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Abstract. Let (X,F , ν) be a σ-finite measure space. Associated with k Lamperti
operators on Lp(ν), T1, . . . , Tk, n̄ = (n1, . . . , nk) ∈ Nk and ᾱ = (α1, . . . , αk) with 0 <
αj ≤ 1, we define the ergodic Cesàro-ᾱ averages

Rn̄,ᾱf =
1∏k

j=1 A
αj
nj

nk∑
ik=0

· · ·
n1∑
i1=0

k∏
j=1

A
αj−1

nj−ijT
ik
k · · ·T

i1
1 f.

For these averages we prove the almost everywhere convergence on X and the convergence
in the Lp(ν) norm, when n1, . . . , nk →∞ independently, for all f ∈ Lp(dν) with p > 1/α∗
where α∗ = min1≤j≤k αj . In the limit case p = 1/α∗, we prove that the averages Rn̄,ᾱf
converge almost everywhere on X for all f in the Orlicz–Lorentz space Λ(1/α∗, ϕm−1)
with ϕm(t) = t(1 + log+ t)m. To obtain the result in the limit case we need to study
inequalities for the composition of operators Ti that are of restricted weak type (pi, pi).
As another application of these inequalities we also study the strong Cesàro-ᾱ continuity
of functions.

1. Introduction. Let (X,F , ν) be a σ-finite measure space and T a
bounded linear operator on Lp(ν). The operator T is called a Lamperti
operator on Lp(ν) if it preserves disjointness of supports. It is known that
Lamperti operators include Lp isometries, p 6= 2, positive L2 isometries
and invertible linear operators T such that both T and T−1 are positive
(see e.g. [11], [12] and [13]). It follows from the results in [11] that if T is
a Lamperti operator on Lp(ν), 1 < p < ∞, power bounded, i.e., ‖Tn‖p ≤
K <∞ for n = 0, 1, . . . and such that the adjoint T ∗ of T separates supports,
then the ergodic averages

Rnf =
1

n+ 1

n∑
k=0

T kf

converge almost everywhere and in the Lp(ν) norm for all f ∈ Lp(ν). Un-
der different assumptions on T , the same result was obtained in [14] (see
also [16]). In these articles the authors considered an invertible Lamperti
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operator T on Lp(ν), 1 < p <∞, such that its linear modulus |T | is Cesàro
bounded, that is,

sup
n≥0

∥∥∥∥ 1

n+ 1

n∑
k=0

|T |k
∥∥∥∥
p

<∞.

The linear modulus |T | of a Lamperti operator T on Lp(ν) is also a Lam-
perti operator and it satisfies |Tf | = |T | |f | (see [11] for more details). For
positive contractions (not necessarily invertible) this result was obtained by
Akcoglu [1]. For contractions in L1(ν) and in L∞(ν) the result is due to
Dunford and Schwartz [7].

The convergence of {Rnf} is the convergence in the Cesàro-1 sense of
the sequence {Tnf}. In general, we say that the sequence {Tnf} converges
in the Cesàro-α sense, with 0 < α ≤ 1, if the limits of the Cesàro-α aver-
ages

Rn,αf =
1

Aαn

n∑
k=0

Aα−1
n−kT

kf

exist, where Aαn = (α+ 1) · · · (α+ n)/n! if n 6= 0 and Aα0 = 1. Convergence
in the Cesàro-α sense with 0 < α < 1 is stronger than convergence in the
Cesàro-1 sense. The following result for the averages Rn,αf was obtained
in [4].

Theorem 1.1 ([4]). Let (X,F , ν) be a σ-finite measure space, 0<α≤ 1,
1/α < p < ∞, and let T be an invertible Lamperti operator on Lp(ν) such
that

sup
n≥0

∥∥∥∥ 1

n+ 1

n∑
k=0

|T |kα
∥∥∥∥
pα

<∞,

where |T |αf = [|T |(fα)]1/α for f ≥ 0. Then

(i) the ergodic Cesàro-α maximal operator Mαf = supn≥0 |Rn,αf | is
bounded on Lp(ν),

(ii) the set D = {g + (h− Th) : g, h ∈ Lp(ν), g = Tg and h simple} is
a dense subset of Lp(ν),

(iii) the averages Rn,αf converge almost everywhere and in the Lp(ν)
norm for all f ∈ Lp(ν).

The above theorem was proved in [15] under the additional assumption
that T and its inverse T−1 are positive operators. For positive contractions
this result was obtained by Irmisch [9]. If T is not invertible but satisfies
the hypothesis of Kan [11] then T is controlled by a positive Lamperti con-
traction on Lp(ν) (see [11, Corollary 4.1]) and, from Irmisch’s result, we can
obtain the following result whose proof will be outlined in Section 3.
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Theorem 1.2. Let (X,F , ν) be a σ-finite measure space, 0 < α ≤ 1,
1/α < p < ∞, and let T be a power bounded Lamperti operator on Lp(ν)
such that T ∗ separates supports. Then (i)–(iii) of Theorem 1.1 hold.

For the limit case p = 1/α and if Tf(x) = f(τx), where τ is a measure
preserving transformation, Broise, Déniel and Derriennic [6] observed that it
is possible to obtain a weak type inequality with the Lebesgue space L1/α(ν)
replaced by the Lorentz space L(1/α, 1)(ν) (see the definition below). In
the setting of invertible Lamperti operators the corresponding result was
established in [3]:

Theorem 1.3 ([3]). Let (X,F , ν) be a σ-finite measure space, 0< α ≤ 1,
and let T be an invertible Lamperti operator on L1/α(ν) such that

sup
n≥0

∥∥∥∥ 1

n+ 1

n∑
k=0

|T |kα
∥∥∥∥

1

<∞ and sup
n∈Z
‖Tn‖∞ <∞.

Then

(i) the maximal operator Mα is of restricted weak type (1/α, 1/α), that
is, Mα maps the Lorentz space L(1/α, 1)(ν) into weak-L1/α(ν),

(ii) for all f in L(1/α, 1)(ν), the averages Rn,αf converge almost every-
where.

Now, given k linear operators T1, . . . , Tk, we define the ergodic averages

Rn̄f(x) =
1∏k

j=1(nj + 1)

nk∑
ik=0

· · ·
n1∑
i1=0

T ikk · · ·T
i1
1 f(x),

where n̄ = (n1, . . . , nk). If each Ti is a contraction of both L1(ν) and L∞(ν)
(such operators are called Dunford–Schwartz operators) then, for all f in
Lp(ν) with 1 < p < ∞, the averages Rn̄f converge (when n1, . . . , nk → ∞
independently) almost everywhere and in the Lp(ν) norm (see [7]). The
limit case p = 1 was studied in [8]. In fact, N. Fava [8] proved that if each
Ti is positive and is a contraction of both L1(ν) and L∞(ν), then the av-
erages Rn̄f converge almost everywhere, as n1, . . . , nk →∞ independently,
for every f in the Orlicz space Lϕk−1(ν) associated to the Young function
ϕk(t) = t(1 + log+ t)k (see the definition of Orlicz space below).

Given ᾱ = (α1, . . . , αk) with α1, . . . , αk ∈ (0, 1], we define the ergodic
Cesàro-ᾱ averages by

Rn̄,ᾱf(x) = Rnk,αk ◦ · · · ◦Rn1,α1f(x)

=
1∏k

j=1A
αj
nj

nk∑
ik=0

· · ·
n1∑
i1=0

k∏
j=1

A
αj−1
nj−ijT

ik
k · · ·T

i1
1 f(x).



18 A. L. BERNARDIS ET AL.

It is clear that Rn̄ = Rn̄,ᾱ when ᾱ = (1, . . . , 1). The main purpose of this
paper is to extend the results of [7] and [8] to the averages Rn̄,ᾱf associated
to Lamperti operators Ti that satisfy the conditions in Theorems 1.1–1.3.
In order to state them, we introduce some function spaces.

Given a Young function ϕ : [0,∞)→ [0,∞), that is, ϕ is a nondecreasing,
continuous and convex function such that ϕ(0) = 0, ϕ(t) > 0 if t > 0 and
limt→∞ ϕ(t) = ∞, and given p ≥ 1, the Orlicz–Lorentz space Λ(p, ϕ) is
defined by

Λ(p, ϕ) :=
{
f ∈F : Ψp,ϕ(cf) =

∞�

0

ϕ(cf∗(t))t1/p−1 dt <∞ for some c > 0
}
,

where f∗(t) = inf{s : λf (s) ≤ t} is the nonincreasing rearrangement func-
tion of f and λf (s) = ν({x ∈ X : |f(x)| > s}) is its distribution function.
This space Λ(p, ϕ) is a Banach space with the Luxemburg norm defined
by

‖f‖p,ϕ = inf{c > 0 : Ψp,ϕ(f/c) ≤ 1}.
The Orlicz space Lϕ is Λ(1, ϕ), and if ϕ(t) = t then the space Λ(p, ϕ) is the
Lorentz space L(p, 1).

Now we state our results.

Theorem 1.4. Let (X,F , ν) be a σ-finite measure space and let ᾱ =
(α1, . . . , αk) with 0 < αj ≤ 1 for all j = 1, . . . , k, α∗ = min1≤j≤k αj and

p > 1/α∗. For 1 ≤ j ≤ k, let Tj be a Lamperti operator on Lp(ν) with one
of the following properties:

(a) Tj is an invertible operator and

sup
n≥0

∥∥∥∥ 1

n+ 1

n∑
k=0

|Tj |kαj

∥∥∥∥
pαj

<∞,

(b) Tj is power bounded and T ∗j separates supports.

Then:

(i) the ergodic Cesàro-ᾱ maximal operatorMᾱf(x) = supn̄>0 |Rn̄,ᾱf(x)|
is bounded on Lp(ν), where n̄ = (n1, . . . , nk) > 0 means nj > 0 for
all 1 ≤ j ≤ k,

(ii) the ergodic Cesàro-ᾱ averages Rn̄,ᾱf converge almost everywhere
on X when n̄ → ∞ (n1, . . . , nk → ∞ independently) and in the
Lp(ν) norm for all f ∈ Lp(ν).

Theorem 1.5. Let (X,F , ν) be a σ-finite measure space and let ᾱ =
(α1, . . . , αk) with 0 < αj ≤ 1, j = 1, . . . , k. Let α∗ = min1≤j≤k αj and
suppose that the minimum α∗ is reached at exactly m numbers αj. For
1 ≤ j ≤ k, let Tj be an invertible Lamperti operator on L1/αj (ν) such
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that

sup
n≥0

∥∥∥∥ 1

n+ 1

n∑
k=0

|Tj |kαj

∥∥∥∥
1

<∞ and sup
n∈Z
‖Tnj ‖∞ <∞.

Assume also that the operators Tj all commute with one another. Then:

(i) the operator Mᾱ satisfies

ν({x ∈ X :Mᾱf(x) > t})

≤
(
Cϕm−1(1/t)

∞�

0

ϕm−1(f∗)(s)sα∗−1 ds
)1/α∗

,

where ϕm(t) = t(1 + log+ t)m,
(ii) the averages Rn̄,ᾱf converge almost everywhere on X for all f in

the Orlicz–Lorentz space Λ(1/α∗, ϕm−1) when n̄→∞.

Note that

(1.1) Mᾱf(x) ≤Mαk ◦ · · · ◦Mα1f(x),

where the operators Mαi are the ergodic Cesàro-αi maximal operators asso-
ciated with the linear operators Ti. Under the hypothesis on the operators Ti
given in Theorem 1.5, we find that each maximal operator Mαi is bounded
on L∞(ν) and is of restricted weak type (pi, pi) with pi = 1/αi. In order
to prove Theorem 1.5 the main tool is the study of the boundedness of
the composition of this type of operators, which will be accomplished in
Section 2. Section 3 is devoted to proving Theorems 1.2, 1.4 and 1.5. Finally,
in Section 4, we study the strong Cesàro-ᾱ continuity as a consequence of
the theorems in Section 2.

Throughout this paper we will denote by C a nonnegative constant that
can be different at each occurrence.

2. Composition operators. Let (X,F , ν) be a σ-finite measure space.
In this section we shall deal with sublinear operators Ti, i = 1, . . . , k, defined
on measurable functions so that all of them are of strong type (∞,∞) and
each of the operators Ti is of restricted weak type (pi, pi) with 1 ≤ pi <∞.
We say that an operator T is of strong type (∞,∞) if there exists a constant
C > 0 such that for any measurable function f ,

‖Tf‖∞ ≤ C‖f‖∞.

We say that T is of restricted weak type (p, p), 1 ≤ p <∞, if there exists a
constant C > 0 such that

‖Tf‖p,∞ ≤ C‖f‖p,1,
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where ‖ · ‖p,q, 1 ≤ p, q ≤ ∞, is the quasi-norm in the Lorentz space L(p, q)
defined for q =∞ by

‖f‖p,∞ = sup
t>0

t(λf (t))1/p = sup
t>0

t1/pf∗(t)

and for 1 ≤ p, q <∞ by

(2.1) ‖f‖p,q =

[∞�
0

(t1/pf∗(t))q
dt

t

]1/q

≈
[∞�

0

(λf (s)1/ps)q
ds

s

]1/q

.

It is well known that a sublinear operator T is of strong type (∞,∞)
and of restricted weak type (p, p) if and only if

(2.2) λTf (t) ≤
(
C

t

∞�

t/C

λf (s)1/p ds

)p
for all t > 0,

where C is a positive constant independent of f and t (see for example [5]
or [19, p. 91] for p = 1).

Now we state the main result of this section.

Theorem 2.1. Let 1 ≤ p1 ≤ · · · ≤ pk be real numbers such that either
they are all equal or there exists an integer ` with 0 ≤ ` < k − 1 such that
1 ≤ p1 ≤ · · · ≤ pk−`−1 < pk−` = · · · = pk. For each i = 1, . . . , k, let Ti be a
sublinear operator of strong type (∞,∞) and of restricted weak type (pi, pi).
Then T = T1 ◦ · · · ◦ Tk satisfies the inequality

ν({x ∈ X : |Tf(x)| > t}) ≤ C
(
ϕ`(1/t)

∞�

0

ϕ`(f
∗(s))s1/pk−1 ds

)pk
for all t > 0, where ϕ`(t) = t(1 + log+ t)` with log+ u = max{0, log u}.

The above result generalizes the following result obtained in [5], where
all the operators Ti are of strong type (∞,∞), and for a given p ≥ 1, of
restricted weak type (p, p).

Theorem 2.2 ([5]). Let Ti, i = 1, . . . , j, be sublinear operators such that
all of them are of strong type (∞,∞), and for a given p ≥ 1, of restricted
weak type (p, p). Then T = T1 ◦ · · · ◦ Tj satisfies

ν({x : |Tf(x)| > t})(2.3)

≤
(

C

(j − 1)! t

∞�

t

[λf (s/Cj)]1/p[log(s/t)]j−1 ds

)p
for all t > 0, where the nonnegative constant C depends only on the boun-
dedness constants of the operators Ti.

First of all we study a particular case of Theorem 2.1, when the parame-
ter pk is greater than the other, i.e., ` = 0.
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Theorem 2.3. Let 1 ≤ p1 ≤ · · · ≤ pk−1 < pk be real numbers. For each
i = 1, . . . , k, let Ti be a sublinear operator of strong type (∞,∞) and of
restricted weak type (pi, pi). Then T = T1 ◦ · · · ◦ Tk is of strong type (∞,∞)
and of restricted weak type (pk, pk).

Proof. It is easy to see that it is sufficient to prove the theorem for only
two operators. So consider two operators T1 and T2 that satisfy inequality
(2.2) with p = p1 and p = p2 respectively, and assume that p1 < p2. Moreover
suppose that the constant in (2.2) is the same in both cases. Then T = T1◦T2

satisfies (2.2) with p = p2. In fact, using Minkowski’s integral inequality and
by Theorem 2.2 we get

λT1◦T2f (t) ≤
[
C

t

∞�

t/C

(
C

s

∞�

s/C

λf (u)1/p2 du

)p2/p1

ds

]p1

≤ C
(

1

t

)p1[ ∞�
t/C2

λf (u)1/p2

( ∞�
t/C

(1/s)p2/p1 ds
)p1/p2

du
]p2

≤
(
C̃

t

∞�

t/C̃

λf (s)1/p2 ds

)p2

for some constant C̃.

Proof of Theorem 2.1. We begin the proof by showing that if S1 is an
operator that satisfies (2.2) with p = p1, and S2 is an operator that satisfies
(2.3) for any j ≥ 2 and p = p2 with 1 ≤ p1 < p2, then S = S1 ◦ S2 satisfies
(2.3) with the same parameters j and p2. In fact,

λS1◦S2f (t) ≤
(
C

t

∞�

t/C

λS2f (s)1/p1 ds

)p1

≤
[
C

t

∞�

t/C

(
1

(j − 1)!s

∞�

s

λf (u/Cj)1/p2 [log(u/s)]j−1 du

)p2/p1

ds

]p1

and, by using Minkowski’s integral inequality, we see that λS1◦S2f (t) is
bounded by(
C

t

)p1
[

1

(j − 1)!

∞�

t/C

λf (u/Cj)1/p2 [log(uC/t)]j−1
( ∞�
t/C

s−p2/p1 ds
)p1/p2

du

]p2

≤ C̃
(

1

(j − 1)!t

∞�

t

λf (u/C̃j)1/p2 [log(u/t)]j−1 du

)p2

.

Now, let S = T1◦· · ·◦Tk−`−1 and S̃ = Tk−`◦· · ·◦Tk. By interpolation (see
for example [17, Theorem 3.15]) we see that Tk−`−1 is of strong type (p, p),
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and consequently of restricted weak type (p, p), for all p > pk−`−1. Let
εk−`−1 > 0 be such that pk−`−1 + εk−`−1 < pk−`. From Theorem 2.3 we
see that S satisfies (2.2) with p = pk−`−1 + εk−`−1. On the other hand,
from Theorem 2.2 the operator S̃ satisfies (2.3) with p = pk and j = `+ 1.
Applying the above results with S1 = S and S2 = S̃ we get

λTf (t) ≤ C̃
(

1

`!t

∞�

t

λf (u/C̃`+1)1/pk [log(u/t)]` du

)pk
≤ C̃

(
1

`!t

∞�

0

λf (u/C̃`+1)1/pkφ`(u/t) du

)pk
≤ C̃

(
φ`(1/t)

t

∞�

0

λf (u)1/pkφ`(u) du

)pk
,

where φ`(t) = (1 + log+ t)`. Since ϕ`(t) = t(1 + log+ t)`, it is easy to see
that φ`(t) ≤ ϕ′`(t) ≤ (`+ 1)φ`(t) for all t > 0. The theorem follows from the
equivalence

∞�

0

s1/p−1ϕ`(f
∗(s)) ds ≈

∞�

0

φ`(s)λf (s)1/p ds,

whose proof follows the same ideas as the proof of the equivalence between
the quasi-norms in (2.1).

3. Proofs of Theorems 1.2, 1.4 and 1.5. We start by proving The-
orem 1.2. In order to show the density result we shall need to use the fol-
lowing properties of the Cesàro numbers Aαn, α > −1 (see [20]):

(C1) Aαn −Aαn−1 = (α/n)Aαn−1 for all n ≥ 1.
(C2) There exist positive constants C1 and C2 depending only on α such

that, for all n ≥ 0,

C1(n+ 1)α ≤ Aαn ≤ C2(n+ 1)α.

Proof of Theorem 1.2. (i) Given an operator T satisfying the hypothesis
of the theorem, from [11, Corollary 4.1] we find that there exists a positive
Lamperti contraction S on Lp(ν) such that

(3.1) |Tnf | ≤ KSn|f | for each f ∈ Lp(ν), n = 0, 1, . . . .

Hence Mα,T (f) ≤ KMα,S(|f |). Then, using Irmisch’s result for positive con-
tractions, we deduce that the operator Mα = Mα,T is bounded on Lp(ν).

(ii) From [11] we get the norm convergence of the ergodic averages
Rnf = (n+ 1)−1

∑n
k=0 T

kf . Then, by [7, Corollary VIII.5.2], the set D =
{g + (h− Th) : g, h ∈ Lp, g = Tg, h simple} is a dense subset of Lp(ν).

(iii) First, we note that Rn,αg = g for all g such that g = Tg. It remains
to prove, for a simple function h, that Rn,α(h−Th)(x) converges for almost
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every x ∈ X. As in [9] (see also [15] or [4]), using the definition of the
numbers Aαn and property (C1), we get

Rn,α(h− Th)(x) =
n∑
i=0

Aα−1
n−i
Aαn

(T ih(x)− T i+1h(x))

=
Aα−1
n

Aαn
h(x)− Aα−1

n

Aαn
Th(x) +

n∑
i=1

Aα−1
n−i
Aαn

T ih(x)−
n∑
i=1

Aα−1
n−i
Aαn

T i+1h(x)

=
Aα−1
n

Aαn
h(x)− 1

Aαn
Tn+1h(x) +

1

Aαn

n∑
i=1

(Aα−1
n−i −A

α−1
n+1−i)T

ih(x)

=
α

α+ n
h(x)− Tn+1h(x)

Aαn
+

1− α
Aαn

n∑
i=1

Aα−1
n−i

n+ 1− i
T ih(x)

= An(x) +Bn(x) + Cn(x).

Clearly, limn→∞An(x) = 0 for a.e. x. Let

F1(x) =

∞∑
n=0

|Bn(x)|p and F2(x) =

∞∑
n=0

|Cn(x)|p.

Using property (C2) of the Cesàro numbers and (3.1), we get

�

X

|F1(x)| dν .
∞∑
n=0

1

(n+ 1)αp
∥∥Sn+1|h|

∥∥p
p
. ‖h‖pp

∞∑
n=0

1

(n+ 1)αp
<∞

and
�

X

|F2(x)| dν .
∞∑
n=0

1

(n+ 1)αp

∥∥∥∥ n∑
i=1

Aα−1
n−i

n+ 1− i
T ih(x)

∥∥∥∥p
p

.
∞∑
n=0

1

(n+ 1)αp

( n∑
i=1

Aα−1
n−i

n+ 1− i
∥∥Si|h|∥∥

p

)p
. ‖h‖pp

∞∑
n=0

1

(n+ 1)αp

( n∑
i=1

(n+ 1− i)α−2
)p

. ‖h‖pp
( ∞∑
n=0

1

(n+ 1)αp

)( ∞∑
k=1

kα−2
)p

<∞.

Hence limn→∞Bn(x) = limn→∞Cn(x) = 0 for a.e. x. Finally, the Banach
principle (see e.g. [2, p. 237] and [12, Th. 7.2, p. 64]) implies almost every-
where convergence on the whole space, and Lebesgue’s dominated conver-
gence theorem implies norm convergence.

Proof of Theorem 1.4. (i) Let p > 1/α∗. Since each Lamperti operator Tj
satisfies the hypothesis of Theorem 1.1 or Theorem 1.2 with α = αj and
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p > 1/α∗ ≥ 1/αj , each ergodic maximal operator Mαj is bounded on Lp(ν).
Thus the boundedness on Lp(ν) of Mᾱ follows trivially from (1.1).

(ii) First, we shall assume for each j = 1, . . . , k, either

(a′) Tj is positive with positive inverse and satisfies hypothesis (a) of
the theorem, or

(b′) Tj is a positive Lamperti contraction on Lp(ν).

As usual, we first study the pointwise convergence of the averages Rn̄,ᾱ in
a dense subset of Lp(ν). As in [15, proof of Theorem 3.1] or by Irmisch’s
result we know that the sets

Dj = {g + (h− Tjh) : g, h ∈ Lp, g = Tjg, h simple}
are dense subsets of Lp(ν) for all j = 1, . . . , k. As in [7] we shall prove the
convergence of the averages Rn̄,ᾱf for all f ∈ D1, using induction on the
number of operators.

If k = 1, the result was proved in [15] if the operator satisfies (a′) or
in [9] if it satisfies (b′). Now suppose that the result holds for k − 1
operators T2, . . . , Tk, where each Tj satisfies (a′) or (b′), i.e., for any f ∈ D1,
the limit Rnk,αk ◦ · · · ◦ Rn2,α2f(x) exists for almost every x ∈ X when
nk, . . . , n2 → ∞. For simplicity set ñ = (n2, . . . , nk), α̃ = (α2, . . . , αk) and
Rñ,α̃ = Rnk,αk ◦ · · · ◦Rn2,α2 . Let g ∈ Lp(ν) be such that T1g = g. Then

Rn̄,ᾱg(x) = Rnk,αk ◦ · · · ◦Rn2,α2g(x) = Rñ,α̃g(x).

By the inductive hypothesis Rn̄,ᾱg(x) converges for almost every x ∈ X as
n̄→∞. It remains to prove, for a simple function h, that Rn̄,ᾱ(h− T1h)(x)
converges for almost every x ∈ X. It is sufficient to study the convergence of
Rn̄,ᾱ(χA − T1χA)(x) with A a measurable subset of X with 0 < ν(A) <∞.
From [15, Proposition 3.2] or from Irmisch’s result, we know that

lim
n1→∞

Rn1,α1(χA − T1χA)(x) = 0 a.e.

Notice that the operators Rñ,α̃ are positive and supñ>0 |Rñ,α̃f | ∈ Lp(ν) for
f ∈ Lp(ν) with p > 1/α∗, because

sup
ñ>0
|Rñ,α̃(f)| ≤Mαk ◦ · · · ◦Mα2(f).

Now, applying the inductive hypothesis and using a general reduction prin-
ciple of Sucheston (see [18, Proposition 1.1]) we get

Rn̄,ᾱ(χA − T1χA)(x) = Rñ,α̃(Rn1,α1(χA − T1χA))(x)→ 0

as n̄ → ∞. Then the Banach principle implies almost everywhere conver-
gence on the whole space Lp(ν).

Now, let Tj , j = 1, . . . , k, be as in the hypothesis of the theorem. By
using Theorem 1.1(ii) or 1.2(ii) and repeating the induction argument, we
only need to show that Rn̄,ᾱ(χA−T1χA)(x) converges for a.e. x. Notice that
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the operator Rñ,α̃ can be dominated by the corresponding one associated
to positive operators T+

2 , . . . , T
+
k , where T+

j can be the linear modulus of
Tj or the associated positive contraction Sj (it is the linear modulus if Tj
satisfies (a) and a positive contraction if Tj satisfies (b)); we denote this
operator by R+

ñ,α̃. The operators T+
j , j = 2, . . . , k, satisfy hypothesis (a′)

or (b′). Then, from the previous results we infer that R+
ñ,α̃f converges a.e.

for every f ∈ Lp(ν). Now, since

|Rn̄,ᾱ(χA − T1χA)| ≤ R+
ñ,α̃|Rn1,α1(χA − T1χA)|

and limn1→∞ |Rn1,α1(χA − T1χA)(x)| = 0 for a.e. x, we obtain the desired
result by applying Sucheston’s principle again. Finally, the Banach principle
implies almost everywhere convergence on the whole space, and Lebesgue’s
dominated convergence theorem implies norm convergence.

Proof of Theorem 1.5. (i) As mentioned in the Introduction, the main
tool to prove this theorem is Theorem 2.1. In fact, from the assumptions on
Tj we see that each operator Mαj is of restricted weak type (1/αj , 1/αj) and
bounded in L∞(ν). Then, by Theorem 2.1 and inequality (1.1), we obtain
the boundedness of Mᾱ.

(ii) In the proof of Theorem 1.3 (see [3, p. 235]) the authors showed that
if a Lamperti operator satisfies the hypothesis of Theorem 1.1 then it also
satisfies the hypothesis of Theorem 1.3. Applying this fact we deduce that
by Theorem 1.4 the averages Rn̄,ᾱf converge for all f ∈ Lp with p > 1/α∗.
Let D = Lp(ν) ∩ Λ(1/α∗, ϕm−1) with p > 1/α∗. The set D is a dense
subset of Λ(1/α∗, ϕm−1) since the set of simple functions is. Thus we get
the convergence of Rn̄,ᾱf for almost every x ∈ X and all f ∈ D, and (ii)
follows. In fact, let At(f) = {x : lim supn̄→∞ |Rn̄,ᾱf(x)− f(x)| > t} and let
g be a simple function. Then

|At(f)| ≤ |At/2(f − g)| ≤ 2|{x :Mᾱ(f − g)(x) > t/4}|

≤ 2[ϕm−1(4/t)Ψ1/α∗,ϕm−1
(f − g)]1/α∗ .

The desired result follows since given f ∈ Λ(1/α∗, ϕm−1), for any ε, t > 0,
we can choose a simple function g such that the last term above is less
than ε.

4. Application to strong Cesàro-α continuity. For a function f :
Rn → R we say that f is Cesàro-α continuous at x, for α > 0, if the Cesàro-α
averages

Pαε f(x) =
c(n, α)

|Q(x, ε)|1+(α−1)/n

�

Q(x,ε)

f(y)d(y, ∂Q(x, ε))α−1 dy
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converge to f(x) as ε→ 0, where Q(x, ε) =
∏n
i=1[xi − ε, xi + ε]n, ∂Q(x, ε) is

the border of Q(x, ε), d(y, ∂Q(x, ε)) = min1≤i≤n{xi+ε−yi, yi−(xi−ε)} is the
distance in the infinity norm from y to the border ofQ(x, ε), and the constant
c(n, α) can be written in terms of the β function as c(n, α) = 2α−1

nβ(α,n) , where

β(m,n) =
	1
0(1− t)m−1tn−1 dt, m,n ≥ 0. If α = 1,

(4.1) P 1
ε f(x) =

1

|Q(x, ε)|

�

Q(x,ε)

f(y) dy,

and Lebesgue’s differentiation theorem establishes that if f ∈ L1
loc(Rn) then

f is Cesàro-1 continuous at almost every x.

If in (4.1) we replace the cubes Q(x, ε) by rectangles with sides parallel
to the axes, R(x, ε̄) = [x1− ε1, x1 + ε1]×· · ·× [xn− εn, xn + εn], the theorem
of Jensen, Marcinkiewicz and Zygmund shows that if f belongs to the Orlicz
space Lϕ(Rn) with ϕ(t) = t(1 + log+ t)n−1, then the averages

P1
ε̄ f(x) =

1

|R(x, ε̄)|

�

R(x,ε̄)

f(y) dy

converge to f at x for almost every x as ε̄ → 0, that is, ε1 → 0, . . . , εn → 0
independently. In this case we say that f is strongly Cesàro-1 continuous
at x. In general, for ᾱ = (α1, . . . , αn), we say that f is strongly Cesàro-ᾱ
continuous at x if the averages

P ᾱε̄ f(x) =
c(n, ᾱ)∏n

i=1 |I(xi, εi)|αi
�

R(x,ε̄)

f(y)

n∏
i=1

d(yi, ∂I(xi, εi))
αi−1 dy

converge to f at almost every x as ε̄→ 0, where I(xi, εi) = [xi − εi, xi + εi]
and c(n, ᾱ) = 2|ᾱ|−n

∏n
j=1 αj with |ᾱ| =

∑n
j=1 αj .

We want to apply the results of Section 2 to the study of the convergence
of the averages P ᾱε̄ f . We shall work with slightly more general averages. For
L ∈ N, we consider the space Rn factored into L blocks, Rn = Rn1×· · ·×RnL .
If G1 := {j ∈ N : 1 ≤ j ≤ n1} and Gi := {j ∈ N : n1 + · · · + ni−1 + 1 ≤
j ≤ n2 + · · ·+ ni} for i = 2, . . . , L, then we denote by xi the set of variables
(xj : j ∈ Gi) ∈ Rni , i = 1, . . . , L. Given ᾱ = (α1, . . . , αL) with 0 < αi ≤ 1
and ε̄ = (ε1, . . . , εL) with εi > 0, we define the averages

P ᾱε̄ f(x) =
c(n̄, ᾱ)∏L

i=1 |Qi|1+(αi−1)/ni

�

Q1

· · ·
�

QL

f(y)

L∏
i=1

d(yi, ∂Qi)
αi−1 dyL · · · dy1,

where Qi = Q(xi, εi) are cubes in Rni and c(n̄, ᾱ) =
∏L
i=1 c(ni, αi) =∏L

i=1
2αi−1

niβ(αi,ni)
. The purpose of this section is to prove the following result.
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Theorem 4.1. Given ᾱ = (α1, . . . , αL), let α∗ = min1≤i≤L αi and as-
sume that there are exactly m numbers αi, with 1 ≤ m ≤ L, such that
α∗ = αi. Then

lim
ε̄→0
P ᾱε̄ f(x) = f(x)

for almost every x ∈ Rn, for all f ∈ Lp(Rn) with p > 1/α∗ and for all
f ∈ Λ(1/α∗, ϕm−1) where ϕk(t) = t(1 + log+ t)k.

Proof. Given x ∈ Rn, we denote x̃i = (x1, . . . , xi−1, xi+1, . . . , xL). For
f : Rn → R, let fx̃i : Rni → R be given by fx̃i(x

i) = f(x1, . . . , xi, . . . , xL).
For 0 < γ ≤ 1 and δ > 0, we define the averages

P i,γδ f(x) = P γδ (fx̃i)(x
i)

=
c(ni, γ)

|Q(xi, δ)|1+(γ−1)/ni

�

Q(xi,δ)

|fx̃i(yi)|d(yi, ∂Q(xi, δ))γ−1 dyi.

Associated with these averages we define the maximal operators

M i
γf(x) = Mγ(fx̃i)(x

i) = sup
δ>0

P i,γδ |f |(x),

where Mγf(x) = supδ>0 P
γ
δ |f |(x).

From the results in [10], the operators M i
γ are bounded on Lp(Rn) for all

p > 1/γ and are of restricted weak type (1/γ, 1/γ). In fact, by Minkowski’s
integral inequality and the restricted weak type of Mγ we get

|{x ∈ Rn : M i
γf(x) > t}| =

�

Rn−ni

�

Rni
χ{yi:Mγfx̃i (y

i)>t}(x
i) dxi dx̃i

≤
�

Rn−ni

(
C

t

∞�

0

|{xi : |fx̃i(xi)| > s}|γ ds
)1/γ

dx̃i

≤
(
C

t

∞�

0

( �

Rn−ni

|{xi : |f(x)| > s}| dx̃i
)γ
ds

)1/γ

=

(
C

t

∞�

0

|{x ∈ Rn : |f(x)| > s}|γ ds
)1/γ

.

Notice that Mᾱ, the maximal operator associated to the averages P ᾱε̄ f , sat-
isfies the pointwise inequality

(4.2) Mᾱf(x) = sup
ε̄>0
P ᾱε̄ |f |(x) ≤M1

α1
◦ · · · ◦ML

αL
f(x),

where ε̄ > 0 means εi > 0 for all i = 1, . . . , L. Then it is clear that the
operator Mᾱ is bounded on Lp(Rn) for all p > 1/α∗. On the other hand,
since it is possible to change the order of the operators M i

αi in (4.2), from
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the above results for each operators M i
αi and Theorem 2.1 we get

|{x : Mᾱf(x) > t}| ≤ C
(
ϕm−1(1/t)

∞�

0

sα∗−1ϕm−1(f∗(s)) ds
)1/α∗

for all t > 0.
Finally, following the same arguments as in the proofs of Theorems 1.4

and 1.5, using for example the set of continuous functions with compact sup-
port as a dense subset of Lp(Rn), we obtain the convergence of the averages
P ᾱε̄ f in the desired spaces.
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