SUBSEQUENCE SUMS OF ZERO-SUM FREE SEQUENCES OVER FINITE ABELIAN GROUPS

BY
YONGKE QU (Luoyang), XINGWU XIA (Luoyang), LIN XUE (Luoyang) and QINGHAI ZHONG (Graz)

Abstract

Let G be a finite abelian group of rank r and let X be a zero-sum free sequence over G whose support $\operatorname{supp}(X)$ generates G. In 2009, Pixton proved that $|\Sigma(X)| \geq 2^{r-1}(|X|-r+2)-1$ for $r \leq 3$. We show that this result also holds for abelian groups G of rank 4 if the smallest prime p dividing $|G|$ satisfies $p \geq 13$.

1. Introduction. Let G be a finite abelian group. By a sequence over G we mean a finite sequence of terms from G where repetition is allowed and the order is disregarded. In 1972, Eggleton and Erdős [1] first tackled the problem of determining the minimal cardinality of the set $\Sigma(X)$ of subsums of zero-sum free sequences over G. In 1977, Olson and White [?] obtained a lower bound for $|\Sigma(X)|$, where X is a zero-sum free sequence over G and $\operatorname{supp}(X)$ generates a noncyclic group. Subsequently, several authors [2, 6, 7, 8] obtained a huge variety of results. In particular, we refer the reader to Part II of the recent monograph [5] by Grynkiewicz. In 2009, Pixton [6, Lemma 1.1 and Theorems 1.3 and 1.7] proved the following theorem.

Theorem A. Let G be a finite abelian group of rank $r \leq 3$, and let X be a zero-sum free sequence over G whose support generates G. Then

$$
|\Sigma(X)| \geq 2^{r-1}(|X|-r+2)-1
$$

where $|X|$ denotes the length of X.
In this paper, we show that the bound given in Theorem A also holds for a class of abelian groups of rank 4.

Main Theorem 1.1. Let G be a finite abelian group of rank 4 and let X be a zero-sum free sequence over G whose support generates G. If the smallest prime p dividing $|G|$ satisfies $p \geq 13$, then

$$
|\Sigma(X)| \geq 8|X|-17 .
$$

[^0]Let G be a nontrivial finite abelian group, say $G \cong C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $1<n_{1}|\cdots| n_{r}$. Then $r=r(G)$ is the rank of G.

Suppose that $r=4$. Then the lower bound given in Theorem 1.1 is best possible. Indeed, if $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ is a basis of G, then the sequence $S=e_{1} e_{2} e_{3} e_{4}^{\operatorname{ord}\left(e_{4}\right)-1}$ is zero-sum free, $|S|=\operatorname{ord}\left(e_{4}\right)+2$, and $|\Sigma(S)|=$ $2^{3} \operatorname{ord}\left(e_{4}\right)-1=8|S|-17$. We do not know whether the result holds true for groups G having a prime divisor q which is smaller than 13 . Note that we have no information on the maximal length or on the structure of zero-sum free sequences over groups of rank 4 . We only want to recall that there are zero-sum free sequences S over groups of rank 4 whose lengths are strictly larger than $\sum_{i=1}^{4}\left(n_{i}-1\right)($ see [4).
2. Preliminaries. Let \mathbb{N} denote the set of positive integers and $\mathbb{N}_{0}=$ $\mathbb{N} \cup\{0\}$. Let \mathbb{Z} denote the set of integers. For $a, b \in \mathbb{Z}$ with $a \leq b$, we define $[a, b]=\{x \in \mathbb{Z} \mid a \leq x \leq b\}$. Let G be an additively written finite abelian group. Let $\mathscr{F}(G)$ be the free abelian monoid, multiplicatively written, with basis G. The elements of $\mathscr{F}(G)$ are called sequences over G.

We write a sequence $S \in \mathscr{F}(G)$ in the form

$$
S=\prod_{g \in G} g^{\mathrm{v}_{g}(S)} \quad \text { with } \mathrm{v}_{g}(S) \in \mathbb{N}_{0} \text { for all } g \in G
$$

We call $\mathrm{v}_{g}(S)$ the multiplicity of g in S. We say that S contains g if $\mathrm{v}_{g}(S)>0$. The unit element $1 \in \mathscr{F}(G)$ is called the empty sequence. A sequence S_{1} is called a subsequence of S if $S_{1} \mid S$ in $\mathscr{F}(G)$ (equivalently, $\mathrm{v}_{g}\left(S_{1}\right) \leq \mathrm{v}_{g}(S)$ for all $g \in G)$. Let $S_{1}, S_{2} \in \mathscr{F}(G)$; we denote by $S_{1} S_{2}$ the sequence

$$
\prod_{g \in G} g^{\mathrm{v}_{g}\left(S_{1}\right)+\mathrm{v}_{g}\left(S_{2}\right)} \in \mathscr{F}(G),
$$

and by $S_{1} S_{2}^{-1}$ the sequence

$$
\prod_{g \in G} g^{\mathrm{v}_{g}\left(S_{1}\right)-\min \left\{\mathrm{v}_{g}\left(S_{1}\right), \mathrm{v}_{g}\left(S_{2}\right)\right\}} \in \mathscr{F}(G) .
$$

If a sequence $S \in \mathscr{F}(G)$ is written in the form $S=g_{1} \cdot \ldots \cdot g_{l}$, we tacitly assume that $l \in \mathbb{N}_{0}$ and $g_{1}, \ldots, g_{l} \in G$. For

$$
S=g_{1} \cdot \ldots \cdot g_{l}=\prod_{g \in G} g^{\mathrm{v}_{g}(S)} \in \mathscr{F}(G),
$$

we call

- $|S|=l=\sum_{g \in G} \mathrm{v}_{g}(S) \in \mathbb{N}_{0}$ the length of S,
- $\sigma(S)=\sum_{i=1}^{l} g_{i}=\sum_{g \in G} \mathrm{v}_{g}(S) g \in G$ the sum of S,
- $\operatorname{supp}(S)=\left\{g \in G \mid \mathrm{v}_{g}(S)>0\right\} \subseteq G$ the support of S,
- $\Sigma(S)=\left\{\sum_{i \in I} g_{i} \mid \emptyset \neq I \subseteq[1, n]\right\}$ the set of sub(sequence) sums of S.

The sequence S is called

- a zero-sum sequence if $\sigma(S)=0$,
- a zero-sum free sequence if $0 \notin \Sigma(S)$,
- a minimal zero-sum sequence if $|S| \geq 1, \sigma(S)=0$, and S contains no proper and nontrivial zero-sum subsequence.

If G_{1} is a group and $\varphi: G \rightarrow G_{1}$ a map, then $\varphi(S)=\varphi\left(g_{1}\right) \cdot \ldots \cdot \varphi\left(g_{l}\right)$ is a sequence over G_{1}.

We set $\mathrm{D}(G)=\max \{|S| \mid S$ is a minimal zero-sum sequence over $G\}$, the Davenport constant of G.

For any integer-valued function $f: A \rightarrow \mathbb{Z}$ defined on a finite set A, we write $\min (f)=\min \{f(a) \mid a \in A\}$ and $\max (f)=\max \{f(a) \mid a \in A\}$.

Next we list some necessary lemmas.
Lemma 2.1 ([6, Lemma 4.4]). Let G be a finite abelian group and $X \subseteq$ $G \backslash\{0\}$ be a generating set for G. Suppose that $f: G \rightarrow \mathbb{Z}$ is a function on G. Then

$$
\sum_{x \in X, g \in G} \max \{f(g+x)-f(g), 0\} \geq(\max (f)-\min (f))|X|
$$

Lemma 2.2. Let G be a finite abelian group, $H \subseteq G$ a subgroup, $S \subseteq G$ a subset, and let $f: G / H \rightarrow \mathbb{Z}$ be defined by $f(a+H)=|(a+H) \bigcap S|$ for all $a \in G$. Suppose that $X \subseteq G \backslash\{0\}$ is a generating set for G and satisfies $|(S+x) \backslash S| \leq 7$ for all $x \in X$. Then

$$
\min (f) \geq \max (f)-7
$$

In particular, if there exists an element $b \in G$ such that $f(b+H) \geq 8$, then $f(a+H) \geq 1$ for all $a \in G$.

Proof. Obviously, the assertion holds for $H=\{0\}$ and for $H=G$. Suppose that $\{0\} \subsetneq H \subsetneq G$. Let $A \subseteq G$ be such that $G=\bigcup_{a \in A}(a+H)$ and $|A|=|G / H|$. Since $\{x+H \mid x \in X\}$ is a generating set for G / H, choose $X^{\prime} \subseteq X$ such that $\left\{x+H \mid x \in X^{\prime}\right\}$ is a generating set for G / H and $\left|\left\{x+H \mid x \in X^{\prime}\right\}\right|=\left|X^{\prime}\right|$.

From $|(S+x) \backslash S| \leq 7$ for all $x \in X$ we deduce

$$
\begin{aligned}
7\left|X^{\prime}\right| & \geq \sum_{x \in X^{\prime}}|(S+x) \backslash S|=\sum_{x \in X^{\prime}} \sum_{a \in A}|((S+x) \cap(a+H)) \backslash(S \cap(a+H))| \\
& \geq \sum_{x \in X^{\prime}} \sum_{a \in A} \max \{f(a-x+H)-f(a+H), 0\} \\
& =\sum_{x \in-X^{\prime}} \sum_{a \in A} \max \{f(a+H+x+H)-f(a+H), 0\}
\end{aligned}
$$

Since $\left\{x+H \mid x \in X^{\prime}\right\}$ is a generating set for G / H, so is $\left\{x+H \mid x \in-X^{\prime}\right\}$.

Therefore, by Lemma 2.1,

$$
\begin{aligned}
7\left|X^{\prime}\right| & \geq \sum_{x \in-X^{\prime}} \sum_{a \in A} \max \{f(a+H+x+H)-f(a+H), 0\} \\
& \geq(\max (f)-\min (f))\left|X^{\prime}\right|
\end{aligned}
$$

From $\left|X^{\prime}\right| \neq 0$ we obtain

$$
\min (f) \geq \max (f)-7
$$

In particular, if $f(b+H) \geq 8$ for some $b \in G$, then for all $a \in G$, $f(a+H) \geq \min (f) \geq \max (f)-7 \geq f(b+H)-7 \geq 1$.

We also need the following simple and well-known result.
Lemma 2.3. Let G be a finite abelian group and S be a zero-sum free sequence over G. Then
(1) $|\Sigma(S)| \geq|S|$,
(2) $\mathrm{D}(G) \leq|G|$.

Proof. (1) Suppose $S=g_{1} \cdot \ldots \cdot g_{l}$. Then $g_{1}, g_{1}+g_{2}, \ldots, g_{1}+\ldots+g_{l}$ are all distinct. It follows that $|\Sigma(S)| \geq l=|S|$.
(2) Assume to the contrary that X is a zero-sum free sequence over G with length $|G|$. Then by (1), $|\Sigma(X)| \geq|G|$, which implies that $0 \in \Sigma(X)$, a contradiction.

Lemma 2.4. Let G be a finite abelian group and $X=X_{1} X_{2}$ be a zerosum free sequence over G. Then
(1) $|\Sigma(X)| \geq\left|\Sigma\left(X_{1}\right)\right|+\left|\Sigma\left(X_{2}\right)\right|$.
(2) Let $H=\left\langle\operatorname{supp}\left(X_{1}\right)\right\rangle$ and let $\varphi: G \rightarrow G / H$ be the canonical epimorphism. If $\varphi\left(X_{2}\right)$ is a zero-sum free sequence over G / H, then

$$
|\Sigma(X)| \geq\left(\left|\Sigma\left(X_{1}\right)\right|+1\right)\left(\left|X_{2}\right|+1\right)-1
$$

Proof. (1) This follows by [3, Theorem 5.3.1].
(2) Since $\varphi\left(X_{2}\right)$ is a zero-sum free sequence over G / H, we deduce that $H \cap \Sigma\left(X_{2}\right)=\emptyset$ and $\left|\Sigma\left(\varphi\left(X_{2}\right)\right)\right| \geq\left|X_{2}\right|$ by Lemma 2.3(1). Thus for any a in $\Sigma\left(X_{2}\right)$,

$$
\left|\Sigma\left(X_{0}\right) \cap(a+H)\right| \geq\left|\left(\Sigma\left(X_{1}\right)+a\right) \cup\{a\}\right|=\left|\Sigma\left(X_{1}\right)\right|+1
$$

Therefore

$$
\begin{aligned}
& \left|\Sigma\left(X_{0}\right)\right| \geq\left|\Sigma\left(X_{0}\right) \cap H\right|+\sum_{a+H \in \Sigma\left(\varphi\left(X_{2}\right)\right)}\left|\Sigma\left(X_{0}\right) \cap(a+H)\right| \\
& \quad \geq\left|\Sigma\left(X_{1}\right)\right|+\left(\left|\Sigma\left(X_{1}\right)\right|+1\right)\left|\Sigma\left(\varphi\left(X_{2}\right)\right)\right| \geq\left(\left|\Sigma\left(X_{1}\right)\right|+1\right)\left(\left|X_{2}\right|+1\right)-1
\end{aligned}
$$

3. The proof of Theorem 1.1. For the simplicity of formulations, we define C-sequences and C-groups. To begin with, a sequence X over a finite abelian group G is called a C-sequence if:
(i) $\langle\operatorname{supp}(X)\rangle=G$,
(ii) X is zero-sum free,
(iii) $\left|\sum(X)\right| \leq 8|X|-18$.

Furthermore, a finite abelian group G is called a C-group if:
(i) $\mathrm{r}(G)=4$,
(ii) the smallest prime p dividing $|G|$ satisfies $p \geq 13$,
(iii) there exists a C-sequence over G.

Proof of Theorem 1.1. If Theorem 1.1 does not hold, then there exists a C-group. Let G_{0} be the C-group with minimal order and let X_{0} be a C-sequence over G_{0} with minimal length.

We proceed by the following four claims:
Claim A. Let X be a zero-sum free sequence over G_{0} and $H=\langle\operatorname{supp}(X)\rangle$ with $r=\mathrm{r}(H)$. If $|H|<\left|G_{0}\right|$ or $|X|<\left|X_{0}\right|$, then

$$
|\Sigma(X)| \geq 2^{r-1}(|X|-r+2)-1
$$

Proof. By Theorem A and the hypotheses about G_{0} and X_{0}, this follows directly.

Claim B.
(1) Let H be a subgroup of G_{0}. Then for any $a \in G_{0}$,

$$
\left|\Sigma\left(X_{0}\right) \cap(a+H)\right| \geq \max _{g \in G_{0}}\left|\Sigma\left(X_{0}\right) \cap(g+H)\right|-7 \geq\left|\Sigma\left(X_{0}\right) \cap H\right|-7
$$

(2) Suppose that X_{0} has a factorization $X_{0}=X_{1} X_{2}$ such that $H=$ $\left\langle\operatorname{supp}\left(X_{1}\right)\right\rangle$ is a proper subgroup of G. If $\left|\Sigma\left(X_{1}\right)\right| \geq 7$, then

$$
\left|\Sigma\left(X_{0}\right)\right| \geq\left(\Sigma\left(X_{1}\right)+1\right)|G / H|-1
$$

Proof. (1) For any $x \mid X_{0}$, denote $H_{x}=\left\langle\operatorname{supp}\left(X_{0} x^{-1}\right)\right\rangle$. Then $r\left(H_{x}\right) \geq$ $\mathrm{r}\left(G_{0}\right)-1=3$. By Claim A and $\left|X_{0} x^{-1}\right|<\left|X_{0}\right|$, we get

$$
\begin{aligned}
\left|\Sigma\left(X_{0} x^{-1}\right)\right| & \geq \min \left\{4\left(\left|X_{0}\right|-1-3+2\right)-1,8\left(\left|X_{0}\right|-1-4+2\right)-1\right\} \\
& =4\left|X_{0}\right|-9
\end{aligned}
$$

If $H_{x} \neq G_{0}$, then $x \notin H_{x}$. Thus $\left|\Sigma\left(X_{0}\right)\right| \geq 2\left|\Sigma\left(X_{0} x^{-1}\right)\right|+1 \geq 8\left|X_{0}\right|-17$ by Lemma 2.4 (2), a contradiction to X_{0} being a C-sequence.

Therefore $H_{x}=G_{0}$ and $r\left(H_{x}\right)=4$. By Claim A and $\left|X_{0} x^{-1}\right|<\left|X_{0}\right|$,

$$
\left|\Sigma\left(X_{0} x^{-1}\right)\right| \geq 8\left(\left|X_{0}\right|-1\right)-17=8\left|X_{0}\right|-25
$$

Let $S=\Sigma\left(X_{0}\right)$. Then $|S| \leq 8\left|X_{0}\right|-18$ and for all $x \mid X_{0}$,

$$
\begin{aligned}
|(S+x) \backslash S| & =|S \backslash(S-x)| \leq\left|S \backslash \Sigma\left(X_{0} x^{-1}\right)\right| \\
& \leq|S|-\left|\Sigma\left(X_{0} x^{-1}\right)\right| \leq\left(8\left|X_{0}\right|-18\right)-\left(8\left|X_{0}\right|-25\right) \leq 7
\end{aligned}
$$

By $\left\langle\operatorname{supp}\left(X_{0}\right)\right\rangle=G_{0}$ and Lemma 2.2 , for any $a \in G$,

$$
\left|\Sigma\left(X_{0}\right) \cap(a+H)\right| \geq \max _{g \in G_{0}}\left|\Sigma\left(X_{0}\right) \cap(g+H)\right|-7 \geq\left|\Sigma\left(X_{0}\right) \cap H\right|-7
$$

(2) Since H is a proper subgroup of G_{0}, there exists $x \mid X_{2}$ such that $x \notin H$. Then

$$
\left|\Sigma\left(X_{0}\right) \cap(x+H)\right| \geq\left|\left(\Sigma\left(X_{1}\right)+x\right) \cup\{x\}\right| \geq\left|\Sigma\left(X_{1}\right)\right|+1 \geq 8
$$

For any $a \in G_{0} \backslash H$, we get $\left|\Sigma\left(X_{0}\right) \cap(a+H)\right| \geq\left|\Sigma\left(X_{0}\right) \cap(x+H)\right|-7 \geq 1$ by (1), which implies that $\Sigma\left(X_{2}\right) \cap(a+H) \neq \emptyset$.

Choose $b \in \Sigma\left(X_{2}\right) \cap(a+H)$. Then we have $\left|\Sigma\left(X_{0}\right) \cap(a+H)\right| \geq$ $\left|\left(\Sigma\left(X_{1}\right)+b\right) \cup\{b\}\right|=\left|\Sigma\left(X_{1}\right)\right|+1$ for all $a \in G_{0} \backslash H$. Therefore

$$
\begin{aligned}
\left|\Sigma\left(X_{0}\right)\right| & \geq\left|\Sigma\left(X_{1}\right)\right|+\left(\left|\Sigma\left(X_{1}\right)\right|+1\right)(|G / H|-1) \\
& \geq\left(\left|\Sigma\left(X_{1}\right)\right|+1\right)(|G / H|)-1
\end{aligned}
$$

Claim C. Let X be a subsequence of X_{0}. If $H=\langle\operatorname{supp}(X)\rangle$ is a proper subgroup of G_{0}, then $\mathrm{r}(H) \leq 3$.

Proof. Assume to the contrary that $\mathrm{r}(H)=4$. Then $|X| \geq 4$.
Let $\varphi: G_{0} \rightarrow G_{0} / H$ denote the canonical epimorphism from G_{0} to G_{0} / H with $\operatorname{ker}(\varphi)=H$. Then $\varphi\left(X_{0}\right)$ is a sequence over G_{0} / H. We can get a factorization of X_{0},

$$
X_{0}=X \cdot X_{1} \cdot \ldots \cdot X_{\alpha} \cdot X^{\prime}
$$

such that for $1 \leq i \leq \alpha, \varphi\left(X_{i}\right)$ is a minimal zero-sum sequence over G_{0} / H and $\varphi\left(X^{\prime}\right)$ is a zero-sum free sequence over G_{0} / H. Thus $\left|\Sigma\left(\varphi\left(X^{\prime}\right)\right)\right| \geq\left|X^{\prime}\right|$ and $\left|X_{0}\right| \leq|X|+\alpha \mathrm{D}(G / H)+\left|X^{\prime}\right| \leq|X|+\alpha|G / H|+\left|X^{\prime}\right|$ by Lemma 2.3.

Let $Y=X \cdot \sigma\left(X_{1}\right) \cdot \ldots \cdot \sigma\left(X_{\alpha}\right)$. Then Y is a zero-sum free sequence over H. From $H<G_{0}$ and Claim A we have

$$
\left|\Sigma\left(X_{0}\right) \cap H\right| \geq|\Sigma(Y) \cap H| \geq 8|Y|-17
$$

For any $a \in \Sigma\left(X^{\prime}\right)$, we get $a \notin H$ and

$$
\left|\Sigma\left(X_{0}\right) \cap(a+H)\right| \geq|\Sigma(Y \cdot a) \cap(a+H)| \geq|\Sigma(Y) \cap H|+1 \geq 8|Y|-16
$$

Let $A^{\prime} \subseteq \Sigma\left(X^{\prime}\right)$ satisfy $\left\{a+H \mid a \in \Sigma\left(X^{\prime}\right)\right\}=\left\{a+H \mid a \in A^{\prime}\right\}$ and $\left|A^{\prime}\right|=\left|\varphi\left(\Sigma\left(X^{\prime}\right)\right)\right|$. Let $A \subseteq G_{0}$ be a subset with $A \supseteq A^{\prime}$ such that $G_{0}=\bigcup_{a \in A}(a+H)$ and $|A|=\left|G_{0} / H\right|$. Then for any $b \in A \backslash\left(A^{\prime} \cup H\right)$,

$$
\left|\Sigma\left(X_{0}\right) \cap(b+H)\right| \geq\left|\Sigma\left(X_{0}\right) \cap H\right|-7 \geq 8|Y|-24
$$

by Claim B(1).

Therefore,

$$
\begin{aligned}
\left|\Sigma\left(X_{0}\right)\right|= & \sum_{a \in A}\left|\Sigma\left(X_{0}\right) \cap(a+H)\right| \\
\geq & 8|Y|-17+(8|Y|-16)\left|\Sigma\left(\varphi\left(X^{\prime}\right)\right)\right| \\
& +(8|Y|-24)\left(|G / H|-1-\left|\Sigma\left(\varphi\left(X^{\prime}\right)\right)\right|\right) \\
\geq & (8|Y|-24)|G / H|+8\left|\Sigma\left(\varphi\left(X^{\prime}\right)\right)\right|+7 \\
\geq & 8(|X|-3)(|G| /|H|-1)+8\left(|X|+\alpha|G| /|H|+\left|X^{\prime}\right|\right)-17 \\
\geq & 8\left|X_{0}\right|-17,
\end{aligned}
$$

a contradiction.
Claim D. Let Y be a subsequence of X_{0} with length 4 . Then $\langle\operatorname{supp}(Y)\rangle$ $=G_{0}$.

Proof. Let X be the longest subsequence of X_{0} such that $\langle\operatorname{supp}(X)\rangle \neq$ G_{0}. Denote $H=\langle\operatorname{supp}(X)\rangle$. Then $r(H)=3$ by Claim C and $\left|G_{0} / H\right| \geq 13$ since G_{0} is a C-group. Let $\varphi: G_{0} \rightarrow G_{0} / H$ denote the canonical epimorphism.

We only need to prove that $|X| \leq 3$. Assume to the contrary that $|X| \geq 4$. We distinguish three cases.

Case 1: $\left|X_{0}\right| \leq\left((|X|-1)\left|G_{0} / H\right|+4\right) / 2$. From $H<G_{0}$ and Claim A , we have $|\Sigma(X)| \geq 4(|X|-1)-1 \geq 11$. Then by Claim $B(2)$,

$$
\left|\Sigma\left(X_{0}\right)\right| \geq(|\Sigma(X)|+1)\left|G_{0} / H\right|-1 \geq 4(|X|-1)\left|G_{0} / H\right|-1
$$

which implies that $\left|\Sigma\left(X_{0}\right)\right| \geq 8\left|X_{0}\right|-17$ since $\left|X_{0}\right| \leq\left((|X|-1)\left|G_{0} / H\right|+4\right) / 2$, a contradiction.

CASE 2: There exists no zero-sum free subsequence of $\varphi\left(X_{0} X^{-1}\right)$ with length 6 . Since $\varphi\left(X_{0}\right)$ is a sequence over G_{0} / H, we can get a factorization of X_{0},

$$
X_{0}=X \cdot X_{1} \cdot \ldots \cdot X_{\alpha} \cdot X^{\prime},
$$

such that for $1 \leq i \leq \alpha, \varphi\left(X_{i}\right)$ is a minimal zero-sum sequence over G_{0} / H and $\varphi\left(X^{\prime}\right)$ is a zero-sum free sequence over G_{0} / H. Thus $\left|X_{0}\right|=|X|+\left|X_{1}\right|+$ $\cdots+\left|X_{\alpha}\right|+\left|X^{\prime}\right| \leq|X|+\left|X^{\prime}\right|+6 \alpha$ and $\left|\Sigma\left(\varphi\left(X^{\prime}\right)\right)\right| \geq\left|X^{\prime}\right|$ by Lemma 2.3.

Let $Y=X \cdot \sigma\left(X_{1}\right) \cdot \ldots \cdot \sigma\left(X_{\alpha}\right)$. Then Y is a zero-sum free sequence over H. By Claim A and $H<G_{0}$, we have

$$
\left|\Sigma\left(X_{0}\right) \cap H\right| \geq|\Sigma(Y) \cap H| \geq 4|Y|-5 .
$$

For any $a \in \Sigma\left(X^{\prime}\right)$, we obtain $a \notin H$ and

$$
\left|\Sigma\left(X_{0}\right) \cap(a+H)\right| \geq|\Sigma(Y \cdot a) \cap(a+H)| \geq|\Sigma(Y) \cap H|+1 \geq 4|Y|-4 .
$$

Let $A^{\prime} \subseteq \Sigma\left(X^{\prime}\right)$ satisfy $\left\{a+H \mid a \in \Sigma\left(X^{\prime}\right)\right\}=\left\{a+H \mid a \in A^{\prime}\right\}$ and $\left|A^{\prime}\right|=\left|\varphi\left(\Sigma\left(X^{\prime}\right)\right)\right|$. Let $A \subseteq G_{0}$ be a subset with $A \supseteq A^{\prime}$ such that

$$
\begin{gathered}
G_{0}=\bigcup_{a \in A}(a+H) \text { and }|A|=\left|G_{0} / H\right| \text {. Then for any } b \in A \backslash\left(\Sigma\left(X^{\prime}\right) \cup H\right), \\
\left|\Sigma\left(X_{0}\right) \cap(b+H)\right| \geq\left|\Sigma\left(X_{0}\right) \cap H\right|-7 \geq 4|Y|-12,
\end{gathered}
$$

by Claim $B(1)$. Therefore,

$$
\begin{aligned}
\left|\Sigma\left(X_{0}\right)\right|= & \sum_{a \in A}\left|\Sigma\left(X_{0}\right) \cap(a+H)\right| \\
\geq & 4|Y|-5+(4|Y|-4)\left|\Sigma\left(\varphi\left(X^{\prime}\right)\right)\right| \\
& +(4|Y|-12)\left(|G / H|-1-\left|\Sigma\left(\varphi\left(X^{\prime}\right)\right)\right|\right) \\
\geq & (4|Y|-12)|G / H|+8\left|\Sigma\left(\varphi\left(X^{\prime}\right)\right)\right|+7 \\
\geq & (4|X|+4 \alpha-12)|G / H|+8\left|X^{\prime}\right|+7 .
\end{aligned}
$$

Since $|X| \geq 4,|G / H| \geq 13$, and $\left|X_{0}\right| \leq|X|+\left|X^{\prime}\right|+6 \alpha$, we conclude that $\left|\Sigma\left(X_{0}\right)\right| \geq 8\left|X_{0}\right|-17$, a contradiction.

Case 3: $\left|X_{0}\right|>((|X|-1)|G / H|+4) / 2$ and there exists a subsequence X_{1} of $X_{0} X^{-1}$ such that $\varphi\left(X_{1}\right)$ is a zero-sum free subsequence over G_{0} / H of length 6. Since $\left|X_{0}\right|>((|X|-1)|G / H|+4) / 2$, we obtain

$$
\left|X_{0}\right|-2|X|>\frac{|X|(|G / H|-4)-|G / H|+4}{2} \geq 7 .
$$

Denote

$$
X_{2}=X_{0}\left(X X_{1}\right)^{-1} .
$$

Then $\left|X_{2}\right|=\left|X_{0}\right|-\left|X X_{1}\right|>|X|+1$. Thus $\left\langle X_{2}\right\rangle=G_{0}$ since X is the longest subsequence of X_{0} such that $\langle\operatorname{supp}(X)\rangle \neq G_{0}$. Hence $\left|\Sigma\left(X_{2}\right)\right| \geq 8\left|X_{2}\right|-17$ from $\left|X_{2}\right|<\left|X_{0}\right|$ and Claim A,

By $H<G_{0}$ and Claim A $|\Sigma(X)| \geq 4(|X|-1)-1$. It follows that $\left|\Sigma\left(X X_{1}\right)\right| \geq 4(|X|-1)\left(\left|\Sigma\left(\varphi\left(X_{1}\right)\right)\right|+1\right)-1 \geq 8\left|X X_{1}\right|$ from Lemma 2.4(2), $|X| \geq 4$ and $\left|X_{1}\right|=6$.

Therefore by Lemma 2.4 (1),

$$
\left|\Sigma\left(X_{0}\right)\right| \geq\left|\Sigma\left(X X_{1}\right)\right|+\left|\Sigma\left(X_{2}\right)\right| \geq 8\left|X X_{1}\right|+8\left|X_{2}\right|-17=8\left|X_{0}\right|-17,
$$

a contradiction.
Now we finish the proof of Theorem 1.1 by distinguishing the following two cases.

Suppose that $\left|X_{0}\right| \geq 13$. Denote $X_{0}=x_{1} \cdot \ldots \cdot x_{n}$. Then by Claim D, any four elements of X_{0} are independent, which implies that $x_{i}, x_{j}+x_{k}$, $1 \leq i \leq n, 1 \leq j<k \leq n$, are all different elements in G_{0}. Therefore,

$$
\left|\Sigma\left(X_{0}\right)\right| \geq n+n(n-1) / 2 \geq 8\left|X_{0}\right|-17,
$$

a contradiction.
Suppose that $\left|X_{0}\right| \leq 12$. Let X be a subsequence of X_{0} of length 3 and $H=\langle\operatorname{supp}(X)\rangle$ be a proper subgroup of G_{0}. Then by Claim D, the three
elements of X must be independent, which implies that $|\Sigma(X)|=7$. It follows by Claim B (2) that

$$
\left|\Sigma\left(X_{0}\right)\right| \geq(|\Sigma(X)|+1)\left|G_{0} / H\right|-1 \geq 8 \cdot 13-1 \geq 8\left|X_{0}\right|-17
$$

a contradiction.
Acknowledgements. The authors are grateful to the referee for helpful suggestions and comments.

This research was supported by NSFC (grant no. 11371184, 11426128), NSF of Henan Province (grant no. 142300410304), the Education Department of Henan Province (grant no. 2009A110012), NSF of Luoyang Normal University (grant no. 10001199), and the Austrian Science Fund FWF (project no. M1641-N26).

REFERENCES

[1] R. B. Eggleton and P. Erdős, Two combinatorial problems in group theory, Acta Arith. 21 (1972), 111-116.
[2] W. D. Gao and I. Leader, Sums and k-sums in abelian groups of order k, J. Number Theory 120 (2006), 26-32.
[3] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure Appl. Math. 278, Chapman \& Hall/CRC, 2005.
[4] A. Geroldinger and R. Schneider, On Davenport's constant, J. Combin. Theory Ser. A 61 (1992), 147-152.
[5] D. J. Grynkiewicz, Structural Additive Theory, Developments Math. 30, Springer, 2013.
[6] A. Pixton, Sequences with small subsum sets, J. Number Theory 129 (2009), 806-817.
[7] F. Sun, On subsequence sums of a zero-sum free sequence, Electron. J. Combin. 14 (2007), \#R52.
[8] P. Z. Yuan, Subsequence sums of zero-sum-free sequences, Electron. J. Combin. 16 (2009), \#R97.

Yongke Qu, Xingwu Xia, Lin Xue
Department of Mathematics
Luoyang Normal University
Luoyang 471022, P.R. China
E-mail: yongke1239@163.com 15038631335@163.com lyxuelin@126.com

Qinghai Zhong University of Graz Institute for Mathematics and Scientific Computing Heinrichstraße 36 8010 Graz, Austria E-mail: qinghai.zhong@uni-graz.at

Received 12 April 2014;
revised 11 March 2015

[^0]: 2010 Mathematics Subject Classification: Primary 11B50; Secondary 11P99.
 Key words and phrases: zero-sum free sequence, finite abelian group, Davenport's constant.

