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�OJASIEWICZ EXPONENTS AND SINGULARITIES AT INFINITYOF POLYNOMIALS IN TWO COMPLEX VARIABLESBYJANUSZ GWO�DZIEWICZ and ARKADIUSZ P�OSKI (Kiel
e)Abstra
t. For every polynomial F in two 
omplex variables we de�ne the �ojasiewi
zexponents £p,t(F ) measuring the growth of the gradient ∇F on the bran
hes 
entered atpoints p at in�nity su
h that F approa
hes t along γ. We 
al
ulate the exponents £p,t(F )in terms of the lo
al invariants of singularities of the pen
il of proje
tive 
urves asso
iatedwith F .Introdu
tion. The notion of �ojasiewi
z exponent was introdu
ed andstudied by Lejeune-Jalabert and Teissier [LJ-T℄. In the 
ase of isolated sin-gularities of hypersurfa
es Teissier [T℄ showed that the �ojasiewi
z expo-nent of the gradient 
an be 
al
ulated by means of polar invariants. ThenHà [H℄ de�ned the �ojasiewi
z exponents at in�nity £∞,t(F ) and £∞(F ) forevery polynomial F of two 
omplex variables and applied these notions tothe singularities at in�nity. His results were 
ompleted by Ch¡dzy«ski andKrasi«ski [ChK1℄, [ChK2℄. Moreover Cassou-Noguès and Hà [CN-H℄ gave aformula for £∞(F ) using the Eisenbud and Neumann diagrams.In this note we de�ne the �ojasiewi
z exponents £p,t(F ) at points (p, t)at in�nity. To be more spe
i�
, 
onsider a polynomial F : C

2 → C of degree
d > 0. To study the growth of the gradient ∇F = (∂F/∂X, ∂F/∂Y ) at in�-nity we extend C

2 to the proje
tive plane P
2(C) = C

2∪L∞ and 
onsider the�ojasiewi
z exponents £p,t(F ) for every pair (p, t) ∈ L∞ × C. Roughly spe-aking (see Se
tion 1 for the pre
ise de�nition), £p,t(F ) measures the growthof ∇F on the bran
hes γ of P
2(C) 
entered at p su
h that F approa
hes

t ∈ C along γ. Let F ∗(X, Y, Z) = ZdF (X/Z, Y/Z) be the homogeneousform 
orresponding to F = F (X, Y ). We will show how to 
al
ulate £p,t(F )in terms of the lo
al invariants of singularities at in�nity of the pen
il of pro-je
tive 
urves F ∗(X, Y, Z)− tZd, t ∈ C. It turns out that if (p, t) is a 
riti
alpoint at in�nity for F (see [D℄ and Preliminaries 0.3) then £p,t(F ) 
an be
al
ulated by means of the polar invariants, as in the lo
al 
ase (see [T℄). If
(p, t) is a regular point at in�nity then we need another invariant of singu-2000 Mathemati
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al
ulate £p,t(F ) (see Preliminaries 0.2 and Theorem 1.2). Putting
£∞,t(F ) = inf{£p,t(F ) : p ∈ L∞} we get the �ojasiewi
z exponent of thegradient ∇F along the �ber F = t. This notion was studied by Hà [H℄ andre
ently by Ch¡dzy«ski and Krasi«ski in [ChK2℄ in a global a�ne 
ontext.In parti
ular in [ChK2℄ it was proved that there is a 
onstant ª∞(F ) ≥ 0su
h that £∞,t(F ) = ª∞(F ) for all regular values t of the mapping F . In ge-neral ª∞(F ) 6= £∞(F ). The 
onstant ª∞(F ) 
hara
terizes the growth of thegradient ∇F on the regular �bers F−1(t). In this paper we give a des
riptionof polynomials F with ª∞(F ) = 0 (Theorem 1.3(i)) and we 
al
ulate ª∞(F )in the 
ase of one bran
h at in�nity (Proposition 1.9). Our main theorems(Theorem 1.2 and 1.3) improve the results obtained in [H℄ and [ChK2℄ andshow that the �ojasiewi
z exponent at in�nity is a purely lo
al notion.0. Preliminaries. In this se
tion we �x our notation and re
all someuseful notions and results.0.1. Bran
hes at in�nity. We use the notions of the 
lassi
al theory ofplane algebrai
 
urves. Let P

2(C) = C
2∪L∞, where L∞ is the line at in�nity.A plane bran
h γ will be 
alled a bran
h at in�nity if it is 
entered at apoint p ∈ L∞ and it is not a bran
h of L∞. We denote by B∞,p the set of allbran
hes at in�nity 
entered at p and put B∞ =

⋃

p B∞,p.Consider a proje
tive 
oordinate system (X : Y : Z) su
h that Z = 0is the equation of L∞. If F = F (X, Y ) ∈ C[X, Y ] is a polynomial of de-gree d > 0 and F ∗ = F ∗(X, Y, Z) ∈ C[X, Y, Z] is the homogeneous form
orresponding to F , then we put
degγ F = − ordγ

F ∗

Zd
= d ordγ Z − ordγ F ∗, deg γ = ordγ Zfor every bran
h γ ∈ B∞.Here ordγ F ∗ stands for the order of vanishing of the homogeneous form

F ∗ = F ∗(X, Y, Z) at the bran
h γ. We adopt the usual 
onventions on thesymbol ∞. Note that degγ F ∈ Z ∪ {−∞} with degγ F = −∞ if and only if
γ is a bran
h of the proje
tive 
urve F ∗ = 0.For every bran
h γ ∈ B∞ we de�ne the value F (γ) ∈ C∪{∞} as follows:if degγ F ≤ 0 then F (γ) is the unique t ∈ C su
h that degγ(F − t) < 0;if degγ F > 0 then F (γ) = ∞.Let γ ∈ B∞. We say that a pair p(T ) = (x(T ), y(T )) of Laurent series
x(T ), y(T ) ∈ C((T )) is a meromorphi
 parametrization of γ if ord p(T ) :=
min{ordx(T ), ord y(T )} is negative and γ is given in proje
tive 
oordinatesby (T kx(T ) : T ky(T ) : T k), where k = − ord p(T ). It is easy to 
he
k that
deg γ = − ord p(T ), degγ F = − ord F (p(T )) and F (γ) = F (p(T ))|T=0.For every non
onstant polynomial F ∈ C[X, Y ] we 
onsider its gradient
∇F = (∂F/∂X, ∂F/∂Y ). For every γ ∈ B∞ we put
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degγ ∇F = sup

{

degγ

∂F

∂X
, degγ

∂F

∂Y

}

.Using meromorphi
 parametrizations we 
he
k that degγ ∇F = −∞ if andonly if γ is a bran
h at in�nity of a multiple 
omponent of the 
urve F ∗ = 0.Moreover for every γ ∈ B∞ if degγ F 6= 0 then degγ F ≤ degγ ∇F +deg γ.0.2. Germs of 
urves. Our main referen
e is [Ca℄. We will 
onsider thegerms γ, γ′, . . . of analyti
 
urves at a given point p of a 
omplex nonsingularsurfa
e. We denote by (γ · γ′)p the interse
tion multipli
ity of γ and γ′ at pand by µp(γ) the Milnor number of γ. If γ is a bran
h then S(γ) denotes thesemigroup of γ generated by all interse
tion numbers (γ · γ′)p. Let λ be asmooth bran
h at p. We say that two redu
ed germs γ, γ′ are λ-equisingularif λ 6⊂ γ ∪ γ′ and there are de
ompositions γ =
⋃r

i=1 γi and γ′ =
⋃r

i=1 γ′
i asunions of the same number r > 0 of bran
hes su
h that

• S(γi) = S(γ′
i),

• (γi · γj)p = (γ′
i · γ

′
j)p,

• (γi · λ)p = (γ′
i · λ)pfor all i, j = 1, . . . , r.The �rst two 
onditions de�ne the equisingularity of germs γ and γ′.Note that the equisingularity of the germs γ ∪ λ and γ′ ∪ λ does not implythat γ and γ′ are λ-equisingular. Take for example the germs at the origin ofthe 
urves x(y−x2) = 0, x(x−y2) = 0 and y = 0 as γ, γ′ and λ respe
tively.Let U be an open and 
onne
ted subset of C. Using the Zariski dis
rimi-nant 
riterion [Z℄ we get the

Equisingularity Criterion. Let (γt : t ∈ U) be an analyti
 family ofgerms su
h that:(i) there is an integer n > 0 su
h that (γt · λ)p = n for all t ∈ U,(ii) there is an integer µ ≥ 0 su
h that µ0(γ
t) = µ for all t ∈ U .Then any two germs of the family (γt : t ∈ U) are λ-equisingular.Note here that in [Z℄ the dis
riminant 
riterion is proved in the 
asewhere γt and λ are transverse. The proof in the general 
ase needs somerather obvious modi�
ations.Let λ be a smooth bran
h at a point p of a 
omplex surfa
e. For any germ

γ of an analyti
 
urve we 
onsider the maximal polar quotient ηp(γ, λ) (
f.[T℄ and [Pª2℄). To re
all the de�nition of ηp(γ, λ) 
hoose a system of lo
al
oordinates (X, Y ) su
h that X(p) = Y (p) = 0 and identify the lo
al ringat 0 with the ring of 
onvergent power series C{X, Y }. Let f(X, Y ) = 0 and
l(X, Y ) = 0 be the lo
al redu
ed equations of γ and λ, respe
tively. Let

j(f, l) =
∂f

∂X

∂l

∂Y
−

∂f

∂Y

∂l

∂X
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ηp(γ, λ) = sup

{

(f, g)0
(l, g)0

: g is an irredu
ible fa
tor of j(f, l)

}

.In [Pª2℄ an expli
it formula for ηp(γ, λ) is given whi
h shows that ηp(γ, λ) isa λ-invariant of equisingularity.Now, de�ne
Θp(γ, λ) = sup

{

(h, j(f, l))0
(l, h)0

: h is an irredu
ible fa
tor of f

}

.By the well known properties of interse
tion numbers
(fi, j(f, l))0 = (fi, j(fi, l))0 +

∑

j 6=i

(fi, fj)0

= µ0(fi) + (fi, l)0 − 1 +
∑

j 6=i

(fi, fj)0

we get the following formula for Θp(γ, λ):Let γ =
⋃r

i=1 γi with bran
hes γi pairwise di�erent. Let µi be the Milnornumber of γi. Then
Θp(γ, λ) =

r
sup
i=1

{

µi − 1

(γi · λ)p
+ 1 +

1

(γi · λ)p

∑

j 6=i

(γi · γj)p

}

.

The properties listed below are useful.1. If (γ ·λ)p = 2 (for γ irredu
ible or not) then Θp(γ, λ) = (µp(γ) + 1)/2.2. Θp(γ, λ) ≥ 0 with equality if and only if γ and λ are smooth andtransverse.3. Θp(γ, λ) ≥ µp(γ)−1
(γ·λ)p

+ 1 with equality if γ is a bran
h.0.3. Criti
al points at in�nity. For any proje
tive plane 
urve C we de-note by |C| the support of C. We identify C and |C| if C has no multiple
omponents. For any two proje
tive plane 
urves C, C ′ we denote by (C ·C ′)pthe interse
tion multipli
ity of the germs (C, p) and (C ′, p), and by µp(C)the Milnor number of the germ (C, p). Note that µp(C) < +∞ if and only ifthere is no multiple 
omponent of C passing through p.The following 
onstru
tion is due to Broughton [B℄. Let F = F (X, Y ) bea polynomial of degree d > 0 and let F ∗ = F ∗(X, Y, Z) be the homogeneousform 
orresponding to F . Consider the pen
il Ct : F ∗(X, Y, Z) − tZd = 0,
t ∈ C, of proje
tive 
urves. The set C∞ given by F ∗(X, Y, Z) = Z = 0 is theset of base points of the pen
il (Ct : t ∈ C). Fix a point p ∈ C∞ and let

µmin
p = inf{µp(C

t) : t ∈ C}, Λp(F ) = {t ∈ C : µp(C
t) > µmin

p }.
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p is an integer and Λp(F ) is a �nite subset of C. Clearly the integer

dp = (Ct ·L∞)p does not depend on t. Applying the Equisingularity Criterionto the family (Ct, p), t ∈ C \ Λp(F ), and to λ = (L∞, p) we get the
Equisingularity at Infinity Property. For every p ∈ C∞ any twogerms of the family (Ct, p), t ∈ C \ Λp(F ), are (L∞, p)-equisingular.The pairs (p, t) ∈ L∞ × C, where p ∈ C∞ and t ∈ Λp(F ), are 
alled
riti
al points at in�nity of the polynomial F (see [D℄ and [GwP℄ for otherde�nitions and examples).1. Results. We keep the notation introdu
ed in the Preliminaries. Let

F : C
2 → C be a polynomial of degree d > 1 and let∇F = (∂F/∂X, ∂F/∂Y )be its gradient. For every pair (p, t) ∈ L∞ × C we put

£p,t(F ) = inf

{

degγ ∇F

deg γ
: γ ∈ B∞,p and F (γ) = t

}

and 
all £p,t(F ) the �ojasiewi
z exponent of the polynomial F at (p, t).Let C be the proje
tive 
losure of the a�ne 
urve F (X, Y ) = 0 and let
C∞ = |C| ∩ L∞.Property 1.1. Let (p, t) ∈ L∞ × C. If p 6∈ C∞ then £p,t(F ) = +∞. If
p ∈ C∞ and a multiple 
omponent of Ct passes through p then £p,t(F ) =
−∞.Proof. If p 6∈ C∞ then the set {γ ∈ B∞,p : F (γ) = t} is empty and
onsequently £p,t(F ) = inf ∅ = +∞. If p ∈ C∞ and a multiple 
omponentof Ct passes through p then degγ ∇F = −∞ for a bran
h γ of Ct 
enteredat p and £p,t(F ) = −∞.In what follows we assume that p ∈ C∞. We say that the �ojasiewi
zexponent £p,t(F ) is attained on an a�ne 
urve Γ if there is a bran
h γ of Γ
entered at p su
h that F (γ) = t and degγ ∇F

deg γ = £p,t(F ).Re
all that Ct is the proje
tive 
losure of the �ber F (X, Y ) − t = 0(Ct may have multiple 
omponents). We put ∇qF = a ∂F
∂X + b∂F

∂Y for every
q = (a : b : 0) ∈ L∞ and we 
all ∇qF = 0 a polar 
urve. Our main resultsare:Theorem 1.2. Let F : C

2 → C be a polynomial mapping of degree d > 1and let (Ct : t ∈ C) be the pen
il of proje
tive 
urves asso
iated with F . Then(i) £p,t(F ) = d − 1 − Θp(C
t, L∞) if t ∈ C \ Λp(F ). Moreover £p,t(F ) isattained on the �ber F = t.(ii) £p,t(F ) = d − 1 − ηp(C
t, L∞) if t ∈ Λp(F ) and £p,t(F ) is attainedon every polar 
urve ∇qF = 0, q 6∈ C∞.



52 J. GWO�DZIEWICZ AND A. P�OSKITheorem 1.3. Assume additionally that (p, t) ∈ C∞×C and there is nomultiple 
omponent of Ct passing through p. Then the �ojasiewi
z exponent
£p,t(F ) is determined by the 
lass of (L∞, p)-equisingularity of the germ
(Ct, p) and the following holds:(i) There exists a rational number ªp(F ) ≥ 0 su
h that £p,t(F ) = ªp(F )for all t ∈ C \ Λp(F ). For every t ∈ C \ Λp(F ) the exponent £p,t(F )is attained on the �ber F = t.(ii) ªp(F ) = 0 if and only if C is a pen
il of lines passing through p.(iii) If t ∈ Λp(F ) then £p,t(F ) < −1. Let q ∈ L∞\C∞. Then the exponent

£p,t(F ) is attained on the polar 
urve ∇qF = 0.Note that property (ii) is impli
it in [K-P℄. The proofs of the abovetheorems are given in Se
tion 4. Now let us present some appli
ations.Corollary 1.4 (
f. [H℄, [D℄). The following 
onditions are equivalent :(M) the pair (p, t) ∈ L∞ × C is a 
riti
al point at in�nity for the poly-nomial F ,(�) £p,t(F ) < −1,(G) there exists a bran
h γ ∈ B∞,p su
h that
∂F

∂X
(γ) =

∂F

∂Y
(γ) = 0 and F (γ) = t.Proof. Conditions (M) and (�) are equivalent by Theorem 1.3(i) and (iii).To 
he
k that (G) implies (�) take a bran
h γ ∈ B∞,p satisfying (G). Then

degγ ∇F < 0 and by de�nition of the �ojasiewi
z exponent, £p,t(F ) < 0.Therefore £p,t(F ) < −1 by Theorem 1.3. The impli
ation (�)⇒(G) is ob-vious.Following [ChK2℄ we put
£∞,t(F ) = inf

{

degγ ∇F

deg γ
: γ ∈ B∞ and F (γ) = t

}

and 
all £∞,t(F ) the �ojasiewi
z exponent of F along the �ber F = t.It is easy to see that £∞,t(F ) = inf{£p,t(F ) : p ∈ C∞}. We say that theexponent £∞,t(F ) is attained on an a�ne 
urve Γ if there is a bran
h atin�nity γ of Γ su
h that degγ ∇F

deg γ = £∞,t(F ). Let Λ(F ) =
⋃

p∈C∞

Λp(F ).Corollary 1.5 (
f. [ChK2℄ and [H℄). There exists a 
onstant ª∞(F ) ≥ 0su
h that £∞,t(F ) = ª∞(F ) for all t ∈ C \ Λ(F ). For su
h t the exponent
£∞,t(F ) is attained on the �ber F = t. If t ∈ Λ(F ) then £∞,t(F ) < −1 andthe exponent £∞,t(F ) is attained on every polar 
urve ∇qF = 0, q 6∈ C∞.Proof. We put ª∞(F ) = inf{ªp(F ) : p ∈ C∞} and use Theorem 1.3.
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onsider the total �ojasiewi
z exponent £∞(F ) (see [H℄ and[ChK1℄):
£∞(F ) = inf

{

degγ ∇F

deg γ
: γ ∈ B∞

}

.Using Corollary 1.5 we get easilyCorollary 1.6 (
f. [H℄). If Λ(F ) 6= ∅ then £∞(F ) = inft∈Λ(F ) £∞,t(F ).Remark 1.7. If Λ(F ) = ∅ and the proje
tive 
losure of the a�ne 
urve
F (X, Y ) = 0 
rosses the line at in�nity L∞ at c 6= deg F distin
t points,then £∞(F ) < ª∞(F ).In [CN-H℄ the authors 
al
ulated the total �ojasiewi
z exponent £∞(F )in terms of the Eisenbud and Neumann diagrams. Here is a reformulation oftheir result for polynomials F with Λ(F ) 6= ∅.Proposition 1.8 (
f. [CN-H, Proposition 6℄). Let F : C

2 → C be apolynomial of degree d > 1 su
h that Λ(F ) 6= ∅. Put C ′
∞ = { p ∈ C∞ :

(C, L∞)p > 1 }. Then
£∞(F ) = d − 1 − sup{ηp(C

t, L∞) : (p, t) ∈ C ′
∞ × C}.Proof. We use Corollary 1.6 and Theorem 1.2(ii).Let µ(F ) be the total Milnor number of F de�ned to be the sum of allMilnor numbers of the 
urves F = t. Then µ(F ) < +∞ if and only if all the
urves F = t are redu
ed.Proposition 1.9. Let F be a square-free polynomial of degree d > 1su
h that the 
urve F = 0 has only one bran
h at in�nity. Thenª∞(F ) =

µ(F ) − 1

d
+ 1.In parti
ular , if F is a 
omponent of a polynomial automorphism then ª∞(F )

= 1 − 1/d.Proof. A

ording to the Ephraim�Moh theorem ([E, Theorem 3.4℄) wehave Λ(F ) = ∅. Let p be the unique point at in�nity of the 
urve C. Then allgerms (Ct, p) are redu
ed and irredu
ible, µt
p ≡ µmin

p and θt
p ≡ (µmin

p − 1)/d
+1 (see Preliminaries 0.2 and 0.3). By Theorem 1.2(i) we get ª∞(F ) = d−2
−(µmin

p − 1)/d. Using [CN, Proposition 12℄ we have d2−3d+2 = µmin
p +µ(F )and the proposition follows.2. Lo
al invariants of singularities. We keep the notation introdu
edin the Preliminaries. Both invariants ηp(γ, λ) and Θp(γ, λ) 
an be 
al
ulatedby means of Puiseux series. Let f(X, Y ) = 0 and l(X, Y ) = 0 be lo
alredu
ed equations of γ and λ. Let C{X}∗ =

⋃

n≥1 C{X1/n}.



54 J. GWO�DZIEWICZ AND A. P�OSKIProposition 2.1. Let (X, Y ) be a system of 
oordinates su
h that λ hasthe equation X = 0. Suppose that f(X, Y ) = U(X, Y )
∏n

i=1(Y − yi(X)) with
yi = yi(X) ∈ C{X}∗ without 
onstant terms and U(X, Y ) ∈ C{X, Y } su
hthat U(0, 0) 6= 0. Then(i) (γ · λ)p = n,(ii) Θp(γ, λ) =

n
sup
i=1

{

∑

j 6=i

ord(yi − yj)
},(iii) ηp(γ, λ) =

n
sup
i=1

{

∑

j 6=i

ord(yi − yj) + max
j 6=i

{ord(yi − yj)}
}.

Proof. Properties (i) and (ii) follow easily from the de�nitions. The proofof (iii) is given in [Pª2, Proposition 2.2℄.Proposition 2.2. If n = (γ · λ)p > 1 then Θp(γ, λ) ≤ n−1
n ηp(γ, λ).Proof. With the above notation, Θp(γ, λ) =

∑

j 6=i0
ord(yi0 − yj) for an

i0 ∈ {1, . . . , n}. Therefore Θp(γ, λ) ≤ (n − 1) maxj 6=i0{ord(yi0 − yj)} and
Θp(γ, λ) +

1

n − 1
Θp(γ, λ) ≤

∑

j 6=i0

ord(yi0 − yj) + max
j 6=i0

{ord(yi0 − yj)}

≤ ηp(γ, λ)by Proposition 2.1(iii).Proposition 2.3. Let n = (γ ·λ)p > 1. If Θp(γ, λ) = n−1 and ηp(γ, λ)
= n then n = ord γ, that is, γ and λ are transverse.Proof. With the notations of Proposition 2.1 we get

∑

j 6=i0

ord(yi0 − yj) = n − 1 for an i0 ∈ {1, . . . , n},(1)
∑

j 6=i0

ord(yi0 − yj) + max
j 6=i0

{ord(yi0 − yj)} ≤ n.(2)
From (1) and (2) we get(3) ord(yi0 − yj) = 1 for all j 6= i0.Now we 
an 
he
k that yi0 = yi0(X) ∈ C{X}. In fa
t, let f1(X, Y ) ∈
C{X, Y } be the irredu
ible power series su
h that f1(X, yi0(X)) = 0. If wehad (f1, X)0 > 1 then there would exist a solution yi1(X) 6= yi0(X) of theequation f1(X, Y ) = 0 su
h that ord(yi0(X)−yi1(X)) 6= 1 (see, for example,[Pª2, Proposition 3.1℄) and we would get a 
ontradi
tion with (3). There-fore yi0(X) ∈ C{X} and 
onsequently ord yi0(X) ≥ 1. Now, by (3) we get
ord yj(X) ≥ 1 for all j = 1, . . . , n and ord f(X, Y ) = ord

∏n
j=1(Y −yj(X)) =

∑n
j=1 ord(Y − yj(X)) = n = (f, X)0.



�OJASIEWICZ EXPONENTS AND SINGULARITIES AT INFINITY 55The germ given by the equation j(f, l) = 0 will be 
alled a lo
al polar of
γ with respe
t to λ.Proposition 2.4. Let γ′ be a lo
al polar of γ with respe
t to λ. Thenfor every bran
h ξ,

(γ · ξ)p

(λ · ξ)p
≤ ηp(γ, λ) or (γ′ · ξ)p

(λ · ξ)p
≤ Θp(γ, λ).Proof. Let f = f1 · · · fr and j(f, l) = g1 · · · gs be the de
ompositions intoirredu
ible fa
tors and let h = 0 be the redu
ed equation of ξ. Then

(f, h)0
(l, h)0

≤
s

max
j=1

{

(f, gj)0
(l, gj)0

} or (j(f, l), h)0
(l, h)0

≤
r

max
i=1

{

(fi, j(f, l))0
(l, fi)0

}

by [ChP, Theorem 1.1 and Con
luding Remarks℄. Now we use the de�nitionsof ηp and Θp.3. Polar 
urves. Let F : C
2 → C be a polynomial of degree d > 1 andlet C be the proje
tive 
urve F ∗(X, Y, Z) = 0. The polar 
urve ∇qC withthe equation a∂F ∗/∂X + b∂F ∗/∂Y = 0 will be 
alled generi
 at in�nity if

q = (a : b : 0) ∈ L∞ \ |C|, that is, if q = (a : b : 0) and F ∗(a, b, 0) 6= 0. Thefollowing is well known:Lemma 3.1. Let D be a polar of C, generi
 at in�nity. Suppose that thegerm (C, p) is redu
ed and (C · L∞)p > 1. Then (D, p) is a lo
al polar 
urveof (C, p) with respe
t to (L∞, p).Re
all that C ′
∞ = {p ∈ C∞ : dp > 1}.Lemma 3.2. Let D be a polar of C generi
 at in�nity. Then(i) |C| ∩ |D| ∩ L∞ = C ′

∞.(ii) If γ ∈ B∞ is a bran
h of D su
h that degγ F 6= 0 then degγ F =
degγ ∇F + deg γ.Proof. (i) It su�
es to observe that p = (x0 : y0 : 0) ∈ |C| ∩ |D| if andonly if the linear form y0X − x0Y is a multiple fa
tor of F ∗(X, Y, 0).(ii) Let p(T ) = (x(T ), y(T )) be a meromorphi
 parametrization of γ andlet l(X, Y ) = bX − aY . We get ord l(p(T )) = −degγ l = deg γ, for the line

l = 0 does not interse
t the polar D at in�nity. From
a

∂F

∂X
(p(T )) + b

∂F

∂Y
(p(T )) = 0and

ẋ(T )a
∂F

∂X
(p(T )) + ẏ(T )b

∂F

∂Y
(p(T )) =

d

dT
F (p(T ))we get

d

dt
l(T )

∂F

∂X
(p(T )) = −b

d

dT
F (p(T )).



56 J. GWO�DZIEWICZ AND A. P�OSKIComputing the orders along γ of both sides we get degγ ∂F/∂X = degγ F −
deg γ if b 6= 0, degγ ∂F/∂X = −∞ if b = 0, and similarly for degγ ∂F/∂Y .Hen
e (ii) follows.Lemma 3.3. Let D be a polar of C generi
 at in�nity. Let p ∈ C∞ andsuppose that the germ (C, p) is redu
ed.(i) If p ∈ C ′

∞ then
ηp(C, L∞) = sup

{

ordγ C

ordγ L∞
: γ ∈ B∞,p is a bran
h of D

}

.

(ii) Θp(C, L∞) = sup

{

ordγ D

ordγ L∞
: γ ∈ B∞,p is a bran
h of }.Proof. Use Lemma 3.1 and the de�nitions of ηp and Θp.Proposition 3.4. Let D be a generi
 polar of C. Let p ∈ C∞ be su
hthat (C, p) is redu
ed. Then for every bran
h γ ∈ B∞,p,

ordγ C

ordγ L∞
≤ ηp(C, L∞) or ordγ D

ordγ L∞
≤ Θp(C, L∞).Proof. Use Proposition 2.4 and Lemma 3.1.4. �ojasiewi
z exponents and invariants of singularities. In thisse
tion we give the proofs of Theorems 1.2 and 1.3. The following propositionis well known.Proposition 4.1. Let F : C

2 → C be a polynomial mapping of degree
d > 1.(i) If Λp(F ) = ∅ then ηp(C

t, L∞) = ηp(C, L∞) < d.(ii) If Λp(F ) 6= ∅ then η(Ct, L∞) = d for t ∈ C \ Λp(F ) and ηp(C
t, L∞)

> d for t ∈ Λp(F ) (if Ct is not redu
ed at p then ηp(C
t, L∞) = +∞

> d by 
onvention).Proof. See [CaP, pp. 35�37℄, [Pª1, Corollary 1.3℄, and [GaP, Proposi-tion 1.4℄.Proof of Theorem 1.2. We may assume that degX F = degY F = d. Let
D1 be the polar ∂F ∗/∂X = 0 and D2 the polar ∂F ∗/∂Y = 0 (note that
(∂F/∂X)∗ = ∂F ∗/∂X provided that degX F = d). Then, by de�nitions, weget
(1)

degγ ∇F

deg γ
= d − 1 − inf

i

{

ordγ Di

ordγ L∞

}

,

(2) £p,t(F ) = d − 1 − sup

{

inf
i

{

ordγ Di

ordγ L∞

}

: γ ∈ B∞,p,
ordγ Ct

ordγ L∞
> d

}

.



�OJASIEWICZ EXPONENTS AND SINGULARITIES AT INFINITY 57The property �if degγ F 6= 0 then degγ F ≤ degγ ∇F + deg γ� 
an be refor-mulated as follows:(3) if ordγ C

ordγ L∞
6= d then inf

i
{ordγ Di} ≤ ordγ C.Now, let us pass to the proof of the �rst part of Theorem 1.2. Fix

t ∈ C \ Λp(F ) and let γ ∈ B∞,p be a bran
h su
h that ordγ Ct

ordγ L∞

> d. ByProposition 3.4 we get, for every polar D generi
 at in�nity,(4) ordγ Ct

ordγ L∞
≤ ηp(C

t, L∞) or ordγ D

ordγ L∞
≤ Θp(C

t, L∞).Sin
e t ∈ C \ Λp(F ) we have ηp(C
t, L∞) ≤ d by Proposition 4.1. Therefore

ordγ Ct

ordγ L∞

> d ≥ ηp(C
t, L∞) and by (4), we get(5) ordγ D

ordγ L∞
≤ Θp(C

t, L∞) for every polar D generi
 at in�nity.In parti
ular ordγ Di

ordγ L∞

≤ Θp(C
t, L∞) for i = 1, 2 and 
onsequently, by (2), weget(6) £p,t(F ) ≥ d − 1 − Θp(C

t, L∞).It is easy to 
he
k that(7) ordγ D1 = ordγ D2 for every bran
h γ ∈ B∞,p of Ct.Thus, for every bran
h γ of Ct,(8) degγ ∇F

deg γ
= d − 1 −

ordγ D1

ordγ L∞by (1). By de�nition of Θp there is a bran
h γ0 ∈ B∞,p of Ct su
h that
ordγ0

D1

ordγ0
L∞

= Θp(C
t, L∞). Consequently,(9) degγ0

∇F

deg γ0
= d − 1 − Θp(C

t, L∞)and Theorem 1.2(i) follows from (6) and (9).To prove the se
ond part of Theorem 1.2 �x t ∈ Λp(F ). We may assumethat the germ (Ct, p) is redu
ed. Let γ be a bran
h su
h that ordγ Ct

ordγ L∞

> d.By Proposition 3.4 we get either(10) (a)
ordγ Ct

ordγ L∞
≤ ηp(C

t, L∞) or (b)
ordγ D1

ordγ L∞
≤ Θp(C

t, L∞).In 
ase (a), by (3) we get(11) infi{ordγ Di}

ordγ L∞
≤ ηp(C

t, L∞).
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In 
ase (b), we have infi{ordγ Di}

ordγ L∞

≤ Θp(C
t, L∞) < ηp(C

t, L∞) by Proposi-tion 2.2. Consequently, in both 
ases (11) holds and �nally we get(12) £p,t(F ) ≥ d − 1 − ηp(C
t, L∞).Now, �x a polar D generi
 at in�nity. Then there is a bran
h γ0 of D su
hthat ordγ0

Ct

ordγ0
L∞

= ηp(C
t, L∞). Sin
e t ∈ Λp(F ), we have ηp(C

t, L∞) > d byProposition 4.1 and 
onsequently ordγ0
Ct

ordγ0
L∞

> d. On the other hand, usingLemma 3.2(ii) we 
he
k that inf{ordγ0
Di} = ordγ0

Ct.Therefore
(13) £p,t(F )≤ d−1−

inf{ordγ0
Di}

ordγ0
L∞

= d−1−
ordγ0

Ct

ordγ0
L∞

= d−1−ηp(C
t, L∞)and Theorem 1.2(ii) follows from (12) and (13).Now, we 
an giveProof of Theorem 1.3. By the Equisingularity at In�nity Property (Pre-liminaries 0.3) there is a 
onstant Θgen

p su
h that Θp(C
t, L∞) = Θgen

p forall t ∈ C \ Λp(F ). Put ªp(F ) = d − 1 − Θgen
p . For t 6∈ Λp(F ) we have

ηp(C
t, L∞) ≤ d by Proposition 4.1. Let dp = (C · L∞)p. Proposition 2.2yields(14) Θgen

p ≤

(

1 −
1

dp

)

d ≤ d − 1.Therefore ªp(F ) = d − 1 − Θgen
p ≥ 0 and Theorem 1.3(i) follows from The-orem 1.2(i).To 
he
k the se
ond part of Theorem 1.3 suppose that ªp(F ) = 0. Thenfrom (14) we get dp = d, i.e. p is the only point at in�nity of C. Moreover

Θp(C
t, L∞) = Θgen

p = d − 1 and ηp(C
t, L∞) = d for t ∈ C \ Λp(F ). ByProposition 2.3 we get ordp Ct = deg Ct = d. Therefore Ct and 
onsequently

C are pen
ils of lines through p. This proves Theorem 1.3(ii).Fix now t ∈ Λp(F ). If (Ct, p) is not redu
ed then £p,t(F ) = −∞ and
ηp(C

t, L∞) = +∞. Thus we may assume that (Ct, p) is redu
ed. UsingTheorem 1.2(ii) and Proposition 4.1(ii) we get £p,t(F ) = d− 1− ηp(C
t, L∞)

< −1. Moreover £p,t(F ) is attained on every polar ∇qC = 0, q 6∈ C byTheorem 1.2(ii), and Theorem 1.3(iii) follows.5. Growth of the gradient. Let F : C
2 → C be a non
onstant poly-nomial. Fix (p, t) ∈ C∞ × C. For 
ompleteness we give an interpretation of

£p,t(F ) as the exponent of growth of ∇F (z) near the �ber F (z) = t for
z → p. We 
onsider P

2(C) with the usual topology. If z = (x, y) ∈ C then
|z| = max(|x|, |y|). We set F−1(t)δ = {z ∈ C

2 : |F (z) − t| ≤ δ} for every
δ > 0.



�OJASIEWICZ EXPONENTS AND SINGULARITIES AT INFINITY 59Theorem 5.1. Assume that the germ (Ct, p) is redu
ed. Let δ > 0 besu
h that the set {t̃ ∈ C : 0 < |t̃ − t| ≤ δ} does not interse
t Λ(F ). Thenthere is a 
onstant c > 0 su
h that(1) |∇F (z)| ≥ c|z|£p,t(F ) on the set F−1(t)δ for z → p.The exponent £p,t(F ) in (1) is optimal : if ∇F (z)| ≥ cσ|z|
σ with some cσ > 0and σ ∈ R on F−1(t)δ for z → p then σ ≤ £p,t(F ).Proof (see [ChK2, Se
tion 5℄). Fix δ > 0 as above and let £

δ
p,t(F ) bethe least upper bound of the set of all σ ∈ R su
h that |∇F (z)| ≥ cσ|z|

σwith some cσ > 0 on F−1(t)δ for z → p. By the Curve Sele
tion Lem-ma there is a meromorphi
 parameterization p(T ) = (x(T ), y(T )) ∈ C((T ))with ord p(T ) < 0, 
onvergent in a pun
tured dis
, su
h that the mapping
τ 7→ p(τ) de�ned for the real numbers τ 6= 0 small enough has the followingproperties:

• p(τ) → p for τ → 0+,
• |F (p(τ)) − t| ≤ δ for τ → 0+,
•

ord∇F (p(T ))

ord p(T )
= £

δ
p,t(F ).Let γ be the bran
h at in�nity with meromorphi
 parameterization p(T ).Then
degγ ∇F

deg γ
=

ord∇F (p(T ))

ord p(T )and |F (γ) − t| ≤ δ for F (γ) = limτ→0+ F (p(τ)). By the 
hoi
e of δ we get
F (γ) = t or F (γ) /∈ Λ(F ). Hen
e by Theorem 1.3 we have

£
δ
p,t(F ) =

degγ ∇F

deg γ
≥ £p,F (γ)(F ) ≥ £p,t(F ).This proves the �rst part of the theorem.To show the se
ond part take by Theorem 1.2 a bran
h γ ∈ B∞,p su
hthat F (γ) = t and £p,t(F ) =

degγ ∇F

deg γ . Let Γ ⊂ C
2 be the image of a smallpun
tured dis
 
entered at 0 ∈ C under the meromorphi
 parameterizationof γ. Sin
e F (z) → t on Γ for z → p we may assume that Γ ⊂ F−1(t)δ. It iseasy to see that

|∇F (z)| ≥ c|z|£p,t(F ) on Γ for z → pand the exponent £p,t(F ) is optimal. Thus £
δ
p,t(F ) ≤ £p,t(F ).
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