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PARTIAL VARIATIONAL PRINCIPLE FOR FINITELYGENERATED GROUPS OF POLYNOMIAL GROWTH ANDSOME FOLIATED SPACESBYANDRZEJ BI� (�ód¹)Abstrat. We generalize the notion of topologial pressure to the ase of a �nitelygenerated group of ontinuous maps and introdue group measure entropy. Also, we pro-vide an elementary proof that any �nitely generated group of polynomial growth admitsa group invariant measure and show that for a group of polynomial growth its measureentropy is less than or equal to its topologial entropy. The dynamial properties of groupsof polynomial growth are re�eted in the dynamis of some foliated spaes.1. Introdution. The onept of entropy of a transformation plays aruial role in topologial dynamis. The notion of topologial entropy wasintrodued by Adler, Konheim and MAndrew in [1℄ as an invariant of topo-logial onjugay. Later, Bowen [8℄ and Dinaburg [14℄ presented an equiv-alent approah to the notion of entropy in the ase when the domain ofthe transformation is a metrizable spae. The topologial entropy h(f) of ahomeomorphism f measures the omplexity of the transformation ating ona ompat topologial spae in the sense that it shows the rate at whih theation of the transformation disperses points.Sine the entropy appeared to be a very useful invariant in ergodi theoryand dynamial systems, there were several attemps to �nd suitable general-izations of it to other systems, like groups, pseudogroups, graphs, foliations.Among others, Ghys, Langevin and Walzak [20℄ proposed a de�nition oftopologial entropy for �nitely generated groups and pseudogroups of on-tinuous transformations. Bi± and Walzak [7℄ applied the notion of entropyof a group to hyperboli groups in the sense of Gromov to study their geom-etry and dynamis. Friedland [19℄ used the notion of entropy to study someaspets of dynamis of graphs and semigroups.2000 Mathematis Subjet Classi�ation: Primary 28A65; Seondary 37C85, 37B40.Key words and phrases: topologial entropy, measure-theoreti entropy, variationalpriniple, groups of polynomial growth, invariant measures, foliations, foliated spaes.Supported by EU Marie Curie Mobility International Fellowship MOIF-CT-2004-002641. [431℄ © Instytut Matematyzny PAN, 2008
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Adler, Konheim and MAndrew [1℄ stated the hypothesis, alled the vari-ational priniple, that the topologial entropy of a dynamial system, deter-mined by a single transformation, is the supremum of all measure entropiestaken with respet to all invariant Borel probability measures.Dinaburg desribed the relation between topologial entropy and measureentropy, two harateristis of a dynamial system determined by a singletransformation, in the ase of a spae of �nite dimension and a homeomor-phism. Goodwyn [22℄ proved that the topologial entropy is not less thanthe measure entropy of a dynamial system. Finally, Goodman [21℄ provedthe hypothesis stated by Adler, Konheim and MAndrew in [1℄.The notion of pressure, whih is a generalization of topologial entropyfor an ation of the group Z

N on a ompat metri spae, was introduedby Ruelle in [32℄. Given a ontinuous real funtion φ on a ompat met-ri spae X one tries to maximize the funtional Φf (µ) = hµ(f) +
T
X

φdµ,where f : X → X is a ontinuous map and hµ(f) is the measure entropy of
f with respet to an f -invariant measure µ. The supremum of Φf (µ) overall f -invariant probability measures µ on the Borel σ-algebra is the topolog-ial pressure P (f, φ). Then the variational priniple an be rewritten in theform

P (f, φ) = sup
{
hµ(f) +

\
X

φdµ : µ ∈ M(f)
}

where M(f) denotes the set of all f -invariant Borel probability measuresde�ned on X.A general proof of the variational priniple for an ation of Z+ was givenby Walters [36℄ and by Denker [13℄. Some generalization of the variationalpriniple to ations of Z
N
+ was found by Elsanousi [17℄. A very short andelegant proof of the variational priniple for an ation of Z

N
+ on a ompatspae was given by Misiurewiz [28℄. A generalization to R

n ations wasprovided by Tagi-Zade [34℄.In this paper we show that for arbitrary �nitely generated groups ofontinuous maps, of polynomial growth, there exists a group invariant mea-sure. The main result of the paper states that the group measure entropy ofa �nitely generated group of polynomial growth is less than or equal to itstopologial entropy. The dynamial properties of �nitely generated groups ofpolynomial growth are re�eted in the dynamis of some foliated spaes. Thenotion of foliation (or more generally of foliated spae) generally orrespondsto a deomposition of a manifold into the union of onneted submanifoldsof the same dimension, alled leaves, whih are piled up loally like pages ofa book; for a detailed introdution see [9℄, [10℄.For a foliated spae (MG, FG) determined by the suspension of a group
(G, G1) of polynomial growth we �nd that the measure entropy of the foli-
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ation FG is upper bounded by the geometri entropy of FG multiplied by aonstant dependent on the geometry of (MG, FG).Therefore, we get some partial variational priniple for groups of poly-nomial growth and its analogue for some foliated spaes.The paper is organized as follows.In Setion 2 we reall di�erent approahes to the problem of the existeneof a group invariant measure, we onstrut an example of a group withoutany group invariant measure and we reall the known fat that a �nitelygenerated abelian group admits a group invariant measure. Also, we providean example of a non-abelian �nitely generated group whih has a groupinvariant measure. In Setion 3, we reall the notion of the growth of agroup and ite a few results whih motivate our restriting attention to�nitely generated groups of exponential or of polynomial growth. We studythe algebrai struture of those groups and introdue the notions of �niegroups� whih will be used later. The nie groups form a large lass of groupswhih embraes abelian groups, hyperboli groups, groups of polynomialgrowth, groups of exponential growth and others. In Setion 4, we de�neand disuss the notion of topologial pressure P ((G, G1), f) for a �nitelygenerated group (G, G1). In Setion 5, we de�ne the measure entropy for a�nitely generated group and prove the main result of the paper:
Theorem 1. For a nie group (G, G1), measure µ ∈ M(X, (G, G1)) and

f ∈ C(X) we have the inequality
hµ(G, G1) +

\
X

f dµ ≤ P ((G, G1), f)where M(X, (G, G1)) denotes the set of G-invariant measures.In Setion 6, we restrit our attention to �nitely generated groups of poly-nomial growth. We prove (Proposition 8) that any �nitely generated groupof homomorphisms of a ompat metri spae, of polynomial growth, admitsa group invariant measure. Finally, in Setion 7 we show that the dynamialproperties of groups of polynomial growth are re�eted in the dynamis ofsome foliated spaes. Given a �nitely generated group (G, G1) of polynomialgrowth we onstrut a ompat foliated spae (MG, FG) modeled transver-sally on a ompat metri spae Γ , with analogous dynamial properties.Moreover, we get:
Corollary 3. For a ompat foliated spae (MG, FG), determined bythe suspension of a �nitely generated group (G, G1) of polynomial growth,with a ontinuous family gMG

of Riemannian strutures on the leaves, andfor any measure µ ∈ M(X, (G, G1)) we get
sup{hµ(G, G1); µ ∈ M(Γ, (G, G1))} ≤ ahgeom(FG, gMG

),
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where hgeom(FG, gMG

) is the geometri entropy of FG with respet to theRiemannian struture gMG
, and a denotes the maximum of the lengths ofthe free homotopy lasses of urves homotopi to elements of G1.2. Existene of a group invariant measure. Let X be a ompatmetri spae with distane funtion d. Consider a group G of homeomor-phisms of X. The group G is assumed to be �nitely generated, i.e. thereexists a �nite set G1 = {idX , g1, g

−1
1 , . . . , gk, g

−1
k } suh that

G =
⋃

n∈N

Gn,where
Gn = {g1 ◦ · · · ◦ gn : X → X}g1,...,gn∈G1 .We always assume that idX ∈ G1. This implies that Gm ⊂ Gn for all m ≤ n.To emphasize the generating set we shall write (G, G1) instead of G.Definition 1. A Borel probability measure µ on X is said to be G-invariant if µ ◦ g = µ for any g ∈ G.It is well known that if G is abelian then a G-invariant measure exists(see [17℄). But in the ase of an arbitrary �nitely generated group (G, G1)a G-invariant measure may not exist.Example 1. Let fi : S1 → S1 be di�eomorphisms of a irle with asoure Ai and a sink Bi, i = 1, 2, suh that {A1, B1}∩{A2, B2} = ∅. Then thegroup (G, G1) generated by G1 = {idS1 , f1, f

−1
1 , f2, f

−1
2 } has no G-invariantmeasure. Indeed, if µ were a G-invariant measure then suppµ (the omple-ment of the set of all x ∈ S1 whih admit an open neighbourhood V suhthat µ(V ) = 0) would be a subset of a nonwandering set. But in this ase,the nonwandering set is empty.Example 2. The orthogonal group O(n) ating on Sn is a non-abeliangroup admitting an O(n)-invariant Haar measure. Thus, a free subgroup F2of O(n) admits an F2-invariant measure.Bounded groups and a group invariant measure. Ramahandran and Mi-siurewiz [31℄ onsidered a probability spae (X,A, P ) and a group G of mea-surable and nonsingular transformations de�ned on (X,A, P ). They proveda neessary and su�ient ondition for the existene of a �nite G-invariantmeasure.We say that a �nite additive measure µ on A is equivalent to the measure

P provided for any set E ∈ A, µ(E) = 0 i� P (E) = 0. A measurabletransformation f : X → X is alled nonsingular if for any E ∈ A theondition P (E) > 0 implies P (f−1(E)) > 0. Two measurable sets E and Fare said to be equivalent if
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1) there exist sets E′ and F ′ suh that P ((E \ E′) ∪ (E′ \ E)) = 0 and
P ((F \ F ′) ∪ (F ′ \ F )) = 0,2) there exists a sequene (Ej) suh that E′ =

⋃∞
j=1 Ej ,3) there exists a sequene (Fj) suh that F ′ =

⋃∞
j=1 Fj,4) there exists a sequene (gj) ⊂ G suh that for every j,

Fj = gj(Ej).Following [31℄, we say that a set E ∈ A is bounded if it is not equivalent toa measure-theoretially proper subset of itself. Finally, we say that a group
G is bounded if X is bounded.Proposition 1 (Theorem 1 in [31℄). A �nite G-invariant measure equiv-alent to P exists if and only if the group G is bounded.Measure preserving groups of transformations were studied by Alpernand Prasad [2℄ and Oxtoby and Ulam [29℄. In the ompat ase, the topolog-ial and algebrai properties of those groups were investigated by Fathi [18℄.3. Growth rate of a group. We reommend [25℄ as a survey of resultson the growth rate of groups. In this setion we shall onsider only �nitelygenerated groups. More preisely, a group G is said to be �nitely generatedif there exists a �nite set G1 = {g1, . . . , gk, g

−1
1 , . . . , g−1

k } suh that
G =

⋃

n∈N

Gn,where
Gn = {g1 ◦ · · · ◦ gn : g1, . . . , gn ∈ G1}.We always assume that e, the neutral element of G, belongs to the generatingset G1. This implies that Gm ⊂ Gn for all m ≤ n. Let |Gn| denote theardinality of Gn.Following de la Harpe [25℄ we introdue the following de�nitions:Definition 2. Let (G, G1) be a �nitely generated group. The exponen-tial growth rate of (G, G1) is the upper limit

w(G, G1) = lim sup
k→∞

k
√

|Gk|.The limsup is in fat a limit beause the inequality |Gk+n| ≤ |Gk| |Gn|implies the existene of limk→∞
k
√

|Gk|.Definition 3. The group (G, G1) is said to be of(a) exponential growth if w(G, G1) > 1,(b) subexponential growth if w(G, G1) = 1,() polynomial growth of degree d if |Gk| ≤ akd for some a > 0 and d ≥ 0,



436 A. BI�
(e) intermediate growth if it is of subexponential growth and not of poly-nomial growth.It is known that the property of being of exponential growth (resp., subex-ponential growth, polynomial growth, intermediate growth) depends only onthe group G, and not on the hoie of the generating set G1. Also, a �nitelygenerated group is neessarily of one (and only one) of three types: expo-nential growth, polynomial growth or intermediate growth (see [25℄).There are many results on �nitely generated groups of exponential orpolynomial growth; let us quote a few of them:Proposition 2 ([25, p. 187℄). A �nitely generated group whih ontainsa free semigroup on two generators is of exponential growth.Proposition 3 ([23℄). A �nitely generated group of polynomial growthhas a nilpotent subgroup of �nite index.Proposition 4 ([15℄, [24℄, [4℄). If (G, G1) is a �nitely generated nilpo-tent group, then (G, G1) is of polynomial growth and

a1k
d ≤ |Gk| ≤ a2k

d,where d is the homogeneous dimension of (G, G1) and a1, a2 are some pos-itive onstants.Proposition 5 ([25, Proposition 22℄). The Heisenberg group (G, G1) isof polynomial growth and there exist onstants c1, c2 > 0 suh that for all
k ∈ N,

c1k
4 ≤ |Gk| ≤ c2k

4.Proposition 6 ([12℄). If (G, G1) is a hyperboli group, then there existpositive onstants c1, c2 and w > 1 suh that for all k ∈ N,
c1w

k ≤ |Gk| ≤ c2w
k.Lemma 1. If (G, G1) is a group of either exponential growth or polyno-mial growth, then there exists a onstant A ≥ 1 suh that

|Gm| |Gn| ≤ A|Gmn|for m, n ∈ N large enough.Proof. (a) Let (G, G1) be a group of exponential growth. Then
w = lim

k→∞

k
√
|Gk| > 1.Therefore, for small ε > 0 and large m, n ∈ N we get

(w + ε)m+n < (w − ε)mn.
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Moreover,
(w − ε)m ≤ |Gm| ≤ (w + ε)m,

(w − ε)n ≤ |Gn| ≤ (w + ε)n,

(w − ε)mn ≤ |Gmn| ≤ (w + ε)mn.Thus,
|Gm| |Gn| ≤ (w + ε)m+n ≤ (w − ε)mn ≤ |Gmn|.(b) Assume now that (G, G1) is of polynomial growth. Then by Proposi-tion 3, G has a nilpotent subgroup H of �nite index. Bass [4℄ proved that fora �nitely generated nilpotent group H there exist positive onstants A1, A2, dsuh that

A1n
d ≤ |Hn| ≤ A2n

d.Therefore, for the �nitely generated group (G, G1) of polynomial growththere exist positive onstants A3, A4, d suh that
A3n

d ≤ |Gn| ≤ A4n
d,whih implies that there exists a positive onstant A suh that

|Gm| |Gn| ≤ A|Gmn|.The above mentioned result motivates the following de�nition:Definition 4. A �nitely generated group (G, G1) is said to be nie ifthere exist onstants A ≥ 1 and k0 suh that for all m, n > k0,
|Gn| |Gm| ≤ A|Gmn|.

Remark. Milnor [27℄ showed that the type of growth of the fundamentalgroup of a ompat Riemannian manifold M determines the geometry of Mand is related to the growth type of the manifold. The growth type of themanifold is determined by the volumes of balls in the universal overing of M.One of the most important results relating both types of growth is a theoremdue to Shvarts [33℄ and Milnor [27℄, whih says that the fundamental group
π1(M) of a ompat manifold M and the universal overing of M have thesame type of growth.An approah to the growth of groups, originating from foliation the-ory, based on the paper of Egashira [16℄, was presented by Walzak in [35℄.Badura [3℄ showed that any growth type an be realized by a leaf of a C1-foliation of a ompat manifold.4. Topologial pressure of a group. Let X be a ompat metri spaewith distane funtion d. Consider a group G of homeomorphisms of X. Thegroup G is assumed to be �nitely generated, e.g. there exists a �nite set
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G1 = {idX , g1, g

−1
1 , . . . , gk, g

−1
k } suh that

G =
⋃

n∈N

Gn,where
Gn = {g1 ◦ · · · ◦ gn : X → X}g1,...,gn∈G1 .Denote by C(X) the set of ontinuous funtions de�ned on X, and let Ddenote the set of all neighbourhoods of the diagonal in X × X.Let δ > 0 and let

Nδ := {(x, y) ∈ X × X : d(x, y) < δ}be the δ-neighbourhood of the diagonal in X × X. For �xed n ∈ N, δ > 0and a ontinuous funtion f ∈ C(X) we put
N(δ, n) :=

⋂

g∈Gn−1

(g × g)−1Nδ, fn :=
∑

g∈Gn−1

f ◦ g.

Modifying the de�nitions stated in [28, p. 1070℄, we giveDefinition 5. A �nite set E ⊂ X is alled(a) (n, δ)-separated if (x, y) /∈ N(δ, n) for any distint x, y ∈ E,(b) (n, δ)-spanning if for any x ∈ X there exists y ∈ E suh that (x, y) ∈
N(δ, n).Definition 6. Let

p(f, E) := log
∑

x∈E

exp f(x),

Pn,δ((G, G1), f) := sup{p(f, E) : E is (n, δ)-separated},
Pδ((G, G1), f) := lim sup

n→∞

1

|Gn−1|
Pn,δ((G, G1), f).Lemma 2. If α < β, then Pn,α((G, G1), f) ≥ Pn,β((G, G1), f).Definition 7. The quantity

P ((G, G1), f) := lim
δ→0+

Pδ((G, G1), f)is alled the pressure of the group (G, G1) with respet to the funtion f .By Lemma 2, P ((G, G1)f) is well de�ned.
Remark. It is easy to notie that the pressure of (G, G1) depends on thegenerating set. However, if G1 and G′

1 are two generating sets of the samegroup G, then P ((G, G1), f) > 0 if and only if P ((G, G′
1), f) > 0. Thereforewe an speak about the group of positive pressure without referring to thegenerating set.
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Moreover, the topologial entropy htop((G, G1)) satis�es the equality
htop((G, G1)) = P ((G, G1), 0).More information on the topologial entropy of a group an be found in [5℄and [6℄.5. Partial variational priniple. Denote by M(X, (G, G1)) the set of

G-invariant measures. Let A be a �nite Borel partition of X. For a partition
A we de�ne the partition

An :=
∨

g∈Gn−1

g−1A.

Modifying Conze's de�nition of measure entropy for abelian groups ([11℄),we de�ne measure entropy for an arbitrary �nitely generated group in thefollowing way:Definition 8. For a �nite Borel partition A of X and measure µ ∈
M(X, (G, G1)) we de�ne

hµ((G, G1),A) := lim sup
n→∞

1

|Gn−1|
Hµ(An),where Hµ(An) denotes the standard measure entropy of the partition An.Finally,

hµ(G, G1) := sup{hµ((G, G1),A) : A a �nite Borel partition of X}.Theorem 1. For a nie group (G, G1), measure µ ∈ M(X, (G, G1)) and
f ∈ C(X), we have the inequality

hµ(G, G1) +
\
X

f dµ ≤ P ((G, G1), f).Corollary 1. For a nie group (G, G1) ating on a ompat metrispae X and any G-invariant measure µ ∈ M(X, (G, G1)),
hµ(G, G1) ≤ h(G, G1).To prove Theorem 1 we need a few tehnial lemmas.Lemma 3. For a �nite Borel partition An = {a1, . . . , as} of X, any

µ ∈ M(X, (G, G1)), and any positive ζ, there exists a �nite Borel partition
B = {b0, b1, . . . , bs} of X suh that(a) bi is a ompat subset of ai for any i = 1, . . . , s,(b) Hµ(An | B) ≤ ζ.Proof. Choose ζ, ε > 0 satisfying ε|An| log |An| < ζ. Sine a Borel prob-ability measure is regular, for eah ai ∈ An there exists a ompat set
bi ⊂ ai suh that µ(ai \ bi) < ε, i = 1, . . . , s. Consider the partition



440 A. BI�
B = {b0, b1, . . . , bs}, where b0 = X \

⋃s
i=1 bi. Following the proof of The-orem 8.6 in [37℄, we get

Hµ(An | B) < ε|An| log |An| < ζ.Let B = {b0, b1, . . . , bs} be the partition of X desribed in the abovelemma. For distint i and j we have
(bi × bj) ∩ {(x, x) : x ∈ X} = ∅.Therefore
Oε = (X × X) \

s⋃

i6=j; i,j=1

(bi × bj)is an open neighbourhood of the diagonal.Lemma 4. Given f ∈ C(X). For any ζ > 0 there exists 0 < δ∗ ≤ ζ suhthat(a) if (x, y) ∈ Nδ∗ , then (y, x) ∈ Nδ∗ ,(b) if (x, y), (y, z) ∈ Nδ∗ then (x, z) ∈ Oε,() if (x, y) ∈ Nδ∗ , then |f(x) − f(y)| ≤ ζ.Proof. Choose ζ > 0. Denote by B(x, rx) the ball in X × X entered at
(x, x) of radius rx suh that B(x, rx) ⊂ Oε. Sine the diagonal is ompat,it is overed by a �nite subfamily (B(xi, rxi

))k
i=1. Now, it is easy to notiethat there exists a δ > 0 suh that

Nδ ⊂
k⋃

i=1

B(xi, rxi
).By the ontinuity of f we get δ1 suh that if d(x, y) < δ1, then |f(x)− f(y)|

< ζ. Taking δ∗ ≤ min{δ, δ1, ζ} ompletes the proof.Definition 9. Given a group (G, G1) and a positive integer m, denoteby (G(m), G
(m)
1 ) the group generated by the set G

(m)
1 = {Gm\Gm−1}∪{idX}.Lemma 5.

Anm =
∨

k∈G
(m)
n−1

k−1
( ∨

g∈Gm−1

g−1A
)
.

Proof. Notie that any element a of the partition Anm may be writtenin the form
a =

⋂

g∈Gmn−1

g−1Ag, where Ag ∈ A.

On the other hand, any element b of ∨
k∈G

(m)
n−1

k−1(
∨

g∈Gm−1
g−1A) may be
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written, with Ag,k ∈ A, in the form
b =

⋂

k∈G
(m)
n−1

k−1
( ⋂

g∈Gm−1

g−1Ag,k

)
=

⋂

k∈G
(m)
n−1, g∈Gm−1

(g ◦ k)−1Ag,k.

Thus, we obtain equality of the above mentioned partitions.Let C =
∨

k∈G
(m)
n−1

k−1B, where the partition B was desribed in Lemma 3.For any c ∈ C de�ne
α(c) := sup{fnm(x) : x ∈ c}, β :=

∑

c∈C

expα(c).It is lear that \
c

fnm dµ ≤ α(c)µ(c).Lemma 6.
Hµ(C) +

\
X

fnm dµ ≤ log β.Proof. By the de�nitions of measure entropy and fnm,
Hµ(C) +

\
X

fnm dµ ≤ −
∑

c∈C

expα(c)

(
µ(c)

expα(c)

)
log

(
µ(c)

expα(c)

)

= β
∑

c∈C

expα(c)

β
L

(
µ(c)

expα(c)

)
,where L(x) = −x log x. The onavity of L(x) yields

Hµ(C)+
\
X

fnm dµ≤ βL

(∑

c∈C

expα(c)

β

µ(c)

expα(c)

)
= βL

(∑

c∈C

µ(c)∑
c∈C expα(c)

)

= βL(β−1) = log β.Lemma 7. Let E be an (nm, δ)-spanning set. Then for any c ∈ C thereexists a point zc ∈ E suh that
α(c) = sup{fnm(x) : x ∈ c and (x, zc) ∈ N(δ, nm)}.Proof. Fix c ∈ C and let x0 be a point of the losure of c suh that

α(c) = fnm(x0). Then there exists y ∈ E suh that
(x0, y) ∈ N(δ, mn) =

⋂

g∈Gmn−1

(g × g)−1Nδ.Therefore, (g(x0), g(y)) ∈ Nδ for any g ∈ Gmn−1. If x0 ∈ c, we are done. If
x0 ∈ ∂c, then by the ontinuity of all g ∈ Gmn−1 and the fat that Nδ is anopen set, there exists a ball B(x0, r) in X suh that for eah x1 ∈ B(x0, r)and eah g ∈ Gmn−1,

(g(x1), g(y)) ∈ Nδ.So, taking x′
0 ∈ B(x0, r) ∩ c we get the desired point.
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Lemma 8. Let ζ and δ∗ be as in Lemma 4. Then for any element c ofthe partition C there exists a point zc suh that(a) fnm(zc) ≥ α(c) − ζ|Gnm−1|,(b) card{c ∈ C : zc = y} ≤ 2|Gn−1|.Proof. (a) Let E be an (mn, δ)-spanning set. By Lemma 7 for x ∈ c thereexists zc ∈ E suh that

(x, zc) ∈
⋂

g∈Gnm−1

(g × g)−1Nδ∗ .Therefore, (h(x), h(zc)) ∈ Nδ∗ for any h ∈ Gmn−1. By Lemma 4 we get
|f(h(x)) − f(h(zc))| < ζ.Thus

fnm(zc) =
∑

h∈Gmn−1

f ◦ h(zc) ≥
∑

h∈Gmn−1

(f ◦ h(x) − ζ)

≥ sup{fmn(x) : x ∈ c} − ζ|Gmn−1| = α(c) − ζ|Gmn−1|.(b) The proof is similar to the proof of equation (8) in [28, p. 1072℄.Proof of Theorem 1. Fix ζ > 0 and hoose large m suh that
log 2

|Gm−1|
≤ ζ.Let E be an (mn, δ∗)-separated set. By Lemma 8,

2|Gn−1|
∑

y∈E

exp fmn(y) ≥ card{c ∈ C : zc = y}
∑

y∈E

exp fmn(y)

≥
∑

c∈C

exp(α(c) − ζ|Gmn−1|).Taking logarithms of both sides we arrive at
|Gn−1| log 2 + log

( ∑

y∈E

exp fmn(y)
)
≥ −ζ|Gmn−1| + log

∑

c∈C

expα(c).

Thus,(1) |Gn−1| log 2 + p(fmn, E) ≥ −ζ|Gmn−1| + log β.On the other hand, by Lemma 6,
Hµ(C)

|Gmn−1|
+
\
X

f dµ ≤
Hµ(C) + |Gmn−1|

T
X

f dµ

|Gmn−1|
=

Hµ(C) +
T
X

fmn dµ

|Gmn−1|

≤
log β

|Gmn−1|
.
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Let A be as in De�nition 4. By (1) we get
log β

|Gmn−1|
≤

|Gn−1| log 2 + p(fmn, E) + ζ|Gmn−1|

|Gmn−1|

≤
Pmn,δ∗((G, G1), f)

|Gmn−1|
+ (A + 1)ζbeause log 2 ≤ ζ|Gm−1| and

|Gn−1| |Gm−1| ≤ A|G(n−1)(m−1)| ≤ A|Gmn−1|.So, �nally we obtain(2) Hµ(C)

|Gmn−1|
+
\
X

f dµ ≤
Pmn,δ∗((G, G1), f)

|Gmn−1|
+ (A + 1)ζ.

The onstrution of the partition B implies that for any g ∈ G
(m)
n ,

Hµ(g−1Am | g−1B) ≤ ζ.So,
Hµ(Amn | C) = Hµ

( ∨

g∈G
(m)
n−1

g−1Am

∣∣∣
∨

g∈G
(m)
n−1

g−1B
)
≤ |G

(m)
n−1|ζ ≤ |Gmn−1|ζ.

Using the basi properties of onditional entropy we arrive at
Hµ(Amn) ≤ Hµ(C) + Hµ(Amn | C) ≤ Hµ(C) + |Gmn−1|ζ.Therefore,
Hµ(Amn)

|Gmn−1|
+
\
X

f dµ ≤

(
Hµ(C)

|Gmn−1|
+
\
X

f dµ

)
+ ζ

|Gmn−1|

|Gmn−1|

≤
Pmn,δ∗((G, G1), f)

|Gmn−1|
+ (A + 2)ζ.Passing to the limsup with respet to n we obtain

hµ((G, G1),A) +
\
X

f dµ ≤ Pδ∗((G, G1), f) + (A + 2)ζ.Letting ζ → 0+ (then also δ∗ → 0+) and taking into onsideration that A isan arbitrary �nite Borel partition, we arrive at
hµ(G, G1) +

\
X

f dµ ≤ P ((G, G1), f).

6. Existene of a group invariant measure for a group of poly-nomial growth. In this setion (G, G1) is a �nitely generated group ofhomeomorphisms of a ompat metri spae (X, d). Again, we assume that
G1 = {idX , g1, g

−1
1 , . . . , gk, g

−1
k }.
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Remark. It is lear that the group (G, G1) generated by G1 = {idS1 , f1,

f−1
1 , f2, f

−1
2 }, where fi, i = 1, 2, were desribed in Example 1, has no G-invariant measure. It is an example of a group of exponential growth. Thatis why in the following we restrit our attention to the groups of polynomialgrowth.Definition 10. Let (G, G1) be a �nitely generated group and A ⊂ G.The G1-boundary of a subset A of G is the set

∂G1A := {g ∈ G : g /∈ A and ∃s∈G1sg ∈ A}.Proposition 7 ([30℄). Let (G, G1) be a �nitely generated group of poly-nomial growth. Then
lim

n→∞

|Gn ∪ ∂G1Gn|

|Gn|
= 1.Corollary 2. Let (G, G1) be a �nitely generated group of polynomialgrowth, and let g0 ∈ G1. De�ne A

(n)
1 = Gn−1 \ g0Gn−1 and A

(n)
2 =

g0Gn−1 \ Gn−1. Then
lim

n→∞

|A
(n)
i |

|Gn−1|
= 0, i = 1, 2.Proof. By Proposition 7,(3) lim

n→∞

|∂G1Gn|

|Gn|
= 0.It is easy to observe that A

(n)
1 = Gn−1 \ g0Gn−1 ⊂ ∂G1Gn−2. So, by (3),

lim
n→∞

|A
(n)
1 |

|Gn−1|
= 0.In a similar way we observe that

A
(n)
2 = g0Gn−1 \ Gn−1 ⊂ ∂G1Gn−1and using the same argument we onlude that

lim
n→∞

|A
(n)
2 |

|Gn−1|
= 0.Proposition 8. If (G, G1) is a �nitely generated group of homeomor-phisms of a ompat metri spae (X, d), of polynomial growth, then thereexists a G-invariant measure.Proof. Let En be an (n, δ)-separated subset of X. Choose a ontinuousfuntion f ∈ C(X) and �x g0 ∈ G1. De�ne a measure σn onentrated on

En by
σ({y}) :=

exp fn(y)∑
y∈En

exp fn(y)
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for eah y ∈ En, and let
µn :=

1

|Gn−1|

∑

g∈Gn−1

σn ◦ g.

It is well known that the spae M(X) of all Borel probability measuresde�ned on X is a ompat metri spae in the weak w∗-topology. Therefore,the sequene µn has a luster point in M(X).Consider the mapping Φf,g0 : M(X) → R de�ned by
Φf,g0(m) :=

\
X

f dm −
\
X

f ◦ g0 dm

for any measure m ∈ M(X). It is easy to hek that Φf,g0 is a ontinuousmap. Thus if µ is a luster point of the sequene (µn) then Φf,g0(µ) is aluster point of (Φf,g0(µn)). To alulate the norm of the funtional Φf,g0note �rst that
Φf,g0(µn) =

\
X

(f − f ◦ g0) d

(
1

|Gn−1|

∑

g∈Gn−1

σn ◦ g

)

=
1

|Gn−1|

∑

g∈Gn−1

\
X

(f − f ◦ g0) dσn ◦ g

=
1

|Gn−1|

∑

g∈Gn−1

\
X

(f ◦ g−1 − f ◦ g0 ◦ g−1) dσn

=
1

|Gn−1|

∑

g∈Gn−1

∑

y∈En

(f ◦ g−1(y) − f ◦ g0 ◦ g−1(y))
exp fn(y)∑

y∈En
exp fn(y)

=
1

|Gn−1|

∑

y∈En

exp fn(y)∑
y∈En

exp fn(y)

∑

g∈A
(n)
1 ∪A

(n)
2

(f ◦ g−1(y) − f ◦ g0 ◦ g−1(y)),

where A
(n)
1 = Gn−1 \ g0Gn−1 and A

(n)
2 = g0Gn−1 \ Gn−1.Finally, in view of Corollary 2 we arrive at

‖Φf,g0(µn)‖ ≤
1

|Gn−1|

∑

y∈En

exp fn(y)∑
y∈En

exp fn(y)
2‖f‖ |A

(n)
1 ∪ A

(n)
2 |

≤ 4‖f‖
max{|A

(n)
1 |, |A

(n)
2 |}

|Gn−1|
.So, letting n → ∞ we see that Φf,g0(µ) = 0, and therefore the measure µ is

g0-invariant. But g0 is an arbitrary element of G1, thus µ is G-invariant.
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7. Suspension of a group of polynomial growth and the varia-tional priniple for the geometri entropy of foliations. The geomet-ri entropy hgeom(F, g∗) of a foliation F on a ompat Riemannian manifold

(M, g∗), de�ned by Ghys, Langevin and Walzak [20℄ for a regular foliation,measures the exponential rate of growth of separated leaves of F. An equiv-alent de�nition of hgeom(F, g∗) was given in terms of points separated byelements of a holonomy pseudogroup. Given a foliation F on a ompat Rie-mannian manifold (M, g) and a nie overing U whih determines a holonomypseudogroup (HU , H1) of the foliated manifold (M, F ) (see [20℄), we get:Proposition 9 (see [20℄). The geometri entropy hgeom(F, g) of a foli-ated manifold (M, F ) (with respet to a ontinuous family g of Riemannianstrutures on the leaves) is equal to
hgeom(F, g) = sup

U

h(HU ,H1)

△(U)
,where U ranges over the family of all �nite nie overings of (M, F ), and

△(U) denotes the the maximum of the diameters of the plaques of U mea-sured with respet to the Riemannian strutures indued on the leaves.The variational priniple for the geometri entropy of foliations is anopen problem. Walzak ([35, p. 141℄) writes that it seems interesting andimportant to searh for a good de�nition of a measure-theoreti entropy forfoliations whih ould provide a kind of variational priniple for geometrientropy. In this setion we show that Theorem 1 provides a kind of partialvariational priniple for geometri entropy for some lass of foliations.We present a suspension onstrution whih diretly relates the dynamisof a group to the dynamis of the foliated spae. To do this, take a ompatmetri spae (Z, d), a ompat Riemannian manifold B and its fundamentalgroup G = π1(B, b) at a base point b ∈ B. The fundamental group π1(B)ats on the right in a natural way on B̃, the universal overing of B. Assumethat there exists a left ation of G on Z. Let
M := (B̃ × Z)/=rwhere the equivalene relation =r is de�ned in the following way: (xg, z)

=r (x, gz) for any g ∈ G, x ∈ B̃ and z ∈ Z. The spae M �bres over B with�bre Z. Moreover, M an be equipped with a foliation F whih onsists ofthe leaves of the form L = π(B̃ × {z}), where z ∈ Z and π : B̃ × Z → Mis the anonial projetion. The foliated spae (M, F ) is a �bre bundle with�bre Z. Then the holonomy group of (M, F ) oinides with G = π1(B, b).Given a �nitely generated group (G, G1) of polynomial growth there isa ompat manifold M suh that G = π1(M). Denote by Γ the one-pointompati�ation of the graph of (G, G1). Then G ats on the ompat metri
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spae Γ (see [26℄), so we an onsider the ompat foliated spae
MG := (M̃ × Γ )/=rwith leaves FG = {L = π(M̃ ×{γ}) : γ ∈ Γ}. The distane funtion dΓ on Γand the Riemannian metri gM on M lifted via the anonial projetion π tothe leaves of FG determine the natural metri gMG

on MG whih oinideswith dΓ on Γ and with gM along the leaves.Following Example 4.3 in [20℄ or the last setion in [7℄ we obtain
1

a
h(G, G1) ≤ hgeom(FG),where a denotes the maximum of the lengths of the free homotopy lasses ofurves homotopi to elements of G1. Finally, we get a kind of partial varia-tional priniple for the geometri entropy of the foliation (MG, FG) modelledtransversally on Γ.Corollary 3. For a ompat foliated spae (MG, FG), determined bythe suspension onstrution of a �nitely generated group (G, G1) of polyno-mial growth, with a ontinuous family gMG

of Riemannian strutures on theleaves, and for any measure µ ∈ M(Γ, (G, G1)) we get
sup{hµ(G, G1) : µ ∈ M(Γ, (G, G1))} ≤ ahgeom(FG, gMG

),where hgeom(FG, gMG
) is the geometri entropy of FG with respet to theRiemannian struture gMG

, and a denotes the maximum of the lengths ofthe free homotopy lasses of urves homotopi to elements of G1.Aknowledgements. The author is grateful to Steven Hurder for hissupport and helpful onversations during the author's one year visit to theUniversity of Illinois at Chiago. Also, he would like to thank the faulty ofthe Department of Mathematis, Statistis, and Computer Siene of UICfor their hospitality. Finally, the author would like to thank the referee formany valuable remarks whih helped to improve the paper.
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