact, we can always take V :=
RUC(G) (see [27]). The use of “co-representations” of G seems to be
unavoidable, in general. Indeed, if h : G→ Is(V ) is a homomorphism
then the matrix coefficient mv,ψ is defined by

mv,ψ : G→ R, g 7→ 〈gv, ψ〉 = 〈v, ψg〉,

where gv := h(g)(v). If h is strongly continuous then as in Lemma
1.8(2) we see that f = mv,ψ is necessarily left uniformly continuous.
It follows that if f ∈ RUC(G) but f /∈ LUC(G) then f cannot be
represented as a matrix coefficient of a strongly continuous represen-
tation on a Banach space.

(2) If V is reflexive then the situation is symmetric. Turning to the
dual representation we can rewrite every matrix coefficient of a co-
representation as a matrix coefficient defined by means of the dual
representation. The reflexivity of V implies by Theorem 2.1 that
the dual representation (resp., co-representation) of a given continu-
ous co-representation (resp., representation) is also continuous. Sim-
ilarly, matrix coefficients of a representation on a reflexive space can
be treated as matrix coefficients of a co-representation.

(3) If V is reflexive and S = G is a group then in Definition 2.2 the
weakly continuous homomorphism h : G → Θ(V ) is necessarily
strongly continuous (Theorem 1.6).

(4) Every compact G-flow X also admits a proper strongly continuous
Banach representation in the sense of Definition 2.2(1). Indeed, de-
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fine the strongly continuous co-homomorphism

h : G→ Is(C(X)), h(g)(f)(x) := f(gx),

and the weak star embedding α : X → C(X)∗, α(x) := δx, where δx
is the point measure C(X) → R, f 7→ f(x).

2.3. Compactifications. A G-compactification of (G,X) is a continuous
G-map ν : X → Y with a dense range into a compact G-flow Y . The
compactification is proper if ν is a topological embedding.

Definition 2.5 (see for example [14, 15]).

(1) We say that a function f ∈ C(X) on a G-space X comes from a
compact G-system Y if there exist a G-compactification ν : X → Y
(so ν is onto if X itself is compact) and a function F ∈ C(Y ) such
that f = F ◦ ν.

(2) A function f ∈ C(G) comes from a pointed system (Y, y0) if for some
continuous function F ∈ C(Y ) we have f(g) = F (gy0) for all g ∈ G.
Defining ν : X = G→ Y by ν(g) = gy0 observe that this is indeed a
particular case of (1).

Definition 2.6.

(1) Denote by Hilb(X) the set of all continuous functions on a G-space
X which come from Hilbert representable G-compactifications ν :
X → Y . In particular, for the canonical left G-space X := G we get
the definition of Hilb(G). Similarly one can define the sets Hilbapp(X)
and Hilbapp(G).

(2) Replacing in (1) “Hilbert” by “reflexive” we get the definitions of
the sets Ref(X) and Refapp(X).

(3) More generally, let Γ be a class of G-flows. Denote by Γ (X) the
set of all continuous functions on a G-space X which come from a
G-compactification ν : X → Y such that Y is in Γ .

In fact, always Hilbapp(X) = Hilb(X) and Refapp(X) = Ref(X) (see
Proposition 3.5). At the same time Hilbapp 6= Hilb and Refapp 6= Ref even
for the trivial group (just take a compact space which is not an Eberlein
compactum).

Let A be a uniformly closed subalgebra of C(X) for some topological
space X. The corresponding Gelfand space (that is, the maximal ideal space
of A) will be denoted by XA. Let νA : X → XA be the associated compact-
ification map. For instance, the greatest ambit of G is the compact G-space
GRUC := GRUC(G). It defines the universal (right topological) semigroup

compactification of G. For A = WAP(G) we get the universal semitopologi-

cal compactification uwap : G→ GWAP of G, which is also the universal wap
compactification (see [21]) of G.
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Remark 2.7. By [29] the natural projection q : GRUC → GWAP is a
homeomorphism iff G is precompact. In the converse direction, by [24] there
exists a Polish nontrivial group G, namely G := H+[0, 1], such that the uni-
versal semitopological compactification GWAP reduces to a singleton (equiv-
alently, every wap function is constant).

2.4. DFJP factorization theorem for actions

Example 2.8.

(1) The next example goes back to Eberlein [9] (see also [2, Examples
1.2.f]). If V is reflexive, then every continuous representation (h, α)
of a G-flow X on V and every pair (v, ψ) lead to a weakly almost
periodic function mv,ψ on G. This follows easily from the (weak)
continuity of the natural bounded operator Lψ : V → C(G), where
Lψ(v) = mv,ψ. Indeed, if the orbit vG is relatively weakly compact
in V (e.g., if V is reflexive), then the same is true for the orbit
Lψ(vG) = mv,ψG of mv,ψ in C(G). Thus mv,ψ is wap. In fact, this
argument proves Lemma 1.8(3).

(2) Analogously, every v ∈ V (with V reflexive) defines a wap function
Tv : X → R on our G-flow X which naturally comes from the given
flow representation (h, α). Precisely, define

Tv : X → R, x 7→ 〈v, α(x)〉.

Then {Tv}v∈V ⊂ WAP(X). If in our example α is an embedding
(which implies thatX is reflexively representable) then {Tv}v∈V (and
hence also WAP(X)) separates the points of X. If, in addition, X is
compact it follows that in fact WAP(X) = C(X) (because WAP(X)
is always a closed subalgebra of C(X)). That is, in this case (G,X)
is wap in the sense of Ellis & Nerurkar.

We proved in [27] that the converses to these facts are also true. We
provide here a slightly improved result by direct arguments.

Theorem 2.9. Let S ×X → X be a separately continuous action of a

semitopological semigroup S on a compact space X. For every f ∈ WAP(X)
there exist : a reflexive space V and an equivariant pair

(h, α) : (S,X) ⇉ (Θ(V ), BV )

such that :

(i) h : S → Θ(V ) is a weakly continuous homomorphism and α : X →
BV is a weakly continuous S-map.

(ii) There exists φ ∈ V ∗ such that f(x) = 〈φ, α(x)〉 = φ(α(x)) for every

x ∈ X.

(iii) If S is separable we can assume that V is also separable.
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(iv) If S = G is a group then one can assume in addition that h(G) ⊂
Is(V ) and h : G→ Is(V ) is strongly continuous.

Proof. Adjoining the isolated identity e (if necessary), one can assume
that S is a monoid and ex = x.

(i) Since f ∈ WAP(X) the weak closure Y := clw(fS) of the S-orbit
fS in C(X) (with respect to the natural right action C(X) × S → C(X))
is weakly compact. Then the evaluation map w : Y × X → R, (y, x) 7→
w(y, x) = 〈y, x〉, is bounded, separately continuous and 〈ys, x〉 = 〈y, sx〉 for
every s ∈ S. Consider the induced linear left action S×C(Y ) → C(Y ). Then
the natural map α : X → C(Y ), α(x)(y) = 〈y, x〉, is an S-map. Moreover,
this map is weakly continuous by (Grothendieck’s) Lemma 1.1 (because α
is pointwise continuous and α(X) is pointwise compact and bounded, hence
weakly compact). Denote by E the Banach subspace of C(Y ) topologically
spanned by α(X). That is, E = cl(sp(α(X))).

Clearly every s-translation s̃ : C(Y ) → C(Y ) is a contractive linear
operator. The orbit map z̃ : S → C(Y ) is pointwise continuous for every z ∈
α(X) ⊂ C(Y ). Again by Grothendieck’s lemma, z̃ is even weakly continuous.
Then the same is true for every u ∈ E = cl(sp(α(X))) (as follows, for
example, from [2, Proposition 6.1.2]). By the Hahn–Banach theorem, the
weak topology of E is the same as its relative weak topology as a subset
of C(Y ). We conclude that the action S × (E,w) → (E,w) is separately
continuous on (E,w).

Denote by W the convex, circled hull Γ (α(X)) of α(X). By the Krein–
Shmul’yan theorem, W is relatively weakly compact in E. We can apply an
interpolation technique of [7]. For each natural n, set Kn = 2nW + 2−nBE .
Then Kn is convex, circled, bounded and radial (we use the terminology
of [32]). Therefore the Minkowski functional ‖v‖n of the set Kn is a well
defined seminorm. Recall that ‖v‖n = inf {λ > 0 | v ∈ λKn}. Then ‖ ‖n is
a norm on E equivalent to the given norm of E. For v ∈ E, let

N(v) :=
( ∞∑

n=1

‖v‖2
n

)1/2
and V := {v ∈ E | N(v) <∞}.

Denote by j : V → E the inclusion map (of sets).

(1) j : V → E is a continuous linear injection and α(X) ⊂W ⊂ BV .

Indeed, if w ∈ W then 2nw ∈ Kn. So, ‖w‖n ≤ 2−n. Thus, N(w)2 ≤∑
n∈N

2−2n < 1.

(2) (V,N) is a reflexive Banach space (see [7, Lemma 1]). Hence the

restriction of j : V → E to each bounded subset A of V induces a

homeomorphism of A and j(A) in the weak topologies.

By our construction, W and BE are S-invariant. Thus we get
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(3) V is an S-subset of E and N(sv) ≤ N(v) for every v ∈ V and

every s ∈ S.

(4) For every v ∈ V , the orbit map ṽ : S → V, ṽ(s) = sv, is weakly

continuous.

Indeed, by (3), the orbit ṽ(S) = Sv is N -bounded in V . Our assertion
now follows from (2) (for A = Sv), taking into account that ṽ : S → E is
weakly continuous.

By (3), for every s ∈ S, the translation map s̃ : V → V , v 7→ sv, is a
linear contraction of (V,N). Therefore, we get the homomorphism h : S →
Θ(V ), h(s) = s̃, with h(e) = 1V .

Now, directly from (4), we obtain the following assertion.

(5) h : S → Θ(V ) is a w-continuous monoid homomorphism.

By our construction the natural map α : X → BV is well defined by (1).
It is clearly an S-map because V is an S-subset of E ⊂ C(Y ). Since α : X →
E is weakly continuous, (2) implies that α : X → BV is weakly continuous.
This proves (i).

(ii) Denote by γ the continuous linear operator V → C(Y ) defined as
the composition i ◦ j. Consider its adjoint γ∗ : C(Y )∗ → V ∗. Since S is a
monoid, in our construction we can suppose that our original wap function f
belongs to Y . Then the functional f = ef ∈ Y ⊂ C(Y )∗ defines a functional
φ := γ∗(f) ∈ V ∗ such that f(x) = 〈φ, α(x)〉 = φ(α(x)) for every x ∈ X.

(iii) If S is separable then so are fS and its weak closure Y . Therefore
the compact space α(X) ⊂ C(Y ) is metrizable in (C(Y ), w). Hence α(X) is
separable in its weak topology. Then it is also norm separable. Indeed, if C
is a countable weakly dense subset of α(X) then the norm (weak) closure
of the convex hull co(C) of C is norm separable and contains α(X). This
implies that E is also separable.

Now it suffices to show that α(V ) ≤ d(E). That is, we have to show that
the canonical construction of [7] does not increase the density. Indeed, by
construction, V is a (diagonal) subspace of the l2-sum Z :=

∑
∞

n=1(E, ‖·‖n)l2 .
So, d(V ) ≤ d(Z). On the other hand, we know that every norm ‖ · ‖n is
equivalent to the original norm on E. Hence, d(E, ‖ · ‖n) = d(E). Therefore,
Z is an l2-sum of countably many Banach spaces, each of density d(E). It
follows that

d(V ) ≤ d(Z) = d(E).

(iv) If S = G is a group then h(G) ⊂ Is(V ) because by our construction
we can suppose that h is a monoid homomorphism and h(e) represents
the identity operator on V . Since h : G → Is(V ) is weakly continuous,
Theorem 1.6 implies that it is strongly continuous.
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It is easy to derive from Theorem 2.9 the following results from [27]
(taking into account Example 2.8 and Corollary 3.4).

Theorem 2.10 ([27]). Let G be a topological group.

(1) Every wap function on a G-space X comes from a reflexive repre-

sentation. That is, WAP(X) = Ref(X). Moreover , for every G the

classes Refapp and WAP coincide.

(2) Every f ∈ WAP(G) is a matrix coefficient of a reflexive representa-

tion.

(3) If X is a compact metric G-space then it is wap if and only if X is

reflexively representable.

Note that these results remain true for semitopological semigroup actions
as well. Theorems 2.10(2), 2.1 and Lemma 1.8 imply that every wap function
on a topological group is left and right uniformly continuous (Helmer [17]).
That is, WAP(G) ⊂ UC(G), where UC(G) := LUC(G) ∩ RUC(G).

2.5. Ellis-Lawson’s theorem. Theorems 2.9 and 1.6 lead to a soft geomet-
rical proof of the following version of Ellis–Lawson’s theorem (see Lawson
[20]).

Fact 2.11 (Ellis–Lawson’s joint continuity theorem). Let G be a sub-

group of a compact semitopological monoid S. Suppose that S×X → X is a

separately continuous action with compact X. Then the action G×X → X
is jointly continuous and G is a topological group.

Sketch of proof (see [27] for more details). It is easy to see that C(X) =
WAP(S). Hence (S,X) is wap. By Theorem 2.9 and Remark 2.3(1) the proof
can be reduced to the particular case of (S,X) = (Θ(V )op, BV ∗) for some
reflexive V with G := Is(V ). Now by Theorem 1.6 the weak and strong
operator topologies coincide on G = Is(V ). In particular, G is a topological
group and acts continuously on BV ∗ .

3. Hilbert representability of flows

3.1. General properties

Lemma 3.1. Let Γ be a class of compact G-systems closed under subdi-

rect products and G-isomorphisms.

(1) For every G-space X the set Γ (X) of functions coming from a system

Y with Y ∈ Γ forms a uniformly closed G-subalgebra of C(X). The

corresponding Gelfand space XΓ (X) is the maximal (universal) G-

compactification of X which belongs to Γ .

(2) The set Γ (G) is a uniformly closed G-subalgebra of RUC(G) and

the corresponding Gelfand space GΓ (G) is the universal G-factor of

the greatest ambit GRUC which belongs to Γ .
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Proof. The result and its proof are standard. See for example [14, Propo-
sition 2.9].

Lemma 3.2. Let Γ be a class of compact G-spaces which is closed under

G-isomorphisms. Assume that :

(a) Γ0 is a subclass of Γ and Γ0 generates Γ by subdirect products (that
is, every Y ∈ Γ is a subsystem of some product of members of Γ0).

(b) Γ0 is closed under subsystems and products with countably many

members.

Then for every (not necessarily compact) G-space X we have Γ (X) =
Γ0(X).

Proof. Let f ∈ Γ (X). Then there exist: a compact G-system Y ∈ Γ , a
compactification map ν : X → Y and a continuous function F : Y → R such
that F ◦ν = f . By assumption (a), Y is a subsystem in a G-product

∏
i∈I Yi

for some Yi ∈ Γ0. By the Stone–Weierstrass theorem it is easy to see that
the map F : Y → R “depends only on countably many coordinates”. This
fact is well known (see, for example, [6, Lemma 1] and [11, Exercise 3.2H])
for functions defined on products of compact spaces. By the normality of
the compact product space

∏
i∈I Yi the function F is the restriction of some

continuous function Φ defined on that product. There exists a countable
subset J ⊂ I of indices such that prJ(y) = prJ(z) iff F (y) = F (z) (for
y, z ∈ Y ) where prJ :

∏
i∈I Yi →

∏
j∈J Yj is the canonical projection. By

construction the map Φ′ :
∏
j∈J Yj → R, prJ(y) 7→ F (y), is well defined and

Φ′ ◦ prJ = Φ. In particular, Φ′ is continuous because prJ is a quotient map.

Denote by YJ the compact G-space prJ(Y ) ⊂
∏
j∈J Yj and by F ′ :

YJ → R the restriction of Φ′ to YJ . Then f = F ′ ◦ prJ ◦ ν. We see that
f : X → R comes from the compact G-space YJ and the compactification
prJ ◦ ν : X → YJ . Clearly, YJ ∈ Γ0 by assumption (b). We conclude that
f ∈ Γ0(X).

Lemma 3.3. For every semitopological semigroup S the classes Ref and

Hilb are closed under countable products.

Proof. Let Xn be a sequence of reflexively (resp., Hilbert) representable
compact S-spaces. By definition there exists a sequence of proper reflexive
(resp., Hilbert) representations

(hn, αn) : (S,Xn) ⇉ (Θ(Vn), BV ∗

n
).

We can suppose that ‖hn(x)‖ ≤ 2−n for every x ∈ Xn. Consider the l2-sum
of these representations, that is,

(h, α) : (S,X) ⇉ (Θ(V ), V ∗)
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where

V :=
( ∑

n∈N

Vn

)

l2
, h(s)(v) =

∑

n

hn(s)(vn),

for every v =
∑

n vn and s ∈ S. Define α(x) =
∑

n αn(xn) for every x =
(x1, x2, . . .) ∈

∏
n∈N

Xn = X. It is easy to show that α(x) ∈ BV ∗ and
α : X → BV ∗ is weak∗ (equivalently, weakly) continuous and injective.
Hence, α is a topological embedding because X is compact. Now use the
fact that the l2-sum of reflexive (resp., Hilbert) spaces is again reflexive
(resp., Hilbert).

Corollary 3.4. If X is a separable metrizable S-space then X is Hilbert

(resp., reflexively) approximable iff X is Hilbert (resp., reflexively) repre-

sentable.

Proof. Since X is second countable, there exists a countable family of
Hilbert (resp., reflexive) representations of our S-space X which determines
the topology of X. Hence we can apply Lemma 3.3.

Proposition 3.5.

(1) Hilb(X)=Hilbapp(X) for every (not necessarily compact) G-space X.

In particular , Hilb(G) = Hilbapp(G) for every topological group G.

(2) Hilb(X) is a closed G-subalgebra of C(X).
(3) Hilb(G) is a closed G-subalgebra of RUC(G).
(4) If X is compact then it is Hilbert approximable iff Hilb(X) = C(X).

Proof. (1) We can apply Lemmas 3.3 and 3.2.

(2) Hilb(X) = Hilbapp(X) by the first assertion. Now observe that
Hilbapp(X) is a closed subalgebra of C(X) by Lemma 3.1(1).

(3) Use the first assertion and Lemma 3.1(2).

(4) Use (1) and Lemma 3.1.

Analogous facts are of course also true for the class of reflexively repre-
sentable systems. This follows also from Theorem 2.10, which implies that
always Ref(X) = WAP(X) and Ref(G) = WAP(G).

LetX be a G-space. From Lemma 3.1 it follows that the universal Hilbert

approximable G-compactification (G-factor, if X is compact) XHilb of X is
in fact the Gelfand space of the algebra Hilb(X). The Gelfand space GHilb

of the algebra Hilb(G) is the universal Hilbert approximable (point transi-
tive, of course) G-compactification of G. Analogous objects in the reflexive
representability context, that is, XRef(X) and GRef(G) coincide in fact with
the known objects XWAP (see [14]) and GWAP, respectively. The latter leads
to the above mentioned (see [21]) universal semitopological semigroup com-
pactification uwap : G→ GWAP.
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Remark 3.6.

(1) Note that for non-locally compact groups the compactification uwap :
G→ GWAP is not in general an embedding and might even be triv-
ial for nontrivial Polish groups. More precisely, let G := H+[0, 1]
be the Polish group of all orientation preserving homeomorphisms
of the closed interval. In [24] we show that WAP(G) = {constants}.
Hence Hilb(G) = {constants}. In this case for every reflexively rep-
resentable compact G-space X the action is trivial. In particular, if
X is a transitive G-space then X must be a singleton.

(2) On the other hand, Hilb(Is(H)) = WAP(Is(H)) = UC(Is(H)) for any
Hilbert space H and the unitary group Is(H) = U(H). Indeed, Us-
penskij proves in [35] that the completion of this group with respect
to the Roelcke uniformity (= infimum of the left and right uniformi-
ties) is naturally equivalent to the embedding Is(H) → Θ(H) into the
compact semitopological semigroup Θ(H). The action (Is(H), Θ(H))
is Hilbert approximable (Remark 2.3(4)). It follows that a function
f : Is(H) → R can be approximated uniformly by matrix coefficients
of Hilbert representations if and only if f is left and right uniformly
continuous (i.e., f ∈ UC(Is(H))).

3.2. Almost periodic functions and Hilbert representations. A function
f ∈ C(X) on a G-space X is almost periodic if the orbit fG := {fg}g∈G
forms a precompact subset of the Banach space C(X). The collection AP(X)
of AP functions is a G-subalgebra in WAP(X). The universal almost peri-
odic compactification of X is the Gelfand space XAP of the algebra AP(X).
When X is compact this is the classical maximal equicontinuous factor of
the system X. A compact G-space X is equicontinuous iff X is almost pe-
riodic (AP), that is, iff C(X) = AP(X). For a G-space X the collection
AP(X) is the set of all functions which come from equicontinuous (AP)
G-compactifications.

For every topological group G, treated as a G-space, the corresponding
universal AP compactification is the well known Bohr compactification b :
G→ bG, where bG is a compact topological group.

Proposition 3.7.

(1) Let G be a compact group. Then every separable metrizable G-space

X is Hilbert representable. Every Tikhonov G-space is Hilbert ap-

proximable.

(2) For every topological group G and a not necessarily compact G-space

X we have
AP(X) ⊂ Hilb(X) ⊂ WAP(X)

and
AP(G) ⊂ Hilb(G) ⊂ WAP(G) ⊂ UC(G).
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Proof. (1) It is well known [1] that if G is compact then there exists a
proper G-compactification ν : X → Y . Moreover, we can suppose that Y
is also separable and metrizable. By another well known fact there exists a
unitary linearization of Y (see, for example, [38, Corollary 3.17]). Precisely,
there exist: a Hilbert space H, a continuous homomorphism h : G→ Is(H)
and a norm embedding α : Y → BH which is equivariant. Since Y is com-
pact, α is also an embedding into the weakly compact unit ball BV . There-
fore X is Hilbert representable by Remark 2.3(2).

If X is a Tikhonov G-space then it is a G-subspace of a compact G-
space Y . It can be approximated by a system {Xi}i∈I of compact metrizable
G-spaces (see [1] or [14, Proposition 4.2]). As we already know, every Xi is
Hilbert representable. Hence we conclude that X is Hilbert approximable.

(2) Let f ∈ AP(X). Then f comes from a G-compactification ν : X → Y
such that Y is a compact AP system. Then the enveloping semigroup E(Y )
is a compact topological group and the action E(Y )×Y → Y is continuous.
Therefore the proof can be reduced to the particular case when G and X are
compact. So we can apply assertion (1). It follows that AP(X) ⊂ Hilb(X).

The inclusion Hilb(X) ⊂ Ref(X) is trivial. On the other hand, Ref(X) =
WAP(X) by Theorem 2.10(1). Finally, the inclusion WAP(G) ⊂ UC(G) is
the above mentioned result of Helmer [17].

3.3. Eberlein property and Hilbert representability

Definition 3.8 ([2, Definition VI.2.11]). Let S be a semitopological
semigroup and h : S → Θ(V ) be a weakly continuous representation on
a Banach space V . The coefficient algebra Fh of this representation is the
smallest, norm closed unital subalgebra of C(S) containing all coefficients
mv,ψ : S → R where (v, ψ) ∈ V × V ∗.

Example 3.9. For every locally compact group G consider the one-point
compactification ν : G → G∞ := G ∪ {∞}. Then G∞ is a semitopological
compactification. It can be embedded into the compact semigroup Θ(H) for
some Hilbert space H. Indeed, one can consider the regular representation
λG : G → Is(H) of G on the complex Hilbert space H := L2(G,µG) where
µG is a Haar measure on G. Then by [12, 3.7] the corresponding coefficient
algebra Fh coincides with C0(G)⊕C and the weak closure of λG(G) in Θ(H)
is the semigroup λG(G) ∪ {0} (which can be identified with G∞). In fact
the similar result remains true for K := R, real-valued functions and real
Hilbert spaces (see also Lemma 4.5).

This observation implies the following result.

Lemma 3.10. For every locally compact group G we have:

(1) G∞ is Hilbert representable.

(2) C0(G) ⊂ Hilb(G).
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For every reflexive representation h : G → Is(V ) the weak closure of
h(G) in Θ(V ) is a semitopological compact semigroup which in fact is the
enveloping semigroup of the action (G,BV ) of G on the weakly compact
unit ball (BV , w).

Lemma 3.11. Let S be a semitopological semigroup and h : S → Θ(V ) be

a weakly continuous representation on a reflexive Banach space V . Denote

by Sh the compact semitopological semigroup defined as the weak closure of

h(S) in Θ(V ). Then the natural embedding

φ : C(Sh) → C(S), φ(f)(s) := f(h(s)),

induces an isomorphism C(Sh) ∼= φ(C(Sh)) = Fh.

Proof. Easily follows from the Stone–Weierstrass theorem. See for ex-
ample de Leeuw–Glicksberg [21, Lemma 4.8] or [2, VI.2.12].

Theorem 3.12. For every topological group G the algebra Hilb(G) co-

incides with the Eberlein algebra E(G) := cl(B(G)) (= the uniform closure

of B(G) in C(G) = C(G,R)).

Proof. First observe that B(G) ⊂ Hilb(G). Indeed, let f ∈ B(G). Then
f is a matrix coefficient of some continuous representation of G on a Hilbert
space H. By Remark 2.4(2) we can assume that h is a co-representation.
This means that

f(g) = mv,ψ(g) = 〈v, gψ〉

for some continuous co-homomorphism h : G → U(H) = Is(H) and some
vectors v, ψ ∈ H. Consider the orbit closure Y := cl(Gψ) in (H,w). Then
Y is a compact transitive G-flow and ν : G → Y , g 7→ gψ, is a G-
compactification. The continuity of the action of G on Y can be derived
for instance from the Ellis–Lawson theorem (see Fact 2.11). Indeed, observe
that the action of the compact semitopological semigroup Gh (defined as
the weak closure of h(G) in Θ(H)) on Y is well defined and separately
continuous. Clearly, Y is Hilbert representable. The function vY : Y → R,
y → 〈v, y〉, (restriction of the functional v : H → R to Y ) is in Hilb(Y ).
Since f(g) = vY (ν(g)) we see that f comes from Y . Thus, f ∈ Hilb(G).

Clearly, B(G) ⊂ Hilb(G) ⊂ C(G). This induces the inclusion cl(B(G)) ⊂
cl(Hilb(G)) of the closures in C(G). By Proposition 3.5(3) we know that
Hilb(G) is closed in C(G). Now it suffices to show that f is a uniform limit
of Fourier–Stieltjes functions in C(G) for any choice of f ∈ Hilb(G). By the
definition of Hilb(G) the function f comes from a Hilbert representable tran-
sitive G-flow X (and the G-compactification ν : G→ X, g 7→ gx0, where the
orbit of x0 is dense in X). By Remark 2.3(2) there exists a continuous homo-
morphism h : G→ Is(H) and a weakly continuous embedding α : X → BH
such that α(gx) = h(g)α(x). Also F (ν(g)) = f(g) for some continuous func-
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tion F : X → R. Denote by νh the natural continuous onto map Gh → X,
p 7→ px0, defined on the compact semitopological semigroup Gh. Then
f = F ◦ νh ◦ h. By Lemma 3.11 we know that F ◦ νh ◦ h belongs to the
coefficient algebra Fh. Therefore, f ∈ Fh. Clearly, Fh ⊂ cl(B(G)). Thus
f ∈ cl(B(G)), as required.

By Theorem 3.12 and Lemma 1.11 we find that Definition 1.10 of Eber-
lein groups can be reformulated as follows.

Corollary 3.13. Let G be a topological group. Then G is Eberlein if

and only if Hilb(G) = WAP(G).

Now we can prove the following result which distinguishes the reflexive
and Hilbert representability of G-flows for many natural groups.

Theorem 3.14. Let G be a separable topological group such that every

reflexively representable metric compact transitive G-flow is Hilbert repre-

sentable. Then G is an Eberlein group.

Proof. By Corollary 3.13, G is Eberlein in the sense of Definition 1.10 if
and only if Hilb(G) = WAP(G). Always, Hilb(G) ⊂ WAP(G) by Proposi-
tion 3.7(2). Let f ∈ WAP(G). We have to show that f ∈ Hilb(G).

Since G is separable, so is the closed G-invariant subalgebra A generated
by the orbit fG in RUC(G). Consider the corresponding Gelfand space
GA and the canonical compactification map ν : G → GA. Since A is G-
invariant and every wap function on G is right uniformly continuous (see
Proposition 3.7(2)) it follows that X := GA is a compact point transitive
G-space and ν is a compactification of G-spaces. We know that X is a
metrizable compact space (because A is separable). Moreover, (G,X) is wap.
Indeed, every continuous function φ : X → R is wap because jν(C(X)) =
A ⊂ WAP(G), where jν : C(X) → C(G) is the operator induced by ν :
G → X. Since X is metric and wap, by Theorem 2.10(3) we know that
X is a reflexively representable G-system. Since f ∈ jν(C(X)) = A, there
exists a continuous function F : X → R such that F (gν(e)) = f(g). That
is, f ∈ C(G) comes from the compact G-space X (Definition 2.5(1)). By
our assumption X is a Hilbert representable G-system. So we conclude that
f ∈ Hilb(G).

The following result answers a question of T. Downarowicz (Dynamical
Systems Conference, Prague, 2005).

Theorem 3.15.

(1) There exists a transitive self-homeomorphism σ : X → X of a com-

pact metric space X such that the corresponding invertible cascade

(Z, X) is reflexively but not Hilbert representable.
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(2) There exists a compact metric transitive R-flow X which is reflexively

but not Hilbert representable.

Proof. By a result of Rudin [31] the groups Z and R are not Eberlein
groups. Therefore, we can apply Theorem 3.14.

Remark 3.16.

(1) The G-spaces in Theorem 3.15 are not even Hilbert approximable,
as follows from Corollary 3.4.

(2) The desired counterexamples in Theorem 3.15 come in a quite con-
structive way but up to the choice of an appropriate function. More
precisely, according to the proof of Theorem 3.14 we start with a
function f : G→ R which is wap but not uniformly approximated by
Fourier–Stieltjes functions. We define X as the G-compactification
GA of G induced by the subalgebra A ⊂ WAP(G) which is generated
by the right orbit fG. In fact, it is the pointwise closure of the left or-
bitGf in WAP(G), by general properties of suchG-compactifications
(see [14, Proposition 2.4]).

(3) The referee asks if one may produce a more explicit example of a
wap cascade (say a subshift) which is not Hilbert representable.

Definition 3.17. We say that a separable topological groupG is strongly

Eberlein if every reflexively representable metric compact transitive G-flow
is Hilbert representable.

Theorem 3.14 justifies this definition because every strongly Eberlein
group is Eberlein. If G is an abelian locally compact noncompact group,
then G is not Eberlein and hence not strongly Eberlein.

Example 3.18.

(1) The groups G := SLn(R) are strongly Eberlein. Indeed, by Veech’s
result [37] (see also Chou [4] for the case of SL2(R)) we know (by
Remark 1.12(4)) that WAP(G,R) = C0(G) ⊕ R for such groups.
This means that every wap compactification of G is a one-point
compactification which is Hilbert representable (see Example 3.9 and
Lemma 3.10).

(2) The Polish group G := H+[0, 1] is strongly Eberlein by Remark
3.6(1).

(3) By Remark 3.6(2) we know that Hilb(G) = WAP(G) = UC(G) for
the unitary group G := U(H) for every Hilbert space H. In partic-
ular, U(H) is Eberlein by Corollary 3.13. It is not clear, however, if
this group is strongly Eberlein.

Question 3.19. Is every Polish Eberlein group strongly Eberlein? What

if G := U(l2)?
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Reflexively representable compact metric flows are closed under G-fac-
tors [27]. For Hilbert representability, this is unclear. That is, the following
question is open.

Question 3.20 (see also [28, Question 7.6]). Are Hilbert representable

compact metric G-spaces closed under G-factors?

4. Semitopological semigroups and their representations. Re-
call that for every reflexive V the semigroup Θ(V ) of all contractive linear
operators is a compact semitopological semigroup with respect to the weak
operator topology.

Definition 4.1. A (weakly continuous) representation of a semitopo-
logical semigroup S on a Banach space V is a (weakly continuous) homo-
morphism h : S → Θ(V ). If h is a topological embedding we say that h
is a proper representation. S is reflexively (resp., Hilbert) representable if it
admits a proper representation on a reflexive (resp., Hilbert) space V .

For every locally compact topological group G consider the correspond-
ing one-point compactification λ : G→ G∞. Then G∞, as a compact semi-
topological semigroup, is Hilbert representable by Lemma 3.10.

Fact 4.2 ([33] and [25]). Every compact semitopological semigroup S is

topologically isomorphic to a subsemigroup of Θ(V ) for a certain reflexive V .

That is, every compact semitopological semigroup is reflexively representable.

Remark 4.3. If in addition S is metrizable then we may assume in
Fact 4.2 that V is separable. See [25, Remark 3.2]. Alternatively, we can use
Theorem 2.9 to produce a sequence {Vn}n∈N of separable reflexive spaces
such that S is embedded into Θ(W ) where W := (

∑
n∈N

Vn)l2 .

Question 4.4. Under which conditions a given compact semitopologi-

cal semigroup (which is always reflexively representable) is Hilbert repre-

sentable?

For every isometry u ∈ Is(V ) we have the associated compact mono-
thetic semigroup Su := clw({uk}k∈Z), the weak closure of the cyclic subgroup
{uk}k∈Z in Θ(V ). Below we prove (Corollary 4.8) that there exists a separa-
ble reflexive Banach space V and a linear isometry u ∈ Is(V ) ⊂ Θ(V ) such
that the corresponding monothetic metrizable semitopological semigroup Su
is not Hilbert representable.

Lemma 4.5. Let S be a compact semitopological semigroup. The follow-

ing are equivalent :

(1) S, as a semigroup, is Hilbert representable.

(2) The action (S, S) is Hilbert approximable.
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(Furthermore, by Corollary 3.4, if S is in addition metrizable then “approx-

imable” in the second assertion can be changed to “representable”.)

Proof. (1)⇒(2): Let S be a compact subsemigroup of the semigroup
Θ(H) for some Hilbert H. Consider the inclusion h : S →֒ Θ(H) and the
natural action of S on BH . By Remark 2.3(2) the action (S,BH) is Hilbert
representable. Hence it suffices to show that there exists a family of weakly
continuous S-maps from X := S to BH which separates the points of X.
Now observe that for every vector v0 ∈ BH the map αv0 : S → BH defined
by α(t) := tv0 is weakly continuous and S-equivariant.

(2)⇒(1): We can assume that S is a monoid. Denote by X the left
regular action of S on itself. By our assumption and Remark 2.3(2) there
exist: a family {Hi}i∈I of Hilbert spaces, a family {hi : S → Θ(Hi)}i∈I of
weakly continuous homomorphisms, and a family {αi : X → BHi}i∈I of
weakly continuous S-equivariant maps such that the latter family separates
points of X = S. Since S is a monoid, the family {hi : S → Θ(Hi)}i∈I
separates the points of S. Then the induced homomorphism h : S → Θ(H),
where H := (

⊕
i∈I Hi)l2 is an orthogonal l2-sum, is weakly continuous and

injective. Since S is compact, h is the desired embedding.

We need the following very useful fact.

Fact 4.6 (Downarowicz [8, Fact 2]; see also [13, Theorem 1.48]). Let X
be a compact transitive wap G-flow. If G is commutative then the enveloping

semigroup E(X) is commutative and the flows (G,E(X)) and (G,X) are

topologically isomorphic.

Theorem 4.7. There exists a compact metrizable monothetic (hence

commutative) semitopological semigroup S such that S is not Hilbert repre-

sentable (being reflexively representable).

Proof. By Theorem 3.15(1) there exists a transitive pointed compact
metrizable cascade X such that (Z, X) is reflexively but not Hilbert repre-
sentable. Then (Z, X) is wap (Theorem 2.10) and the enveloping semigroup
E(X) = E(Z, X) is a compact semitopological semigroup (Fact 1.5). Take
the corresponding natural Z-compactification γ : Z → S := E(X) of the
group G := Z. Then S is reflexively representable by Fact 4.2. Clearly, S
is a monothetic semigroup by our construction. It is also easy to see that
S is metrizable because X is wap and hence by Lemma 1.4 all elements
of E(X) are continuous self-maps X → X of a compact metric space X.
Indeed, E(X), as a topological space, is embedded into the product space
XD where D is a countable dense subset of X.

We claim that S := E(X) is the desired semigroup. We only have to show
that S is not Hilbert representable. Assuming the contrary let j : E(X) →֒
Θ(H) be an embedding of compact semitopological semigroups where H
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is a Hilbert space. Then Lemma 4.5 implies that the natural action of the
cyclic group G := Z on E(X) is Hilbert representable. This is a contradiction
because the flows (Z, E(X)) and (Z, X) are topologically isomorphic by Fact
4.6 and the assumption that (Z, X) is not Hilbert representable.

Corollary 4.8. There exists a separable reflexive Banach space V and

a linear isometry u ∈ Is(V ) ⊂ Θ(V ) such that the corresponding mono-

thetic metrizable semitopological semigroup Su ⊂ Θ(V ) is not Hilbert rep-

resentable. That is, Su is not topologically isomorphic to a subsemigroup of

Θ(H) for any Hilbert space H.

Proof. Apply Theorem 4.7 using Remark 4.3.
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