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Abstract. It was shown in [Colloq. Math. 135 (2014), 227–262] that the pure semisim-
plicity conjecture (briefly, pssC) can be split into two parts: first, a weak pssC that can
be seen as a purely linear algebra condition, related to an embedding of division rings and
properties of matrices over those rings; the second part is the assertion that the class of
left pure semisimple sporadic rings (ibid.) is empty. In the present article, we characterize
the class of left pure semisimple sporadic rings having finitely many Auslander–Reiten
components; the characterization is given through properties of the defining bimodules
and the sequences of dimensions associated to these bimodules.

1. Introduction. A ring R is left pure semisimple when every left
R-module is a direct sum of indecomposable submodules. The ring R is
of finite representation type if it is left artinian and there exist only finitely
many indecomposable finitely presented left R-modules, up to isomorphism.
A ring is of finite representation type if and only if it is left and right pure
semisimple. The pure semisimplicity conjecture (which we shall abbreviate
as pssC) states that every left pure semisimple ring is of finite representation
type. The conjecture was first discussed by Auslander [5, 6], Gruson [16] and
Simson [19].

The conjecture has been proved under certain additional hypotheses
[6, 21, 22, 18] but remains undecided. It is known [18] that to prove the
conjecture it suffices to show that all left pure semisimple rings of the form

(1.1) RB =

[
F 0

B G

]
,

where F,G are division rings and B is a G-F -bimodule, are rings of finite
representation type.

Suppose a ring RB of the form (1.1) is left pure semisimple. We recall
from [14, Theorem 3.8] that the indecomposable left RB-modules (taken up
to isomorphism) form a chain {Mα | 0 ≤ α ≤ δ + 1} (for some ordinal
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δ > 0) with α < β precisely when HomRB (Mα,Mβ) = 0. Let us write dα
(for α = 0, . . . , δ) to denote the left dimension of HomRB (Mα+1,Mα), and
also d∗ = d−1 as the left dimension of B∗ = HomG(B,G). Following [15],
we say that the left pure semisimple ring RB of the form (1.1) is sporadic
in case dα > 1 for any α with −1 ≤ α ≤ δ. If RB is left pure semisimple
and sporadic, then it is a counterexample to the pssC. A weak form of the
pssC (the weak pure semisimplicity conjecture, wpssC) has been introduced
and studied in [15]. It is shown therein that the pssC holds if and only if
the wpssC holds and there do not exist left pure semisimple rings RB of the
form (1.1) which are sporadic.

The present paper is devoted to the study of the class of left pure
semisimple sporadic rings. Specifically, we will show that each left pure
semisimple sporadic ring RB such that RB-ind has only finitely many Aus-
lander–Reiten components, determines a dimension sequence in the sense
of [9]. Dimension sequences were originally shown to be related to rings of
finite representation type, but in view of this result, they are also connected
to left pure semisimple sporadic rings. One of the main results of the paper
is Theorem 5.1 which characterizes left pure semisimple sporadic rings RB
of the form (1.1) and with a finite number of connected Auslander–Reiten
components, by means of their dimension sequences and the properties of
the bimodule B.

We end the paper by a discussion in Section 6 of the relations between
sporadic left pure semisimple rings RB and the class of potential counterex-
amples constructed by Simson [26]. We show that if G ⊆ F is a pair of
division rings and F , viewed as a G-F -bimodule, is left strictly sporadic
(i.e., its left G-dimension is 2, and the dimension of the successive left dual
spaces is constantly 2), then the ring RB is a counterexample to the pssC
(Proposition 6.1).

This paper is a sequel to [15]. For all basic notions and terminology
used (in particular, for the notations R-Mod, R-mod, R-ind or for the con-
cepts of preinjective or preprojective modules), we therefore refer to [15]
(see [1, 11] for the connections between tilting modules and pure semisim-
ple rings). Moreover, we recall that given a hereditary left artinian ring R,
the Auslander–Reiten quiver of R-mod has R-ind as its set of vertices, and
an arrow [X]→ [Y ] exists in case there is some irreducible homomorphism
X → Y (a homomorphism f : X → Y is irreducible if it is neither a split
monomorphism nor a split epimorphism, and any factorization f = h ◦ g
in R-mod is such that either g is a split monomorphism or h is a split epi-
morphism). The Auslander–Reiten components of R-ind are the connected
components of the Auslander–Reiten quiver of R (see [4, 7] for more infor-
mation on these topics).
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Conditions for a ring RB of the form (1.1) to have finitely many Auslan-
der–Reiten components (indeed just two components) were already investi-
gated in [25]; also the Auslander–Reiten components of left pure semisimple
hereditary rings were studied in [2].

2. Sporadic pure semisimple rings and dimension sequences.
We assume in this section that RB =

[
F 0
B G

]
is a left pure semisimple spo-

radic ring. Under this hypothesis, all the indecomposable left RB-modules
can be ordered in a chain {Mα | 0 ≤ α ≤ δ + 1} so that α < β if and only
if HomRB (Mα,Mβ) = 0 ([14, Theorem 3.8]). By [13, Proposition 3.9], the
Auslander–Reiten components (from now on, AR-components) of RB-ind
are the sets Uλ = {Mλ+k | k = 0, 1, . . . } for each limit ordinal λ ≤ δ. Thus
U0 is the set of preinjective modules, and each Uβ is infinite, except for
the preprojective component Uρ (if δ = ρ + n for a limit ordinal ρ and an
integer n ≥ 0). Moreover, it was shown in [14, Theorem 3.8(d)] that each
pair of consecutive modules gives a basic tilting module Mβ+k ⊕Mβ+k+1

whose endomorphism ring is again a left pure semisimple ring of the form
(1.1). We denote by dα the left dimension of each module of homomorphisms
HomR(Mα+1,Mα). Since Mδ+1 is the simple projective, dδ is the left dimen-
sion of B, which we denote by d (when B is understood); in addition, we
set d−1 as d∗ = l.dim(B∗), i.e., the left dimension of B∗ = HomG(B,G).

We need the following two results from [15].

Proposition 2.1 ([15, Theorem 5.1]). Let R = RB =
[
F 0
B G

]
be a left

pure semisimple sporadic ring. Suppose that Uλ is any AR-component of
R-ind which is not the preprojective component. Then there exists n ≥ 0
such that dλ+k = 2 for all k ≥ n.

Proposition 2.2 (see [15, Proposition 2.11]). Let R = RB =
[
F 0
B G

]
be

left artinian and W = M ⊕N a rigid tilting module such that HomR(N,M)
has the left finite dimension property. If (T ,F) is the splitting torsion theory
of R-Mod determined by W , then there is a sequence X0, X1, . . . of finitely
presented indecomposable left R-modules such that:

(i) X0 = M and X1 = N .
(ii) For k ≥ 1, if the set Sk of indecomposable finitely presented modules

of F which are not isomorphic to any of the modules X2, . . . , Xk

is not empty, then Xk+1 is the only element of Sk (up to isomor-
phism) such that A ∈ Sk and A � Xk+1 imply HomR(Xk+1, A) = 0.
Moreover, HomR(A,Xk+1) 6= 0 for any A ∈ Sk.

If there is a smallest k ≥ 0 such that Xk is projective, then Xk+1 is the
simple projective, Sk+1 is empty and the sequence is finite. Otherwise, the
sequence is infinite.
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Proof. This is precisely [15, Proposition 2.11], except for the added con-
dition that HomR(A,Xk+1) 6= 0. But this is exactly what was shown in the
second paragraph of the proof of [15, Proposition 2.11] as a justification for
the uniqueness of Xk+1.

Assume that the matrix ring RB =
[
F 0
B G

]
is left pure semisimple and

sporadic, with the chain {Mα | 0 ≤ α ≤ ρ + n + 1} of indecomposable left
RB-modules as above, and let (tα, sα) denote the d-vector of each Mα. Then
for α < β we have tα/sα > tβ/sβ. Moreover, tω/sω is the limit of the ratios
tk/sk for finite k; and similarly, for any limit ordinal λ < ρ one sees that
tλ+ω/sλ+ω is the limit of the ratios tλ+k/sλ+k. See [15, Theorem 3.14] for
details.

Let λ < ρ be a limit ordinal. From Proposition 2.1 we infer that there
is a smallest integer k ≥ 0 such that dλ+k = 2 = dλ+j for any j ≥ k.
We denote this value as k(λ). If µ = λ + ω, then the left dimension of
HomR(Mµ,Mλ+k(λ)) will be denoted by r(µ). By [21, Proposition 2.4(d)],
r(µ) ≥ 1 is finite. We will write R instead of RB when B is understood.

The following result is our first approach to the understanding of these
r-values.

Proposition 2.3. Let R = RB =
[
F 0
B G

]
be a left pure semisimple spo-

radic ring. Let λ be a limit ordinal such that Uλ is an AR-component which
is not the preprojective component, and let µ = λ+ω. Let k = k(λ). For any
natural number m ≥ k, there exists a short exact sequence 0 → Mµ+1 →
Mh
µ →Mλ+m → 0 where h = l.dim(HomR(Mµ,Mλ+m)).

Proof. Since Mµ ⊕Mµ+1 is a rigid tilting module [14, Theorem 3.8], we
know that there is a short exact sequence 0→ M l

µ+1 → Mh
µ → Mλ+m → 0

([15, Proposition 3.4]; that the exponent h is the dimension follows from the
proof of that proposition), so all we have to show is that l = 1. Suppose to
the contrary that l > 1, and let p be a prime factor of l. Let us write (t, s),
(tµ, sµ) and (tj , sj) respectively for the d-vectors of Mµ+1, Mµ and Mλ+j .
By Proposition 2.1 and [15, Lemma 3.1], we know that for each m ≥ k,
tm+1 − tm = tk+1 − tk and sm+1 − sm = sk+1 − sk. Then [15, Theorem
3.14(iii)] implies that

tµ
sµ

=
tm+1 − tm
sm+1 − sm

,

and since both fractions have coprime terms by [15, Lemma 3.8], it follows
that tµ = tm+1 − tm and sµ = sm+1 − sm. Thus the above short exact
sequence gives us the equations

tl = (tm+1 − tm)h− tm, sl = (sm+1 − sm)h− sm.
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This shows that, modulo p,

(tm+1 − tm)h = tm, (sm+1 − sm)h = sm.

If h = 0 modulo p, then p is a divisor of both tm and sm, which contra-
dicts [15, Lemma 3.8]. Moreover, p is not a divisor of sm or of tm, because
if we had, for instance, sm = 0 over Zp, then sm+1 = sm = 0, and we get
again a contradiction to [15, Lemma 3.8]. Then by taking h−1, we obtain
the equation modulo p,

(tm+1 − tm)t−1
m = (sm+1 − sm)s−1

m ,

and this entails (tm+1 − tm)sm = (sm+1 − sm)tm, always modulo p. Then
modulo p we have, by simplifying the above equation,

tm+1sm = sm+1tm, sm+1tm − tm+1sm = 0,

which is impossible, by [15, Lemma 3.8].

Corollary 2.4. With the hypotheses of Proposition 2.3, let µ = λ+ω.
Assume k = k(λ) and r = r(µ). If m ≥ k, then l.dim(HomR(Mµ,Mλ+m)) =
r + (m− k).

Proof. We know l.dim(HomR(Mµ,Mλ+k)) = r and this is the first step
in a proof by induction of the result. So, assume l.dim(HomR(Mµ,Mλ+m)) =
r +m− k = hm. We shall prove the property for Mλ+m+1, showing that if
h′ = l.dim(HomR(Mµ,Mλ+m+1)), then h′ = hm + 1.

Using the notation of the proof of Proposition 2.3, the d-vector of Mµ is
(tm+1 − tm, sm+1 − sm). Still with the same notation, and applying Propo-
sition 2.3 twice, we get the equations

hm(tm+1 − tm) = t+ tm, h′(tm+1 − tm) = t+ tm+1,

and similarly for the s-values. But then h′ = hm + 1, as required.

Now we recall from [9] the concept of a dimension sequence, and intro-
duce the notion of a partial dimension sequence.

Definition 2.5. Let m ≥ 1 and d−1, d0, . . . , dm be a sequence of positive
integers. This is called a partial dimension sequence if there is a sequence
of pairs of integers (t−1, s−1), (t0, s0), . . . , (tm+2, sm+2) with the following
properties:

(i) (t−1, s−1) = (0,−1), (t0, s0) = (1, 0).
(ii) tj , sj ≥ 1 for j = 1, . . . ,m.

(iii) (tk+2, sk+2) = dk(tk+1, sk+1)− (tk, sk) for k = −1, 0, . . . ,m.

The sequence d−1, d0, . . . , dm is called a dimension sequence if it is a partial
dimension sequence and (tm+1, sm+1) = (0, 1), (tm+2, sm+2) = (−1, 0).

In [9], dimension sequences are associated to bimodules of finite repre-
sentation type (see also [10] and [21]), and in [23], infinite dimension se-
quences are associated to hereditary artinian left pure semisimple rings RB
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in connection with generalized Artin problems for division ring extensions
(see also [26]). We shall show that (finite) dimension sequences are also
connected with sporadic left pure semisimple rings. To this end, we will
associate a sequence to such a left pure semisimple ring.

Let R = RB =
[
F 0
B G

]
be a left pure semisimple sporadic ring. Suppose

that if we order the indecomposable left R-modules in the chain {Mα | 0 ≤
α ≤ ρ+n+ 1} as above, we get ρ = ω ·h with 1 ≤ h <∞, so that R-ind has
only h+ 1 AR-components. In this situation, we may define finite sequences
s0, . . . , sh of natural numbers as follows.

The sequence s0 will be: d−1 = d∗, d0, . . . , dk(0) = 2. For any 0 < j < h,
the sequence sj will be: 1, r(ω · j) + 2, dω·j , . . . , dω·j+k(ω·j) = 2. Finally, the
sequence sh is: 1, r(ρ) + 2, dρ, . . . , dρ+n = d. We then have the following
result.

Theorem 2.6. If RB =
[
F 0
B G

]
is a left pure semisimple sporadic ring

with h+ 1 AR-components, then the sequence obtained by concatenation of
the sequences s0, . . . , sh is a dimension sequence.

Proof. We define the sequence of pairs (ti, si) for i = 1, . . . ,m (where

m =
∑h−1

j=0 k(ω · j) + 3h+n), and check that they satisfy conditions (ii) and
(iii) of Definition 2.5. These pairs (ti, si) are the d-vectors of the following
sequence of indecomposable modules:

M1, . . . ,Mk(0)+2,Mω, . . . ,Mω+k(ω)+2,Mω·2, . . . ,Mω·j , . . . ,

Mρ, . . . ,Mρ+n.

Condition (ii) is obviously satisfied, because the only indecomposable
modules with zero in some coordinate of their d-vector are the simple mod-
ules M0,Mρ+n+1. In order to check (iii), the interesting equations to examine
will be those of the form

(tω·(j+1), sω·(j+1))

= 1 · (tω·j+k(ω·j)+2, sω·j+k(ω·j)+2)− (tω·j+k(ω·j)+1, sω·j+k(ω·j)+1)

and

(tω·(j+1)+1, sω·(j+1)+1)

= (r(ω · (j + 1)) + 2)(tω·(j+1), sω·(j+1))− (tω·j+k(ω·j)+2, sω·j+k(ω·j)+2).

Now, the first equation holds because in general, for the limit ordinal λ and
k = k(λ), one has tλ+k+2 − tλ+k+1 = tλ+k+1 − tλ+k = tλ+ω, and similarly
for s, since dλ+k = 2. The second equation follows from Proposition 2.3 and
Corollary 2.4. Finally, the remaining cases follow by applying the equation
of [15, Lemma 3.1].
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The dimension sequence determined by the left pure semisimple sporadic
ring RB =

[
F 0
B G

]
will be referred to as the dimension sequence of RB.

Note that the number of terms equal to 1 in the dimension sequence
of RB, increased by 1, is the number of AR-components of RB-ind. On
the other hand, not every dimension sequence can appear as the dimension
sequence of such a ring RB. Indeed, it follows by our construction of the
sequence that:

(i) if a term of the sequence is dk+1 = 1, then dk = 2 and dk+2 ≥ 3;
(ii) the first two terms of the dimension sequence of RB (i.e., d∗, d0) are
6= 1, and so are the last two terms;

(iii) there are at least two terms 6= 1 between two terms with value 1;
(iv) the subsequence 2, 2, 1 cannot appear in the sequence except possi-

bly for the first three terms.

It turns out that none of the examples of dimension sequences of length
≤ 7 given in [9] satisfies these conditions. Indeed, the shortest dimension
sequence that could correspond to a left pure semisimple sporadic ring has
length 8. An example is (2, 2, 1, 5, 2, 1, 3, 2). Likewise, we look for other nec-
essary conditions on some of the terms of a dimension sequence of a left
pure semisimple sporadic ring RB.

We may further restrict the dimension sequences of left pure semisimple
sporadic rings of the form RB =

[
F 0
B G

]
upon substitution of the endo-

morphism ring of a tilting module Mα ⊕ Mα+1 for the given ring RB. If
we choose α = λ + k for some infinite limit ordinal λ and k = k(λ), and
W = Mα⊕Mα+1, then EndR(W ) is again a left pure semisimple [13, Propo-
sition 3.4] sporadic ring such that d = d∗ = 2 and k(0) = 0. Therefore its
dimension sequence, in addition to the properties stated above, must be of
the form 2, 2, 1, l, . . . , 2, where l ≥ 5. This is because Uω is not the prepro-
jective component by [15, Proposition 5.3], hence the modules Mω,Mω+1

(with respective d-vectors (1, 1) and (l − 3, l − 2)) cannot be projective, so
that l − 3 ≥ 2.

Let R = RB be as above. Let λ be a limit ordinal and Uλ be one of
the AR-components of R-ind which is not the preprojective component. We
set k = k(λ) and simplify the notation by writing (th, sh) for the d-vector
of Mλ+h when we refer only to elements in that component. We use now
the ordering of pairs (t, s) given in the proof of [15, Proposition 5.3], i.e.,
(t, s) < (t′, s′) when (t, s) 6= (t′, s′) and t ≤ t′, s ≤ s′. Then we say that
the AR-component Uλ is growing when 2(tk, sk) < (tk+1, sk+1); and Uλ is
supersporadic when k = 0. Observe that if (tr, sr) < (tr+1, sr+1) for some
r ≥ 0, then (tr+1, sr+1) < (tr+2, sr+2), because dr ≥ 2. Note also that when
Uλ is not supersporadic and (tk−1, sk−1) < (tk, sk), then Uλ is growing. This
is clear from the equations for pn, qn given before Lemma 3.2 in [15] and the
fact that dλ+k−1 > 2.
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Proposition 2.7. Let RB =
[
F 0
B G

]
be a left pure semisimple sporadic

ring with only finitely many AR-components. Then there exists a non-zero
limit ordinal λ such that either r(λ) = 1 or else Uλ is supersporadic with
r(λ) = 2.

Proof. Suppose to the contrary that r(λ) > 1 for all limit ordinals λ,
and that r(λ) > 2 for all supersporadic components Uλ. As shown in the
preceding comments, we may also assume that the dimension sequence for
the ring RB is of the form 2, 2, 1, l, . . . , 2 with l ≥ 5 (this does not affect our
hypotheses since r(ω) ≥ 3 with this choice). We are going to check that each
component Uλ which is not the preinjective or the preprojective component
is a growing component.

By the choice of the dimension sequence, the d-vectors of Mω,Mω+1 are,
respectively, (1, 1) and (u, u+ 1) with u = l−3 ≥ 2. Then if Uω is superspo-
radic, we have k(ω) = 0 and Uω is growing because 2(tω, sω) < (tω+1, sω+1).
If Uω is not supersporadic, then the inequality (tω, sω) < (tω+1, sω+1) and
the comments just before this proposition show that, again, Uω is a growing
component.

We show next that for λ ≥ ω a limit ordinal such that Uλ is not the
preprojective component, if Uλ is a growing component and µ = λ + ω,
then Uµ is growing. If Uµ is not supersporadic, then it is enough to show,
as in the case of Uω, that (tµ, sµ) < (tµ+1, sµ+1). Now, let k = k(λ) so
that (tµ, sµ) = (tλ+k+1 − tλ+k, sλ+k+1 − sλ+k). Let r = r(µ) and thus
(tµ+1, sµ+1) = (rtλ+k+1−(r+1)tλ+k, rsλ+k+1−(r+1)sλ+k). Then tµ+1−tµ =
(r − 1)tλ+k+1 − rtλ+k. But tλ+k+1 ≥ tλ+k and r > 1, and it follows that
tµ+1 − tµ ≥ 0, and similarly for the s-value, which proves our claim in this
case.

Suppose now that Uµ is supersporadic. To show that it is growing, we
need to prove that 2(tµ, sµ) < (tµ+1, sµ+1). By computing as above we get

tµ+1 − 2tµ = (r − 2)tλ+k+1 − (r − 1)tλ+k.

Now since r > 2, again tµ+1−2tµ ≥ 0, and similarly for s, which shows that
Uµ is a growing component in this case, too.

If Uρ is the preprojective component, then we deduce as above that
(tρ, sρ) < (tρ+1, sρ+1); but then (tρ+m, sρ+m) < (tρ+m+1, sρ+m+1) for any
possible finite m ≥ 0, which gives a contradiction because the d-vector of
the simple projective module is (0, 1).

We know from [15, Proposition 5.3] that there is no left pure semi-
simple sporadic ring RB such that RB-ind has only two AR-components.
We may now deduce which are the potential sporadic rings RB with three
AR-components.
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Corollary 2.8. If RB =
[
F 0
B G

]
is a left pure semisimple sporadic ring

with exactly three AR-components, then r(ω · 2) = 1.

Proof. The proof of Proposition 2.7 shows that the component Uω is
growing and that if µ = ω · 2 and r(µ) ≥ 2, then (tµ, sµ) < (tµ+1, sµ+1).
But Uµ is the preprojective component, and this is a contradiction as in the
proof of Proposition 2.7.

This allows us to conclude that, upon substitution of the endomorphism
ring of a tilting module for RB, the dimension sequence determined by
any of these rings with three AR-components is necessarily of the form
(2, 2, 1, 5, . . . , 2, 1, 3, . . . , 2). In particular this holds for the dimension se-
quence (2, 2, 1, 5, 2, 1, 3, 2) mentioned above. But this is not the only case,
because the sequence (2, 2, 1, 5, 3, 4, 2, 1, 3, 2, 3, 3, 2) is another example of
this type.

3. Acceptable bimodules. Throughout this section, G,F will be di-
vision rings, and B a G-F -bimodule with left G-dimension 2. Then the ring
RB =

[
F 0
B G

]
is left artinian and hereditary. In this section we are interested

in conditions on B implying that RB is a sporadic left pure semisimple ring.

Lemma 3.1. For G,F,B and RB as above, the following three conditions
are equivalent:

(i) There is a non-zero b ∈ B such that every element of B is of the
form gbf for some g ∈ G and f ∈ F .

(ii) All the left RB-modules which are indecomposable and have d-vector
(1, 1) are isomorphic.

(iii) For each non-zero b ∈ B, every element of B is of the form gbf , for
some elements g ∈ G and f ∈ F .

Proof. (iii)⇒(i) is obvious, and (i)⇒(iii) is clear because if (i) holds for
a certain b, then given b1, b2 ∈ B we have bi = gibfi, and hence b2 =
(g2g

−1
1 )b1(f−1

1 f2).
Let us assume (i), and choose a left G-basis {b1, b2} of B where b2 satisfies

the condition in (i). Let α : B ∼= B ⊗F F → G be the G-linear map given
by α(b1) = 1 and α(b2) = 0. This defines a left RB-module M with d-vector
(1, 1). It is indecomposable, because the only decomposable modules with
d-vector (1, 1) are the direct sum of two simple modules, and the associated
G-linear map is then zero.

Let L be any indecomposable left RB-module with d-vector (1, 1). Thus,
L is given by a non-zero map β : B ⊗ F → G and Ker(β) is Gb for some
b ∈ B. Therefore Ker(β) = Gb2f for some f ∈ F . Consider the left linear
map h1 : F → F which sends 1 to f . This induces a left G-linear map
h : B ⊗F F → B ⊗ F such that h(b2) ∈ Gb = Ker(β). Since Gb2 = Ker(α),
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we obtain a commutative diagram of left G-vector spaces and linear maps

B ⊗F F
α→ G

↓ ↓
B ⊗F F

β→ G

which gives an isomorphism M ∼= L. This proves (ii).

Suppose now that (ii) holds, choose any b2 ∈ B, fix a G-basis {b1, b2}
of B, and construct the module M through the linear map α as above.
For any b 6= 0 ∈ B we form the indecomposable left RB-module L with
d-vector (1, 1) constructed as above from the map β : B ⊗F F → G with
Ker(β) = Gb. By (ii), there is an isomorphism M ∼= L, so we have an
F -linear map h1 : F → F such that (1 ⊗ h1)(b2) ∈ Gb. But then b2f ∈ Gb
for some non-zero f ∈ F , and b = gb2f for some g ∈ G, as we wanted to
show.

When the conditions of Lemma 3.1 are satisfied and B = {b1, b2} is a
G-basis of B, the map α : B⊗F → G given by α(b1) = 1 and α(b2) = 0 de-
fines the left R-module M , which is uniquely determined by the bimodule B,
up to isomorphism. In spite of this uniqueness, we should keep in mind that
the concrete module M does depend on the basis B, and we shall sometimes
write M(B) when we need to emphasize this fact. We will consider now cer-
tain relations which, in principle, are dependent on the choice of the G-basis
of B.

Given the G-basis B = {b1, b2} of B, we associate to any f ∈ F the 2×2

G-matrix (g(f)ji ) such that bif =
∑2

j=1 g(f)ji bj . This association is a ring
homomorphism F → M2(G) (where M2(G) is the ring of 2 × 2 matrices
over G), as is easily seen. Therefore, F is identified with a division subring
of M2(G).

Using this identification, we may define now the following subring E(B)

of F . An element of F (viewed as a matrix), say (gji ), belongs to E if and
only if g1

2 = 0. It is clear that E(B) is a subring of F . Moreover, it is a
division subring: if 0 6= f ∈ E(B), then b2f = gb2 for some g ∈ G, and
hence g−1b2 = b2f

−1 so that f−1 ∈ E(B). Note also that the mapping
E(B) → G which assigns to the element f ∈ E(B) ⊆ F the element g ∈ G
with the property that b2f = gb2, is again a ring homomorphism. The image
of this homomorphism is a division subring of G, which will be denoted as
G0(B). We observe next that, even though the construction of E(B) and
its embedding into F depends on the choice of G-basis of B, the dimension
of F as a left E(B)-vector space is an invariant.

Lemma 3.2. Let G,F,B,RB be as in Lemma 3.1, and suppose that the
equivalent conditions of Lemma 3.1 hold. Choose a G-basis B= {b1, b2} of B,
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and consider the left RB-module M(B) = M and the subring E(B) of F as
above. Set R := RB, and let E0 be the simple injective left R-module. Then:

(a) The ring E(B) is isomorphic to the endomorphism ring EndR(M),
and F and HomR(M,E0) are semilinearly isomorphic with respect
to that isomorphism.

(b) The isomorphism class of E(B) and the left E(B)-structure of F do
not depend on the choice of the G-basis B of B.

(c) The dimension of F as a left E(B)-vector space is invariant under
change of the G-basis of B.

Proof. (a) For any h ∈ EndR(M), let h1 : F → F be the corresponding
left linear map and let h1(1) = f ∈ F . Since 1 ⊗ h must take b2 ⊗ 1 to an
element in Ker(α) = G(b2 ⊗ 1), we see that b2f = gb2 for some element
g ∈ G. Therefore f ∈ E(B). Conversely, each f ∈ E(B) defines a G-linear
map B ⊗F F → B ⊗F F such that the image of b2 ⊗ 1 belongs to Ker(α),
and hence is a module homomorphism. So, the association h 7→ h1(1) is a
ring isomorphism EndR(M)→ E(B).

Now, the elements of HomR(M,E0) are uniquely determined by the cor-
responding left linear map F → F , hence there is a group isomorphism
HomR(M,E0) ∼= F . It is clear that this isomorphism is semilinear with
respect to the above isomorphism EndR(M) ∼= E(B).

Since the isomorphism class of M is independent of B by Lemma 3.1,
(b) is an immediate consequence of (a), and (c) is a consequence of (b).

In view of Lemma 3.2, we can write E instead of E(B) when there is no
risk of confusion. Also, the independence from the choice of basis justifies
the next definition.

Definition 3.3. Let G,F be division rings and B be a G-F -bimodule
with left dimension 2. We say that B is left pre-acceptable in case the con-
ditions of Lemma 3.1 hold and the left dimension of F over the subring E
described above is finite.

When B is left pre-acceptable, then l.dim(EF ) > 1, because otherwise
we would have b2F ⊆ Gb2, and hence every element of B would belong
to Gb2, which contradicts the assumption on the left dimension of B. Thus
we will denote the left dimension of F over E by τ + 1 with τ ≥ 1.

The number τ = τ(B) = l.dim(EF )− 1 is called the characteristic value
of the left pre-acceptable bimodule B.

For the rest of this section, we assume that B is left pre-acceptable, and
we make some constructions which depend on the choice of the G-basis B
of B.

Lemma 3.4. Let B be a left pre-acceptable G-F -bimodule, choose a
G-basis B of B, and consider the left R-module M = M(B) and the ring
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E = E(B) constructed as above, so that l.dim(EF ) = τ + 1. Let e0, . . . , eτ
be the canonical left basis of F τ+1, and choose a basis {f0, . . . , fτ} of EF .
Let E0 be the simple injective left R-module and h : M τ+1 → E0 the homo-
morphism defined by the F -linear map h1 : F τ+1 → F where h1(ei) = fi for
i = 0, . . . , τ . Then the isomorphism class of Ker(h) is independent of the
chosen E-basis of F .

Proof. Let h, g : M τ+1 → E0 be homomorphisms with associated
F -linear maps h1, g1 : F τ+1 → F with h1(ei) = fi and g1(ei) = f ′i such
that both f0, . . . , fτ and f ′0, . . . , f

′
τ are left E-bases of F . We will show that

there is an automorphism w of M τ+1 such that wg = h. This entails imme-
diately that Ker(h) ∼= Ker(g), as stated.

For i= 0, . . . , τ , let fi =
∑τ

j=0 aijf
′
j for aij ∈E. Define w1 :F τ+1→F τ+1

to be the F -linear map satisfying w1(ei) =
∑τ

j=0 aijej , so that w1g1 = h1.
The fact that the elements x ∈ E satisfy the condition b2x ∈ Gb2 implies
easily that w1 extends to an R-homomorphism w : M τ+1 → M τ+1. More-
over, since {fi | i = 0, . . . , τ} and {f ′i | i = 0, . . . , τ} are bases, w1 and w are
isomorphisms and wg = h.

We now introduce another left RB-module N(B), which depends on the

G-basis B of B. Recall the notation g(f)ji for elements f ∈ F introduced
before Lemma 3.2.

Lemma 3.5. Let G,F,B,RB be as in Lemma 3.1, and suppose that B is
left pre-acceptable. Choose a G-basis B = {b1, b2} of B, and consider the ring
E = E(B) as in Lemma 3.2. Let BE = {1 = f0, . . . , fτ} be a basis of EF .
Suppose {u1, . . . , uτ} is the canonical basis of F τ as a left F -vector space.
Consider the set K of the elements of B⊗F F τ of the form

∑τ
j=1 gj(b2⊗uj),

where g1, . . . , gτ are elements of G such that
∑τ

j=1 gjg(fj)
1
2 = 0. Then:

(a) K is a left G-subspace of B ⊗F F τ with dimension τ − 1.
(b) Let N(B) be the left RB-module determined by the cokernel jc of

the inclusion map j : K → B ⊗F F τ . Then the isomorphism class
of N(B) is invariant under changing the elements f1, . . . , fτ of the
basis BE.

Proof. (a) It is clear that K is indeed a left G-subspace of B ⊗F F τ .
Also, the vectors b2 ⊗ uj generate a subspace of left dimension τ , and the
elements of K form a hyperplane of this subspace, and hence the dimension
of K is τ − 1.

(b) Let E0 be the simple injective left RB-module determined by the zero
map B ⊗F F → 0. From the basis BE and the canonical basis {e0, . . . , eτ}
of F τ+1 (as a left F -vector space) we may construct the F -linear map
h1 : F τ+1 → F with h1(ei) = fi as in Lemma 3.4, and this gives an RB-
homomorphism h : M τ+1 → E0. We are going to show that Ker(h) ∼= N(B).
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It will then follow from Lemma 3.4 that the isomorphism class of N(B) does
not change by changing the basis BE .

With this aim, we define the G-linear injective map ϕ : B ⊗F F τ →
B ⊗F F τ+1 by setting ϕ(b ⊗ uj) = b ⊗ (fje0 − ej) for j = 1, . . . , τ and any
b ∈ B. This is indeed injective because the vectors fje0 − ej are linearly
independent in F τ+1. Moreover, these vectors clearly belong to the kernel
of h1, by definition. Therefore, Im(ϕ) = Ker(1⊗ h1).

We next observe that ϕ defines an RB-monomorphism N(B) → M τ+1,
by showing that there is a commutative square of left G-linear maps

B ⊗F F τ
jc−→ Gτ+1

ϕ↓ ↓

B ⊗F F τ+1 ατ+1

−−−→ Gτ+1

such that the right-hand arrow is also injective. Since K = Ker(jc), it will
be enough to show that ϕ(K) = Ker(ατ+1) ∩ Im(ϕ).

By the definition of α (see the definition of M = M(B) after Lemma
3.1), Ker(ατ+1) is generated by the vectors b2⊗ei for i = 0, . . . , τ . Now, any
element of Im(ϕ) is

ϕ
( τ∑
j=1

cj(b1 ⊗ uj) +
τ∑
j=1

dj(b2 ⊗ uj)
)

=

τ∑
j=1

cj(b1 ⊗ (fje0 − ej)) +

τ∑
j=1

dj(b2 ⊗ (fje0 − ej)).

A necessary condition for this element to belong to Ker(ατ+1) is that each
cj = 0 (because of the summands of the form cj(b1⊗ ej)). Thus the element
may be written as
τ∑
j=1

dj(b2fj ⊗ e0)−
τ∑
j=1

dj(b2 ⊗ ej)

=
( τ∑
j=1

djg(fj)
1
2

)
(b1 ⊗ e0) +

( τ∑
j=1

djg(fj)
2
2

)
(b2 ⊗ e0)−

τ∑
j=1

dj(b2 ⊗ ej).

So, finally, the necessary and sufficient condition for this element to belong
to Ker(ατ+1) is that the coefficient

∑τ
j=1 djg(fj)

1
2 be zero. That is, the

condition is that the element belongs to ϕ(K), as was to be seen.

Lemma 3.6. Let G,F,B,RB be as in Lemma 3.1. If B is left pre-accept-
able and M,N(B) are as above, then HomRB (M,N(B)) = 0.

Proof. We keep the notation of the preceding proof. Suppose m is in
HomRB (M,N(B)) and m1 : F → F τ is the corresponding F -linear map.
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Let m1(1) =
∑r

j=1 xjuj 6= 0 with each xj in F . Since 1 ⊗ m1 defines an
RB-homomorphism, (1⊗m1)(b2 ⊗ 1) ∈ K. Thus

τ∑
j=1

b2xj ⊗ uj =
τ∑
j=1

g(xj)
1
2b1 ⊗ uj +

τ∑
j=1

g(xj)
2
2b2 ⊗ uj ∈ K.

This entails that all g(xj)
1
2 = 0, hence xj ∈ E = E(B). Moreover, we have∑τ

j=1 g(xj)
2
2g(fj)

1
2 = 0. But this means that

∑τ
j=1 g(xjfj)

1
2 = g(

∑τ
j=1 xjfj)

1
2

= 0, and it follows that
∑τ

j=1 xjfj ∈ E. Thus
∑τ

j=1 xjfj = x0 ∈ E and

−x0 +

τ∑
j=1

xjfj = 0,

and thus all xj = 0 because 1, f1, . . . , fτ is an E-basis of F . This shows that
m1(1) = 0 and m = 0.

We will need a property of the subring G0 = G0(B) ⊆ G which was
introduced in the paragraph before Lemma 3.2. Recall that g ∈ G0 if and
only if there exists f ∈ E(B) such that g(f)2

2 = g.

Lemma 3.7. Let B be a left pre-acceptable G-F -bimodule with G-basis
B = {b1, b2} and τ + 1 = l.dim(EF ), with E = E(B). Assume that for each
g ∈ G there exists f ∈ F such that g(f)1

2 = g. Then the left dimension of G
over G0 = G0(B) equals τ .

Proof. Given g ∈G, let f ∈ F with g(f)1
2 = g. Choose {f0 = 1, f1, . . . , fτ}

as E-basis of F . We have

f = x0 +

τ∑
j=1

xjfj

with x0, . . . , xτ ∈ E. By using the representation of the elements of F as
G-matrices, we obtain

g(f)1
2 =

τ∑
j=1

g(xj)
2
2g(fj)

1
2.

Since g(xj)
2
2 ∈ G0, the elements g(fj)

1
2 form a generating system for G as a

left space over G0.
It remains to show that these are linearly independent vectors. Assume

we had elements x1, . . . , xτ ∈ E such that
∑τ

j=1 g(xj)
2
2g(fj)

1
2 = 0. Then

g(
∑τ

j=1 xjfj)
1
2 =

∑τ
j=1 g(xjfj)

1
2 = 0, and hence

∑τ
j=1 xjfj = x0 ∈ E.

Therefore

−x0f0 +

τ∑
j=1

xjfj = 0

so that each xj = 0, because the elements f0, . . . , fτ form an E-basis of F .
This shows that the vectors are left G0-linearly independent.
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The following lemma is a key result of this section.

Lemma 3.8. Let G,F,B,RB be as in Lemma 3.1. Assume that B is
left pre-acceptable, set R := RB, choose a G-basis B = {b1, b2} of B, and
construct the modules M = M(B), N = N(B) as above. Then the following
conditions are equivalent:

(i) B = b2F +Gb2.
(ii) For each g ∈ G, there is f ∈ F such that g(f)1

2 = g.
(iii) Ext1

R(M,N) = 0.

Proof. We start by showing (i)⇔(ii). First we assume (i). If g ∈ G, then
we know that gb1 = b2f + g′b2 for elements f ∈ F , g′ ∈ G, and hence
b2f = gb1−g′b2 so that g = g(f)1

2. Conversely, asume (ii). For any g ∈ G we
have f ∈ F , g′ ∈ G with gb1+g′b2 = b2f by hypothesis. Thus gb1 = b2f−g′b2
and Gb1 ⊆ b2F +Gb2. Since B = Gb1 +Gb2, we immediately obtain (i).

In order to prove the equivalence with (iii) we establish three consecutive
claims. As in Definition 3.3, τ +1 is the left dimension of F over the subring
E = E(B); and following the notation in Lemma 3.5, we fix a left E-basis
{1 = f0, . . . , fτ} of F and define N := N(B) determined by the G-linear
surjective map jc : B ⊗F F τ → Gτ+1, with u1, . . . , uτ being the canonical
left basis of F τ and with K (see Lemma 3.5) being the kernel of the map jc

defining N . In these claims we also assume that X is a left R-module which
is defined by a surjective G-linear map γ : B ⊗F F τ+1 → Gτ+2. Finally, we
admit the existence of an injective F -linear map g1 : F τ → F τ+1 and write
g1(uj) = vj for j = 1, . . . , τ .

Claim 1. If g : N → X is a monomorphism of left R-modules such that
1 ⊗ g1 : B ⊗F F τ → B ⊗F F τ+1 is the associated injective G-linear map,
then there exist v0 ∈ F τ+1, w0 ∈ B ⊗ F τ , z ∈ B ⊗F F τ+1 and a, c ∈ G
such that: (1) {v0, . . . , vτ} is a left basis of F τ+1; (2) a, c are not both zero;
(3) z = (1⊗g1)(w0)+a(b1⊗v0)+c(b2⊗v0); and (4) Ker(γ) = (1⊗g1)(K)⊕Gz.
Conversely, if there exist elements w0, z, a, c as above satisfying (1)–(4), then
1⊗ g1 induces a monomorphism g : N → X.

Proof. First, the injectivity of g1 implies that v1, . . . , vτ are linearly in-
dependent as vectors of the left F -module F τ+1. Hence, we may choose
v0 ∈ F τ+1 such that (1) holds. Then we know that 1 ⊗ g1 induces a left
R-monomorphism g if and only if (1⊗ g1)−1(Ker(γ)) = K. By Lemma 3.5,
K has G-dimension τ − 1, while Ker(γ) has dimension 2(τ + 1) − (τ + 2)
= τ . Thus if 1 ⊗ g1 induces a R-monomorphism, then Ker(γ) is the di-
rect sum of (1 ⊗ g1)(K) plus a one-dimensional subspace Gz such that
z /∈ (1⊗ g1)(B ⊗F F τ ). Since Im(1 ⊗ g1) = B ⊗ 〈v1, . . . , vτ 〉, this shows
that z has the form given in (3) and (2). The above shows also (4).
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Conversely, if the four conditions hold for elements v0, w0, a, c, then ob-
viously (1⊗ g1)−1(Ker(γ)) = K and 1⊗ g1 induces a left R-monomorphism.
This finishes the proof of Claim 1.

Claim 2. If X and g1 are as above, then 1⊗g1 induces a monomorphism
N → X if and only if there exist v0 ∈ F τ+1 and w0 ∈ B ⊗ F τ such that:
(1) {v0, . . . , vτ} is a left F -basis of F τ+1; (2) if we set z = (1 ⊗ g1)(w0) +
b2 ⊗ v0, then Ker(γ) = (1⊗ g1)(K)⊕Gz.

Proof. The sufficiency of the condition is obvious, since we obtain the
properties (1)–(4) of Claim 1 by taking a = 0 and c = 1. To show the
necessity, suppose that (1)–(4) of Claim 1 are fulfilled with certain elements
v0, w

′
0, a, c. We observe that the d-vector of X (see [15]) is (τ+1, τ+2) by the

construction of X. Since g : N → X is a monomorphism and the d-vector of
N is (τ, τ + 1), the cokernel C = Coker(g) has d-vector equal to (1, 1). If C
is not indecomposable, then one of its summands would have d-vector (0, 1),
and hence it would be simple projective. But in that case the short exact
sequence 0→ N → X → C → 0 would be split and X would have a simple
projective direct summand. By the election of X, this does not happen, so
that C has to be indecomposable. Since B is left pre-acceptable, C ∼= M by
Lemma 3.1. Therefore, the cokernel p : B ⊗ F τ+1 → B ⊗ F of 1 ⊗ g1 must
satisfy p(Ker(γ)) ⊆ Ker(α) = G(b2 ⊗ 1).

But z′ = (1⊗ g1)(w′0) + a(b1⊗ v0) + c(b2⊗ v0) belongs to Ker(γ) by (iv),
and hence p(z′) ∈ G(b2 ⊗ 1). Since p((1 ⊗ g1)(w′0)) = 0 and p(b2 ⊗ v0) ∈
G(b2 ⊗ 1), it follows that a(p(b1 ⊗ v0)) ∈ G(b2 ⊗ 1). But the image of v0 by
the cokernel of g1 is not zero, because v0 /∈ Im(g1). This implies that a = 0,
and z′ = (1⊗ g1)(w′0) + c(b2 ⊗ v0) with c 6= 0. By taking z = c−1z′, we have
z = (1 ⊗ g1)(w0) + b2 ⊗ v0 for some w0 ∈ B ⊗F F τ and Gz = Gz′, so that
(1) and (2) hold. This finishes the proof of Claim 2.

Claim 3. Given the G-basis B = {b1, b2} of B, the module M = M(B)
and the subring E = E(B) of F , choose the E(B)-basis {1, f1, . . . , fτ} of F
and construct N = N(B) (see Lemma 3.5). Then Ext1

R(M,N) = 0 if and

only if for every w0 =
∑2

i=1

∑τ
j=1w

j
i bi ⊗ uj ∈ B ⊗F F τ with the wji ∈ G,

there exist elements dj ∈ F and cj ∈ G (for j = 1, . . . , τ) so that:

(3.1) (a)

τ∑
j=1

cjg(fj)
1
2 = 0, (b) g(dj)

1
2 = wj1, (c) g(dj)

2
2 = wj2 + cj .

Proof. Suppose first Ext1
R(M,N) = 0, and consider the element w0 =∑2

i=1

∑τ
j=1w

j
i bi ⊗ uj . We take the canonical basis {v0, . . . , vτ} of F τ+1 as

a left F -vector space, define g1 : F τ → F τ+1 by setting g1(ui) = vi for
i = 1, . . . , τ , write z = (1⊗ g1)(w0) + b2 ⊗ v0, and take γ as the cokernel of
the inclusion of (1⊗ g1)(K)⊕Gz into B⊗F τ+1. By Claim 1, 1⊗ g1 induces
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a monomorphism g : M → X, where X is the left R-module defined by the
linear map γ. Since γ is surjective, X has no simple projective direct sum-
mand, and, as seen in the proof of Claim 2, there is a short exact sequence

0→ N
g→ X

gc→M → 0. By hypothesis, gc has to be a split epimorphism of
left R-modules. In particular, 1⊗ gc1 : B ⊗F F τ+1 → B ⊗F F is a surjection
which has a right inverse 1 ⊗ h1 : B ⊗F F → B ⊗ F τ+1 (here h1 is a right
inverse to g1) that induces a homomorphism h : M → X of left R-modules.

Note now that gc1(vj) = 0 for j = 1, . . . , τ , and hence gc1(v0) = y 6= 0.
Since we may take v′0 = y−1v0 without affecting the definition of g1 and the
above short exact sequence, we may assume that gc1(v0) = 1. Thus h1(1) =
v0 +

∑τ
j=1 djvj for d1, . . . , dτ ∈ F . Since 1 ⊗ h1 induces a homomorphism,

we have the commutative diagram

G(b2 ⊗ 1) → B ⊗ F
↓ ↓1⊗h1

Ker(γ) → B ⊗ F τ+1

The left-hand map carries b2 ⊗ 1 to

x = (1⊗ h1)(b2 ⊗ 1) = b2 ⊗
(
v0 +

τ∑
j=1

djvj

)
= b2 ⊗ v0 +

τ∑
j=1

b2dj ⊗ vj

and this element x must belong to Ker(γ). Set w = (1 ⊗ g1)(w0) so that
z = w + b2 ⊗ v0. Then by the construction of Ker(γ), x must be the sum
of g′z for some g′ ∈ G, and an element in (1 ⊗ g1)(K). By Lemma 3.5 and
the definition of g1, this second summand will be

τ∑
j=1

cj(b2 ⊗ vj)

where the coefficients c1, . . . , cτ ∈ G are subject to the condition
∑
cjg(fj)

1
2

= 0. Therefore

x =
2∑
i=1

τ∑
j=1

g′wji bi ⊗ vj +

τ∑
j=1

cj(b2 ⊗ vj) + g′b2 ⊗ v0.

By equating the coefficients we conclude that g′ = 1, and consequently
τ∑
j=1

g(dj)
1
2b1 ⊗ vj +

τ∑
j=1

g(dj)
2
2b2 ⊗ vj = w +

τ∑
j=1

cj(b2 ⊗ vj).

This proves that there exist elements dj ∈ F and cj ∈ G (these last elements
giving a row which is left orthogonal to (g(fj)

1
2) so that (a) of (3.1) holds)

satisfying
g(dj)

1
2 = wj1 and g(dj)

2
2 = wj2 + cj .

This shows that these elements satisfy (b) and (c) of equation (3.1).
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To complete the proof of the claim, we must show the converse. Accord-
ingly, we consider an extension 0 → N

g→ X → M → 0 and prove that,
under the hypotheses (3.1), it splits. First, the d-vector of X is (τ +1, τ +2)
and X has no simple projective direct summand because M has no simple
projective direct summand. We may assume that the injective map g1 :
F τ → F τ+1 corresponding to the monomorphism g is defined as in the
beginning of this proof, and hence by Claim 2, we know that there exists
w0 ∈ B⊗F τ such that conditions (1) and (2) of that claim are fulfilled. Let

w0 =
∑
wji bi ⊗ uj and w = (1 ⊗ g1)(w0). By our assumption, there exist

dj ∈ F and u =
∑τ

j=1 cjb2⊗uj ∈ K ⊆ B⊗FF τ such that the conditions (3.1)

are satisfied. These conditions show that, if we set v =
∑τ

j=1 djvj ∈ F τ+1,
then

b2 ⊗ (v0 + v) = b2 ⊗ v0 + w + (1⊗ g1)(u).

Define the F -linear map m1 : F → F τ+1 that carries 1 to v0 + v. The
G-linear map 1⊗m1 : B⊗FF → B⊗FF τ+1 carries Ker(α) to Ker(γ) by (2) of
Claim 2. Therefore 1 ⊗m1 induces a module homomorphism m : M → X;

moreover, the composed map B ⊗F F
1⊗m1−−−→ B ⊗F F τ+1 1⊗gc1−−−→ B ⊗F F

is non-zero, since the image of v + v0 by gc1 is 0 + gc1(v0) 6= 0, because
v0 /∈ Im(g1). Thus the composed homomorphism M → X →M is a non-zero
homomorphism, hence an automorphism of M , because the endomorphism
ring of M is a division ring (Lemma 3.2). This proves that the given short
exact sequence splits, and finishes the proof of Claim 3.

To end the proof of Lemma 3.8, we show the equivalence of (ii) and (iii).

(iii)⇒(ii). Suppose that Ext1
R(M,N) = 0 and take any g ∈ G. Then we

may choose w0 =
∑
wji bi ⊗ uj so that w1

1 = g. By Claim 3, there exists
d1 ∈ F such that g(d1)1

2 = w1
1 = g. Thus (ii) holds.

(ii)⇒(iii). We show that, given w0 =
∑
wji bi ⊗ uj , there exist elements

d1, . . . , dτ , c1, . . . , cτ satisfying the equations (a)–(c) of (3.1). From Claim 3,

(iii) will follow. By hypothesis, there exist dj ∈ F such that g(dj)
1
2 = wj1 for

each j = 1, . . . , τ , and this proves (b).

We note that these elements dj are not unique, because if d satisfies the
condition g(d)1

2 = g ∈ G, then so does d+ u whenever u ∈ E.

Recall that G0 = G0(B) was defined before Lemma 3.2 and that the
left dimension of G over G0 is, under our current hypothesis, equal to τ by
Lemma 3.7. Consider two left G0-subspaces of Gτ . First, Gτ0 is a G0-subspace
of Gτ with dimension τ . Then consider the subset S of Gτ consisting of
elements (cj) such that

∑τ
j=1 cjg(fj)

1
2 = 0. Since this is a left G-subspace

which is, as such, a hyperplane (given by a linear equation), its left dimension
over G0 will be (τ −1)τ . Finally, the left dimension of Gτ itself is τ2. On the
other hand, the intersection of the subspaces Gτ0 and S is zero, because the
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elements g(fj)
1
2 form a G0-basis of G (see the proof of Lemma 3.7). Since

τ2 = (τ − 1)τ + τ , Gτ is the direct sum of Gτ0 and S.
To complete our proof, we need to show that there exist c1, . . . , cτ ∈ G

such that (c1, . . . , cτ ) ∈ S while cj = g(dj)
2
2 − wj2 for each j = 1, . . . , τ .

Let ŵ = (wj2) and y = (g(dj)
2
2). As shown above, dj may be replaced by

d′j = dj + uj with uj ∈ E, and condition (b) still holds. This substitution

would replace g(dj)
2
2 with g(dj)

2
2 + tj for some tj ∈ G0, and would hence

replace y with y+ t for some t ∈ Gτ0 . For the given ŵ, y ∈ Gτ , we know that
y − ŵ ∈ S +Gτ0 , and hence x = (y + t)− ŵ ∈ S for some t ∈ Gτ0 . If we take
(c1, . . . , cτ ) = x and (d′1, . . . , d

′
τ ), then (a)–(c) of (3.1) are fulfilled, so that

(iii) holds by Claim 3.

Let G,F,B,RB be as in Lemma 3.1, and assume that B is left pre-
acceptable. Choose a G-basis B = {b1, b2} of B. We say that the basis B is
acceptable if the equivalent conditions of Lemma 3.8 hold.

Proposition 3.9. Let B be a left pre-acceptable bimodule with an ac-
ceptable G-basis B = {b1, b2}. If M,N = N(B) are as in Lemma 3.8, then
M ⊕N is a tilting module.

Proof. Set R := RB and let E0 be the simple injective left R-module.
By Lemmas 3.6 and 3.8, HomR(M,N) = 0 and Ext1

R(M,N) = 0. Moreover,
by Lemma 3.5 we have a short exact sequence

0→ N →M τ+1 → E0 → 0,

so for any moduleXwe get an exact sequenceExt1
R(X,N)→Ext1

R(X,M)τ+1

→ 0. Thus, if Ext1
R(X,N) = 0, then we may infer that Ext1

R(X,M) = 0.
This implies immediately that Ext1

R(M,M) = 0.
Consider now hi : F τ → F as the left F -linear map taking the basis

vector ui to 1 and the other uj to 0. Let K ⊆ B ⊗F F τ as in Lemma 3.5,
so that a basis of K is given by vectors of the form

∑
gjb2 ⊗ uj . Thus

(1⊗ hi)(K) ⊆ G(b2 ⊗ 1), and hence hi induces a homomorphism N → M
which is an epimorphism. Then the family h1, . . . , hτ determines an epi-
morphism ρ : N → M τ . The d-vector of Ker(ρ) is (0, 1), that is, Ker(ρ) is
isomorphic to the simple projective P0. We thus have a short exact sequence

0→ P0 → N →M τ → 0.

Now, if X is any module, we get an exact sequence Ext1
R(M,X)τ →

Ext1
R(N,X)→ 0, and this implies that if Ext1

R(M,X) = 0, then Ext1
R(N,X)

= 0. Since Ext1
R(M,N) = Ext1

R(M,M) = 0, we deduce that Ext1
R(N,N) =

Ext1
R(N,M) = 0, and consequently Ext1

R(M ⊕N,M ⊕N) = 0.
The previous sequence gives a coresolution for P0 by means of modules

in add(M ⊕N). If τ = 1, then N has d-vector (1, 2) and K = 0 (see Lemma
3.5), so that the G-linear map defining N is an isomorphism. Hence N is
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projective and isomorphic to the non-simple projective P1. It follows that
also P1 has a coresolution by modules in add(M ⊕N).

Suppose now that τ > 1 so that N is not projective, and let us use the
notation of Lemma 3.5 for N . We consider the homomorphism µ : N →
M τ−1 given through the F -linear maps h1, . . . , hτ−1 as above. Then µ is an
epimorphism whose kernel is defined by a map λ : B⊗F = B⊗〈uτ 〉 → G2.
Now, Ker(λ) consists of elements g1b1⊗uτ +g2b2⊗uτ whose image in B⊗F τ
lies inside K. But this condition entails that g1 = 0 and (0, 0, . . . , g2) is
left orthogonal to (g(f1)1

2, . . . , g(fτ )1
2), by Lemma 3.5. Hence g2g(fτ )1

2 = 0,
which implies g2 = 0. Therefore λ is an isomorphism, and so Ker(µ) is
isomorphic to the projective module P1. This gives a short exact sequence
0→ P1 → N →M τ−1 → 0, so we have a coresolution for P1 by modules in
add(M ⊕N). One shows that M ⊕N is tilting, by applying the definition
of tilting module (see, for instance, [8]).

Theorem 3.10. Let B be a left pre-acceptable G-F -bimodule. If there
exists an acceptable G-basis of B, then every G-basis B is acceptable, N(B)
is an indecomposable module, and the isomorphism class of N(B) is inde-
pendent of the choice of the G-basis B of B.

Proof. Let B = {b1, b2} be an acceptable G-basis of B, and consider the
moduleN = N(B) constructed in Lemma 3.5. By Proposition 3.9,M⊕N is a
tilting module, and by [27, Theorem 1.5] it is a direct sum of indecomposable
modules belonging to only two isomorphism classes. Now, M cannot be
isomorphic to a direct summand of N by Lemma 3.6, and therefore N has
to be a direct sum of isomorphic indecomposable direct summands. But
having d-vector (τ, τ + 1) with these two values coprime, it cannot be a
direct sum of isomorphic different modules, so it is indecomposable. Since
ϕ : N → M τ+1 is a monomorphism (see the proof of Lemma 3.5), N is
isomorphic to an indecomposable maximal submodule of M τ+1.

Let L be any indecomposable maximal submodule of M τ+1, so that L
will be the kernel of an epimorphism h : M τ+1 → E0, where E0 is the simple
injective left R-module. Let h1 : F τ+1 → F be the F -linear map determined
by the homomorphism h, and consider the elements h1(e0), . . . , h1(eτ ) of F ,
where e0, . . . , eτ is the canonical basis of F τ+1. Recall from Lemma 3.2 that
E = E(B) is isomorphic to EndR(M). We claim that h1(e0), . . . , h1(eτ ) are
left E-linearly independent. Indeed, suppose that they are linearly depen-
dent. Then there is a non-zero homomorphism g : M → M τ+1 such that
gh = 0. Bearing in mind that EndR(M) is a division ring, we deduce that
M τ+1 = X ⊕ Y such that Y ∼= M and h(Y ) = 0. Then Y is a proper direct
summand of Ker(h) = L and L is not indecomposable. This contradiction
proves that h1(e0), . . . , h1(eτ ) are left E-linearly independent elements of F ,
and consequently they form an E-basis of F .
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By Lemma 3.4, we infer that Ker(h) = L ∼= N . Thus, we have shown that,
up to isomorphism, M = M(B) is such that all indecomposable maximal
submodules of M τ+1 are isomorphic. Since the isomorphism class of M does
not depend on the choice of the G-basis of B, this property holds for every
G-basis. Also, the module N(B) does not depend, up to isomorphism, on
the choice of the G-basis B.

Therefore, the isomorphism class of M(B)⊕N(B) is independent of the
choice of G-basis of B, so that ExtR1 (M,N) = 0 for any choice of G-basis
of B. By Lemma 3.8, any G-basis of B is acceptable, as required.

Definition 3.11. Let G,F,B,RB be as in Lemma 3.1, M as in Lemma
3.2 and N as in Lemma 3.5. Then B is called left weakly acceptable if B
admits an acceptable G-basis. The bimodule B is called left acceptable when
B is left weakly acceptable and HomR(N,M) is left finite-dimensional over
EndR(N).

By Theorem 3.10, if the bimodule B is left weakly acceptable, then every
G-basis ofB is acceptable. IfB is left (weakly) acceptable, we say thatM⊕N
is the tilting module determined by B. Recall from [15, Definition 2.4] the
concept of a rigid tilting module.

Lemma 3.12. Assume that B is a left weakly acceptable G-F -bimodule,
and let M ⊕ N be the tilting module determined by B. Then M ⊕ N is a
rigid tilting module if and only if B is left acceptable.

Proof. Note that EndR(N) (as well as EndR(M)) is a division ring as
follows from the proof of [17, Lemma 4.1] (see also [14, Theorem 3.1(g)]).
Moreover, HomR(M,N) = 0 by Lemma 3.6 and HomR(N,M) 6= 0 as shown
in the proof of Lemma 3.5. Since B is left weakly acceptable, M ⊕ N is a
basic tilting module. According to [15, Definition 2.4], it is rigid if and only
if HomR(N,M) is left finite-dimensional.

When B is left acceptable, the endomorphism ring of M ⊕ N is again
of the form (1.1), with the bimodule B′ = HomR(N,M) which is an H-E-
bimodule, where H = EndR(N) and E = E(B) ∼= EndR(M) are division
rings. Though the proper construction of B′ and H depends on the choice
of the basis B of B, we have seen above that their isomorphism classes are
independent of that choice, as well as of the left H-dimension of B′, which
is finite by our hypothesis that B is left acceptable. In this situation, we
say that B′ is the acceptance bimodule of the left acceptable bimodule B.
Moreover, as shown before, the characteristic value τ(B) = l.dim(EF ) − 1
is also independent of the choice of basis.

We have considered in Lemma 3.7 the subring G0(B) of G, and we have
seen that the left dimension of G over this subring is τ when the G-F -
bimodule B is left acceptable (see Lemma 3.8). Hence this dimension is
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invariant under the change of the G-basis B of B. We end this section by
introducing another division subring of G isomorphic to G0(B).

Let the G-basis B = {b1, b2} of B be chosen, and consider the division
subring E = E(B) ⊆ F formed with the elements f ∈ F such that g(f)1

2 = 0,
as constructed before Lemma 3.2. Consider the map E 3 f 7→ g(f)1

1 ∈ G.
This is a ring homomorphism E → G whose image is a division subring of G
isomorphic to E. We shall denote this subring as G1 = G1(B).

Proposition 3.13. Let B be a left acceptable bimodule, choose a G-basis
{b1, b2} of B, and let E,G1, τ be as above. Let B∗ = HomG(B,G) viewed as

an F -G-bimodule, and let d∗ = l.dim(B∗). If d̂ is the left dimension of G
over G1, then

τ + d̂ = (τ + 1)d∗.

In particular, d∗ = 2 if and only if d̂ = τ + 2.

Proof. The F -G-bimodule B∗ = HomG(B,G) has a left F -module struc-
ture coming from the right F -structure of B. There is a canonical isomor-
phism of right G-vector spaces B∗ ∼= G2. On the other hand, we mentioned
after Lemma 3.1 that F is isomorphic to a subring F̂ of M2(G), the ring
of 2 × 2 matrices over G. Then it is easy to see that there is a semilinear
isomorphism FB

∗ ∼= F̂G
2. Thus, l.dim(B∗) is the left dimension of G2 over

the ring of matrices F̂ corresponding to F . Let Ê be the image of E ⊆ F
under the isomorphism F ∼= F̂ . Thus Ê consists of those matrices belonging
to F̂ whose (2, 1) entry is zero.

Let d∗ be the left dimension of B∗ (finite or infinite), and call m the left
dimension of G2 over Ê. Since the left dimension of F over E equals τ + 1,
we have m = (τ + 1)d∗.

Observe that L = G×0 ⊆ G2 is an Ê-subspace of G2. Moreover, the iso-
morphism E ∼= G1 described above results in an isomorphism Ê ∼= G1, given
by the map (xij) 7→ x11. It follows that there is a semilinear isomorphism

ÊL
∼= G1G, and hence the left dimension of L equals d̂.

Let now g1, . . . , gτ be a basis of G viewed as a left space over G0 (see
Lemma 3.7). Then (0, g1), . . . , (0, gτ ) are elements of G2 which are linearly
independent over Ê. Indeed, any dependence relation

∑
(xkij)(0, gk) = 0 gives∑

xk22gk = 0, whence each xk22 ∈ G0 is zero, and this implies that (xkij) = 0.

The Ê-subspace generated by these elements has (as we have essentially just
shown) zero intersection with L, and their direct sum obviously equals G2.

Thus m = τ + d̂, hence τ + d̂ = (τ + 1)d∗ as required.

Remark 3.14. By Proposition 3.13, the left dimension of G over its
subring G1 is independent of the G-basis B of the bimodule B. This is a
consequence also of the following fact, which can be shown in a standard
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way: if E(B) is the subring of F in Lemma 3.2 and E1 is the non-simple in-
decomposable injective left R-module, then G1

∼= E(B), and HomR(M,E1)
is semilinearly isomorphic (with respect to the isomorphism E ∼= G1) to the
left G1-module G. Consequently, l.dim(HomR(M,E1)) = l.dim(G1G).

4. Sporadic bimodules. Recall from [15] that if F and G are divi-
sion rings, then a G-F -bimodule B has the left finite dimension property
when B and all the successive left dual bimodules B∗ = HomG(B,G),
B∗2 = HomF (B∗, F ), . . . are left finite-dimensional.

Definition 4.1. Let F,G be division rings and B a G-F -bimodule that
has the left finite dimension property. We say that B is left strictly sporadic
when l.dim(B∗n) = 2 for each n = 0, 1, . . . . Here, B∗0 = B, B∗1 = B∗ and
B∗n denotes the nth left dual bimodule of B for n > 1.

Theorem 4.2. Let F,G be division rings, and let B be a G-F -bimodule
which is left strictly sporadic and left acceptable. Let R = RB =

[
F 0
B G

]
.

There is a well-ordered sequence

X0, . . . , Xω+1

of elements of R-ind with the following properties:

(i) For α ≤ ω+ 1, let Sα = R-ind \ {Xβ | β < α}. Then Xα is the only
element of Sα satisfying HomR(Xα, Y ) = 0 for all Y ∈ Sα such that
Y � Xα. Moreover, HomR(Y,Xα) 6= 0 for each Y ∈ Sα.

(ii) The rigid tilting module determined by the left acceptable bimodule
B is W = Xω ⊕ Xω+1. If (T ,F) is the torsion theory of R-Mod
defined by W , then a finitely presented indecomposable module Y
belongs to T if and only if Y ∼= Xα for some 0 ≤ α ≤ ω + 1.

(iii) If τ is the characteristic value of the left acceptable bimodule B, set
d′−1 = d∗ = l.dim(B∗) and d′0 = 1, d′1 = τ + 2. Then the sequence

d′−1, d
′
0, d
′
1

is a partial dimension sequence.

Proof. We develop the proof of (i) and (ii) under a slightly weaker hy-
pothesis: we only assume that B is left acceptable and has the left finite
dimension property and RB is not of finite representation type. By Propo-
sition 2.2, there is an infinite sequence of finitely presented indecomposable
left R-modules

X0, X1, . . .

such that each Xk on the list is unique satisfying HomR(Xk, Y ) = 0 for any
finitely presented indecomposable left R-module Y with Y � Xi for i ≤ k
(and moreover HomR(Y,Xk) 6= 0 for such Y ). This means that (i) of this
theorem holds for all α < ω.
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Let us consider now the dimensions d−1 = d∗, d0, d1, . . . (where dk =
l.dim(HomR(Xk+1, Xk)) for k ≥ 0) and construct the corresponding con-
tinued fractions [d∗, d0, . . . , dk] as in [15, Lemma 3.2]. We shall make the
additional assumption that the limit (as k →∞) of the sequence of the con-
vergents [d∗, d0, . . . , dk] equals 1. Note that this condition holds under the
hypothesis of the theorem, because the sequence of fractions [2, 2, 2, . . . , 2]
has limit 1. By [15, Proposition 2.11], the infinite sequence of modules

X0, X1, . . .

consists precisely of all the preinjective finitely presented indecomposable
left R-modules. On the other hand, by [15, Lemmas 3.2 and 3.3], the d-vector
(tk, sk) of each of the preinjective modules Xk satisfies the inequality tk > sk,
because of the assumption that 1 is the limit of the convergents. Also, [15,
Proposition 3.11] shows that the preinjective modules are the only finitely
presented indecomposable left R-modules with a d-vector (t, s) such that
t > s.

Let M ⊕ N be the rigid tilting module determined by B (see Propo-
sition 3.9). Then M ⊕ N defines a torsion theory (T ,F) of R-Mod where
X ∈ T if and only if Ext1

R(M ⊕ N,X) = 0 (see [8]). The endomorphism
ring S of M ⊕ N is left artinian and hereditary [15, Proposition 2.5], and
thus (T ,F) is splitting [3, Lemma 4.5]. We also have a pair of equivalences
H,H ′ from T ,F to the corresponding categories of S-Mod.

We observe that every preinjective module Xk belongs to the class T .
Indeed, by the construction of the sequence, we have HomR(Xk,M⊕N) = 0.
Consider now any short exact sequence 0 → Xk → A → M → 0 for some
left R-module A. Since the d-vector (t, s) of Xk has t > s, the d-vector
(t′, s′) of A has t′ > s′ as well. Therefore, some of the indecomposable direct
summands of A, say A1, has a d-vector (t′′, s′′) such that t′′ > s′′. Thus A1 is
preinjective, and hence HomR(A1,M) = 0. It follows that A1 is isomorphic
to a direct summand of Xk, but this entails that Xk

∼= A1 and the sequence
splits. This shows that Ext1

R(M,Xk) = 0. Finally, we have seen in the proof
of Proposition 3.9 that this implies Ext1

R(M ⊕ N,Xk) = 0, so that Xk is
torsion.

Next we show that if Y is a finitely presented indecomposable torsion
module and Y � N , then Y is M -generated. To see this, suppose that
Y ∈ T . We know that the equivalence H carries the torsion module N to
the simple projective left S-module H(N), while H(M) is the non-simple
projective. Since H(Y ) � H(N), there exists an epimorphism of left S-
modules H(M)k → H(Y ), and the equivalence justifies the existence of
the corresponding non-zero homomorphism f : Mk → Y . If this is not
an epimorphism, then there exists a non-zero epimorphism g : Y → C
such that the composition fg = 0. Since C is torsion and non-zero, H(C)
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is non-zero, and there exists a non-zero homomorphism H(Y ) → H(C)
which annihilates the epimorphism H(M)k → H(Y ), which is impossible.
Consequently, Mk → Y is an epimorphism.

Now we claim that every finitely presented indecomposable non-prein-
jective torsion module Z is either isomorphic to M or to N . If Z � N , there
is an epimorphism Mk → Z, as we have just seen. This gives a short exact
sequence 0 → K → Mk → Z → 0. Let (t, s) be the d-vector of Z, so that
t ≤ s. Let us first assume that t < s. Then K has an indecomposable direct
summand with a d-vector (t′, s′) such that t′ > s′, and this means that
K has a preinjective direct summand. But K is isomorphic to a submodule
of Mk and preinjective modules have no non-zero homomorphisms to M ,
which gives a contradiction.

It remains to consider the case when the d-vector of Z is (t, t) for some
integer t ≥ 1. Observe first that the non-simple indecomposable projective
left R-module has d-vector (1, 2) because 2 = l.dim(B) and hence M is not
projective. According to Lemma 3.5 and [15, Proposition 2.5], the d-vector
of the indecomposable module D(Tr(M)) equals (δτ − 1, δτ + δ − 1), where
τ ≥ 1 and δ is the left dimension of B′ = HomR(N,M), which is left finite-
dimensional by the hypothesis that B is left acceptable. By [15, Proposition
3.9], the d-vector of the left S-module H(Z) is of the form(

t(τ + 1)− tτ, tδτ + tδ − t− tδτ + t
)

= (t, tδ).

Since δ is the left dimension of B′ and S ∼= RB′ , the linear map defining
H(Z) would have to be an isomorphism and then the non-simple projective
left S-module would be isomorphic to a direct summand of H(Z), hence to
H(Z), so that t = 1 and Z ∼= M , because B is left pre-acceptable. This
completes the proof of the claim.

Let Sω be the set of all modules in R-ind which are not preinjective,
and let Y ∈ Sω. By the claim, HomR(M,Y ) = 0 whenever Y � M and
HomR(N,Y ) = 0 whenever Y � M and Y � N . It then follows that in
the set of all modules of R-ind that are not preinjective and not isomorphic
to M , a module N has HomR(N,Y ) = 0 whenever Y � N . Also, if Y
is torsionfree, then Ext1

S(H ′(Y ), H(N)) 6= 0, because H(N) is the simple
projective left S-module and H ′(Y ) is not projective. By [15, Lemma 2.2],
we have HomR(Y,N) 6= 0 and the monomorphism N → M τ+1 of the proof
of Proposition 3.9 shows also that HomR(Y,M) 6= 0. This means that by
taking Xω = M and Xω+1 = N , we may extend the sequence above to a
sequence whose existence is claimed in item (i) of the statement. This proves
(i) and (ii).

Finally, under the hypothesis that B is left strictly sporadic, d′−1 = 2. Let
us consider the d-vectors (t′1, s

′
1) to (t′3, s

′
3) of the sequence of indecomposable

left R-modules X1, Xω, Xω+1. These are, respectively, (2, 1), (1, 1), (τ, τ +1).
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Then one checks directly that the formulas (iii) of Definition 2.5 hold for
these values, and hence the sequence of the d′i is a partial dimension se-
quence.

Lemma 4.3. Let B be a left strictly sporadic and left acceptable bimodule.
Then B∗ is left strictly sporadic and left acceptable, the acceptance bimodules
of B,B∗ are (semilinearly) isomorphic, and if τ is the characteristic value
of B, then τ + 1 is the characteristic value of B∗.

Proof. It is obvious that B∗ is left strictly sporadic. To see that it is left
acceptable, let w1, w2 ∈ B∗. Each of these maps can be viewed in a natural
way as a G-linear map B⊗F F → G. Thus each defines a left RB-module M1,
resp. M2 whose d-vector is (1, 1). Since we may assume that both elements
are non-zero, M1,M2 are indecomposable, and by Lemma 3.1 there is an
isomorphism M1 → M2 because B is left pre-acceptable. The isomorphism
yields the commutative diagram

B ⊗F F
w1−→ G

1⊗m2 ↓ ↓m1

B ⊗F F
w2−→ G

where m1 is given by right multiplication by some g ∈ G, while m2 is right
multiplication by some element f ∈ F . Referring to the structure of B∗ as
an F -G-bimodule, the commutative diagram above shows that w1g = fw2,
and hence w1 = fw2g

−1. This shows that w2 ∈ B∗ satisfies condition (i) in
Lemma 3.1, whence B∗ is left pre-acceptable.

Choose now a left G-basis B = {b1, b2} of B, and let b∗ ∈ B∗ be such
that b∗(b1) = 1 and b∗(b2) = 0. Using this basis, we consider the inclusion
F ⊆ M2(G) as in the second paragraph after Lemma 3.1. Then B∗ admits
a representation B∗ = G2, where the right G-structure of B∗ is natural and
the left F -structure is the restriction of the matrix product of elements of
M2(G) and elements of G2.

Like this, b∗ is viewed as an element in G2, the element (1, 0). Then Fb∗

consists of all elements of G2 which are left columns of some element of F ⊆
M2(G). Likewise b∗G contains all elements of G2 of the form (g, 0) for g ∈ G.
Let (g1, g2) be any element of G2. Since B is left acceptable, there exists an
element of F ⊆ M2(G) whose first column is (x, g2) by Theorem 3.10 and
Lemma 3.8. Thus (x, g2) ∈ Fb∗. Hence, (g1, g2) = (x, g2) − (g1 − x, 0) ∈
Fb∗ + b∗G, and this shows that B∗ is left weakly acceptable.

Let now M ⊕ N be the rigid tilting left R-module determined by the
left acceptable bimodule B, and let R′ = RB∗ =

[
G 0
B∗ F

]
. The reflection

functor (see [23, Lemma 3.1]) H ′ yields an equivalence between the cat-
egory of finitely presented left RB-modules which have no simple injective
direct summand and the category of finitely presented left R′-modules which
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have no simple projective direct summand. If X is a finitely presented in-
decomposable left RB-module with d-vector (t, s) 6= (1, 0) and (t′, s′) is the
d-vector of H ′(X), then we know from [26, Lemma 2.3] that

t′ = s, s′ = 2s− t.

Thus H ′(M) has d-vector (1, 1) and H ′(N) has d-vector (τ + 1, τ + 2).
It follows that H ′(M) is the only indecomposable left R′-module (up to
isomorphism) with d-vector (1, 1).

On the other hand, if E1 is the non-simple injective left R-module, then
H ′(E1) is the simple injective left R′-module, and hence the characteristic
value of B∗ is l.dim(HomR′(H

′(M), H ′(E1))) − 1. By the equivalence H ′,
this equals l.dim(HomR(M,E1))−1. By Proposition 3.13 and Remark 3.14,
the characteristic value of B∗ is τ + 1. Moreover, there is an epimorphism
M τ+2 → E1 whose kernel is isomorphic to N , in view of [15, Proposition
3.4]. Since H ′ preserves cokernels, there is an exact sequence of R′-Mod,
H ′(N) → H ′(M)τ+2 → H ′(E1) → 0. The values of the d-vectors of these
three modules show that the first homomorphism H ′(N)→ H ′(M)τ+2 is a
monomorphism. Thus H ′(N) is isomorphic to an indecomposable maximal
submodule of H ′(M)τ+2, and it follows by the characterization in Theo-
rem 3.10 that H ′(M)⊕H ′(N) is the tilting module determined by the left
weakly acceptable bimodule B∗. This proves that B∗ is left acceptable and
its acceptance bimodule HomR′(H

′(N), H ′(M)) is (semilinearly) isomorphic
to the acceptance bimodule of B.

Theorem 4.2 may be extended to a more general setting. To this end, we
need the following definitions.

Definition 4.4. Let F,G be division rings and B a G-F -bimodule that
has the left finite dimension property. We say that B is a (left) sporadic
bimodule if:

(i) There is n ≥ 0 such that the bimodule B∗n is left strictly sporadic.
(ii) l.dim(B∗i) > 1 for i = 0, . . . , n− 1.

When B is left sporadic, then there is a smallest m ≥ 0 such that B∗m is
left strictly sporadic. The bimodule B∗m will be called the initial bimodule
of the left sporadic bimodule B.

Let B be a left sporadic bimodule and B∗m its initial bimodule. The
sequence of the dimensions l.dim(B), l.dim(B∗), . . . , l.dim(B∗m) = 2 will be
called the fundamental sequence of the sporadic bimodule B. When B is left
strictly sporadic, its fundamental sequence has only one term. Otherwise,
l.dim(B∗(m−1)) > 2.

We now combine the concepts about left sporadic bimodules and the left
acceptable bimodules of Section 3.
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Definition 4.5. Let F,G be division rings and let B be aG-F -bimodule.
We say that B is a left acceptably sporadic bimodule when it is left sporadic
and its initial bimodule B∗m is left acceptable. In this case, the acceptance
bimodule B′ of B∗m is called the left derivated bimodule of B.

When the left derivated bimodule B′ of a left acceptably sporadic bi-
module B is again left acceptably sporadic, its left derivated bimodule will
be called left 2nd-derivated bimodule B(2) of B, and so successively.

Theorem 4.6. Let F,G be division rings, and let B be a G-F -bimodule
which is left acceptably sporadic such that B0 = B∗m is its initial bimodule
and m > 0. Let R = RB =

[
F 0
B G

]
. There is a well-ordered sequence

X0, . . . , Xω+1

of elements of R-ind with the following properties:

(i) For α ≤ ω+ 1, let Sα = R-ind \ {Xβ | β < α}. Then Xα is the only
element of Sα having the property that if Y � Xα and Y ∈ Sα, then
HomR(Xα, Y ) = 0. Moreover, HomR(Y,Xα) 6= 0 for each Y ∈ Sα.

(ii) Xω ⊕ Xω+1 is a rigid tilting left R-module and the left derivated
bimodule of B is isomorphic to the bimodule HomR(Xω+1, Xω).

(iii) Set d−1 = d∗ = l.dim(B∗) and di = l.dim(B∗(i+2)) for i = 0, 1, . . . .
If τ is the characteristic value of the left acceptable bimodule B0,
set d′i = di for i = −1, 0, . . . ,m − 2, and d′m−1 = 1, d′m = τ + 2.
Then the sequence d′−1, d

′
0, . . . , d

′
m is a partial dimension sequence.

Proof. Since B has the left finite dimension property and is not of finite
representation type, the preinjective left R-modules can be ordered in an
infinite chain

X0, X1, . . .

which satisfies the equations of (i) for α < ω, by Proposition 2.2.
By hypothesis, B0 = B∗m is left acceptable and left strictly sporadic,

and hence B1 = B∗(m+1) is again left acceptable and left strictly spo-
radic by Lemma 4.3. By iterated application of [15, Lemma 2.7], B1

∼=
HomR(Xm, Xm−1), and W = Xm−1 ⊕Xm is a rigid tilting left R-module.

Let R1 = RB1 , which is a ring of the form (1.1) isomorphic to EndR(W ).
Since B1 is left acceptable and left strictly sporadic, Theorem 4.2 shows that
there is a sequence

Y0, . . . , Yω+1

of elements of R-ind satisfying conditions (i)–(iii) of Theorem 4.2. Since W
is a rigid tilting left R-module, there is a splitting torsion theory (T ,F) in
R-Mod induced by W , and an equivalence H ′ between F and a full subcat-
egory X of R1-Mod, where (X ,Y) is a splitting torsion theory of R1-Mod.
Since HomR(W,Xj) = 0 when j ≥ m + 1 while HomR(W,Xj) 6= 0 when
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j ≤ m, the left R-modules X0, . . . , Xm are in T , and all the remaining (up
to isomorphism) finitely presented indecomposable left R-modules belong
to F . By the defining properties of the sequence Y0, Y1, . . . , it follows that
k ≥ 0⇒ Yk ∼= H ′(Xm+k+1), and hence Yω ∼= H ′(Xω) and Yω+1

∼= H ′(Xω+1)
for certain finitely presented indecomposable left R-modules Xω, Xω+1 sat-
isfying condition (i) of the statement.

Notice that Xω, Xω+1 have non-zero homomorphisms to any of the mod-
ules Xk (k < ω). Now, each Xk generates Xi if i ≤ k, by [15, Propo-
sition 2.5], and hence Xω, Xω+1 generate each of the Xk (k < ω). Also,
Ext1

R(Xω ⊕ Xω+1, Xk) = 0 for k < ω, by [15, Lemmas 2.1, 2.2]. Hence
Xω ⊕ Xω+1 is a tilting left R-module. Moreover, HomR(Xω+1, Xω) is iso-
morphic to HomR1(Yω+1, Yω), and thus Xω ⊕Xω+1 is a rigid tilting module
and HomR(Xω+1, Xω) is the acceptance bimodule of B1, by Theorem 4.2.
By Lemma 4.3 it is also the acceptance bimodule of B0, hence it is the left
derivated bimodule of B, up to isomorphism. This shows (ii).

To prove (iii), we show that the d-vectors of the sequence of modules

X1, . . . , Xm, Xω, Xω+1

are the values (t′k, s
′
k) which make d′−1, d

′
0, . . . , d

′
n a partial dimension se-

quence, according to Definition 2.5. We check that the equations (iii) of
that definition are fulfilled with these values for the d-vectors (t′i, s

′
i) and

the d′i.

Note first that the required equations do hold for k = −1, 0, . . . ,m− 2.
This is because d′k = l.dim(B∗(k+2)) = l.dim(HomRB (Xk+1, Xk)) for these k
by [15, Lemma 2.7], and the equations follow from [15, Lemma 3.1]. So, we
have only to check that

(tω, sω) = (t′m+1, s
′
m+1) = (tm+1, sm+1)− (tm, sm),

(tω+1, sω+1) = (t′m+2, s
′
m+2) = (τ + 2)(tω, sω)− (tm+1, sm+1),

where we give in the form (tk, sk) the d-vector of the left R-module Xk.
By considering the left acceptable left strictly sporadic bimodule B1 and
applying Theorem 4.2, we find that the d-vectors of the left R1-modules
Y0, Yω, Yω+1 are, respectively, (1, 0), (1, 1), (τ1, τ1 + 1) where τ1 is the char-
acteristic value of B1. By Lemma 4.3, τ1 = τ +1. Now, we use the equations
of [15, Proposition 3.9] and compare the d-vectors of Xω and Yω = H ′(Xω):

1 = sωtm − tωsm, 1 = sωtm+1 − tωsm+1,

and for the d-vectors of Xω+1 and Yω+1 = H ′(Xω+1):

τ + 1 = sω+1tm − tω+1sm, τ + 2 = sω+1tm+1 − tω+1sm+1.

The first pair of equations is a linear system of two equations for the
unknowns tω, sω and the determinant of the system is sm+1tm−smtm+1 = 1
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by [15, Lemma 3.8]. Thus it has a unique solution, and we just check that
(tm+1 − tm, sm+1 − sm) solves the system, which is straightforward.

The second pair is again a system with the same determinant, and thus
it is enough to check that ((τ + 2)tω − tm+1, (τ + 2)sω − sm+1) solves the
system.

Proposition 4.7. Let F,G be division rings and B a G-F -bimodule. If
the ring R = RB =

[
F 0
B G

]
is a left pure semisimple sporadic ring, then B is

left acceptably sporadic. Moreover, if B′ is its derivated bimodule, then the
ring RB′ =

[
E 0
B′ H

]
is left pure semisimple sporadic, and so B′ is also left

acceptably sporadic.

Proof. By [15, Proposition 2.10], the bimodule B has the left finite di-
mension property. Moreover, B is left sporadic by [15, Theorem 5.1 and
Lemma 2.7]. Now, let B0 = B∗s be the initial bimodule of the left sporadic
bimodule B, and, without loss of generality, suppose it is a G-F -bimodule.

It follows from [15, Lemma 2.7] and [14, Theorem 3.2] that the ring
R0 = RB0 =

[
F 0
B0 G

]
is left pure semisimple and left sporadic. Hence, there is

only one indecomposable left R0-module, up to isomorphism, with d-vector
(1, 1). This entails that B0 is left pre-acceptable, in view of Lemma 3.2.

Order the finitely presented indecomposable left R0-modules {Xα | −1 ≤
α ≤ σ} as in [14, Theorem 3.8]. Since B0 is left strictly sporadic, each of the
modules Xn (for n < ω) has d-vector (n+ 1, n) and, by [15, Theorem 3.14],
the indecomposable left R0-module M with d-vector (1, 1) is precisely Xω.
If r = r(ω) = τ + 1, we conclude from Proposition 2.3 that N = Xω+1 has
d-vector (τ, τ + 1). By [14, Theorem 3.8], M ⊕N is a rigid tilting module,
and thus B0 is left acceptable, by Lemma 3.8. According to Definition 4.5,
B is left acceptably sporadic, as asserted.

If W = M ⊕N , then B′ = HomR0(N,M) is the left derivated bimodule
of B. To prove the final sentence, note that RB′ ∼= EndR0(W ) and this ring
is again left pure semisimple (because W is tilting [14, Theorem 3.2]), and
left sporadic (because of the equivalences induced by the tilting module W ,
and [15, Lemmas 2.1 and 2.2]). Then B′ is left acceptably sporadic, by the
first part of the proof.

5. Sporadic rings with finitely many AR-components. Our aim
in this section is to characterize the G-F -bimodules B such that RB is
left pure semisimple sporadic with a finite number of AR-components. By
Proposition 4.7, if B is such a bimodule, then B is left sporadic and its initial
bimodule B0 = B∗m is left strictly sporadic with a corresponding ring RB0

which is again left pure semisimple sporadic. In view of the close relationship
between the rings RB and RB0 in this case, we study this problem for left
strictly sporadic bimodules, but the translation to the general situation is
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straightforward. Since there are no left pure semisimple sporadic rings with
just two AR-components [15, Proposition 5.3], we consider from the start
that the number of AR-components is h+ 1 with h > 1.

Theorem 5.1. Let F,G be division rings and B a left strictly sporadic
G-F -bimodule. Let h > 1 be an integer. Then the ring RB =

[
F 0
B G

]
is a left

pure semisimple sporadic ring with h+ 1 AR-components if and only if the
following conditions are satisfied:

(i) B is left acceptably sporadic and has a sequence of left derivated
bimodules B′, B(2), . . . , B(h) which are left acceptably sporadic.

(ii) For each j = 0, . . . , h, let τj be the characteristic value of the ini-
tial bimodule of the left sporadic bimodule B(j), and for j ≥ 1, let
dj,1, . . . , dj,nj+1 with nj ≥ 0 be the fundamental sequence of the left

sporadic bimodule B(j). Also, let di+1,0 = τi + 2 for i = 0, . . . , h− 1.
Then

2, 1, d1,0, . . . , d1,n1+1, 1, d2,0, . . . , d2,n2+1, 1, . . . , 1, dh,0, . . . , dh,nh+l

is a dimension sequence (for some l ≥ 1 and with each dh,nh+i = 2
if i ≥ 1).

Proof. The proof is in several steps.

Step 1. If RB is left pure semisimple sporadic with h+1 AR-components,
then (i) holds. By Proposition 4.7, B is left acceptably sporadic and, since
it is its own initial bimodule, it is left acceptable. Proposition 4.7 shows also
that the derivated bimodule B′ is left acceptably sporadic and R1 = RB′
is left pure semisimple sporadic. By iterating the application of Proposi-
tion 4.7, we see that all the successive left derivated bimodules B(j) do exist
and are left acceptably sporadic, hence (i) holds.

Step 2. Assume (i) and, moreover, assume that the ring R := RB satis-
fies the following property (for a certain integer j ≥ 1): There is a sequence

(5.1) X0, . . . , Xω, . . . , Xω·j , Xω·j+1

of modules of R-ind such that the following conditions (a)–(d) hold:

(a) For α ≤ ω · j + 1, let Sα = R-ind \ {Xβ | β < α}. Then Xα is the
only element of Sα having the property that if Y ∈ Sα and Y � Xα,
then HomR(Xα, Y ) = 0 (and, moreover, HomR(Y,Xα) 6= 0).

(b) The sequence

(5.2) 2, 1, d1,0, . . . , d1,n1+1, 1, d2,0, . . . , d2,n2+1, 1, . . . , 1, dj,0

is a partial dimension sequence; and the pairs (ti, si) (for i ≥ 1) of in-
tegers that correspond to this sequence in the sense of Definition 2.5
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are the d-vectors of the modules

X1, Xω, Xω+1, . . . , Xω+n1+2, Xω·2, . . . , Xω·j , Xω·j+1.

(c) W = Xω·j⊕Xω·j+1 is a rigid tilting module with endomorphism ring
Rj ∼= RB(j) .

(d) Let (T ,F) be the splitting torsion theory determined by the tilting
module W . For any Z ∈ R-ind, Z belongs to T if and only if Z ∼= Xα

for some α ≤ ω · j + 1.

Then: (1) if the set of isomorphism classes of indecomposable finitely pre-
sented left R-modules that belong to F is empty or finite, then condition (ii)
of the statement holds for h = j; and (2) if the set of modules of R-ind that
belong to F is infinite, then the sequence of modules (5.1) can be extended
to a sequence

X0, . . . , Xω, . . . , Xω·j+1, Xω·j+2, . . . , Xω·(j+1), Xω·(j+1)+1

which again satisfies the properties (a)–(d) with j + 1 substituted for j.

We first prove part (2). By Proposition 2.2 and assumptions (c) and (d),
we obtain an extended sequence of modules of R-ind, by adjoining to the
sequence (5.1) an infinite subsequence of modules of F , which we denote
thus

Xω·j+2, . . . , Xω·j+i, . . . ,

such that the whole sequence still satisfies condition (a).

Since B(j) is left acceptably sporadic by (i), we may apply Theorem 4.6
(or Theorem 4.2 in case B(j) is left strictly sporadic) and obtain a sequence
of indecomposable finitely presented left Rj-modules

(5.3) Y0, . . . , Yω+1

satisfying the statement in that theorem. Let (X ,Y) be the splitting torsion
theory of Rj-Mod provided by the tilting module W , and let H,H ′ be the
equivalence functors H : T → Y and H ′ : F → X . Since all Xω·j+i+2

belong to F , we see that the H ′(Xω·j+i+2) are torsion left Rj-modules, and
therefore they satisfy the defining properties for the sequence of the Yi,
hence Yi ∼= H ′(Xω·j+i+2) for i < ω. Since the indecomposable projective left
R-modules belong to F and none of the Yi (for i < ω) is isomorphic to H ′(P )
for a projective P , it follows that Yω, Yω+1 ∈ X , by condition (i) of Theorem
4.6 for the chain of the Yα. Hence, there exist indecomposable left R-modules
in F , which we call Xω·(j+1), Xω·(j+1)+1, such that H ′(Xω·(j+1)+i) ∼= Yω+i

for i = 0, 1. Thus if we consider the sequence of indecomposable finitely
presented left R-modules

Xω·j+2, . . . , Xω·j+i, . . . , Xω·(j+1), Xω·(j+1)+1,
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then the sequence obtained by adjoining this one to the previous sequence
(5.1), being the translation by H ′ of the above sequence (5.3) of Rj-modules,
still satisfies condition (a).

To prove (b), we have to add the subsequence

dj,1, . . . , dj,nj+1, 1, dj+1,0

to the sequence (5.2), and show that this gives a partial dimension sequence
for the d-vectors of the modules in assumption (b) followed by the modules

Xω·j+2, . . . , Xω·j+nj+2, Xω·(j+1), Xω·(j+1)+1.

Note first that, as seen in the first paragraph of the proof of [15, Propo-
sition 2.11], Xω·j+2 is isomorphic to D(Tr(Xω·j)). On the other hand, dj,1
is the left dimension of HomR(Xω·j+1, Xω·j) by assumption (c). Then [15,
Proposition 2.5] shows that the d-vector of Xω·j+2 is obtained from dj,1 and
the d-vectors of the two modules preceding it in the sequence above.

Then Theorem 4.6 implies that

dj,2, . . . , dj,nj+1, 1, dj+1,0

is also a partial dimension sequence corresponding through the equations of
Definition 2.5 to the d-vectors of the left Rj-modules

Y1, . . . , Ynj , Yω, Yω+1,

i.e.,

H ′(Xω·j+3), . . . ,H ′(Xω·j+nj+2), H ′(Xω·(j+1)), H
′(Xω·(j+1)+1).

The linear relationship between the d-vectors of Xω·j+α and the corre-
sponding Yβ, given in [15, Proposition 3.9], entails that the equations of
Definition 2.5 which are satisfied for the d’s with the d-vectors of the Yβ’s,
still hold for the same d’s and the d-vectors of the Xω·j+α. This proves the
inductive step for (b).

To show (c), let W ′ = Xω·(j+1) ⊕Xω·(j+1)+1. By the construction of the
sequence, we know that HomR(W ′, Xα) 6= 0 for each α ≤ ω · (j + 1) + 1.
For the same ordinals α, Ext1

R(W ′, Xα) = 0, again by the above construc-
tion. Indeed, if α > ω · j + 1, then Xα ∈ F by assumption (d), and hence
Ext1

R(W ′, Xα) ∼= Ext1
Rj

(Yω ⊕ Yω+1, Yk) = 0. Moreover, if α ≤ ω · j + 1, then

Xα ∈ T and W ′ ∈ F , hence Ext1
R(W ′, Xα) = 0. On the other hand, if Z

is a finitely presented indecomposable left R-module which is not isomor-
phic to any of the Xα (for α ≤ ω · (j + 1) + 1), then HomR(W ′, Z) = 0.
A standard argument shows now that W ′ generates all the modules Xα

for α ≤ ω · (j + 1) + 1, and this is precisely the subset of R-ind generated
by W ′. Finally, since Ext1

Rj
(Yω⊕Yω+1, Z) 6= 0 if Z ∈ R-ind is not isomorphic

to any of the modules Y0, Y1, . . . , we see that Ext1
R(W ′, Z) 6= 0 if Z is not

any of the modules Xα (for α ≤ ω · (j + 1) + 1). It follows that W ′ is also
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a tilting module; and it is a rigid tilting module, since Yω ⊕ Yω+1 is a rigid
tilting left Rj-module. This proves (c).

Finally, the splitting torsion theory of R-Mod determined by W ′ has
the property that a module X ∈ R-ind belongs to the torsion class if and
only if it is W ′-generated, hence if and only if it is isomorphic to Xα for
α ≤ ω · (j + 1) + 1. This shows (d) and completes part (2) of Step 2.

Consider now part (1). First, if F has no finitely presented leftR-modules,
then Xω·j , Xω·j+1 are the indecomposable projective left R-modules. Thus
B(j) ∼= B and nj = 0. By assumptions (a), (b), the sequence obtained by
adding dj,1 = 2 and the pair (−1, 0) to the series of dimensions and d-vectors
of (b) is now a dimension sequence, and (ii) holds. In case F has only one
element Xω·j+2 in R-ind, assumption (a) holds for the extended sequence
and Xω·j+1, Xω·j+2 are the indecomposable projective left R-modules. Thus
(B(j))∗ ∼= B and nj ≤ 1. By (a), (b), the sequence obtained by adding
dj,1, dj,2 = 2 and the pairs (0, 1), (−1, 0) to the series of dimensions and
d-vectors of (b) is now a dimension sequence, and (ii) holds.

Suppose now that F contains at least two non-isomorphic finitely pre-
sented indecomposable left R-modules. We follow the arguments of part (2).
By Proposition 2.2 and assumptions (c) and (d), we obtain an extended se-
quence of modules of R-ind, by adjoining to the sequence (5.1) the sequence

Xω·j+2, . . . , Xω·j+r

for some r > 2, and Xω·j+r−1, Xω·j+r are the projective indecomposable
modules. The whole sequence satisfies condition (a).

On the other hand, we apply Theorem 4.6 for B(j) and obtain a sequence
of indecomposable finitely presented left Rj-modules

Y0, . . . , Yω+1

that satisfies the statement of that theorem. Let H,H ′ be the equivalence
functors H : T → Y and H ′ : F → X provided by the tilting module W .
Again by comparing both sequences we deduce that Yi ∼= H ′(Xω·j+i+2) for
i < r − 1. In particular, HomRj (Yr−2, Yr−3) ∼= HomR(Xω·j+r, Xω·j+r−1),

which in turn is isomorphic to B. Thus B ∼= (B(j))∗(r−1). Since B is left
strictly sporadic, we see that the initial bimodule of B(j) is (B(j))∗s with
s < r, that is, nj < r and we may set r = nj + l with l ≥ 1. Also,
dj,nj+1 = · · · = dj,nj+l = 2.

As in the first part of the proof of Step 2, the sequence

2, 1, d1,0, . . . , d1,n1+1, 1, d2,0, . . . , d2,n2+1, 1, . . . , 1, dj,0, . . . , dj,nj+l

is a partial dimension sequence; and the pairs (t, s) of integers that corre-
spond to this sequence in the sense of Definition 2.5 are the d-vectors of the
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modules

X1, Xω, Xω+1, . . . , Xω+n1+2, Xω·2, . . . , Xω·j , . . . , Xω·j+nj+l

plus the pair (−1, 0). Since the two final pairs are (0, 1) and (−1, 0), this is
a dimension sequence, and hence (ii) holds.

Step 3. If property (i) of the statement holds, then the ring R = RB
satisfies the property of Step 2 for j = 1. This follows from Theorem 4.2.

Step 4. If property (i) of the statement holds, then one and only one
of the following possibilities occurs: either conditions (a)–(d) hold for any
positive integer j, or else property (ii) holds for some index h, and then R is
left pure semisimple. Indeed, by Steps 2 and 3, just one of the following two
cases occurs: either for each j ≥ 1 there is a sequence of finitely presented
indecomposable left R-modules as in (a), or else there is j = h ≥ 2 such that
condition (ii) holds for this value of j. The resulting sequence of finitely pre-
sented indecomposable left R-modules has elements Xω·j+r−1, Xω·j+r which
are projective, hence the sequence contains all finitely presented indecom-
posable left R-modules. In the first case, conditions (a)–(d) hold for any
positive integer j; in the second case, all the finitely presented indecompos-
able left R-modules can be ordered by ordinals as Xα and α < β implies
HomR(Xα, Xβ) = 0. This entails that there are no infinite sequences of
non-isomorphic non-zero homomorphisms between finitely presented inde-
composable left R-modules

M1 →M2 → · · · ,
and then R is left pure semisimple by [20, Theorem 1.3]. In view of the
uniqueness of the sequence (5.1), these two possibilities are incompatible.

Step 5. Suppose that B is left strictly sporadic and R := RB is left pure
semisimple with h + 1 AR-components. By Step 1, (i) holds. Moreover, we
know from [14, Theorem 3.8] that the finitely presented indecomposable left
R-modules may be well-ordered as

M0, . . . ,Mω, . . . ,Mω·h,Mω·h+1, . . . ,Mω·h+r

with the property of this ordering as in condition (a) of Step 2. This forces
the ordering of the Mα to coincide with the ordering of the Xα of condi-
tion (a). Consequently, the second possibility in Step 4 occurs and (ii) holds.

Conversely, assume that (i) and (ii) hold. By (i), Steps 2 and 3 show that
there exist partial dimension sequences and sequences of finitely presented
indecomposable left R-modules as in (b), for successive values of the index j.
For j = h, the sequence obtained is a dimension sequence, and thus the
module Xω·h+nh+l is the simple projective. As above, this shows that the
first possibility of Step 4 does not occur, and consequently R is left pure
semisimple with h+ 1 AR-components.
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6. A relation with Simson’s first potential counterexample. We
discuss in this section some similarities and differences between the first
potential counterexample to the pure semisimplicity conjecture given by
Simson [24] and sporadic rings. First we remark that Simson’s potential
counterexample is not sporadic. However, it is related to sporadic rings; in
fact, it belongs to a class of rings that was called almost sporadic in [15]. It
turns out that we can specialize our results to give another presentation of
this potential counterexample.

Proposition 6.1. Let G ⊆ F be a pair of division rings such that F ,
viewed as a G-F -bimodule, is left strictly sporadic. Then the ring

R = RF =

[
F 0

F G

]
is a counterexample to the pssC.

Proof. Set B := F and view it as a G-F -bimodule. It is clear that B
satisfies the condition in Lemma 3.1. Following the notation of Lemma 3.2
and taking a G-basis B = {f0, 1} of B, the subring E of F is the division ring
G and, by hypothesis, F has left dimension 2 over E = G. It follows that F
is left pre-acceptable (see Definition 3.3). Since condition (i) of Lemma 3.8
is also obviously satisfied, F is left weakly acceptable.

Let now M ⊕N be the tilting module obtained in Proposition 3.9. Since
the left dimension of F over E = G is 2, the d-vector of N is (1, 2). But the
only finitely presented indecomposable left R-module with d-vector (1, 2)
is the non-simple projective P1. This way, it is easy to see that EndR(N)
∼= F and, with the natural left F -structure, HomR(N,M) ∼= F . Therefore
HomR(N,M) has left dimension 1, and hence B is left acceptable.

We now apply Theorem 4.2 to get a sequence of finitely presented inde-
composable left R-modules

X0, . . . , Xω = M,Xω+1 = N

containing all the finitely presented indecomposable modules, except the
simple projective P0. Therefore, all the finitely presented indecomposable
left R-modules are well-ordered in that form. Hence R is left pure semi-
simple. Since there are an infinite number of isomorphism classes of finitely
presented indecomposable modules, R is not of finite representation type.

With the notation of Section 3, the bimodule B′ = HomR(N,M) is
isomorphic to F and so is the endomorphism ring H = EndR(N). Hence
the bimodule B′ is an F -E-bimodule, with E = G, as we saw in the proof
of Proposition 6.1. We obtain the following noteworthy consequence.

Corollary 6.2. Let G ⊆ F be a pair of division rings such that F is,
as a G-F -bimodule, left strictly sporadic. Then the right dimension of F
over G is infinite.
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Proof. Following the notation above, the rigid tilting module M ⊕ N
is the key module for the left pure semisimple ring R (see [12]). By [12,
Theorem 3.6], the module M ⊕ N is not endofinite and, in view of [14,
Proposition 3.7(b)], M is not endofinite. Therefore B′ = F is right infinite-
dimensional over the endomorphism ring E of M . Since E = G, the corollary
follows.

Simson’s potential counterexample belongs to a wider class of possible
counterexamples to the conjecture. In fact, it is easy to see that Proposition
6.1 may be generalized as follows.

Proposition 6.3. Let G ⊆ F be a pair of division rings such that the
left G-dimension of F is 2. Let R be the ring

R = RF =

[
F 0

F G

]
,

and suppose that as a G-F -bimodule, B := F has the left finite dimen-
sion property. Let d, d∗, d0, d1, . . . be the sequence of the left dimensions of
B,B∗, B∗∗, . . . , and consider the sequence of the convergents [d∗, d0, . . . , dk]
as defined in [15, Section 3]. If the sequence is defined for any k, and 1 is
its limit, then the ring R is left pure semisimple and is a counterexample to
the pure semisimplicity conjecture.

Proof. As in the proof of Proposition 6.1, one shows that F , as a G-F -
bimodule, is left acceptable with characteristic value τ = 1. Then the proof
of Theorem 4.2 shows that the preinjective left R-modules form a chain

X0, X1, . . .

such that HomR(Xn, Xm) = 0 if n < m. Also from the proof of Proposition
6.1 it follows that if M ⊕ N is the rigid tilting module determined by the
left acceptable bimodule F , then the torsion class T defined by this tilting
module includes all preinjective modules Xn along with M,N , while the
remaining finitely presented indecomposable left R-modules are torsionfree.

If the ring R is of finite representation type, then the sequence of the di-
mensions d∗, d0, d1, . . . repeats cyclically [9, Proposition 1] and the sequence
of the convergents [d∗, d0, . . . , dk] is not defined for all k, which contradicts
the hypothesis that its limit is 1. Thus R is not of finite representation type.
Then, according to [15, Proposition 3.11], the finitely presented indecom-
posable left R-modules with d-vector (t, s) such that t > s are precisely
the preinjective modules; and again as in the proof of Proposition 6.1 we
construct the well-ordered sequence

X0, . . . , Xω+1

where Xω = M , Xω+1 = N , and HomR(Xω, Y ) = 0 = HomR(Xω+1, Y ) for
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any Y � Xα (α ≤ ω+ 1). Since the d-vector of Xω is (1, 1) by construction,
and since τ = 1, the d-vector of Xω+1 is (1, 2), which means that Xω+1 is
the non-simple projective indecomposable left R-module. By the foregoing
observations, each of the remaining non-preinjective finitely presented inde-
composable modules is isomorphic to the simple projective P0, and hence
the above list completed by the module P0 contains all the elements of
R-ind. Since R-ind has a well-ordering that satisfies the same property of
the sequence in Theorem 4.2, the ring R is left pure semisimple.

Remark 6.4. The class of potential counterexamples presented in [26,
Theorem 4.16] which correspond to infinite dimension sequences v of the
first kind (in the sense of [26, Definition 4.4]) are essentially included in
the class of rings of Proposition 6.3 as long as the operations ξm for con-
structing the sequence v from the principal infinite dimension sequence w
= (. . . , 2, 2, . . . , 2, 1,∞) do not change the last two terms 2, 1 in w. In that
case, the limit of the convergents is equal to 1 and Proposition 6.3 applies.
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Department of Mathematics
University of Murcia
30100 Murcia, Spain
E-mail: jlgarcia@um.es

Received 1 July 2014;
revised 17 October 2014 (6302)

http://dx.doi.org/10.1016/j.jpaa.2007.09.006
http://dx.doi.org/10.1090/S0002-9939-10-10098-7
http://dx.doi.org/10.1016/j.jalgebra.2012.09.004
http://dx.doi.org/10.4064/cm135-2-6
http://dx.doi.org/10.1016/0022-4049(94)90071-X
http://dx.doi.org/10.1016/0021-8693(77)90307-6
http://dx.doi.org/10.1016/0021-8693(81)90115-0
http://dx.doi.org/10.1016/0022-4049(94)00068-X
http://dx.doi.org/10.1007/BF01273341
http://dx.doi.org/10.1006/jabr.1999.8245
http://dx.doi.org/10.1080/00927879408825178



	1 Introduction
	2 Sporadic pure semisimple rings and dimension sequences
	3 Acceptable bimodules
	4 Sporadic bimodules
	5 Sporadic rings with finitely many AR-components
	6 A relation with Simson's first potential counterexample
	REFERENCES

