THE MULTIPLICATIVE AND FUNCTIONAL INDEPENDENCE OF DEDEKIND ZETA FUNCTIONS OF ABELIAN FIELDS

BY

ROMAN MARCZAŁEK (Wrocław)

Abstract. It is shown that the multiplicative independence of Dedekind zeta functions of abelian fields is equivalent to their functional independence. We also give all the possible multiplicative dependence relations for any set of Dedekind zeta functions of abelian fields.

In this paper we consider the problem of the multiplicative and, more generally, functional independence of Dedekind zeta functions for abelian fields. As in the paper of Voronin [6], we say that the complex functions $f_j (j = 1, \ldots, m)$ of a complex variable are functionally independent if for any continuous functions $F_l : \mathbb{C}^m \to \mathbb{C}$, for $l = 0, 1, \ldots, q$, not all identically zero, the function

$$f(s) = \sum_{l=0}^{q} s^l F_l(f_1(s), \ldots, f_m(s))$$

is not identically zero.

On the other hand, the multiplicative independence of f_1, \ldots, f_m means that the equality

$$\prod_{k=1}^{m} f_k^{a_k} = 1$$

with rational integers a_1, \ldots, a_m holds only if $a_1 = \cdots = a_m = 0$.

Using the functional independence of Dirichlet L-functions for non-equivalent characters, proved by Voronin (see Corollary 1 in [4]), we shall prove the equivalence of the multiplicative and functional independence for Dedekind zeta functions.

We shall give necessary and sufficient conditions for a set of Dedekind zeta functions of abelian fields to be functionally independent. Also, for any set of Dedekind zeta functions of abelian fields, we give all the possible integers a_1, \ldots, a_n appearing in any multiplicative dependence relation for those functions.

2000 Mathematics Subject Classification: Primary 11R42.
Following the book of L. C. Washington [7] we shall use the correspondence between subfields of an abelian field and subgroups of the group of Dirichlet characters associated with this field.

Let \(L_1, \ldots, L_m \) be abelian fields and \(L \) their compositum. Then there exists a minimal integer \(r \) such that \(L \subseteq \mathbb{Q}(\zeta_r) \), where \(\zeta_r \) is a primitive \(r \)-th root of unity. Let \(X = \{ \chi_1, \ldots, \chi_n \} \) be the group of Dirichlet characters associated with the field \(L \) and \(X_1, \ldots, X_m \) the subgroups of \(X \) associated with \(L_1, \ldots, L_m \) respectively.

Now, for any \(j = 1, \ldots, m \) and \(k = 1, \ldots, n \), we put \(\varepsilon_{jk} = 1 \) when \(\chi_k \in X_j \) and \(\varepsilon_{jk} = 0 \) otherwise. Thus, for all \(j \), we have

\[
\zeta_{L_j}(s) = \prod_{k=1}^{n} L(s, \chi_k^*)^{\varepsilon_{jk}},
\]

where \(\chi_k^* \) is the primitive Dirichlet character inducing \(\chi_k \), \(L(s, \chi_k^*) \) the L-series attached to \(\chi_k^* \), and \(\zeta_{L_j} \) is the Dedekind zeta function for \(L_j \).

Now we prove

Theorem 1. The following conditions are equivalent:

(i) The rank of the \(m \times n \) matrix \([\varepsilon_{jk}]\) equals \(m \), and \(m \leq n \).

(ii) \(\zeta_{L_1}, \ldots, \zeta_{L_m} \) are multiplicatively independent.

(iii) \(\zeta_{L_1}, \ldots, \zeta_{L_m} \) are functionally independent.

Proof. (i)\(\Leftrightarrow\)(ii). Suppose that rank \([\varepsilon_{jk}]\) equals \(m \) and for some integers \(a_j \),

\[
(1) \quad \prod_{j=1}^{m} \zeta_{L_j}(s)^{a_j} = 1.
\]

Then we have

\[
1 = \prod_{j=1}^{m} \prod_{k=1}^{n} L(s, \chi_k^*)^{\varepsilon_{jk}a_j} = \prod_{k=1}^{n} L(s, \chi_k^*)^{\sum_{j=1}^{m} \varepsilon_{jk}a_j}
\]

and, by the functional independence of Dirichlet L-functions, we obtain

\[
(2) \quad \sum_{j=1}^{m} \varepsilon_{jk}a_j = 0
\]

for \(k = 1, \ldots, n \). Since the rank of the matrix \([\varepsilon_{jk}]\) equals \(m \), the system (2) has only one solution, i.e. \(a_1 = \cdots = a_m = 0 \).

Conversely, if the rank of \([\varepsilon_{jk}]\) were less than \(m \) or \(m > n \), then (2) would have non-trivial solutions and this would lead to (1) with \(a_j \)'s not all zero.

(ii)\(\Leftrightarrow\)(iii). Now assume that \(\zeta_{L_1}, \ldots, \zeta_{L_m} \) are multiplicatively independent and suppose that for continuous functions \(F_l : \mathbb{C}^m \to \mathbb{C}, l = 0, 1, \ldots, q, \)

one has

\[
\sum_{l=0}^{q} s^l F_l(\zeta_{L_1}(s), \ldots, \zeta_{L_m}(s)) = 0
\]

for any \(s \). For any \(l \) we put \(G_l = F_l \circ \mathbf{P} : \mathbb{C}^n \to \mathbb{C} \), where \(\mathbf{P} = (P_1, \ldots, P_m) : \mathbb{C}^n \to \mathbb{C}^m \) is defined by

\[
P_j(s_1, \ldots, s_n) = \prod_{k=1}^{n} s_k^{\varepsilon_{kj}}.
\]

Thus we may rewrite (3) as

\[
\sum_{l=0}^{q} s^l G_l(L(s, \chi_1^*), \ldots, L(s, \chi_1^*)) = 0.
\]

Hence, again by the functional independence of L-functions, \(G_l \) is identically zero for each \(l \). This implies that so is \(F_l \). Indeed, if \(F_l(z_1, \ldots, z_m) \neq 0 \) for some \((z_1, \ldots, z_m) \in \mathbb{C}^m \) then, by continuity of \(F_l \), we may assume that \((z_1, \ldots, z_m) \neq (0, \ldots, 0) \). In order to find \((s_1, \ldots, s_n) \) such that \((z_1, \ldots, z_m) = \mathbf{P}(s_1, \ldots, s_n) \) we put

\[
z_j = r_je^{it}, \quad s_k = x_ke^{iy} \quad \text{with } r_j > 0,
\]

where \(x_k, y_k \) satisfy

\[
\sum_{k=1}^{n} \varepsilon_{kj} \log x_k = \log r_j, \quad \sum_{k=1}^{n} \varepsilon_{kj} y_k = t_j, \quad j = 1, \ldots, m.
\]

Thus \(G_l(s_1, \ldots, s_n) = F_l(z_1, \ldots, z_m) \neq 0 \), contrary to the functional independence of L-functions.

Remark 1. If we assume that the functions \(F_j \) in the definition of functional independence are entire of minimum type of order 1, then the implication \((\text{ii}) \Rightarrow (\text{iii})\) of Theorem 1 holds for a wider class of functions, the Selberg class containing the Dedekind zeta functions of all algebraic fields (see Theorem 1 in [2]).

Now as an application of the above theorem, we have

Corollary 1. The Dedekind zeta functions \(\zeta_{L_1}, \ldots, \zeta_{L_m} \) are functionally independent if they satisfy one of the following conditions:

\begin{itemize}
 \item[(i)] \(X_j \not\subseteq \bigcup_{l=1, i \neq j} X_i \) for any \(j \in \{1, \ldots, m\} \).
 \item[(ii)] There is a prime \(p \) such that \((L_j : \mathbb{Q}) = p \) for any \(j \in \{1, \ldots, m\} \).
 \item[(iii)] \(L_j = \mathbb{Q}(\zeta_{l_j}) \), where \(l_j \) is an odd integer not dividing \(\text{lcm}\{l_1, \ldots, l_{j-1}, l_{j+1}, \ldots, l_m\} \).
\end{itemize}
Proof. (i) For any \(j \in \{1, \ldots, m\} \) choose
\[
\chi_{n_j} \in X_j \setminus \bigcup_{i=1, i \neq j}^m X_i
\]
and observe that \([\varepsilon_{kn_j}] \) is the identity \(m \times m \) matrix, after some permutation of rows. This, by Theorem 1(i), proves (i).

(ii) As the associated groups of characters \(X_j \) satisfy \(X_i \cap X_j = \{1\} \) for any \(i \neq j \), the condition of (i) of our corollary is satisfied.

(iii) The condition \(l_j \nmid \operatorname{lcm}\{l_1, \ldots, l_{j-1}, l_{j+1}, \ldots, l_m\} \) means that
\[
\mathbb{Q}(\zeta_{l_j}) \not\subset \mathbb{Q}(\zeta_{l_1}) \cdots \mathbb{Q}(\zeta_{l_{j-1}}) \mathbb{Q}(\zeta_{l_{j+1}}) \cdots \mathbb{Q}(\zeta_{l_m}),
\]
whence \(X_j \not\subset X_1 \cdots X_{j-1}X_{j+1} \cdots X_m \) and again using (i) we obtain (iii). ■

In order to give all the possible integers \(a_j \) occurring in a dependence relation (1) we introduce some notation.

Let \(G \) be the Galois group of an extension \(L \supseteq \mathbb{Q} \), and \(L^H \) the subfield of \(L \) corresponding to a subgroup \(H \) of \(G \) by Galois theory. We also put
\[
H^\perp = \{ \chi \in X : \forall h \in H \ \chi(h) = 1 \}, \quad \tilde{H} = \sum_{h \in H} h \in \mathbb{Z}G,
\]
where \(H \) is a subgroup of \(G \) and \(\mathbb{Z}G \) denotes the group ring of \(G \) over \(\mathbb{Z} \).

Now we prove

Theorem 2. The dependence relation
\[
\prod_{H \leq G} \zeta_{L^H}(s)^{a_H} = 1 \quad \text{holds if and only if} \quad \sum_{H \leq G} a_H(G : H) \tilde{H} = 0.
\]

Proof. Assume that for some integers \(a_H \) one has
\[
\sum_{H \leq G} a_H(G : H) \tilde{H} = 0. \tag{4}
\]

If \(1^G_H \) denotes the character of \(G \) induced by the unit character on \(H \) then the equation
\[
\sum_{g \in G} 1^G_H(g) = |H|^{-1} \sum_{g \in G} g \tilde{H} g^{-1}
\]
may be used to convert (4) into the character relation
\[
\sum_{H \leq G} a_H 1^G_H = 0.
\]

Since \(\zeta_{L^H}(s) = L(s, 1^G_H) \), where \(L(s, 1^G_H) \) denotes the Artin L-function (see e.g. the book of J. Neukirch [4]), the above equation gives us the required dependence relation.
Conversely, suppose that

\[(5) \quad \prod_{H \leq G} \zeta_{L^H}(s)^{a_H} = 1.\]

Since the group of characters H^\perp is associated with the field L^H one has

\[\zeta_{L^H}(s) = \prod_{\chi \in H^\perp} L(s, \chi^*) = \prod_{\chi \in X} L(s, \chi^*)^{\varepsilon_{H\chi}},\]

where $\varepsilon_{H\chi} = 1$ when $\chi \in H$ and $\varepsilon_{H\chi} = 0$ otherwise.

Applying the last equality to (5) we obtain

\[1 = \prod_{H \leq G} \left(\prod_{\chi \in X} L(s, \chi^*)^{\varepsilon_{H\chi}} \right)^{a_H} = \prod_{\chi \in X} L(s, \chi^*)^{S_{H\chi}},\]

where

\[S_{H\chi} = \sum_{H \leq G} \varepsilon_{H\chi} a_H,\]

and, by the independence of L-functions, we get

\[\sum_{H \leq G} \varepsilon_{H\chi} a_H = 0 \quad \text{for any } \chi \in X.\]

Since $1_{H^\perp}^X(\chi) = \frac{\#X}{\#H^\perp} \varepsilon_{H\chi}$ the above equalities imply

\[(6) \quad \sum_{H \leq G} a_H \#H^\perp 1_{H^\perp}^X = 0.\]

If we identify \hat{X} with G and observe that the characters $1_{H^\perp}^X$ are linear combinations of irreducible characters of X, we have

\[(7) \quad 1_{H^\perp}^X = \sum_{g \in G} \langle 1_{H^\perp}^X, g \rangle g \quad \text{for any } H \leq G.\]

Note that for any $H \leq G$ and $g \in G$ we obtain

\[\langle 1_{H^\perp}^X, g \rangle = \frac{1}{\#X} \sum_{\chi \in X} 1_{H^\perp}^X(\chi) \overline{g(\chi)} = \frac{1}{\#X} \sum_{\chi \in H^\perp} \frac{\#X}{\#H^\perp} \frac{\overline{\chi(g)}}{\chi(g)} = \frac{1}{\#H^\perp} \sum_{\chi \in H^\perp} \overline{\chi(g)} = \alpha_{Hg},\]

where $\alpha_{Hg} = 1$ when $g \in H$ and $\alpha_{Hg} = 0$ otherwise, and hence

\[1_{H^\perp}^X = \sum_{g \in G} \alpha_{Hg} g = \hat{H}.\]
The above equality, (6) and (7) finally give

\[0 = \sum_{H \leq G} a_H \# H \frac{X}{H_{\perp}} = \sum_{H \leq G} a_H \# H_{\perp} \tilde{H}, \]

and \(\# H_{\perp} = (G : H) \) we obtain \(\sum_{H \leq G} a_H (G : H) \tilde{H} = 0. \]

Remark 2. (i) Relations of the form (5) are important because they lead to the so-called class number relations (see e.g. [1], [3]).

(ii) Equalities in \(\mathbb{Z}G \) of the form (4) are called **norm relations** and have been studied by Rehm in [5], where he gives a base for the \(\mathbb{Z} \)-module of norm relations for any finite group.

(iii) It seems that analogous assertions should be true for nonabelian fields.

REFERENCES

Institute of Mathematics
Wrocław University
Plac Grunwaldzki 2/4
50-384 Wrocław, Poland
E-mail: marszal@math.uni.wroc.pl

Received 23 September 2002;
revised 28 April 2003