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FULL GROUPS, FLIP CONJUGACY, AND ORBIT EQUIVALENCE

OF CANTOR MINIMAL SYSTEMS

BY

S. BEZUGLYI and K. MEDYNETS (Kharkov)

Abstract. We consider the full group [ϕ] and topological full group [[ϕ]] of a Cantor
minimal system (X, ϕ). We prove that the commutator subgroups D([ϕ]) and D([[ϕ]]) are
simple and show that the groups D([ϕ]) and D([[ϕ]]) completely determine the class of
orbit equivalence and flip conjugacy of ϕ, respectively. These results improve the classifi-
cation found in [GPS]. As a corollary of the technique used, we establish the fact that ϕ

can be written as a product of three involutions from [ϕ].

1. Introduction. One of the most remarkable results of ergodic theory
is Dye’s theorem which states that any two ergodic finite measure-preserving
automorphisms of a Lebesgue space are orbit equivalent and, as a corollary,
their full groups are isomorphic [D1]. Dye also proved that the full group is a
complete invariant of orbit equivalence for ergodic finite measure-preserving
actions of countable groups [D2]. Later, full groups have been studied in
numerous papers from different points of view. In particular, the analogues
of the theorems of Dye were established for infinite measure-preserving and
non-singular automorphisms of a standard measure space.

The ideas developed in ergodic theory have been successfully applied
to the study of orbit equivalence in Cantor and Borel dynamics. Giordano,
Putnam, and Skau considered the notions of the full group [ϕ] and topo-
logical full group [[ϕ]] of a Cantor minimal system (X,ϕ) and showed that
these groups completely determine the classes of orbit equivalence and flip
conjugacy of ϕ [GPS]. In other words, they proved that, for minimal home-
omorphisms ϕ1 and ϕ2, any algebraic isomorphism of the full groups [ϕ1]
and [ϕ2] is spatially generated. Recently, Miller and Rosendal have shown
that Dye’s theorem holds in the context of Borel dynamics: two Borel aperi-
odic actions of countable groups are orbit equivalent if and only if their full
groups are isomorphic [MilRos]. We should also mention that there are sev-
eral papers where the algebraic and topological structures of the full groups
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of ergodic automorphisms have been studied. In particular, Eigen proved
that the full group of an ergodic finite measure-preserving automorphism is
simple, i.e. it has no proper normal subgroups [E1]. Notice that it is still an
open problem to show the simplicity of the full group [ϕ] generated by a min-
imal homeomorphism of a Cantor set. On the other hand, it is known that
the topological full group [[ϕ]] has a proper normal subgroup and so is not
simple.

The goal of this paper is to prove that the class of orbit equivalence and
flip conjugacy of a Cantor minimal system can be determined by proper
simple subgroups of the full group and topological full group. To do this,
we focus our study on the commutator subgroups D([ϕ]) and D([[ϕ]]) of [ϕ]
and [[ϕ]], respectively. First of all, we prove in Section 3 that the groups
D([ϕ]) and D([[ϕ]]) are simple (Theorem 3.4). Then we show that the com-
mutator subgroup D([[ϕ]]) is a complete invariant of flip conjugacy (Theo-
rem 5.13) and the group D([ϕ]) is a complete invariant of orbit equivalence
(Theorem 5.2). These results make more precise the characterization of or-
bit equivalence and flip conjugacy found in [GPS]. In particular, Theorem
5.13 contains a new proof of the fact that [[ϕ]] is a complete invariant of
flip conjugacy. To show that the group D([ϕ]) determines the class of orbit
equivalence, we follow the idea of the proof of Corollary 4.6 from [GPS]. The
key point of our approach is the fact that every involution with clopen sup-
port belongs to D([ϕ]) (Corollary 4.8). In its turn, this result is based on the
fact that every homeomorphism from [ϕ], which is minimal on its support,
can be written as a product of five commutators from [ϕ] (Theorem 4.6).

In Section 4, we also answer the question of representation of a minimal
homeomorphism ϕ as a product of involutions from [ϕ]. We note that this
problem would be trivial if we knew that [ϕ] is a simple group. The problem
of writing every element of a transformation group as a product of invo-
lutions has been considered in measurable, Borel and Boolean dynamics.
Apparently, the first results appeared in the paper of Anderson [A], where
it was shown that every homeomorphism of a Cantor set is a product of six
involutions from H(X), the group of all homeomorphisms of a Cantor set X.
The technique used by Anderson also works for the group of non-singular
transformations of a Lebesgue space (this fact was mentioned in [E1]). In
[F], Fathi suggested a new approach to this problem which allowed him to
show that the group Aut(Y, µ) of finite measure-preserving automorphisms
of a Lebesgue space (Y, µ) is simple, and that every f ∈ Aut(Y, µ) is a prod-
uct of 10 involutions. His ideas were then used in [E1] to obtain a similar
result for the full group of an ergodic automorphism of a Lebesgue space.
Later, Ryzhikov improved Fathi’s theorem and showed that every ergodic
automorphism f ∈ Aut(X,µ) is, in fact, a product of three involutions from
its full group [R1]. We notice that here three is the least number possible.
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Miller showed that an automorphism f is the product of two involutions
from its full group if and only if f is dissipative [Mil]. We also mention [Fr],
[R2] and [ChPr] where these questions were studied for automorphisms of
complete Boolean algebras and homogeneous measure algebras. Developing
ideas of Fathi and Ryzhikov, we prove that every minimal homeomorphism ϕ
of a Cantor set is the product of three involutions from [ϕ] (Theorem 4.14).

2. Preliminaries. Let X denote a Cantor set, i.e. a 0-dimensional com-
pact metric space without isolated points. Denote by H(X) the group of
all homeomorphisms of X. For a homeomorphism ϕ ∈ H(X) and a point
x ∈ X, let Orbϕ(x) = {ϕn(x) : n ∈ Z} denote the ϕ-orbit of x. The open
set supp(ϕ) = {x ∈ X : ϕ(x) 6= x} is called the support of ϕ.

A homeomorphism ϕ ∈ H(X) is called periodic if for each x ∈ X there
exists n > 0 such that ϕn(x) = x, and if the ϕ-orbit of x is infinite for
all x, then ϕ is called aperiodic. A homeomorphism ϕ is called minimal

if the ϕ-orbit of every point is dense in X. Let [ϕ] denote the set of all
homeomorphisms f ∈ H(X) such that f(x) ∈ Orbϕ(x) for all x ∈ X. The
set [ϕ] is called the full group of ϕ. If f ∈ [ϕ], then there is a function
nf : X → Z such that f(x) = ϕnf (x)(x) for all x ∈ X, which is called
the cocycle associated to f . The topological full group [[ϕ]] of ϕ is defined
as the set of all f ∈ [ϕ] such that nf is continuous. We refer the reader to
[GPS] and [GW] for an in-depth study of various properties of full groups
associated to a minimal homeomorphism of a Cantor set.

Given a groupG, denote byD(G) the subgroup generated by all elements
of the form [f, g] := fgf−1g−1, f, g ∈ G. The group D(G) is called the
commutator subgroup of G.

Let ϕ ∈ H(X) and let A be a clopen set. A point x ∈ A is called recurrent

for ϕ if there is n > 0 such that ϕn(x) ∈ A. Observe that if a clopen set
A consists of recurrent points, then the function nA : A → N given by
nA(x) = min{n > 0 : ϕn(x) ∈ A} is well-defined and continuous. Then nA is
called the the first return function. Suppose that a clopen set A meets every
ϕ-orbit and consists of recurrent points. Set Ak = {x ∈ A : nA(x) = k}.
Hence, X can be decomposed into clopen sets

X =
⋃

k≥1

k−1⋃

i=0

ϕi(Ak).

This decomposition is called a Kakutani–Rokhlin (K-R) partition built over
the set A. By a ϕ-tower, we mean a non-empty disjoint family ξ = (Ak, ϕAk,
. . . , ϕk−1Ak). The set Ak is called the base of ξ and k is called the height

of ξ.
The following simple proposition explains the construction of the induced

map.
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Proposition 2.1. Let ϕ ∈ H(X) and suppose a clopen set A meets

every ϕ-orbit. Then:

(1) A consists of recurrent points;
(2) the homeomorphism ϕA ∈ H(X) given by ϕA(x) = ϕnA(x)(x) for

x ∈ A and ϕA(x) = x for x ∈ X \ A belongs to [[ϕ]];
(3) the homeomorphism g = ϕ−1

A ϕ is periodic.

Proof. (1) Since A meets every ϕ-orbit, we have X =
⋃

i∈Z
ϕi(A). By

compactness of X, we get X =
⋃m

i=0 ϕ
i(A) for some m. This implies that A

consists of recurrent points. The statement (2) is trivial and the proof of (3)
is straightforward.

For a homeomorphism ϕ, denote by M(ϕ) the set of all Borel probability
ϕ-invariant measures on X. Clearly, if γ ∈ [ϕ], then γ ◦ µ = µ for every
µ ∈ M(ϕ). The following theorem answers the question when two clopen
sets can be mapped onto each other by an element of the full group. This
result will be one of our main tools in the study of full groups.

Theorem 2.2 ([GW]). Let (X,ϕ) be a Cantor minimal system.

(1) If A,B are clopen subsets of X such that µ(B) < µ(A) for every

µ ∈ M(ϕ), then there exists α ∈ [[ϕ]] with α(B) ⊂ A. Moreover ,
α can be chosen such that α2 = id and α|(B ∪ α(B))c = id where

Ec := X \ E.

(2) If A,B are clopen sets with µ(A) = µ(B) for all µ ∈ M(ϕ), then

there exists α ∈ [ϕ] such that α(B) = A. Moreover , α can be chosen

such that α2 = id, α has clopen support , and α|(B ∪ α(B))c = id.

We will need a generalization of a theorem from [Ak].

Proposition 2.3. Let (X,ϕ) be a Cantor minimal system and let d be

a metric on X compatible with the topology.

(1) For any ε > 0 there exists δ > 0 such that if the d-diameter of a

clopen set A is less than δ, then µ(A) < ε for every µ ∈ M(ϕ).
(2) If A is a clopen set , then inf{µ(A) : µ ∈ M(ϕ)} > 0.

Proof. (1) Assume the converse: there exists ε0 > 0 such that for every n
there exist a clopen set An with diam(An) < 1/n and a measure µn ∈M(ϕ)
such that µn(An) ≥ ε0. By compactness of M(ϕ) and X, we may assume
that µn → µ ∈M(ϕ) and there exists x0 ∈ X such that every neighborhood
of x0 contains all but a finite number of the sets An.

Consider any clopen neighborhood O of x0. Then An ⊆ O and µn(O) ≥
µn(An) ≥ ε0 for sufficiently large n. As µn → µ, we get µ(O) ≥ ε0. Hence
µ({x0}) > 0, a contradiction.

(2) This easily follows from the minimality of ϕ (see also [GW]).
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From now on, the pair (X,ϕ) will always denote a Cantor minimal
system.

3. Commutator subgroups. In this section, we show that, for a min-
imal homeomorphism ϕ, the commutator subgroups D([ϕ]) and D([[ϕ]]) are
simple. In our proofs, we follow the arguments used in [F] and [E1].

The following simple statement describes the properties of periodic hom-
eomorphisms. More detailed descriptions of periodic homeomorphisms from
[[ϕ]] and [ϕ] can be found in [BDK].

Lemma 3.1. Let f ∈ H(X) and Xn := {x ∈ X : |Orbf (x)| = n} for

1 ≤ n <∞.

(1) If f ∈ [[ϕ]] with ϕ a minimal homeomorphism, then Xn is clopen.

(2) If Xn is clopen, then there exists a clopen set X0
n such that Xn =⋃n−1

i=0 f
i(X0

n), a disjoint union.

Proof. (1) Notice that X≤n := {x ∈ X : |Orbf (x)| ≤ n} is closed. Since
f ∈ [[ϕ]], the associated cocycle nf is continuous. This implies that the set
Xn is open for each 1 ≤ n <∞. Hence, Xn is clopen.

(2) See Lemma 3.2 in [BDK].

The following lemma states that every homeomorphism from the full
group can be written as a product of homeomorphisms which have “small”
supports.

Lemma 3.2. Let Γ denote either [ϕ] or [[ϕ]]. Given δ > 0 and g ∈ Γ ,
there exist g1, . . . , gm ∈ Γ and clopen sets E1, . . . , Em such that

(1) g = g1 . . . gm;

(2) supp(gi) ⊆ Ei and µ(Ei) < δ for all µ ∈ M(ϕ) and i = 1, . . . ,m.

Proof. Suppose first that Γ = [ϕ]. Using Proposition 2.3, take any de-
composition of X into disjoint clopen sets X = B1 ⊔ · · · ⊔ Bm such that
µ(Bi) < δ/2 for any µ ∈ M(ϕ) and i = 1, . . . ,m.

Given f ∈ [ϕ], we have µ(B \ f(B)) = µ(f(B) \B) for every µ ∈ M(ϕ)
and every clopen set B. Therefore, by Theorem 2.2, there exists g1 ∈ [ϕ] such
that g1|B1 = g|B1, g1(g(B1) \B1) = B1 \ g(B1), and supp(g1) ⊆ B1 ∪ g(B1).
Setting E1 = B1 ∪ g(B1), we obtain µ(supp(g1)) ≤ µ(E1) < δ for all µ ∈
M(ϕ).

Let g′1 = g−1
1 g. Clearly, supp(g′1) ⊆ B2⊔· · ·⊔Bm. Find g2 ∈ [ϕ] such that

g2|B2 = g′1|B2 and supp(g2) ⊆ B2 ∪ g′1(B2). Let E2 = B2 ∪ g′1(B2). Then
µ(E2) < δ for all µ ∈ M(ϕ). Next, consider g′2 := g−1

2 g′1. Clearly, supp(g′2) ⊆
B3⊔· · ·⊔Bm and g = g1g2g

′
2. Repeating the above argument for each set Bi,

we construct a family of homeomorphisms gi ∈ [ϕ], i = 1, . . . ,m, such that
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g = g1 . . . gm and supp(gi) ⊆ Bi ∪ g
′
i−1(Bi). Here gm = g′m−1 = g−1

m−1g
′
m−2.

Setting Ei = Bi ∪ g
′
i−1(Bi), we complete the proof for the case Γ = [ϕ].

Suppose now that Γ = [[ϕ]]. If g is periodic, then by Lemma 3.1 and
compactness of X, we can decompose X into a finite number of clopen sets

X =
⋃

i∈I

ni−1⋃

j=0

gj(X0
i ),

where gni(x) = x for each x ∈ X0
i . By Proposition 2.3, we can divide each set

X0
i into clopen sets {A0

i,1, . . . , A
0
i,mi

} such that µ(Ai,j) < δ for all µ ∈ M(ϕ),

where Ai,j = A0
i,j ∪ · · · ∪ gni−1A0

i,j . Set gi,jx = gx whenever x ∈ Ai,j and
gi,jx = x elsewhere. Clearly, every gi,j ∈ [[ϕ]] and g is the product of the
commuting elements gi,j .

Consider the case when g is not periodic. Choose an integer k > 0
such that 1/k < δ. As g ∈ [[ϕ]], the set X≥k := {x ∈ X : |Orbg(x)| ≥ k}
is clopen. Using the arguments of [BDM, Proposition 3] (see also [M2,
Lemma 2.2]), we can show that there exists a clopen set B ⊂ X≥k such
that gi(B) ∩ B = ∅ for i = 0, . . . , k − 1 and B meets every g|X≥k-orbit.
It follows that µ(B) ≤ 1/k < δ for all µ ∈ M(ϕ). By our choice of B, the
induced homeomorphism gB, defined as in Proposition 2.1, belongs to [[ϕ]].

Moreover, µ(supp(gB)) < δ for all µ ∈ M(ϕ). Observe that g1 = g−1
B g is

periodic. We use the decomposition obtained for periodic homeomorphisms
to complete the proof.

Lemma 3.3. Suppose that G is a group and H is a normal subgroup

of G. If g1, . . . , gn, h1, . . . , hm ∈ G are such that [gi, hj], [gi, gj ], and [hi, hj]
belong to H for any i, j, then also [g1 . . . gn, h1 . . . hm] ∈ H.

Proof. Note that

[g1g2, hi] = g1[g2, hi]g
−1
1 [g1, hi], [gj , h1h2] = [gj, h1]h1[gj, h2]h

−1
1 .

As H is a normal subgroup, [g1g2, hi] and [gi, h1h2] belong to H. Hence
[g1g2, h1h2] ∈ H. The proof can be completed by induction. We leave the
details to the reader.

Now we are ready to show that the commutator subgroups D([ϕ]) and
D([[ϕ]]) are simple. We should also mention that the simplicity of D([[ϕ]])
was first established by Matui [Ma, Theorem 4.9.], but with a completely
different technique.

Theorem 3.4. Let (X,ϕ) be a Cantor minimal system.

(1) If H is a normal subgroup of [ϕ] (or of D([ϕ])), then D([ϕ]) ⊆ H.

(2) If H is a normal subgroup of [[ϕ]] (or of D([[ϕ]])), then D([[ϕ]]) ⊆ H.

In particular , the groups D([ϕ]) and D([[ϕ]]) are simple.
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Proof. First of all we notice that if 2µ(B) < µ(A) for any µ ∈M(ϕ) with
A and B clopen sets, then there exists α ∈ D([[ϕ]]) such that α(B) ⊂ A.
Indeed, by setting α = id on A ∩ B, we may assume that A ∩ B = ∅.
Applying Theorem 2.2 twice, we find two involutions α1, α2 ∈ [[ϕ]] such
that α1(B) ⊂ A, α2(α1(B)) ⊂ A \ α1(B), and supp(α1) = B ∪ α1(B),
supp(α2) = α1(B) ∪ α2(α1(B)). Set α = α1α2. Then α(B) = α1(B) ⊂ A.
Since α2 = αα−1

1 α−1 we get α = α1α2 = [α1, α2].

We must show that [g, h] ∈ H for any g, h ∈ Γ , where Γ denotes one
of the groups D([[ϕ]]), [[ϕ]], D([ϕ]), or [ϕ]. Take any non-trivial element
f ∈ H. Then there exists a clopen set E ⊆ X such that f(E) ∩ E = ∅.
Proposition 2.3 implies that δ = 1

2 inf{µ(E) : µ ∈ M(ϕ)} > 0.

By Lemma 3.2, write g and h as g = g1 . . . gn and h = h1 . . . hm, such
that (1) gi, hj ∈ Γ and (2) there exist clopen sets Ei(g) and Ej(h) with
supp(gi) ⊆ Ei(g), supp(hj) ⊆ Ej(h) and µ(Ei(g) ∪ Ej(h)) < δ for every
µ ∈ M(ϕ) and every i, j. Due to Lemma 3.3, it is sufficient to prove that
[gi, hj] ∈ H.

For convenience we omit the subscripts i and j. Consider any homeo-
morphisms g, h ∈ Γ such that supp(g) ∪ supp(h) ⊆ F , where F is a clopen
set with µ(F ) < δ for all µ ∈ M(ϕ). As above find a homeomorphism
α ∈ D([[ϕ]]) ⊂ Γ with α(F ) ⊆ E. Since H is a normal subgroup of Γ , the
element q = α−1fα is in H.

Since H is a normal subgroup, we have ĥ = [h, q] = hqh−1q−1 ∈ H.

Analogously, [g, ĥ] ∈ H. Since q(F ) ∩ F = ∅, we see that g−1 and qh−1q−1

commute. Then

[g, ĥ] = g(hqh−1q−1)g−1(qhq−1h−1)

= ghg−1qh−1q−1qhq−1h−1 = [g, h] ∈ H.

This completes the proof.

Remark 3.5. For a measure µ ∈ M(ϕ), set [[ϕ]]0 = {γ ∈ [[ϕ]] :T
X nγ dµ = 0}. The definition of [[ϕ]]0 does not depend on the choice of µ

[GPS, Section 5]. As proved in [GPS], the group [[ϕ]]0 completely determines
the class of flip conjugacy of ϕ. Clearly, [[ϕ]]0 is a proper normal subgroup of
[[ϕ]]. Therefore, by Theorem 3.4, D([[ϕ]]) ⊆ [[ϕ]]0 and D([[ϕ]]) = D([[ϕ]]0).
In [GPS] the authors asked if [[ϕ]]0 is a simple group. This would show
that the class of flip conjugacy is determined by a countable simple group.
However, [[ϕ]]0 is not simple, in general. Matui proved that the simplicity
of [[ϕ]]0 is equivalent to the 2-divisibility of the dimension group K0(X,ϕ)
[Ma]. Nevertheless, in Section 5 we will show that D([[ϕ]]) is a complete
invariant for flip conjugacy.
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4. Product of involutions. In the section, we show that a minimal
homeomorphism ϕ of a Cantor set X and involutions from [ϕ] with clopen
supports belong to D([ϕ]). This will allow us to prove that the simple group
D([ϕ]) is a complete invariant for the class of orbit equivalence of ϕ. As
a corollary of the technique used, we also find that ϕ can be written as a
product of three involutions from [ϕ]. Our considerations are mainly based
on the ideas of Fathi [F].

Remark 4.1. Suppose that g is a periodic homeomorphism from [ϕ]
such that the space X can be decomposed into clopen sets

X =
⋃

i∈I

ni−1⋃

j=0

gj(X0
i )

with gni(x) = x for all x ∈ X0
i . We give two model situations when g can

be easily written as a commutator in [ϕ]. Consider the following cases:
(1) Suppose that ni is odd for i ∈ I. Then g|Xi is a commutator in [ϕ].

Indeed, let m = (ni − 1)/2 and define the homeomorphisms g1 and g2 as
follows:

g1(x) =






g(x) if x ∈
⋃m−1

k=0 g
k(X0

i ),

g−m(x) if x ∈ gm(X0
i ),

id elsewhere,

g2(x) =






g(x) if x ∈
⋃ni−2

k=m gk(X0
i ),

g−m(x) if x ∈ gni−1(X0
i ),

id elsewhere.

Then g = g1g2. Since g2 = ψg−1
1 ψ−1 for some ψ ∈ [ϕ], we see that g =

g1g2 = [g1, ψ].
(2) Now suppose that ni is even and X0

i = X0
i (l) ⊔X0

i (r) where X0
i (l)

and X0
i (r) are [ϕ]-equivalent clopen sets, i.e. α(X0

i (l)) = X0
i (r) for some

α ∈ [ϕ]. Then g|Xi can be written as a commutator in [ϕ]. Indeed, put
Xi(l) =

⋃ni−1
k=0 gk(X0

i (l)) and Xi(r) =
⋃ni−1

k=0 gk(X0
i (r)). Define l, r ∈ [ϕ]

as follows: l|Xi(l) = g|Xi(l) and l = id elsewhere; r|Xi(r) = g|Xi(l) and
r = id elsewhere. Note that g = lr. By Theorem 2.2, it is easy to see that
r = ψl−1ψ−1 for some ψ ∈ [ϕ]. Hence g = lr = [l, ψ].

The proof of the fact that ϕ ∈ D([ϕ]) consists of a series of lemmas.

Lemma 4.2. Suppose that f ∈ [ϕ] has clopen support and f |supp(f) is

minimal. Then for given δ > 0 there exist f1, s, t ∈ [ϕ] such that

(1) f = f1[s, t];
(2) supp(f1) is clopen, f1|supp(f1) is minimal , and µ(supp(f1)) < δ for

all µ ∈ M(ϕ);
(3) supp(s) ∪ supp(t) ∪ supp(f1) ⊆ supp(f).
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Proof. Take any clopen set A ⊂ supp(f) such that µ(A) < δ/2 for all
µ ∈ M(ϕ) and f i(A) ∩A = ∅ for i = 1, 2, 3.

Applying the first return function, construct the K-R partition Ξ over A
(see Section 2 for the definition). Suppose that Ξ = {ξ1, . . . , ξn, ξ

′
1, . . . , ξ

′
m}

where the ξi are the f -towers with even heights and the ξ′j are f -towers
with odd heights. Let h(ξ) denote the height and B(ξ) denote the base of
an f -tower ξ. Set

B = A ∪
n⋃

i=1

fh(ξi)/2B(ξi).

Clearly, µ(B) < δ for all µ ∈ M(ϕ).
Define f1 as the induced homeomorphism fB. Again using the first

return function, consider the K-R partition P over B. Note that P =
{ξ′1, . . . , ξ

′
m, ξ

1
1 , ξ

2
1 , . . . , ξ

1
n, ξ

2
n}, where the ξ′i’s are f -towers with odd heights

as above, ξ1i is the lower half of ξi, and ξ2i is the upper half.
Define the periodic homeomorphism g as follows:

g(x) =





f(x) if x /∈

⋃
ξ∈P f

h(ξ)−1(B(ξ)),

f−h(ξ)+1(x) if x ∈ fh(ξ)−1(B(ξ)) for some ξ ∈ P.

Then f = f1g. Since ξ′i has odd height, Remark 4.1 implies that g|ξ′i is
a commutator in [ϕ]. Consider g|(ξ1i ∪ ξ2i ), i = 1, . . . , n. By construction,
the bases B(ξ1i ) and B(ξ2i ) are [ϕ]-equivalent. Therefore, the application of
Remark 4.1(2) ensures that g = [s, t] for some s, t ∈ [ϕ]. Statements (2) and
(3) are obvious.

Remark 4.3. Clearly, we can construct f1 in Lemma 4.2 such that
supp(f1) is always a proper subset of supp(f). Let now x0 be a point from
supp(f) \ supp(f1). Then one can find a sequence {Cn}n≥1 of mutually dis-
joint clopen sets such that (1) Ci ⊆ supp(f); (2) C1 = supp(f1); (3) x0 6∈ Cn

for n ≥ 1; (4) diam(Cn ∪ {x0}) → 0 as n → ∞. Put δn = inf{µ(Cn) : µ ∈
M(ϕ)}. By Proposition 2.3, every δn > 0.

Lemma 4.4. Suppose that f1 and a sequence {Cn} are as in Remark 4.3.
Then there exists two sequences {fi}i≥1 and {gi}i≥1 of homeomorphisms

from [ϕ] such that for every i ≥ 1,

(1) supp(fi) is clopen and fi is minimal on it ;
(2) fi = fi+1gi;
(3) supp(fi) ⊆ Ci;
(4) gi = [s′i, t

′
i][si, ti] for some si, ti, s

′
i, t

′
i ∈ [ϕ] with supp(si)∪ supp(ti)∪

supp(s′i) ∪ supp(t′i) ⊆ Ci ∪ Ci+1.

Proof. We will explain only the first step of the construction: given
f1, C1, and C2, we will find f2, g1.
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By Lemma 4.2, there exist homeomorphisms f, s, t ∈ [ϕ] with clopen
supports in C1 such that f1 = f [s, t] and µ(supp(f)) < δ2 for all µ ∈ M(ϕ).
It follows from Theorem 2.2 that there exists a homeomorphism t′ ∈ [ϕ]
with clopen support in C1∪C2 such that t′(supp(f)) ⊂ C2. Set f2 = t′ft′−1.
Then the support of f2 is a clopen subset of C2 and f2 ∈ [ϕ] is minimal on
supp(f2). Thus,

f = f [s, t] = f2[t
′, f

−1
][s, t].

Setting g1 = [t′, f
−1

][s, t], we complete the proof.

Lemma 4.5. Let f1 be as in Lemma 4.2. Then f1 ∈ D([ϕ]) and f1 is a

product of four commutators from [ϕ].

Proof. Let {fi}i≥1 and {gi}i≥1 be the sequences of homeomorphisms
constructed in Lemma 4.4. Recall that gi = [s′i, t

′
i][si, ti] and supp(s′i) ∪

supp(t′i) ∪ supp(si) ∪ supp(ti) ⊆ Ci ∪ Ci+1. Note that the homeomorphisms
{g2k+1}k≥0 have mutually disjoint supports. So do {g2k}k≥1. Define the maps
godd and geven as follows:

godd(x) =

{
gi(x) whenever x ∈ supp(gi) for odd i′,

x elsewhere,

geven(x) =

{
gi(x) whenever x ∈ supp(gi) for even i,

x elsewhere.

It follows from the choice of the sets Ci and the property diam(Cn ∪ {x0})
→ 0 that godd and geven are homeomorphisms.

We see godd = [s′odd, t
′
odd][sodd, todd] and geven = [s′even, t

′
even][seven, teven]

where the homeomorphisms s′odd, s
′
even, t

′
odd, t

′
even sodd, seven, and todd, teven

are defined similarly to godd and geven.
By definition of gi, we have gi = f−1

i+1fi. Since all the fi’s have disjoint
supports, we can formally write down the infinite products

godd = (f−1
2 f1)(f

−1
4 f3)(f

−1
6 f5) . . . = (f1f3f5 . . .)(f

−1
2 f−1

4 f−1
6 . . .),

geven = (f−1
3 f2)(f

−1
5 f4)(f

−1
7 f6) . . . = (f−1

3 f−1
5 f−1

7 . . .)(f2f4f6 . . .).

Therefore, f1 = goddgeven = [s′odd, t
′
odd][sodd, todd][s

′
even, t

′
even][seven, teven].

Theorem 4.6. Let (X,ϕ) be a Cantor minimal system. Suppose that

a homeomorphism f ∈ [ϕ] has clopen support and is minimal on it. Then

f ∈ D([ϕ]) and f is a product of five commutators from [ϕ]. In particular ,
ϕ ∈ D([ϕ]).

Proof. This follows immediately from Lemmas 4.2 and 4.5.

Remark 4.7. Let P1(X) denote the set of all Borel probability measures
on X. For any g ∈ Homeo(X), ε > 0, and any µ1, . . . , µn ∈ P1(X), define
U(g;µ1, . . . , µn; ε) = {h ∈ Homeo(X) : µi({x ∈ X : h(x) 6= g(x)}) < ε
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for i = 1, . . . , n}. Let τ denote the topology on Homeo(X) generated by
the base sets of the form U(g;µ1, . . . , µn; ε). This topology was defined and
studied in [BDK]. In particular, it was shown that the topological group [ϕ]
is closed in Homeo(X) with respect to τ . On the other hand, the topological
full group [[ϕ]] is τ -dense in [ϕ] ([BK]; see also [M1] for another proof).

Developing the ideas used in this section, one can show that [[ϕ]] ⊂
D([ϕ]). Hence, Theorem 3.4 implies that the full group of a Cantor minimal
system has no τ -closed normal subgroups.

Now, we present several immediate corollaries of Theorem 4.6.

Corollary 4.8. Suppose ϕ is a minimal homeomorphism and g ∈ [ϕ]
is an involution with clopen support. Then g is a product of ten commutators

in [ϕ].

Proof. By Lemma 3.1, there exists a clopen set A ⊂ supp(g) such that
supp(g) is a disjoint union of A and g(A). Define f1 as the induced map ϕA

and let f2 = f1g. Clearly, f1 and f2 have clopen supports and are minimal
on their supports. Then Theorem 4.6 asserts that g = f−1

1 f2 is a product of
ten commutators from [ϕ].

It follows from Theorems 4.6 and 3.4 that ϕ ∈ H for any normal subgroup
H of [ϕ]. In particular, this fact allows us to show that ϕ is a product of
involutions. The following result gives the number of involutions needed to
represent ϕ. The proof is based on Theorem 3.4.

Corollary 4.9. A minimal homeomorphism ϕ is a product of 18 in-

volutions from [ϕ] which have clopen supports.

Proof. Let w be any involution from [ϕ] with clopen support. Choose any
clopen set E such that w(E) ∩ E = ∅. Set δ = inf{µ(E) : µ ∈ M(ϕ)} > 0.
Take any clopen set A′ with µ(A′) < δ for all µ ∈ M(ϕ). Let ϕA be the
induced homeomorphism of ϕ where A is a proper clopen subset of A′. It
follows from Proposition 2.1 that g = ϕ−1

A ϕ is a periodic homeomorphism
from [[ϕ]]. It is not hard to see that g = st, where s and t are involutions
from [[ϕ]] (see, for example, [Mil, Proposition 4.1]). Applying Lemma 4.5 to
ϕA (= f1), we find that ϕA = [s1, t1] . . . [s4, t4], where supp(si) ∪ supp(ti)
⊆ A′ and si, ti ∈ [ϕ] for each i = 1, . . . , 4.

We claim that if some homeomorphisms h and g are supported on A′,
then [h, g] is a product of four conjugates of w. Indeed, by Theorem 2.2,
find α ∈ [ϕ] such that α(A′) ⊆ E. Set q = α−1wα. Clearly, q(A′) ∩ A′ = ∅.
Observe that qhq−1 commutes with h and g. Hence

[h, g] = hgh−1g−1 = h(qh−1q−1)(qhq−1)gh−1g−1

= h(qh−1q−1)g(qhq−1)h−1g−1

= (hqh−1)(q−1)(gqg−1)(ghq−1h−1g−1).
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This implies that [h, g] is the product of four conjugates of w. Therefore,
ϕA is a product of 16 conjugates of w and ϕ = ϕAg is a product of 18
involutions.

We can refine Corollary 4.9 and show that ϕ can be written, in fact, as a
product of three involutions with clopen supports from [ϕ]. In our proof we
follow the arguments from [R1]. Recall that everywhere below, ϕ denotes a
minimal homeomorphism.

Definition 4.10. We say that a homeomorphism g ∈ [ϕ] is an n-cycle on
disjoint clopen sets E0, E1, . . . , En−1 if: (1) g(Ei) = Ei+1 for i = 0, . . . , n−2
and g(En−1) = E0; (2) g(x) = x for all x ∈ X \ (E0 ∪ · · · ∪En−1).

Lemma 4.11. Let g ∈ [ϕ] be an 18-cycle on disjoint clopen sets E0, E1, . . .
. . . , E17 such that g18|E0 is a minimal homeomorphism. Then there exists

an involution d ∈ [ϕ] with clopen support such that the homeomorphism gd
is an 18-cycle on E0, . . . , E17, and (gd)18 = id.

Proof. By Corollary 4.9, there are involutions h0, . . . , h17 from [ϕ] with
clopen supports such that g18|E0 = h0 . . . h17 and supp(hi) ⊆ E0.

Set dk = gkh−1
k g−k and d = d0d1 . . . d17. Then d is an involution with

clopen support and

(gd)18|E0 = (gd17) . . . (gd1)(gd0)|E0

= (gg17h−1
17 g

−17)(gg16h−1
16 g

17) . . . (gg2h−1
2 g−2)(ggh−1

1 g−1)(gh−1
0 )|E0

= g18h−1
17 . . . h

−1
0 |E0 = id .

Since gd is an 18-cycle on E0, . . . , E17, we conclude that (gd)18 = id.

Remark 4.12. Since the homeomorphism gd has period 18 on its sup-
port, i.e. for all x ∈ supp(gd) one has (gd)i(x) = x iff i = 18k for k ∈ Z, there
are two involutions s, t ∈ [ϕ] such that gd = st. Furthermore, supp(s) ⊆
E1 ∪ · · · ∪E17.

Lemma 4.13. Given n > 1, there exists a clopen set A such that

(1) A,ϕ(A), . . . , ϕn−1(A) are disjoint ;

(2) ϕ(B) ⊆ A, where B = X \
⋃n−1

i=0 ϕ
i(A).

Proof. Let E be a clopen set such that ϕi(E) ∩ E = ∅ for i = 1, . . . , n2.
Construct a K-R partition over E, i.e. E =

⋃
k Ek, where Ek = {x ∈ E :

ϕk(x) ∈ E and ϕj(x) /∈ E for 0 < j < k}. Observe that Ek = ∅ for all
k ≤ n2.

(1) If k = nl + r, 0 < r < n, then we set

Ak =

r−1⋃

i=0

ϕ(n+1)i(Ek) ∪
l−1⋃

i=r

ϕni+r−1(Ek).
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This means that we choose r times every (n + 1)th set from the family
{Ek, ϕ(Ek), . . . , ϕ

k−1(Ek)} starting from the first one and then we take every
nth set.

(2) If k = nl, then we set

Ak =
l−1⋃

i=0

ϕni(Ek).

Denoting A =
⋃

k Ak, we get the result.

Theorem 4.14. Let (X,ϕ) be a Cantor minimal system. Then there

exist involutions i1, i2, i3 ∈ [ϕ] with clopen supports such that ϕ = i1i2i3.

Proof. Find a clopen set A satisfying the conditions of Lemma 4.13 for
n = 18. Let B = X \

⋃17
i=0 ϕ

i(A). Clearly, ϕ(B)∩B = ∅. Define an involution
b as follows: b|B = ϕ|B and b|ϕ(B) = ϕ−1|ϕ(B). It follows that g = bϕ is
an 18-cycle on the clopen sets A0, . . . , A17 where Ai = ϕi(A).

By Lemma 4.11, we can find an involution d with clopen support such
that (gd)18 = id. It follows from Remark 4.12 that there exist involutions s
and t such that gd = st. This implies that ϕ = b−1std−1 is the product of
four involutions. As mentioned in Remark 4.12, supp(s) ⊆ A1 ∪ · · · ∪ A17.
Hence supp(s) ∩ supp(b) = ∅. It follows that w = b−1s is an involution.
This proves that ϕ = wtd−1 is the product of three involutions with clopen
supports.

5. Flip conjugacy and orbit equivalence. In the section, we show
that the classes of orbit equivalence and flip conjugacy of a Cantor minimal
system are completely determined by simple groups.

Definition 5.1.

(1) Cantor minimal systems (X1, ϕ1) and (X2, ϕ2) are called orbit equiv-

alent if there exists a homeomorphism F : X1 → X2 such that
F (Orbϕ1

(x)) = Orbϕ2
(F (x)) for all x ∈ X1.

(2) (X1, ϕ1) and (X2, ϕ2) are called flip conjugate if there exists a hom-
eomorphism F : X1 → X2 such that F ◦ ϕ1 ◦ F

−1 is equal to either
ϕ2 or ϕ−1

2 .

The following theorem can be deduced from [GPS].

Theorem 5.2. Let (X1, ϕ1) and (X2, ϕ2) be Cantor minimal systems.

The homeomorphisms ϕ1 and ϕ2 are orbit equivalent if and only if D([ϕ1])
and D([ϕ2]) are isomorphic as algebraic groups.

Proof. The theorem can be proved in the same way as Corollary 4.6 from
[GPS]. We notice only that according to Corollary 4.8 every involution with
clopen support belongs to the commutator subgroup. We also recall that
ϕ ∈ D([ϕ]) (see Theorem 4.6).
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Now, we start studying the class of flip conjugacy of a Cantor minimal
system in terms of topological full groups. In our arguments, we mainly
follow the proof of Theorem 384D from [Fr]. This theorem was used to show
that certain transformation groups of complete Boolean algebras have no
outer automorphisms (see also [E2]).

Let Γ denote one of the following groups: (1) the topological full group
[[ϕ]]; (2) the group [[ϕ]]0 defined in Remark 3.5; (3) the commutator sub-
group D([[ϕ]]) of [[ϕ]]. Notice that we have the following inclusions:

(5.1) D([[ϕ]]) ⊆ [[ϕ]]0 ( [[ϕ]].

We will show that every group from (5.1) is a complete invariant of
flip conjugacy of ϕ. The proposed proof works for any of these groups Γ ,
because the only group property we exploit is the existence of many “small
involutions” in the following sense.

Lemma 5.3. Each group Γ has many involutions, in the sense that for

any clopen set A and any x0 ∈ A, there exists h ∈ Γ such that hx0 6= x0,
h2 = 1 and supp(h) ⊆ A. Moreover , for every n > 0, there exists h ∈ Γ
such that h is supported by A, x0 ∈ supp(h) and h|supp(h) has period n.

Proof. By (5.1), it suffices to establish the result for D([[ϕ]]) only. Let
us find integers 0 = m0 < m1 < · · · < m2n−1 such that ϕmi(x0) ∈ A for
i = 0, . . . , 2n−1. Take a clopen neighborhood V of x0 such that ϕmi(V ) ⊂ A
and ϕmi(V ) ∩ ϕmj (V ) = ∅ for all i, j = 0, . . . , 2n− 1, i 6= j.

Define a homeomorphism l ∈ [[ϕ]] as follows: l(x) = ϕmi+1−mi(x) if
x ∈ ϕmi(V ) for i = 0, 1, . . . , n − 2, l(x) = ϕ−mn−1(x) if x ∈ ϕmn−1(V ),
and l(x) = x elsewhere. Similarly, define a homeomorphism r ∈ [[ϕ]]:
r(x) = ϕmi+1−mi(x) if x ∈ ϕmi(V ) for i = n, n + 1, . . . , 2n − 2, r(x) =
ϕ−(m2n−1−mn)(x) if x ∈ ϕm2n−1(V ), and r(x) = x elsewhere.

It is not hard to see that there exists α ∈ [[ϕ]] such that l = αrα−1.
Therefore, h = lr−1 ∈ D([[ϕ]]) and h has period n on its support ϕm0(V ) ∪
· · · ∪ ϕm2n−1(V ).

As a corollary of the lemma, we obtain the following result.

Corollary 5.4. The family {supp(g) : g ∈ Γ and h2 = 1} of clopen

sets generates the clopen topology of X.

We will need some notions of the theory of Boolean algebras. We refer
the reader to the book [Fr] for a comprehensive coverage of the theory of
Boolean algebras and their automorphisms.

Let X be a Cantor set. Recall that an open set A is called regular open

if A = int(A). Denote the family of all regular open sets by RO(X). Notice
that the family CO(X) of all clopen sets is contained in RO(X).
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Let A be a Boolean algebra and H ⊂ A. Define sup(H) to be the smallest
element of A that contains all elements of H. If sup(H) exists for any family
H ⊆ A, then the Boolean algebra A is called complete.

Theorem 5.5 (Theorem 314P of [Fr]). RO(X) is a complete Boolean

algebra with Boolean operations given by

A ∨B = int(A ∪B), A ∧B = A ∩B, A \RO(X) B = A \B

and with suprema given by sup(H) = int(
⋃
H).

Remark 5.6. Notice that finite set-theoretical unions of clopen sets co-
incide with the Boolean ones.

Lemma 5.7. If A,B ∈ RO(X) and A 6⊂ B, then A\B contains a clopen

set.

Proof. Let C = A ∩ B. If C = ∅, then the result is clear. Assume that
C 6= ∅ and A \C = A \B has no internal points. Then A ⊂ C. This implies
that A = C, a contradiction.

Now we are ready to start the proof of the main result of this section.
Recall that for a Cantor minimal system (X,ϕ), Γ stands for one of the
groups: [[ϕ]], [[ϕ]]0, or D([[ϕ]]).

Theorem 5.8. Let (X1, ϕ1) and (X2, ϕ2) be Cantor minimal systems.

If α : Γ1 → Γ2 is a group isomorphism, then α is spatial , i.e. there exists a

homeomorphism α̂ : X1 → X2 such that α(g) = α̂gα̂−1 for any g ∈ Γ1.

Proof. The idea of the proof is the following: we study the local subgroup
ΓA := {g ∈ Γ : gx = x for all x ∈ X\A}, where a clopen set A is the support
of an involution from Γ , and describe ΓA in group terms. This description
allows us to construct an automorphism α̂ : RO(X1) → RO(X2) of Boolean
algebras of regular open sets, which also sends clopen sets onto clopen sets.
This automorphism gives rise to the spatial realization of α. For convenience,
we will omit the index i in the notation of Cantor minimal system (Xi, ϕi)
and the group Γi. We split the proof of the theorem into two lemmas.

Definition 5.9. Let π ∈ Γ be any involution. Set

Cπ = {g ∈ Γ : gπ = πg},

the centralizer of π in Γ ;

Uπ = {g ∈ Cπ : g2 = 1 and g(hgh−1) = (hgh−1)g for all h ∈ Cπ},

the involutions from Cπ which commute with all their conjugates in Cπ;

Vπ = {g ∈ Γ : gh = hg for all h ∈ Uπ},

the centralizer of Uπ in Γ ;

Sπ = {g2 : g ∈ Vπ};
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and

Wπ = {g ∈ Γ : gh = hg for all h ∈ Sπ},

the centralizer of Sπ in Γ .

Clearly, for any involution π, supp(π) is a clopen set and α(Wπ) = Wα(π)

where α is as in Theorem 5.8.

Lemma 5.10. Let π ∈ Γ be an involution. Then Wπ = Γsupp(π).

Proof. To prove the result, we will in turn study the properties of Cπ,
Uπ, Vπ, Sπ, and Wπ.

(1) g(supp(π)) = supp(π) for all g ∈ Cπ. ⊳ It is easy to see that
supp(gπg−1) = g(supp(π)). Since gπg−1 = π, one has g(supp(π)) =
supp(π). ⊲

(2-i) supp(g) ⊆ supp(π) for all g ∈ Uπ. ⊳ Assume the converse. Then
there exists a clopen set A ⊂ X \ supp(π) such that gA∩A = ∅. By Lemma
5.3, find a homeomorphism h ∈ Γ with support in A such that for a clopen
set V ⊂ A one has hi(V ) ∩ V = ∅, i = 1, 2. Note that h ∈ Cπ. Then

g(hgh−1)(V ) = g2h−1(V ) = h−1(V ),

(hgh−1)g(V ) = hg2(V ) = h(V ).

The choice of h guarantees that g(hgh−1) 6= (hgh−1)g. Hence g /∈ Uπ, which
is a contradiction. ⊲

(2-ii) If a clopen set A is π-invariant, then πA ∈ Uπ where the homeo-
morphism πA coincides with π on A and is equal to id elsewhere.

(3-i) Vπ ⊂ Cπ, because π ∈ Uπ.
(3-ii) If g ∈ Vπ, then g(B) ⊆ B ∪ π(B) for all clopen sets B ⊆ supp(π).

⊳ Assume the converse, i.e. g(B) is not in B0 = B ∪ π(B) for some set B.
Note that π(B0) = B0. As B ⊂ B0, we have C = g(B0) \ B0 6= ∅. Since
πg(B0) = gπ(B0) = g(B0), we obtain

π(C) = π(g(B0) \B0) = πg(B0) \ π(B0) = g(B0) \B0 = C.

Since g ∈ Vπ ⊂ Cπ, we see that supp(π) is g-invariant and C ⊂ supp(π). As
π is an involution, C = C ′ ⊔ C ′′ for some clopen set C ′ with C ′′ = π(C ′).
Note that g(C) ∩ C = ∅. Therefore

πCg(C
′) = g(C ′) 6= g(C ′′) = gπC(C ′).

Thus, g does not commute with πC ∈ Uπ, a contradiction. ⊲

(3-iii) If g ∈ Vπ, then g2(B) = B for any clopen B ⊆ supp(π). ⊳ Assume
the converse, i.e. there is a clopen set B ⊂ supp(π) such that g2(B)∩B = ∅.
We can also assume that g(B) ∩ B = ∅. We know that g(B) ⊂ B ∪ π(B).
This implies that g(B) ⊂ π(B). By the same argument applied to g(B), we
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obtain g2(B) ⊂ π2(B) = B. If g2(B) 6= B, then µ(B) = 0 for any µ ∈ M(ϕ),
which contradicts the minimality of ϕ. Therefore, g2(B) = B. ⊲

(4-i) If g ∈ Sπ, then supp(g) ⊂ X\supp(π). ⊳ This follows from (3-iii). ⊲

(4-ii) For any clopen set C ⊂ X \ supp(π), there is an involution h ∈ Sπ

supported on C. ⊳ By Lemma 5.3, there exists a periodic homeomorphism g
of order 4 with support in C. Property (2-i) implies that g ∈ Vπ. Therefore,
g2 ∈ Sπ. ⊲

(5) Wπ = Γsupp(π). ⊳ It follows from (4-i) that Γsupp(π) ⊂ Wπ. To get
the reverse inclusion, we consider any g ∈Wπ and suppose that there exists
a clopen set B ⊂ X \ supp(π) such that g(B) ∩ B = ∅. By (4-ii), find an
involution h from Sπ with support in B. Take any clopen set C ⊂ B with
h(C) ∩ C = ∅. Therefore,

hg(C) = g(C) 6= gh(C).

This implies that gh 6= hg, a contradiction. Thus, Wπ = Γsupp(π). ⊲

This completes the proof of the lemma.

The following lemma gives the spatial realization of the group isomor-
phism α.

Lemma 5.11. Let (Xi, ϕi), Γi, α be as in Theorem 5.8. The map Λ :
RO(X1) → RO(X2) given by

Λ(A) =
∨

{supp(α(π)) : π ∈ Γ1, π
2 = 1 and supp(π) ⊆ A}

is a Boolean algebra isomorphism. Furthermore, Λ(CO(X1)) = CO(X2).

Proof. (1) Note that if g, π ∈ Γ1 and π2 = 1, then

supp(g) ⊆ supp(π) ⇔ supp(α(g)) ⊆ supp(α(π)).

⊳ By Lemma 5.10 (5), we see that supp(g) ⊆ supp(π) iff g ∈ Wπ iff α(g) ∈
Wα(π) iff supp(α(g)) ⊆ supp(α(π)). ⊲

(2) It easily follows from the definition of Λ that Λ is order-preserving,
i.e. if A ⊆ B with A,B ∈ RO(X1), then Λ(A) ⊆ Λ(B).

(3) Let π ∈ Γ1 be such that π2 = 1 and A ∈ RO(X1). If supp(π) 6⊂ A,
then supp(α(π)) 6⊂ Λ(A). ⊳ Take a non-empty clopen set V ⊆ supp(π) \ A
and a homeomorphism h ∈ Γ1 of order 4 with support in V (see Lemma 5.7).
As supp(h) ⊂ supp(π), we have supp(α(h)) ⊂ supp(α(π)) (see (1)). On
the other hand, if π′ is an involution with support in A, then h ∈ Vπ′

and h2 ∈ Sπ′ (see (2-i) of Lemma 5.10 and the definition of Vπ′). Thus,
α(h2) ∈ Sα(π′) and supp(α(h2)) ∩ supp(α(π′)) = ∅ (see (4-i) of Lemma

5.10). As π′ is arbitrary, Corollary 5.4 implies that supp(α(h2))∩Λ(A) = ∅.
Hence, supp(α(π)) \ Λ(A) ⊃ supp(α(h2)) 6= ∅. ⊲
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(4) Define the map Λ∗ : RO(X2) → RO(X1) as follows:

Λ∗(B) =
∨

{supp(α−1(π)) : π ∈ Γ2, π
2 = 1 and supp(π) ⊆ B}.

(5) Λ∗Λ(A) = A for every A ∈ RO(X1) and ΛΛ∗(B) = B for every
B ∈ RO(X2). ⊳ By Lemma 5.4, the set A can be covered with clopen sets
{Cn} which are supports of involutions from Γ1. Take an involution π whose
support is Cn. As Cn ⊂ A, α(π) is an involution with support in Λ(A).
Hence Cn = supp(α−1α(π)) is contained in Λ∗Λ(A). Since Cn is arbitrary,
we get A ⊆ Λ∗Λ(A).

If π ∈ Γ2 is an involution with support in Λ(A), then α−1(π) is an
involution whose support is in A (see (3)). Since π is arbitrary, Λ∗Λ(A) ⊆ A,
which shows that Λ∗Λ(A) = A. Analogously, one can show that ΛΛ∗(B) = B
for all B ∈ RO(X2). ⊲

(6) Since Λ∗Λ(A) = A, it follows that for any A,B ∈ RO(X1), Λ(A) ⊆
Λ(B) iff A ⊆ B. Moreover, Λ is a bijection of RO(X1) and RO(X2).

(7) Λ : RO(X1) → RO(X2) is a Boolean algebra isomorphism and Λ∗ is
its inverse. To see this, we refer the reader to Theorem 312L of [Fr], which
asserts that property (6) implies that Λ is a Boolean algebra isomorphism.

It remains only to prove that Λ sends clopen sets onto clopen sets.

(8) If π ∈ Γ1 is an involution, then Λ(supp(π)) = supp(α(π)). ⊳ Indeed,
by definition of Λ, supp(α(π)) ⊂ Λ(supp(π)). On the other hand,

supp(α(π)) = ΛΛ−1(supp(α(π))) ⊇ Λ(supp(α−1α(π))) = Λ(supp(π)). ⊲

(9) Λ(CO(X1)) = CO(X2). ⊳ We note that if A is the support of an
involution from Γ1, then we see from (8) that Λ(A) ∈ CO(X2). Now if A is
an arbitrary clopen set, then, by Corollary 5.4, A is a finite union of supports
of involutions. Since Λ is a Boolean algebra isomorphism and finite unions of
clopen sets in RO(X2) coincide with the set-theoretical unions, we conclude
that Λ(A) ∈ CO(X2). ⊲

(10) For any B ∈ RO(X2) and g ∈ Γ1, we have α(g)(B) = ΛgΛ−1(B).
⊳ Assume the converse, i.e. h = α(g)−1ΛgΛ∗ is not the identity automor-
phism of RO(X2). Notice that h also preserves CO(X2). Then there exists
a clopen set V such that h(V )∩V = ∅. Let π be an involution from Γ2 with
support in V . Then α−1(π) is supported by Λ−1(V ). Hence, gα(π)−1g−1 is
supported by g(Λ−1(V )) and α(gα−1(π)g−1) = α(g)πα−1(g) is supported
by ΛgΛ−1(V ). On the other hand, α(g)πα−1(g) is supported by α(g)(V ).

Furthermore, we deduce that α(g)(V ) ∩ ΛgΛ−1(V ) 6= ∅. It follows that
V ∩ α−1(g)ΛgΛ−1(V ) 6= ∅, which is a contradiction. ⊲

Let us continue the proof of Theorem 5.8. Since Λ is an isomorphism of
CO(X1) and CO(X2), it can be extended to a homeomorphism α̂ : X1 →X2.
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Moreover, it follows from (10) that α(g)(x) = α̂gα̂−1(x) for any g ∈ Γ1 and
x ∈ X2. This completes the proof of the theorem.

To establish the fact that the group Γ is a complete invariant of flip
conjugacy, we need to prove the following lemma. The proof we present here
is analogous to Proposition 5.8 from [GPS].

Lemma 5.12. For a Cantor minimal system (X,ϕ), let Γ denote any of

the groups from (5.1). Then the topological full group of Γ is equal to [[ϕ]].

Proof. It is sufficient to show that ϕ belongs to the topological full
group of D([[ϕ]]). For every x ∈ X find a clopen neighborhood Vx such
that ϕj(Vx) ∩ Vx = ∅ for j = 1, 2. Define a homeomorphism hx as follows:

hx(y) =

{
ϕ(y), x ∈ Vx ∪ ϕ(Vx),

ϕ−2(y), x ∈ ϕ2(Vx).

It is not hard to see that hx ∈ D([[ϕ]]) (this follows from the proof of
Lemma 5.3).

By compactness ofX, there exist x1, . . . , xn ∈ X such thatX =
⋃n

j=1 Vxj
.

Set

U1 = Vx1
, U2 = Vx2

\ U1, . . . , Un = Vxn \ (U1 ∪ · · · ∪ Un−1).

Then {U1, . . . , Un} forms a clopen partition of X. Then ϕ(x) = hxi
(x) when-

ever x ∈ Ui. This completes the proof.

Theorem 5.13. Let (X1, ϕ1) and (X2, ϕ2) be Cantor minimal systems.

Then ϕ1 and ϕ2 are flip conjugate if and only if one of the following state-

ments holds:

(1) D([[ϕ1]]) ∼= D([[ϕ2]]);

(2) [[ϕ1]]0 ∼= [[ϕ2]]0;

(3) [[ϕ1]] ∼= [[ϕ2]].

Proof. Notice that the cases (2) and (3) are already proved in [GPS].
Here we present a unified proof for all three cases. Let Γi denote one of the
following groups: [[ϕi]], [[ϕi]]0, D([[ϕi]]), i = 1, 2.

It is clear that the map implementing the flip conjugacy of ϕ1 and ϕ2

can be lifted to an isomorphism between Γ1 and Γ2.

Conversely, by Theorem 5.8 every isomorphism between Γ1 and Γ2 is
spatial. By Lemma 5.12, this spatial isomorphism can be extended to an
isomorphism of [[ϕ1]] and [[ϕ2]]. Then it follows from Corollary 2.7 of [BoTo]
that ϕ1 and ϕ2 are flip conjugate.
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