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LOJASIEWICZ EXPONENTS AND SINGULARITIES AT INFINITY
OF POLYNOMIALS IN TWO COMPLEX VARIABLES

BY

JANUSZ GWOZDZIEWICZ and ARKADIUSZ PLOSKI (Kielce)

Abstract. For every polynomial F' in two complex variables we define the Lojasiewicz
exponents £, ;(F) measuring the growth of the gradient VF on the branches centered at
points p at infinity such that F’ approaches ¢ along v. We calculate the exponents £, . (F)
in terms of the local invariants of singularities of the pencil of projective curves associated
with F.

Introduction. The notion of Y.ojasiewicz exponent was introduced and
studied by Lejeune-Jalabert and Teissier [LJ-T]. In the case of isolated sin-
gularities of hypersurfaces Teissier [T] showed that the Lojasiewicz expo-
nent of the gradient can be calculated by means of polar invariants. Then
Ha [H] defined the Lojasiewicz exponents at infinity £ ¢(F') and £ (F) for
every polynomial F' of two complex variables and applied these notions to
the singularities at infinity. His results were completed by Chadzyniski and
Krasinski [ChK1], [ChK2]. Moreover Cassou-Nogués and Ha [CN-H] gave a
formula for £ (F) using the Eisenbud and Neumann diagrams.

In this note we define the Lojasiewicz exponents £,,+(F') at points (p,t)
at infinity. To be more specific, consider a polynomial F : C> — C of degree
d > 0. To study the growth of the gradient VF = (0F/0X,0F/JY) at infi-
nity we extend C? to the projective plane P?(C) = C2UL,, and consider the
Lojasiewicz exponents £, (F') for every pair (p,t) € Lo x C. Roughly spe-
aking (see Section 1 for the precise definition), £, ;(F") measures the growth
of VF on the branches v of P?(C) centered at p such that F approaches
t € C along v. Let F*(X,Y,Z) = Z4F(X/Z,Y/Z) be the homogeneous
form corresponding to F' = F'(X,Y). We will show how to calculate £, +(F')
in terms of the local invariants of singularities at infinity of the pencil of pro-
jective curves F*(X,Y, Z) —tZ% t € C. Tt turns out that if (p,t) is a critical
point at infinity for F' (see [D] and Preliminaries 0.3) then £,;(F) can be
calculated by means of the polar invariants, as in the local case (see [T]). If
(p,t) is a regular point at infinity then we need another invariant of singu-
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larity to calculate £,,+(F') (see Preliminaries 0.2 and Theorem 1.2). Putting
Loot(F) = inf{£,(F) : p € Lo} we get the Lojasiewicz exponent of the
gradient VF' along the fiber F' = ¢. This notion was studied by Ha [H] and
recently by Chadzynski and Krasinski in [ChK2| in a global affine context.
In particular in [ChK2| it was proved that there is a constant {,(F) > 0
such that £ (F) = 1 (F) for all regular values ¢ of the mapping F. In ge-
neral {(F') # £ (F). The constant ¢, (F) characterizes the growth of the
gradient VF on the regular fibers F~1(¢). In this paper we give a description
of polynomials F' with {(F) = 0 (Theorem 1.3(i)) and we calculate {,(F')
in the case of one branch at infinity (Proposition 1.9). Our main theorems
(Theorem 1.2 and 1.3) improve the results obtained in [H] and [ChK2| and
show that the L.ojasiewicz exponent at infinity is a purely local notion.

0. Preliminaries. In this section we fix our notation and recall some
useful notions and results.

0.1. Branches at infinity. We use the notions of the classical theory of
plane algebraic curves. Let P?(C) = C?ULy,, where Ly, is the line at infinity.
A plane branch ~ will be called a branch at infinity if it is centered at a
point p € L, and it is not a branch of L. We denote by By, the set of all
branches at infinity centered at p and put By = Up Boo p-

Consider a projective coordinate system (X : Y : Z) such that Z = 0
is the equation of L. If F = F(X,Y) € C[X,Y] is a polynomial of de-
gree d > 0 and F* = F*(X,Y,Z) € C[X,Y, Z] is the homogeneous form
corresponding to F', then we put
7 zd
for every branch v € By.

Here ord, F™* stands for the order of vanishing of the homogeneous form
F* = F*(X,Y, Z) at the branch v. We adopt the usual conventions on the
symbol co. Note that deg, I’ € Z U {—oo} with deg, F' = —c0 if and only if
v is a branch of the projective curve F* = (.

For every branch v € B, we define the value F'(y) € CU{oo} as follows:
if deg, F' < 0 then F(v) is the unique ¢t € C such that deg,(F' —t) < 0;
if deg, F' > 0 then F'(y) = oo.

Let v € Boo. We say that a pair p(T') = (z(T),y(T)) of Laurent series
z(T), y(T) € C((T)) is a meromorphic parametrization of v if ord p(T) :=
min{ord z(T),ordy(T)} is negative and + is given in projective coordinates
by (T*z(T) : T*y(T) : T*), where k = —ord p(T). It is easy to check that
degy = —ordp(T), deg, F' = —ord F'(p(T)) and F () = F(p(T))|r=0-

For every nonconstant polynomial F' € C[X,Y] we consider its gradient

VF = (0F/0X,0F/dY). For every v € Boo we put

deg, F' = —ord =dord, Z —ord, F*, degy=ord,Z
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oF OF
deg, VI = sup {degﬂY X deg,, G_Y}
Using meromorphic parametrizations we check that deg, VF = —oo if and

only if « is a branch at infinity of a multiple component of the curve F* = 0.
Moreover for every v € B if deg, I’ # 0 then deg,, I’ < deg, VIF'+deg .

0.2. Germs of curves. Our main reference is [Cal]. We will consider the
germs 7,7/, ... of analytic curves at a given point p of a complex nonsingular
surface. We denote by (7 -7), the intersection multiplicity of v and " at p
and by g, () the Milnor number of 7. If 7 is a branch then S(v) denotes the
semigroup of vy generated by all intersection numbers (v - v'),. Let A be a
smooth branch at p. We say that two reduced germs ~y, 7/ are \-equisingular
if A\ ¢ vU~/ and there are decompositions v = (J;_, v and 7' = |J;_, 7} as
unions of the same number r > 0 of branches such that

o S(vi) =507),

o (Vi Vp = (% Y

o (Vi Ap= (i Np
foralli,j=1,...,r.

The first two conditions define the equisingularity of germs v and /.
Note that the equisingularity of the germs v U A and 4" U A does not imply
that v and +' are A-equisingular. Take for example the germs at the origin of
the curves z(y —22) = 0, z(z—y?) = 0 and y = 0 as y, 7/ and ) respectively.

Let U be an open and connected subset of C. Using the Zariski discrimi-
nant criterion [Z] we get the

EQUISINGULARITY CRITERION. Let (v! :t € U) be an analytic family of
germs such that:

(i) there is an integer n > 0 such that (y* - ), = n for all t € U,
(ii) there is an integer u > 0 such that uo(y*) = p for all t € U.

Then any two germs of the family (! : t € U) are \-equisingular.

Note here that in |Z] the discriminant criterion is proved in the case
where 7! and )\ are transverse. The proof in the general case needs some
rather obvious modifications.

Let X\ be a smooth branch at a point p of a complex surface. For any germ
~ of an analytic curve we consider the maximal polar quotient 7,(y, A) (cf.
[T| and [P2]). To recall the definition of 1,(v, ) choose a system of local
coordinates (X,Y’) such that X(p) = Y(p) = 0 and identify the local ring
at 0 with the ring of convergent power series C{X, Y }. Let f(X,Y) =0 and
I(X,Y) = 0 be the local reduced equations of v and A, respectively. Let

_af ol of ol

G =3%ay ~avax
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and put

(f»g)o
(lag)O

In [P12] an explicit formula for 7, (v, A) is given which shows that 7,(v, A) is
a A-invariant of equisingularity.
Now, define

(7, A) = sup{ : ¢ is an irreducible factor of j(f, l)}

Op(v,A) = sup {M : h is an irreducible factor of f}

(lv h)O

By the well known properties of intersection numbers

(fird (£ D)o = (i, 5(fis D)o + D (fis fi)o
i
= po(fi) + (fis Do — 1+ > _(fir fi)o
i
we get the following formula for @, (v, A):

Let v = J;_, v with branches ; pairwise different. Let p; be the Milnor
number of ;. Then

T ,U,Z‘—l 1
Op(v, A :sup{i—i—l—i—i Vi Y5 }
p( ) el (’Yz K )\)p (’Yz K )\)p %ﬁ:@( ])p

The properties listed below are useful.

L. If (y-A)p = 2 (for  irreducible or not) then O, (v, \) = (up(y) +1)/2.
2. Op(v,A) > 0 with equality if and only if v and A are smooth and
transverse.

3. Op(71,A) > % + 1 with equality if ~ is a branch.
p

0.3. Critical points at infinity. For any projective plane curve C' we de-
note by |C| the support of C. We identify C' and |C] if C' has no multiple
components. For any two projective plane curves C, C’ we denote by (C-C’),
the intersection multiplicity of the germs (C,p) and (C’,p), and by p,(C)
the Milnor number of the germ (C, p). Note that 1,(C) < +oc if and only if
there is no multiple component of C' passing through p.

The following construction is due to Broughton [B]. Let F' = F(X,Y") be
a polynomial of degree d > 0 and let F* = F*(X,Y, Z) be the homogeneous
form corresponding to F. Consider the pencil C* : F*(X,Y, Z) — tZ% = 0,
t € C, of projective curves. The set Cy given by F*(X,Y,Z) = Z = 0 is the
set of base points of the pencil (C? : ¢ € C). Fix a point p € C, and let

pp™ = inf{p,(CY) st € €}, Ap(F) = {t € C: pp(C*) > ™).
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Thus uglin is an integer and A,(F’) is a finite subset of C. Clearly the integer
dp = (C" L), does not depend on ¢. Applying the Equisingularity Criterion
to the family (C%,p), t € C\ A,(F), and to A = (Lo, p) we get the
EQUISINGULARITY AT INFINITY PROPERTY. For every p € Cy any two
germs of the family (C',p), t € C\ A,(F), are (Lo, p)-equisingular.
The pairs (p,t) € Lo X C, where p € Cy and t € Ay(F), are called

critical points at infinity of the polynomial F' (see [D] and [GwP] for other
definitions and examples).

1. Results. We keep the notation introduced in the Preliminaries. Let
F : C% — C be a polynomial of degree d > 1 and let VF = (9F/0X,0F/dY)
be its gradient. For every pair (p,t) € Lo, x C we put

deg, VF
£ F)=infd >~
pt(F) =1in { deg
and call £,(F) the Lojasiewicz exponent of the polynomial F at (p,1).
Let C be the projective closure of the affine curve F(X,Y) = 0 and let
Coo = |C| N L.

PROPERTY 1.1. Let (p,t) € Looc X C. If p & Cx then £y (F) = 4o0. If
p € Co and a multiple component of C* passes through p then £,(F) =
—00.

Proof. If p ¢ Co then the set {y € By, @ F(vy) = t} is empty and
consequently £,+(F) = inf () = +o0. If p € Cs and a multiple component
of C' passes through p then deg, VI' = —oo for a branch v of C? centered
at p and £,+(F) = —o0.

17y € Boop and F(7) :t}

In what follows we assume that p € Cy,. We say that the f.ojasiewicz

exponent £y, ;(F) is attained on an affine curve I if there is a branch ~ of I"

centered at p such that F(y) =t and % = £p(F).

Recall that C? is the projective closure of the fiber F(X,Y) —t = 0
(C' may have multiple components). We put V,F = ag—)f; + bg—g for every
g=1(a:b:0) € Ly and we call ViF = 0 a polar curve. Our main results
are:

THEOREM 1.2. Let F : C2 — C be a polynomial mapping of degree d > 1
and let (C* : t € C) be the pencil of projective curves associated with F. Then
(i) £p1(F)=d—1—6,(C" L) if t € C\ A,(F). Moreover £,,,(F) is
attained on the fiber F' =t.
(ii) £p4(F) =d—1—n,(C" Leo) if t € Ap(F) and £,4(F) is attained
on every polar curve Vo F =0, ¢ € C.
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THEOREM 1.3. Assume additionally that (p,t) € Cs X C and there is no
multiple component of Ct passing through p. Then the Fojasiewicz exponent
£p1(F) is determined by the class of (Lo, p)-equisingularity of the germ
(Ct, p) and the following holds:

(i) There exists a rational number &,(F) > 0 such that £,(F) = t,(F)
for allt € C\ Ay(F). For every t € C\ Ay(F) the exponent £,4(F)
is attained on the fiber F' =t.

(ii) t,(F) =0 if and only if C is a pencil of lines passing through p.

(iii) Ift € Ap(F) then £,(F) < —1. Let g € Loo\Coo. Then the exponent
£p1(F) is attained on the polar curve VyF = 0.

Note that property (ii) is implicit in [K-P|. The proofs of the above
theorems are given in Section 4. Now let us present some applications.

COROLLARY 1.4 (cf. [H], [D]). The following conditions are equivalent:

(M)  the pair (p,t) € Lo X C is a critical point at infinity for the poly-
nomial F,

(£)  £i(F) <1,

(G)  there exists a branch v € Buo ) such that

=200 =0 ad Fy)=t.

Proof. Conditions (M) and (L) are equivalent by Theorem 1.3(i) and (iii).

To check that (G) implies (L) take a branch v € By, satisfying (G). Then
deg, VF < 0 and by definition of the Lojasiewicz exponent, £,:(F) < 0.
Therefore £,,+(F) < —1 by Theorem 1.3. The implication (£.)=(G) is ob-

vious.

Following [ChK2| we put
deg, VF

£oo,t(F) = inf { deg"}/

and call £ +(F') the Lojasiewicz exponent of ' along the fiber F' = t.
It is easy to see that £ (F) = inf{£,(F'):p € Cx}. We say that the
exponent £ (F') is attained on an affine curve I if there is a branch at

infinity + of I" such that deingF = Loot(F). Let A(F) = Upec,, Ap(F).

COROLLARY 1.5 (cf. [ChK2] and [H]). There exists a constant t-(F) > 0
such that £ 1(F) = to(F) for all t € C\ A(F). For such t the exponent
Loot(F) is attained on the fiber F =t. Ift € A(F') then £ (F) < —1 and
the exponent £ ¢(F) is attained on every polar curve VyF =0, ¢ ¢ Cx.

Proof. We put o (F) = inf{t,(F) : p € Cx} and use Theorem 1.3.

1y € Bso and F(v) :t}
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Finally, consider the total Lojasiewicz exponent £o(F') (see [H| and
[ChK1]):
deg, VF

£o(F) = 1nf{ dog

Using Corollary 1.5 we get easily
COROLLARY 1.6 (cf. [H]). If A(F) # 0 then £oo(F') = infyc p(py Looi(F).

:VEBOO}.

REMARK 1.7. If A(F) = () and the projective closure of the affine curve
F(X,Y) = 0 crosses the line at infinity Lo, at ¢ # deg F' distinct points,
then £oo(F) < 1o(F).

In [CN-H] the authors calculated the total Lojasiewicz exponent £ (F)
in terms of the Fisenbud and Neumann diagrams. Here is a reformulation of
their result for polynomials F' with A(F) # 0.

PROPOSITION 1.8 (cf. [CN-H, Proposition 6]). Let F' : C2 — C be a
polynomial of degree d > 1 such that A(F) # 0. Put C!, = {p € Cw :
(C,Loo)p > 1}. Then

Loo(F) =d—1—sup{n,(C", L) : (p,t) € C, x C}.
Proof. We use Corollary 1.6 and Theorem 1.2(ii).

Let p(F') be the total Milnor number of F' defined to be the sum of all
Milnor numbers of the curves F' = t. Then u(F') < 400 if and only if all the
curves I’ =t are reduced.

PRrROPOSITION 1.9. Let F' be a square-free polynomial of degree d > 1
such that the curve F' = 0 has only one branch at infinity. Then
p(F) —1

d
In particular, if F' is a component of a polynomial automorphism then o (F')
—=1-1/d.

Proof. According to the Ephraim—Moh theorem (|E, Theorem 3.4|) we
have A(F) = (). Let p be the unique point at infinity of the curve C. Then all
germs (C*, p) are reduced and irreducible, p, = ug‘in and 0} = (,ugin —-1)/d
+1 (see Preliminaries 0.2 and 0.3). By Theorem 1.2(i) we get {-(F') =d —2
—(ugﬁn —1)/d. Using [CN, Proposition 12] we have d? —3d+2 = Mglin—k,u(F)
and the proposition follows.

Lo (F) = +1.

2. Local invariants of singularities. We keep the notation introduced
in the Preliminaries. Both invariants 7,(y, A) and ©,(v, A) can be calculated
by means of Puiseux series. Let f(X,Y) = 0 and I(X,Y) = 0 be local
reduced equations of y and \. Let C{X}* =, -, C{X/"}.
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PROPOSITION 2.1. Let (X,Y) be a system of coordinates such that A has
the equation X = 0. Suppose that f(X,Y) =U(X,Y) [ (Y —yi(X)) with
yi = yi(X) € C{X}* without constant terms and U(X,Y) € C{X,Y} such
that U(0,0) # 0. Then

(i) (v- )‘)p =n,
(i) Op( = sgp { Z ord(y }
- J#
(iii) 7p(y, A 1_1 { Zord —y;) + max{ord( yj)}}.
- J#

Proof. Properties (i) and (ii) follow easily from the definitions. The proof
of (iii) is given in [P12, Proposition 2.2].

PROPOSITION 2.2. If n.=(v- ), > 1 then Op(v, A) < Ly (v, A).

Proof. With the above notation, Oy(v,A) = >_,; ord(y;, — y;) for an
iop € {1,...,n}. Therefore Op(vy,\) < (n — 1) max;; {ord(yi, — y;)} and

1
QP('% )‘) + —8 Z Ord yzo - + max{ord(y,o - y)}
J#io
< 1p(75A)
by Proposition 2.1(iii).
PROPOSITION 2.3. Let n = (y-\)p > 1. If Op(7,\) =n—1 and (7, A)
=n then n = ord~, that is, v and \ are transverse.

Proof. With the notations of Proposition 2.1 we get

(1) Zord(yio—yj) =n—1 foraniye{l,...,n},
J#i0
(2) Z ord(yi, — yj) + mam{ord(y,O —y;)} <n.
J#io
From (1) and (2) we get
(3) ord(yi, —y;) =1 for all j # iy.

Now we can check that y;, = v;,(X) € C{X}. In fact, let fi(X,Y) €
C{X,Y} be the irreducible power series such that fi(X,y;, (X)) = 0. If we
had (f1,X)o > 1 then there would exist a solution y;, (X) # vi,(X) of the
equation f1(X,Y) = 0 such that ord(y;,(X)—yi, (X)) # 1 (see, for example,
[Pt2, Proposition 3.1]) and we would get a contradiction with (3). There-
fore y;,(X) € C{X} and consequently ordy;,(X) > 1. Now, by (3) we get
ordy;(X) > 1forallj=1,...,nand ord f(X,Y) = ord [[}_; (Y —y;(X)) =

22— ord(Y —y;(X)) = n = (£, X)o.
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The germ given by the equation j(f,1) = 0 will be called a local polar of
~ with respect to .

PROPOSITION 2.4. Let 4" be a local polar of v with respect to X\. Then
for every branch &,

(v-Ep (- Op
()\'f)p <mp(v,A) or (- )p < Op(7, 7).

Proof. Let f = f1--- fr and j(f,1) = g1 - gs be the decompositions into
irreducible factors and let A = 0 be the reduced equation of £&. Then
(f?h)o Sm%X{(f7g])O} or (](fal)vh)o Sm%,x{(f“](f’l))o}
(lah)o Jj=1 (lagj)o (l7h)0 i=1 (l7fl)0
by [ChP, Theorem 1.1 and Concluding Remarks|. Now we use the definitions
of 7, and O,,.

3. Polar curves. Let F': C?> — C be a polynomial of degree d > 1 and
let C' be the projective curve F*(X,Y,Z) = 0. The polar curve V,C with
the equation adF*/0X + bOF™*/JY = 0 will be called generic at infinity if
g=1(a:0:0) €Ly \|C|, that is, if g = (a : b: 0) and F*(a,b,0) # 0. The

following is well known:

LEMMA 3.1. Let D be a polar of C, generic at infinity. Suppose that the
germ (C,p) is reduced and (C - Lo ), > 1. Then (D, p) is a local polar curve
of (C,p) with respect to (Lo, p).

Recall that C/, = {p € Cx : d, > 1}.

LEMMA 3.2. Let D be a polar of C generic at infinity. Then

(i) [C11 1D A Log = Cl.

(ii) If v € B is a branch of D such that deg, F' # 0 then deg, F' =

deg, VF + deg~.

Proof. (i) It suffices to observe that p = (2o : yo : 0) € |C| N |D] if and
only if the linear form yoX — z¢Y is a multiple factor of F*(X,Y,0).

(i) Let p(T") = ((T'),y(T)) be a meromorphic parametrization of  and
let [(X,Y) =bX —aY. We get ordl(p(T)) = —deg, | = deg~, for the line
[ = 0 does not intersect the polar D at infinity. From

@ 2 (p(T) + b o (p(T)) = 0
and
HT)a S (p(T)) + H(T S (p(T)) = = F(p(T)
e get d . OF d

EZ(T) 8—X(p(T)) = —b——F(p(T)).
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Computing the orders along y of both sides we get deg, F/0X = deg, I —
degy if b # 0, deg, OF/0X = —o0 if b = 0, and similarly for deg, 9F/JY.
Hence (ii) follows.

LEMMA 3.3. Let D be a polar of C' generic at infinity. Let p € Cx and
suppose that the germ (C,p) is reduced.

(i) If p € C. then

ord, C
TIp(Q ]Loo) = sup {m Y
ord, D
i Lo) = et Sl
() 0)(C. L) =sup { 2

Proof. Use Lemma 3.1 and the definitions of 7, and ©,.

€ Boop s a branch of D}.

7Y € Booyp 15 a branch of }

PROPOSITION 3.4. Let D be a generic polar of C. Let p € Co be such
that (C,p) is reduced. Then for every branch v € Bog p,

ord, C ord, D
— < ILOO — " < aILOO .
ordy Lo — Mp(CLoo) - or ordy Lo ~ Op(C )

Proof. Use Proposition 2.4 and Lemma 3.1.

4. Lojasiewicz exponents and invariants of singularities. In this
section we give the proofs of Theorems 1.2 and 1.3. The following proposition
is well known.

PROPOSITION 4.1. Let F': C?> — C be a polynomial mapping of degree
d>1.
(i) If Ap(F) =0 then n,(C*, Loo) = 1p(C, Leo) < d.
(ii) If Ap(F) # 0 then n(C' Loo) = d for t € C\ Ay(F) and 1,(C*, L)
> d for t € Ay(F) (if C* is not reduced at p then 1,(C?, L) = +00
> d by convention).

Proof. See [CaP, pp. 35-37], [P11, Corollary 1.3|, and [GaP, Proposi-
tion 1.4].

Proof of Theorem 1.2. We may assume that degy F' = degy ' = d. Let
Dy be the polar 9F*/0X = 0 and Dj the polar 9F*/9Y = 0 (note that
(OF/0X)* = OF*/0X provided that degy F' = d). Then, by definitions, we
get

deg, VF D;
(1) YT g1 —inf {Ld” }
deg~y i

2 F)=d—-1- infd —2 ¢ L. oy ———— .
(2) £p’t( )=d sup{u} {ord,YILOO} Y € Boop, ordeoo>d}
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The property “if deg, F' # 0 then deg, I' < deg, VF + degy” can be refor-
mulated as follows:
(3) if ord, @ #d then inf{ord,D;} <ord,C.
ordy Lo i Tk =
Now, let us pass to the proof of the first part of Theorem 1.2. Fix
t € C\ Ay(F) and let v € By be a branch such that oad, O 4. By

ord~ Leo
Proposition 3.4 we get, for every polar D generic at infinity, !
ord, C* ord., D
4 —1 = <p,(C"L —1— < 6,(C" L.
() ordyLoe — p(C7 Loo) o ordy Lo — p(C"s Lioo)

Since t € C\ A,(F) we have 1,(C?,Lo) < d by Proposition 4.1. Therefore

;fjjf; >d > np(Ct,]Loo) and by (4), we get
d, D

(5) e el < 0,(C" Ly) for every polar D generic at infinity.

ord, Lo
In particular ;’;éizf; < 0,(C", Loo) for i = 1,2 and consequently, by (2), we
get
(6) Lp1(F)>d—1-6,(C" Ly).
It is easy to check that
(7) ord, D1 =ord, Dy for every branch v € B of Ct.

Thus, for every branch v of C?,
deg, VF dy D
(8) YT g1
degy ord, Lo
by (1). By definition of ©, there is a branch 7y € Boop of C* such that

s;jzgf; = 0,(C" L). Consequently,
deg., VF
©) deg o Op(C", Loo)

and Theorem 1.2(i) follows from (6) and (9).

To prove the second part of Theorem 1.2 fix t € A,(F). We may assume
that the germ (C?,p) is reduced. Let v be a branch such that ;):;JLC; > d.
By Proposition 3.4 we get either

ord., C*
10 -
1) () S
In case (a), by (3) we get
(11) inf;{ord, D;}
ord Lo

ordy Dy < 6,(C",Lo).

Snp(CtLoo) or (b) W_
v oo

< ﬁp(CtLoo)-
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In case (b), we have mféidoi—dﬂfi} < 0,(C* Lao) < 1m,(C*, Loo) by Proposi-

tion 2.2. Consequently, in both cases (11) holds and finally we get
(12) Lpi(F)>d—1—n,(C" Lo).
Now, fix a polar D generic at infinity. Then there is a branch ¢ of D such

ord,, C*

that oo Lo = np(C?, Loo). Since t € A,(F), we have 1,(C*,Lo) > d by

ord,, C*

ordy Lo = d. On the other hand, using
O oo

Lemma 3.2(ii) we check that inf{ord., D;} = ord,, C".
Therefore

Proposition 4.1 and consequently

inf{ord,, D;} _ordy, Ct
ord., Loo N ord, Lo
and Theorem 1.2(ii) follows from (12) and (13).

(13) £,4(F)<d—1— - =d—1-1,(C" Le)

Now, we can give

Proof of Theorem 1.3. By the Equisingularity at Infinity Property (Pre-
liminaries 0.3) there is a constant ©F" such that ©,(C*, L) = O5" for
all t € C\ Ap(F). Put $,(F) = d—1— 65" For t ¢ A,(F) we have
np(C' L) < d by Proposition 4.1. Let d, = (C - Lo),. Proposition 2.2
yields

gen _1 _
(14) o5 < (1 dp>d§ d—1.
Therefore {,(F) =d —1— 05" > 0 and Theorem 1.3(i) follows from The-
orem 1.2(i).

To check the second part of Theorem 1.3 suppose that ¢,(F) = 0. Then
from (14) we get d, = d, i.e. p is the only point at infinity of C'. Moreover
O,(C* L) = 65 = d—1 and 1,(C*,Lo) = d for t € C\ A,(F). By
Proposition 2.3 we get ord, C* = deg C* = d. Therefore C* and consequently
C' are pencils of lines through p. This proves Theorem 1.3(ii).

Fix now t € Ay(F). If (C* p) is not reduced then £,,(F) = —oo and
np(C?, Loo) = +oc0. Thus we may assume that (C?, p) is reduced. Using
Theorem 1.2(ii) and Proposition 4.1(ii) we get £, (F) =d—1—1,(C", Lo)
< —1. Moreover £,(F) is attained on every polar V,C' = 0, ¢ € C by
Theorem 1.2(ii), and Theorem 1.3(iii) follows.

5. Growth of the gradient. Let F : C2> — C be a nonconstant poly-
nomial. Fix (p,t) € Cx X C. For completeness we give an interpretation of
£Lp+(F) as the exponent of growth of VF(z) near the fiber F(z) =t for
z — p. We consider P?(C) with the usual topology. If 2 = (x,y) € C then
|z| = max(|z|,|y|). We set F~1(t)s = {z € C?: |F(z) —t| < §} for every
0> 0.
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THEOREM 5.1. Assume that the germ (C%,p) is reduced. Let § > 0 be
such that the set {t € C: 0 < |t — t| < 0} does not intersect A(F'). Then
there is a constant ¢ > 0 such that

(1) IVE(2)| > c|z|7tF) on the set F~(t)s for z — p.

The exponent £y,+(F) in (1) is optimal: if VF(2)| > ¢s|2|7 with some ¢, > 0
and 0 € R on F~Y(t)s for 2 — p then 0 < £,4(F).

Proof (see [ChK2, Section 5]). Fix § > 0 as above and let £g7t(F) be
the least upper bound of the set of all ¢ € R such that |VF(z)| > c¢,|2|?
with some ¢, > 0 on F~1(t)s for = — p. By the Curve Selection Lem-
ma there is a meromorphic parameterization p(T) = (z(T),y(T)) € C((T))
with ordp(T") < 0, convergent in a punctured disc, such that the mapping
7 +— p(7) defined for the real numbers 7 # 0 small enough has the following
properties:

e p(t) — pfor 7 — 0T,

o |F(p(t)) —t|<dfor 7 — 07,

ord VF(p(T)) 5
° Tp(T) = £p,t<F)-
Let v be the branch at infinity with meromorphic parameterization p(7T').

Th
en deg, VI ord VF(p(T))

degy ord p(T)
and |F(y) —t| < ¢ for F(y) = lim,_ o+ F(p(7)). By the choice of 6 we get

F(y)=tor F(y) ¢ A(F). Hence by Theorem 1.3 we have

deg., VF
4
‘£p,t(F) = dgT > °€p,F(7)(F) > £pi(F).

This proves the first part of the theorem.
To show the second part take by Theorem 1.2 a branch v € By, such

that F(y) =t and £p,,(F) = defggZF. Let I' C C? be the image of a small
punctured disc centered at 0 € C under the meromorphic parameterization
of . Since F(z) — t on I for z — p we may assume that I' C F~1(t);s. It is

easy to see that

IVE(2)| > c|z|»tF) on I' for z — p
and the exponent £,(F) is optimal. Thus £f,’t(F) < £pi(F).

REFERENCES
[B] S. A. Broughton, Milnor numbers and the topology of polynomial hypersurfaces,
Invent. Math. 92 (1988), 217-241.
[Cal E. Casas-Alvero, Singularities of Plane Curves, London Math. Soc. Lecture Note

Ser. 276, Cambridge Univ. Press, 2000.



60

J. GWOZDZIEWICZ AND A. PLOSKI

[CaP]
[CN]
[CN-H]

[ChK1]

[ChK2]
[ChP]
(D]

[E]
[GaP]
[GwP]
[H]

[K-P]

[LI-T]
[PH]
[P12]

[T]
2]

E. Casas-Alvero and R. Pereire, A bound for the number of critical values at
infinity, J. Pure Appl. Algebra 142 (1999), 35-47.

P. Cassou-Nogueés, Sur la généralisation d’un théoréme de Kouchnirenko, Com-
positio Math. 103 (1996), 95-121.

P. Cassou-Nogués et Ha Huy Vui, Sur le nombre de Lojasiewicz a Uinfini d’un
polynéme, Ann. Polon. Math. 62 (1995), 23—44.

J. Chadzynski and T. Krasinski, On the Lojasiewicz exponent at infinity for po-
lynomial mappings of C* into C* and components of polynomial automorphisms
of C%, Ann. Polon. Math. 57 (1992), 291-302.

—, —, The gradient of a polynomial at infinity, Kodai Math. J. 26 (2003),
317-339.

J. Chadzynski and A. Ploski, An inequality for intersection multiplicity of ana-
lytic curves, Bull. Polish Acad. Sci. Math. 36 (1988), 113-117.

A. H. Durfee, Five definitions of critical points at infinity, in: Singularities, The
Brieskorn Anniversary Volume, Progr. Math. 162, Birkh&user, 1998, 345-360.
R. Ephraim, Special polars and curves with one place at infinity, in: Proc. Sym-
pos. Pure Math. 40, Part I, Amer. Math. Soc., 1983, 353-359.

E. R. Garcia Barroso and A. Ploski, Pinceaur de courbes planes et invariants
polaires, Ann. Polon. Math. 83 (2004), 113-128.

J. Gwozdziewicz and A. Ploski, Formulae for the singularities at infinity of plane
algebraic curves, Univ. Iag. Acta Math. 39 (2001), 109-133.

Ha Huy Vui, Nombres de Lojasiewicz et singularités a l’infini des polynémes de
deuz variables complezes, C. R. Acad. Sci. Paris Sér. I 311 (1990), 429-432.

T. C. Kuo and A. Parusiniski, Newton polygon relative to an arc, in: Real and
Complex Singularities (Sao Carlos, 1998), J. W. Bruce and F. Tari (eds.), Chap-
man & Hall and CRC, 2000, 76-93.

M. Lejeune-Jalabert et B. Teissier, Cléture intégrale des idéauzx et équisingularité,
Centre de Mathématiques, Ecole Polytechnique 1974.

A. Ploski, Polar quotients and singularities at infinity of polynomials in two
complez variables, Ann. Polon. Math. 78 (2002), 49-58.

—, On the maximal polar quotient of an analytic plane curve, Kodai Math. J.
24 (2001), 120-133.

B. Teissier, Variétés polaires, Invent. Math. 40 (1977), 267-292.

O. Zariski, Contributions to the problem of equisingularity, in: Questions on
Algebraic Varieties, CIME, Edizioni Cremonese, Roma, 1970, 261-343.

Technical University
Aleja 1000LPP 7
25-314 Kielce, Poland

E-mail:

matjg@tu.kielce.pl
matap@tu.kielce.pl

Received 19 April 2004;
revised 22 December 2004 (4448)



