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Abstract. We first introduce a notion of (a,b, ¢, d)-orthogonality in a normed lin-
ear space, which is a natural generalization of the classical isosceles and Pythagorean
orthogonalities, and well known a- and (a, §)-orthogonalities. Then we characterize inner
product spaces in several ways, among others, in terms of one orthogonality implying
another orthogonality.

1. Introduction. In what follows we denote by R the real number field,
by X a normed linear space over R, and by || - || a norm on X. So far as
norm characterization of an inner product space among normed linear spaces
is concerned, Carlsson’s theorem [3] is perhaps the most celebrated result,
which will be repeated in Theorem C below. On the other hand, one can
characterize an inner product space by means of orthogonalities. James [6]
defined and studied two types of orthogonalities, namely the isosceles and
Pythagorean orthogonalities. By using relations among orthogonal vectors
he was able to prove that in X if either orthogonality has the homogene-
ity or additivity property, then X is an inner product space. This has been
extended to (a, 3)-orthogonality in [1]. On the other hand Day’s result [4]
amounts to saying that if isosceles orthogonality implies Pythagorean or-
thogonality, or vice versa, then X is again an inner product space.

In this article we first define a notion of (a,b, ¢, d)-orthogonality in a
normed linear space, which is a natural extension of isosceles and Pythago-
rean orthogonalities, and of well known - and (a, 8)-orthogonalities [5].
We prove that X is an inner product space if and only if one orthogonality
implies another, if and only if (a, b, ¢, d)-orthogonality has the homogeneity
or additivity property. Consequently, we offer short proofs of some main
results in [1, 4, 6]. Aside from Day’s condition above, it is the author’s belief
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that this type of characterizing an inner product space does not seem to
appear in the literature. The main device used in this paper is Carlsson’s
norm characterization mentioned above, and our unified approach is different
from James’, Day’s and others.

2. Definition of (a,b, ¢, d)-orthogonality. Let us repeat from [6] the
two most familiar definitions of orthogonality for x,y, z € X, which do not
require the existence of an inner product.

(1) Isosceles orthogonality: (x L y)(I) whenever
lz =yl = llz +yll
(2) Pythagorean orthogonality: (x L y)(P) whenever
lz =yl = l=]|* + [lyll*.
Also recall properties of orthogonality from [6]:
(1) Homogeneity: (x L y)(-) implies (ax L by)(-) for all a,b € R.
(2) Additivity: (z L 2)(-) and (z L y)(-) imply (z L (2 +))(-),
where (-) means either (I) or (P) (but the same throughout (1) or (2)).
DEFINITION. Let z,y € X. Let a,b,c,d € R be such that at least two of
them are nonzero, a # ¢ and b # d. We say that x is (a, b, ¢, d)-orthogonal
to y, denoted by (z L y)(a,b,c,d), if
laz — byl|* + [lex — dy||* = az — dy||* + ||cz — by|]*.
For a constant k& € R, the notation k(x L y)(a,b, c,d) means
kllaz — byl* + kllcz — dy||* = kllaz — dy||* + kl|ca — by]|*.

REMARK 1. (a) Just as for isosceles or Pythagorean orthogonality it is
clear that (z L z)(a,b,c,d) implies z = 0, and in an inner product space we
have (z L y)(a,b,c,d) if and only if (z,y) = 0.

(b) According to our definition, (z L y)(1,1,—1,—1) means (z L y)(I),
and (z L )(1,1,0,0) means (z L y)(P). Notice that there are many
other expressions of (z L y)(I) and (x L y)(P) by means of (a,b,c,d)-
orthogonality; e.g., (x L y)(1,1,0,—1) for the former and (x L y)(1,0,0,1)
for the latter.

(c) In particular, (z L y)(1,1, o, @) for fixed ao # 1 means

(1+ 0?2 I = llo — ay| + oz — oI
which is called a-orthogonality in [5] and denoted by (x L y)(«). This is
extended in (d) below.

(d) For fixed «, 8 # 1, (v, B)-orthogonality, denoted by (x L y)(«, 3), is
the relation

lz = ylI* + llaz = Byl|* = |z — Byll* + [laz — y|*
according to [1]. This is precisely our (z L y)(1,1, a, 3).
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(e) There are many other expressions of (z L y)(a) and (z L y)(«, )
by means of (a, b, ¢, d)-orthogonality; e.g., (z L y)(«a, 1,1, «) for the former
and (z L y)(«, 5,1,1) for the latter.

3. Norm characterization of inner product spaces. We begin by
repeating [3, Theorem)].

THEOREM C. Let a; # 0, b;, ¢;, i = 1,...,n, be a fixed collection in R
satisfying

(ﬂ) zn:aib? = zn:aibici = zn:aiczz =0.
=1 =1 =1

If (bi,c;) and (bj,c;) are linearly independent in R? for i # j, and if

(*) > aillbiz + ciyl|* ~ 0

i=1
for all x,y € X, where ~ stands for > or < (the same throughout X), then
X s an inner product space.

The conclusion of Theorem C remains valid if ~ is replaced by =, and
in this case it is not necessary to assume the restrictions in (f) (see [2]).

4. Orthogonality characterization of inner product spaces. We
are ready to consider the main results. Our work in this section will be con-
cerned primarily with characterizing inner product spaces among normed
linear spaces in terms of various types of orthogonalities mentioned in Sec-
tion 2. For example, X is an inner product space if and only if one orthog-
onality implies another orthogonality. It follows that this will be the case
if and only if each orthogonality is either homogeneous or additive. Con-
sequently, many well known results in the literature will be proved by our
methods in a shorter way.

THEOREM 1. For any fized nonzero q € R, the following are equivalent
(where it is understood that each of conditions (2)—(7) and (12)-(15) starts
with “for all x,y € X7) (1):

(1) X is an inner product space;

(2) (x L y)(I) implies (x L y)(P) [4, Theorem 5.1];

(3) (z L y)(P) implies (x L y)(I) [4, Theorem 5.2];

(4) (z L y)(I) implies (gz L y)(I) for ¢ > 1;

(5) (z L y)(P) implies (qz L y)(P) for ¢ > 1;

(6) (L y)(1) and (x L qy)(1) imply (= L (1 + q)y)(1)
forq# £1, =2, —1/2;

(1) The same convention will be tacitly assumed in further statements.
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(7) (& L y)(P) and (x L qy)(P) imply (z L (1+ q)y)(P) for g # £1.
(8) Isosceles orthogonality is homogeneous [6, Theorem 4.7];
(9) Isosceles orthogonality is additive |6, Theorem 4.8];

(10) Pythagorean orthogonality is homogeneous [6, Theorem 5.2];

(11) Pythagorean orthogonality is additive [6, Corollary 5.3];

(12) (gz L y)(I) implies (z L y)(I) for ¢ < —1;

(13) (qz L y)(P) implies (x L y)(P) for g < 1;

(14) q(z L y)(1) implies (qz L y)(I) for ¢ # +1;

(15) q(z L y)(P) implies (qz L y)(P) for ¢ # 1.

Proof. First of all, it is a straightforward verification that (1) implies all
the other assertions. In fact this follows by merely writing the norm of a
vector in terms of the inner product, i.e., ||z||* = (x,z) for € X. So, we
need only prove that each assertion implies (1).

(2)=(1). (2) means that ||z — y||* — ||z + y||* = 0 implies ||z — y||* —
lzl? = llyl* =0, ie.,

lz =yl = llz + yI* = llz = ylI* = [lz]* = [ly]*,
or
2+ ylI* + llz — ylI* < 2[|=[I” + ly]1*).

This inequality is also obtained from Theorem C by replacing ~ by <, and
lettinga1:agzl,a3:a4:—2,b1:bgzbgzcl:—02204:1,
by = c3 = 0. Clearly, {(b;, ;) }iy = {(1,1), (1,-1), (1,0), (0 1)} is a linearly
independent set, and Z?zl a;b? = Z?zl a;bic; = Zf L a;c? = 0. Hence all
conditions in Theorem C are satisfied and the desired conclusmn follows.

(3)=(1). Similar arguments as above. Here the symbol ~ means >.

Since the arguments are basically the same, we shall provide only the
outlines of the rest of the proofs.

(4)=(1). By assumption,

allz = ylI* = llz +yl*] > |z — yl* = ll= + 9|
> llgz = ylI* = llgz + ylI*.

So, a1 = —az = q, a3 = —ag = —1, b = by =1,b3 =by =gq,c1 =
—cp =c3 = —c4 = —1, and {(bi,ci)}le ={(1,-1), (1,1), (¢, —1), (¢, 1)} is

a linearly independent set.
(5)=(1). By assumption,
allz = ylI* = llzl* = [lyI*] > ll= = ylI* = ll=]* — [ly|*
> llgz = ylI* = llazl* = Iy,
or
qllz = ylI* + (¢ = Qll=l* + (1 = llylI* > llaz — y]*.
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SO7QIZQ7 aQZqQ_Q7 a3:1_q7a4:_17 b1:b2:17 b3:O7 b4:q7
g = —cg =c4 = —1, ¢ = 0, and {(b;,c;)}i, = {(1,-1), (1,0), (0,1),
(¢,—1)} is a linearly independent set.
(6)=(1). By assumption,
Iz — qyll> = =+ qull* + |z — ylI” = [l= + y|I?
> |lz = (g + Dyl* = [lz + (¢ + Dyll*.
So,a1:—a2:a3:—a4:—a5:a6:1,b1:bgzbg—b4—b5—b6—1,
0 =—cg=—q c3=—cs=—1,¢5=—c6 = —(qg+1), and {(b;,;)}_; =
{(17 _Q)a (LQ)’ (17 _1)7 (1’ 1)5 (1’ _q_]‘)’ (1’Q+1)} is ahnearly lndependent
set.
(7)=(1). By assumption,
Iz —qyll> = llzl® = llgyll® + llz — ylI> = llzl* = ly?
> |lz = (g + Dyl* = 12| = I(g + Dy,
or
= qyll® = llz]* + 2¢llyl1*> + |z — yI1> > |z — (¢ + Dyl*.

So,a1:—a2:a4:—a5:1,a3:2q,b1:bgzb4:b5:1,b3:0,
c1=—qca=0,c3=—cy,=1,¢c5 =—(q+ 1), and {(b;, ;) }_; = {(1,—q),
(1,0), (0,1), ( —1), (1,—¢ — 1)} is a linearly independent set.

(8)=(1). If (8) holds, so does (4) in particular, which implies (1).
(9)=-(1). Since (9)=(6)=(1).

(10)=-(1). Since (10)=(5)=-(1).

(11)=(1). Since (11)=(7)=(1).

((12) or (14)) = (1). The proof is similar to that of (4)=-(1).

((13) or (15)) = (1). This is similar to that of (5)=-(1) and thus Theo-

rem 1 is proved.

THEOREM 2. For any fited o € R such that o # 1, the following are
equivalent:

(1) X is an inner product space;
2) (z L y)(a) implies (x L y)(P) for « #0 and a(2 — a) > 0;
)(P) implies (z L y)(a) for a # 0 and a(a — 2) > 0;
() implies (z L y)(I) for 1 +2a — a2 > 0;
x L y)(I) implies (x L y)(a) for a # —1 and 1 4+ 2a — a® < 0;
)(@) implies (1 — a)*(x L y)(P) for o # 0;
)*(z L y)(P) implies (x L y)(a) for o 0;
2(x L y)(a) implies (1 — a)?*(x L y)(1) for a # —1;
(1 —a)?(z L y)(I) implies 2(x L y)(a) for a # —1;
-orthogonality is homogeneous;
-orthogonality is additive.

o R



6 C.-S. LIN

Proof. As in the proof of Theorem 1 we will prove that each assertion
implies (1), and we give outlines only.
(2)=(1). The assumption means that

(L +a)z = ylI* = llz — ayll* - lloz — y|I?
> Jlz = ylI* = ll2I® = llyl* > (1 = &)z = ylI* = l2l* = ly]1*]

if 1 > (1—a)?, or a(2 — ) > 0. Rewrite the above inequality as

—2alz —yl* = (1= a)?* (2] + ylI*) + llz — ay|* + ez — y|I* < 0.
SO, a1:—2a, a2:a3:—(1—a)2, a4:a5:1, b1:b2:b4:1, b3:0,
bs =a,c1=—c3=c5=—1,ca =0, cy = —, and {(b;,c;)}2_; = {(1,-1),
(1,0), (0,1), (1, —a), (o, —1)} is a linearly independent set.

(3)=-(1). Similar to the proof above. In this case ~ means >.

(4)=-(1). By assumption,

2((1+a?)lz —yl* = o — ayl® — [law — y]|*]
> 2|z —yl* =z + 9l = (1 = a)?[llz — ylI* = = +y]*]

if 2> (1—a)? ie,1+2a—a? >0, and so a # +1 (this is used to check
linear independence). Rewrite the above inequality as

2(||lx — oyl + llax — ylI*) = 1 = @)’z +y]* < 1+ a)* = — y||*.
So, a1 = as = 2, a3:—(1—a)2, CL4:—(1+Oé) ,bp =b3=by =1, by = q,
1 =—a,cg=—c3=cq=—1,and {(b;,c;)}i; = {(1,—a), (o, —1), (1,1),
(1,—1)} is a linearly independent set.

(5)=-(1). Similar to the proof above. The symbol ~ means >.

((6), (7), (8) or (9)) = (1). The proof of each one is similar to the above.
More precisely, from the proof that (2), (3), (4) or (5) implies (1), we deduce
that (6), (7), (8) or (9) implies (1), respectively.

(10)=-(1). If a-orthogonality is homogeneous, then in particular isosceles
orthogonality is homogeneous (let & = —1, see Remark 1(b),(c)). So (1) is
true by (8) of Theorem 1.

(11)=(1). Indeed, (11) implies (9) of Theorem 1, and the proof is fin-
ished.

THEOREM 3. For any fixed o, 3 € R such that o, 8 # 1, the following
are equivalent:

(1) X is an inner product space;

(2) (= L y)(a, B) implics (v L y)(P) for a,8 £ 0 and a -+ — af > 0

(3) (x L y)(P) implies (z L y)(a, B) for a,8 £ 0 and a -+ — af < 0

(4) (x L y)(«, B) implies (x L y)(I) fora,B# —1 and 1+ a+ 3 — af
> 05

(5) (z L y)(I) implies (x L y)(a, B) for o, # —1 and 1 + o+ — af
<0;
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,B) implies (1 — a)(1 — B)(x L y)(P) for a, 5 # 0;
1= B)(w L y)(P) implies (z L y)(a, B) for o, § # 0;

1= a)(1 - )z L y)(1) implies 2(x L y)(a, B) for a, B # —1;
a, 3)-orthogonality is homogeneous [1, Theorems 3.1 and 3.2];
a, B)-orthogonality is additive [1, Theorem 3.2].

Proof. As in the preceding proof, we shall prove that each statement
implies (1) without going into details.
(2)=-(1). By assumption,

lz = ylI* + llaz = Byl|* — l|lz — BylI* — llaz — y*
> [lz = ylI* = ll=]|* = ly|®

> (1=a)(1=B)[lz = yl* = l=lI” = Iyl
if (1-a)(1-p)<1,ie,a+—af>0.Rewrite the above inequality as

(@B —a—PB)llz =yl - (1 - )1 = B)(lz]* + yl*)
< llaz = Byl* = |z — Byl* — llaz —y|*.
Hence, a1 = af —a—f, a2 =a3 = (1 —a)(f - 1), as = —a5 = —ag = —1,

b1:b2—65—1 bg—o b4—b6—04 01:—03266:—1,02:0,

¢y = c; = —f, and {(bl7cl)} =1 = {(1 _1) (170)7 (07 1)7 (av _/6)7 (17_5)7

(o, —1)} is a linearly independent set.
(3)=-(1). Similar to the proof above, and the symbol ~ means >.
(4)=-(1). By assumption,

2z = yl* + oz = Byl* — llz — Byll* — lloz — y|I°]
> 2llz = yl* =z + 9] = 1 = )1 = B[z — yl* = [l= + y|]

if2>(1-a)(1-p),ie,1+a+5—af > 0. Rewrite the above inequality
as

2[az — By|)* — llz — Byll* — llaz - y]|*]
> (af —a— B -1z —yl> + (@+f - af - 1)z +y|>

So, a1 = —ag = —a3 =2, au =1—af+a+p6,a5 =1—a— 3+ ap,
by =b3 =a,by =by =bs =1, ¢c1 =c2=—f,¢c3 =c4 = —c5 = —1,
and {(b;,c;)}>_; = {(a, =), (1,-0), (a,—1), (1,-1), (1,1)} is a linearly
independent set.

(5)=-(1). Similar to the proof above. Here ~ means >.

((6), (7), (8) or (9)) = (1). By the proofs above. In fact, the proofs that
(2), (3), (4) or (5) implies (1) show that (6), (7), (8) or (9) implies (1),
respectively.
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(10)=(1). If (o, B)-orthogonality is homogeneous, so is a-orthogonality
(let 8 = a, see Remark 1(c),(d)). Hence we have (1) due to (10) in Theorem
2.

(11)=-(1). Indeed, (11) implies (11) of Theorem 2, and the proof is com-
plete.

COROLLARY 1. For fized o, 3 € R such that o, 3 # 1, if («, 3)-ortho-
gonality is homogeneous, then

(1) (o, B)-orthogonality implies Pythagorean orthogonality [1, Theorem
2.1];

(2) Pythagorean orthogonality implies (v, 3)-orthogonality;

(3) (o, B)-orthogonality implies isosceles orthogonality [1, Theorem 2.2];

(4) Isosceles orthogonality implies («, 3)-orthogonality;

(5) X is a strictly convex space [1, Theorem 2.3].

Proof. 1f («, #)-orthogonality is homogeneous, then clearly X is an inner
product space by (10) of Theorem 3. Hence (1) through (4) follow trivially
by expressing the norm of a vector in terms of the inner product. As for (5),
it is well known that every inner product space is strictly convex.

COROLLARY 2. For fized o, 3 € R such that o, 3 # 1, if («, 3)-ortho-
gonality is additive, then the five statements in Corollary 1 still hold true.

Proof. X is an inner product space by (11) of Theorem 3.

THEOREM 4. For any fized a,b,c,d € R such that at least two of them
are nonzero, a # ¢ and b # d, and for any fixed nonzero s,t,p € R, the
following are equivalent:

(1) X is an inner product space;

(2) st(z L y)(a,b,c,d) implies (a — ¢)(b — d)(sz L ty)(P) whenever
{(CL?_b)v (Cv _d)7 (a’ _d)7 (Ca _b)v (57 _t)a (570)7 (O7t)} s a lineaﬂy
independent set;

(3) (a —¢)(b — d)(sz L ty)(P) implies st(z L y)(a,b,c,d) whenever
{(a,=b), (¢, —=d), (a,—d), (¢, =b), (s,—t), (s,0), (0,1)} is a linearly
independent set;

(4) 2st(x L y)(a,b,c,d) implies (a — ¢)(d — b)(sz L ty)(I) whenever
{(a,=b), (¢,—d), (a,—d), (c,=b), (s,t), (s,—t)} is a linearly inde-
pendent set;

(5) (@ — ¢)(d —b)(sx L ty)(I) implies 2st(x L y)(a,b,c,d) whenever
{(CL, _b)v (Cv _d)a (a’ _d)7 (Ca _b)7 (Sat)a (Sa _t)} is a linearly inde-
pendent set;

(6) p(z L y)(a,b,c,d) implies (px L y)(a,b,c,d) whenever {(ap,—b),
(Cp, _d)7 (ap, _d)7 (Cp, _b)7 (a,—b), (C,—d), (a7 _d)7 (C7 _b)} is a
linearly independent set;
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(7) (px L y)(a,b,c,d) implies p(x L y)(a,b,c,d) whenever {(ap, —b),
(Cpa _d)v (apv _d)v (Cpa _b)7 (av_b)v (Ca _d)a (CL, _d)7 (C7 _b)} s a
linearly independent set;

(8) (zLy)(a,b,c,d) and (z Lpy)(a,b,c,d) imply (x L (p+1)y)(a,b,c,d)
whenever {(CL, —bp), (C’ _dp)a (av —dp), (C’ —bp), (aa _b)’ (C’ —d),
(av _d)7 (Cv _b)7 (av —b(p + 1))7 (Cv —d(p + 1))7 (av —d(p + 1))7 (Ca
—b(p+ 1))} is a linearly independent set;

(9) (a,b,c,d)-orthogonality is homogeneous;

(10) (a,b,c,d)-orthogonality is additive.

Proof. As before, it suffices to prove that each assertion implies (1).

(2)=(1). In Theorem C let a1 = ay = —ag = —ayq = st, a5 = —ag =
—a7 = —(CL—C)(b—d), bl = b3 = a, bQ = b4 = C, b5 = b6 = S, b7 = O,
c1 =c4 = —b,cog =c3=—d, cs = —c;y = —t and ¢g = 0. Then it is easily

checked that all conditions in Theorem C, apart from the assumption that

the set {(b;, ;) }7_; is linearly independent, are satisfied. In other words, we
. 7 7 7

have a; # 0, ¢ =1,...,7, > ., a;b? = Yo aibici = >0 a;c? = 0, and

21‘721 a;||biz+ciy||* ~ 0 for all x,y € X. Hence X is an inner product space.

The last relation is precisely

stllaz = byl* + llez — dy* — llaz — dy||* — [lcz — by||”]
—(a =)0 = d)[|sz — tyl* = ||sz]|* — [|ty*] ~ 0

for all z,y € X, i.e., the relation (1).
(3)=(1). Same as above.

(4)=(1). In Theorem C let a1y = as = —a3 = —aq = 2st, a5 = —ag =
—(a—c)(d—b), bl = b3 = a, b2 = b4 = C, b5 = bG = 8§, C1 = C4 = —b,
co = c3 = —d and ¢5 = —cg = t. Then similar to (2)=(1) above we conclude

that X is an inner product space.
(5)=(1). Same as above.

(6)=(1). In Theorem C let a1 = a2 = —ag = —aqg = 1, a5 = ag =
—a7 = —ag = —p, by = bz = ap, by = by = cp, bs = by = a, bg = bg = ¢,
1 = ¢4 =c¢5 =cg = —band co = ¢c3 = ¢g = ¢ = —d. It follows as in

(2)=-(1) that X is an inner product space.
(7)=(1). Same as above.
8)=

( (1). In Theorem C let a; = as = —a3 = —a4 = a5 = ag = —ay =
—ag = —ag9 = —aip = 11 = a2 = 1, by = b3 = b5 = by = bg = b1 = a,
by = by = bg = bg = big = b2 = ¢, c1 = cq4 = —bp, cg = c3 = —dp,

C; = Cg = —b, Cg = C7 = —d, Cg = C19 = —b(p+1) and Cig = C11 = —d(p+1)
Then we conclude that X is an inner product space.

(9)=(1). The assumption implies that («, 3)-orthogonality is homoge-
neous (let a =b=1, c = o, d =  and see Remark 1(d)). So, X is an inner
product space by (10) of Theorem 3.
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(10)=-(1). The assumption implies that (c, 3)-orthogonality is additive
(let a=b=1,c=a,d=p and see Remark 1(d)). Hence we have (1) by
(11) of Theorem 3. In fact, we have a simple alternative proof by observing
that (10)=(8)=(1).

REMARK 2. In each result above we have chosen only typical orthogonal-
ities. If different orthogonalities are selected, other similar characterizations
of inner product spaces can be obtained. In other words, our approach has
a unifying aspect.
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