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STRICHARTZ’S CONJECTURE ON HARDY–SOBOLEV SPACES

BY

YONG-KUM CHO (Edinburgh and Seoul)

Abstract. We prove Strichartz’s conjecture regarding a characterization of Hardy–
Sobolev spaces.

Introduction. Hardy–Sobolev spaces arise as an alternative of Lp So-
bolev spaces. To describe this notion, let Hp denote the real-variable Hardy
spaces on R

n for p > 0 and Iα the Riesz potential operators of order α > 0
defined via the Fourier transform formula (Iαf)̂(ξ) = |ξ|−αf̂(ξ) on the
class of tempered distributions modulo polynomials. The image spaces of
Hp under Iα, denoted by Iα(H

p), are called the homogeneous Hardy–Sobolev
spaces. For each f ∈ Iα(Hp) there exists a unique g ∈ Hp with f = Iα(g)
and we define a quasi-norm

‖f‖Iα(Hp) = ‖g‖Hp = ‖Λαf‖Hp (0 < p <∞)
in which Λα stands for the inverse operator of Iα. For p > 1, the Iα(H

p) are
identical to the homogeneous Lp Sobolev spaces Iα(L

p). For 0 < p ≤ 1, it
is well known that the Hp provide an ideal alternative of the Lp and thus
the Iα(H

p) may be thought of as a natural generalization of the Iα(L
p).

As usual, we may define the inhomogeneous Hardy–Sobolev spaces as Hp ∩
Iα(H

p).
As for characterizing Iα(H

p), let us recall the work of Strichartz which
gives us the main motivation. Given a positive integerm and a point y ∈ R

n,
let ∆my be the mth forward difference operator defined inductively as

∆my f(x) = ∆y[∆
m−1
y f ](x), ∆yf(x) = f(x+ y)− f(x)

for each locally integrable function f and consider

(1) Dm,α(f)(x) =

(∞\
0

[\
B

|∆mryf(x)| dy
]2 dr

r1+2α

)1/2

2000 Mathematics Subject Classification: Primary 42B35, 46E35.
Key words and phrases: Hardy–Sobolev space, Littlewood–Paley g-function, Lusin

S-function, Strichartz’s conjecture.
This research was supported by Korea Research Foundation KRF-2003-013-C00005.

[99]



100 Y.-K. CHO

where B denotes the unit ball in R
n. A classical theorem of Strichartz and

Bagby states that a function f ∈ ⋃1≤q<∞ Lq belongs to Iα(Lp) if and only
if Dm,α(f) ∈ Lp for p > 1 and 0 < α < m (see [Sz1], [Ba]).

In the case when n/(n+α) < p ≤ 1, each distribution in Iα(Hp) coincides
with a locally integrable function in view of the Sobolev embedding inequali-
ties (see [Ch] or [K]). In this range of p, it is shown in [Sz2] that if f ∈ Iα(Hp)
and 0 < α < m, then Dm,α(f) ∈ Lp with ‖Dm,α(f)‖p ≈ ‖f‖Iα(Hp) (1). In
addition, it is also shown that if f ∈ Iα(Hp) and m− 1 < α < m, then

(2) Tm,α(f)(x) =

(∞\
0

[\
B

|Qmryf(x)| dy
]2 dr

r1+2α

)1/2
,

where Qmy f(x) = f(x + y) − ∑|σ|<m(∂σf)(x)yσ/σ!, belongs to Lp with
‖Tm,α(f)‖p ≈ ‖f‖Iα(Hp). In his work, however, Strichartz left the following
reverse direction as an open conjecture.

Conjecture. If either Dm,α(f) ∈ Lp with 0 < α < m or Tm,α(f) ∈ Lp
with m− 1 < α < m, then f ∈ Iα(Hp) for n/(n+ α) < p ≤ 1.
Our primary aim in this paper is to prove Strichartz’s conjecture so as

to establish a characterization of Iα(H
p) via Dm,α or Tm,α in the stated

range of p and α. To accomplish our aim, we shall exploit a set of different
characterizations for Iα(H

p) which are interesting in their own right. Identi-
fying Iα(H

p) as particular instances of Triebel–Lizorkin spaces, it is shown
in the work of Bui et al. [BPT] that a certain variant of Littlewood–Paley
g-functions characterizes Iα(H

p) spaces. In a similar fashion, it will be shown
that a modification of Lusin S-functions characterizes Iα(H

p). Dominating
appropriate characterizing means in terms of Dm,α(f) or Tm,α(f), we shall
obtain the desired proofs.

It turns out that Strichartz’s characterization provides effective means in
a number of problems on Sobolev spaces. In dealing with pointwise multiplier
problems, for example, Strichartz used the aforementioned results to prove
that In/p(H

p) forms an algebra for 0 < p ≤ 1 and also observed that his
conjecture, if affirmative, would imply that the characteristic function χΩ
of a Lipschitz domain Ω is a multiplier on Iα(H

p) for n(1/p−1) < α < n/p.
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(1) This means, as usual, that C1‖f‖Iα(Hp) ≤ ‖Dm,α(f)‖p ≤ C2‖f‖Iα(Hp) for some

positive constants C1, C2 not depending on f .
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in particular, on Lemma A2. Finally, the author is grateful to the anony-
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A. Preliminaries. For a tempered distribution f and a Schwartz func-
tion ϕ on R

n, set u(x, t) = (f ∗ ϕt)(x) with ϕt(x) = t−nϕ(x/t) and define
u+(x) = sup

t>0
|u(x, t)|.

We recall from [FS] that f ∈ Hp for 0 < p ≤ ∞ if and only if u+ ∈ Lp with
any choice of ϕ satisfying ϕ̂(0) 6= 0 and ‖f‖Hp = ‖u+‖p.
It is well known that the Lusin S-functions defined by

S(u)(x) =

( \\
Γ (x)

|u(y, t)|2t−n dy dt
t

)1/2
,

where Γ (x) = {(y, t) ∈ R
n × (0,∞) : |y − x| < t}, provide another char-

acterizing means of Hp under certain conditions on ϕ and f . The required
condition on ϕ comes mainly from the L2 estimates. In fact, with ωn = |B|,

‖S(u)‖22 = ωn
\

Rn

|f̂(ξ)|2
[∞\
0

|ϕ̂(tξ)|2 dt
t

]
dξ (f ∈ L2)

so that the a priori inequality ‖S(u)‖2 ≤ C‖f‖2 holds if and only if

(3) sup
ξ∈Rn

∞\
0

|ϕ̂(tξ)|2 dt
t
<∞,

and the reverse a priori inequality ‖S(u)‖2 ≥ C‖f‖2 holds if and only if

(4) inf
ξ∈Rn\{0}

∞\
0

|ϕ̂(tξ)|2 dt
t
> 0.

In a more general setting, these conditions can be formulated in terms of
other equivalent ones.

Lemma A1. Let ϕ be a Schwartz function on R
n and α ≥ 0.

(i) The condition (3) is equivalent to the condition ϕ̂(0) = 0.

(ii) If
T
xσϕ(x) dx = 0 for all multi-indices σ with |σ| ≤ [α], then

∞\
0

|ϕ̂(tξ)|2 dt

t1+2α
≤ Cα|ξ|2α (ξ ∈ R

n).

Proof. Assume (3) holds but ϕ̂(0) 6= 0. Use the continuity of ϕ̂ to choose
δ > 0 such that |ϕ̂(ξ)| ≥ |ϕ̂(0)|/2 for all |ξ| ≤ δ. Then
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sup
ξ∈Rn

∞\
0

|ϕ̂(tξ)|2 dt
t
≥ sup
|ξ|≤δ

1\
0

|ϕ̂(tξ)|2 dt
t
≥ |ϕ̂(0)|

2

4

1\
0

dt

t
= +∞,

a contradiction. Thus ϕ̂(0) = 0. The vanishing moment condition of (ii)
implies that |ϕ̂(ξ)| ≤ CN |ξ|[α]+1(1 + |ξ|2)−N for any N > 0, from which the
conclusion of (ii) as well as the converse of (i) follow immediately.

Lemma A2. For a Schwartz function ϕ on R
n and α ≥ 0, the following

statements are equivalent.

(i)

(5) inf
ξ 6=0

[
|ξ|−2α

∞\
0

|ϕ̂(tξ)|2 dt

t1+2α

]
= cα > 0.

(ii) |ϕ̂(tξ)| does not vanish identically as a function of t > 0 for ξ 6= 0,
that is, supt>0 |ϕ̂(tξ)| > 0 for ξ 6= 0.

(iii) There exists a Schwartz function ζ such that ζ̂ has compact support
away from the origin and

(6)

∞\
0

ϕ̂(tξ)ζ̂(tξ)
dt

t1+2α
= |ξ|2α (ξ 6= 0).

Proof. Evidently, (i) or (iii) implies (ii). To prove (ii) implies (i), it suf-
fices to show infξ∈Sn−1 Ω(ξ) = cα > 0, where S

n−1 denotes the unit sphere
and

Ω(ξ) =

∞\
0

|ϕ̂(tξ)|2 dt

t1+2α
.

We first observe that (ii) implies that Ω(ξ) > 0 for all ξ ∈ Sn−1. Indeed,
for a fixed ξ ∈ Sn−1, there exists a t0 > 0 with |ϕ̂(t0ξ)| > 0. By continuity,
there is an open interval I such that t0 ∈ I ⊂ (0,∞) and |ϕ̂(tξ)| > 0 for
each t ∈ I. It follows that

Ω(ξ) ≥
\
I

|ϕ(tξ)|2 dt

t1+2α
> 0.

We now choose a sequence (ξk) ⊂ Sn−1 with Ω(ξk) → cα. As S
n−1 is

compact, there exist k1 < k2 < · · · and ξ0 ∈ Sn−1 such that ξkj → ξ0. By
Fatou’s lemma and the continuity of ϕ̂, we have

cα = lim
j→∞

Ω(ξkj ) = lim
j→∞

∞\
0

|ϕ̂(tξkj )|2
dt

t1+2α

≥
∞\
0

[lim inf
j→∞

|ϕ̂(tξkj )|2]
dt

t1+2α
=

∞\
0

|ϕ̂(tξ0)|2
dt

t1+2α

= Ω(ξ0) > 0,

which proves that (ii) implies (i).
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To prove (ii) implies (iii), we let 0 < ε < 1 and take a nonnegative C∞

function θ on (0,∞) such that θ = 1 on (ε, 1/ε) and its support is contained
in (ε/2, 2/ε). Choosing ε so small that supt>0[|ϕ̂(tξ)|θ(t)] > 0 for ξ 6= 0, we
have as in the preceding case

inf
ξ∈Sn−1

[∞\
0

|ϕ̂(tξ)|2θ(t) dt

t1+2α

]
> 0.

Defining ζ through the Fourier transform formula

ζ̂(ξ) = ϕ̂(ξ) θ(|ξ|)
[∞\
0

|ϕ̂(tξ/|ξ|)|2θ(t) dt

t1+2α

]−1
,

it is plain to check that ζ has the stated properties of (iii).

Remark 1. When α = 0, the equivalence of (i) and (ii) is due to James
Wright and the equivalence of (ii) and (iii) is discussed in Stein’s book [St,
pp. 185–186]. The proof that (ii) implies (iii) is a slight modification of that
of Lemma 4.1 in [CT].

For α ≥ 0, let Oα be the class of Schwartz functions ϕ on R
n such that

(i)
T
xσϕ(x) dx = 0 = (∂σϕ̂)(0) for all |σ| ≤ [α],

(ii) supt>0 |ϕ̂(tξ)| > 0 (ξ 6= 0).
With O0 = O, the preceding lemmas show that ‖S(u)‖2 ≈ ‖f‖2 if and
only if ϕ ∈ O. Introduced by Bui et al. [BPT], each Oα will serve as the
admissible class of Schwartz functions in our characterization of Iα(H

p). As
for the admissible distributions in our characterizations, given α ≥ 0, we
denote by Aα the class of distributions f on R

n such that f̂ coincides with
a function satisfying

f̂(ξ)|ξ|α(1 + |ξ|2)−δ ∈ L2 for some δ ≥ 0
and Lα =

⋃
1≤q<∞ Iα(L

p).WriteA0 = A, I0 = I, and L0 = L for simplicity.
Evidently, we have A ⊂ Aα ⊂ Aβ for any 0 ≤ α ≤ β.
Lemma A3. Given α ≥ 0, if f ∈ Iα(Hp) for 0 < p ≤ 2, then

(7)
\

Rn

|f̂(ξ)|2 |ξ|2α (1 + |ξ|2)−2δ dξ ≤ C ‖f‖2Iα(Hp)

with any δ > (1/p − 1/2)n/2. Consequently , Iα(Hp) ⊂ Aα for 0 < p ≤ 2
and Iα(H

p) ⊂ Lα for 1 < p <∞.
Proof. It suffices to treat the case α = 0. The inequality (7) follows from

the estimate |f̂(ξ)| ≤ C|ξ|n(1/p−1)‖f‖Hp for 0 < p ≤ 1 and from the Hölder
and Hausdorff–Young inequalities for 1 < p ≤ 2.
A characterization ofHp via Lusin S-functions is established by Calderón

and Torchinsky (see Theorems 6.7, 6.9, 6.10 in [CT]).
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Theorem A4. Let f be a tempered distribution on R
n. For ϕ ∈ O, put

u(x, t) = (f ∗ ϕt)(x).
(i) If f ∈ Hp for 0 < p <∞, then S(u) ∈ Lp with ‖S(u)‖p ≈ ‖f‖Hp .
(ii) Assume S(u) ∈ Lp for 0 < p < ∞. If f ∈ A ∪ L, then f ∈ Hp with
‖f‖Hp ≤ Cp‖S(u)‖p. For a general f , there exists a polynomial P
such that g = f − P ∈ Hp and ‖g‖Hp ≤ Cp‖S(u)‖p.

Remark 2. The presence of a polynomial factor in (ii) is partly due
to the fact that S(u) = S(f ∗ ϕt), as a function of f for a fixed ϕ ∈ O,
annihilates any polynomial of degree less than the order of zero of ϕ̂ at the
origin. For b > 0, consider

Sb(u)(x) =

( \\
Γb(x)

|u(y, t)|2(bt)−n dy dt
t

)1/2
,

where Γb(x) = {(y, t) ∈ R
n × (0,∞) : |y − x| < bt}. As it is shown in [CT]

that ‖Sb(u)‖p ≈ ‖Sd(u)‖p for 0 < p < ∞ and for any b, d > 0, we may
replace S(u) by Sb(u) in Theorem A4 without altering any conclusions.

The Littlewood–Paley g-functions are defined by

gϕ(f)(x) =

(∞\
0

|(f ∗ ϕt)(x)|2
dt

t

)1/2
.

As before, ‖gϕ(f)‖2 ≈ ‖f‖2 if and only if ϕ ∈ O, and the following charac-
terization result is due to Uchiyama ([U1], [U2]).

Theorem A5. Let f be a tempered distribution on R
n and ϕ ∈ O.

(i) If f ∈ Hp for 0 < p <∞, then gϕ(f) ∈ Lp with ‖gϕ(f)‖p ≈ ‖f‖Hp .
(ii) Assume gϕ(f) ∈ Lp for 0 < p < ∞. If f ∈ L, then f ∈ Hp with
‖f‖Hp ≤ Cp‖gϕ(f)‖p. For a general f , there exists a polynomial P
such that h = f − P ∈ Hp and ‖h‖Hp ≤ Cp‖gϕ(f)‖p.

B. A variant of Lusin S-functions. As the first characterizing means
for Iα(H

p), we introduce

(8) Sαb (u)(x) =

( \\
Γb(x)

|u(y, t)|2 (bt)−n dy dt

t1+2α

)1/2
.

A simple computation shows that ‖Sαb (u)‖2 ≈ ‖f‖Iα(L2) for ϕ ∈ Oα ac-
cording to Lemmas A1 and A2. The purpose of this section is to prove that
f ∈ Iα(Hp) if and only if Sαb (u) ∈ Lp and f ∈ Aα ∪ Lα with any choice
ϕ ∈ O2α, a bit more restrictive class of admissible Schwartz functions. Our
methods of proof will be standard as in [CT] or [BPT].
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We begin by showing that a different choice of b results in equivalent Lp

norms for any Schwartz function ϕ.

Lemma B1. For b, d > 0, if Sαb (u) ∈ Lp, then Sαd (u) ∈ Lp with

‖Sαd (u)‖p ≤
{
Cp(1 + d/b)

n(1/p−1/2)‖Sαb (u)‖p (0 < p ≤ 2),
Cp(1 + b/d)

n/2‖Sαb (u)‖p (2 < p <∞).

Proof. For 0 < p < 2, we shall follow the same reasoning as in [CT,

pp. 17–19]. For each s > 0, set Ds = {Sαb (u)(x) > s} and D̂s = {Md(x) >
1/2} where

Md(x) = sup

{ |B(y, bt) ∩Ds|
|B(y, bt)| : (y, t) ∈ Γd(x)

}
.

HereB(y, bt) denotes the open ball with center y and radius bt. By a maximal

theorem in [CT], Ds ⊂ D̂s with |D̂s| ≤ cn(1 + d/b)n|Ds|. Using\̂
Dcs

[Sαd (u)(x)]
2 dx ≤ 2

\
Dcs

[Sαb (u)(x)]
2 dx,

a readily verifiable inequality, we have the estimate

|{Sαd (u) > rs}| ≤ |D̂cs ∩ {Sαd (u) > rs}|+ |D̂s|

≤ 4

(rs)2

s\
0

t|{Sαb (u) > t}| dt+ cn(1 + d/b)n|Ds|

for all r, s > 0. It follows plainly that\
[Sαd (u)(x)]

p dx ≤
[
4rp−2

2− p + cn(1 + d/b)
nrp
]\
[Sαb (u)(x)]

p dx.

Choosing r that optimizes this bound, we obtain the desired inequality.

For p = 2, it is trivial to see ‖Sαd (u)‖2 = ‖Sαb (u)‖2. In the case p > 2,

‖Sαd (u)‖2p = ‖[Sαd (u)]2‖p/2 = sup
‖g‖q=1

∣∣∣
\
[Sαd (u)(x)]

2g(x) dx
∣∣∣

with q determined by 2/p + 1/q = 1. For a fixed g with ‖g‖q = 1, the last
absolute value of integral is bounded by

(10)
\\
|u(y, t)|2

[
(dt)−n

\
B(y,dt)

|g(x)| dx
]
dy

dt

t1+2α
.

For each z ∈ B(y, bt), note that B(y, dt) ⊂ B(z, (b+ d)t) and thus

(dt)−n
\

B(y,dt)

|g(x)| dx ≤ ωn(1 + b/d)ng∗(z)
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where g∗ denotes the Hardy–Littlewood maximal function of g. Integrating
this inequality over the ball B(y, bt) with respect to z, we get

(dt)−n
\

B(y,dt)

|g(x)| dx ≤ (1 + b/d)n(bt)−n
\

B(y,bt)

g∗(z) dz.

A simple algebra shows then (10) is bounded by (1 + b/d)n times\
[Sαb (u)(z)]

2 g∗(z) dz ≤ ‖[Sαb (u)]2‖p/2‖g∗‖q ≤ Cp‖Sαb (u)‖2p
by the maximal theorem. This completes the proof for the case p > 2.

Focusing on Sα1 = S
α, we now proceed to prove the Lp norm equivalence

of Sα for different choices of Schwartz functions in the class O2α. For λ > 0,
consider a variant of Littlewood–Paley gλ-functions in the form

(11) gαλ (u)(x) =

(∞\
0

\
Rn

|u(y, t)|2
[
1 +
|y − x|
t

]−2λ
t−n−2α dy

dt

t

)1/2
.

It follows from a slight modification of Theorem 3.5 in [CT] that

2−2λ[Sα(u)(x)]2 ≤ [gαλ (u)(x)]2 ≤
∞∑

k=1

2−k(1−k/2λ)[Sα2k/2λ(u)(x)]
2.

Combining this with Lemma B1, we have ‖gαλ (u)‖p ≈ ‖Sα(u)‖p valid for
every 0 < p <∞ provided λ > max(n/p, n/2).

Lemma B2. Let ζ, ψ be Schwartz functions on R
n such that ζ̂ has com-

pact support away from the origin and (∂σψ̂)(0) = 0 for all |σ| ≤ ℓ. For
s, t, λ > 0, let

Jλ(s, t) =
\

Rn

(
1 +
|z|
s

)2λ
|ζs ∗ ψt(z)|2 dz.

Then for any N > 0 there exists a constant CN > 0 such that

(12) Jλ(s, t) ≤ CN s−n
(
t

s

)2(ℓ+1)(
1 +

t

s

)−2N
.

Proof. Set µ = [λ] + 1. It follows from Plancherel’s theorem that

Jλ(s, t) = s
n
\
(1 + |z|)2λ|ζs ∗ ψt(sz)|2 dz

≤ Csn
∑

|β|≤µ

\
|∂β[s−n(ζs ∗ ψt)̂ (ξ/s)]|2 dξ

= Cs−n
∑

|β|≤µ

\
|∂β[ζ̂(ξ)ψ̂(tξ/s)]|2 dξ.
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Since ζ̂ has compact support away from the origin, (12) follows from the
evident Fourier transform estimates

|ψ̂(ξ)| ≤ CN |ξ|ℓ+1(1 + |ξ|)−N

and

|∂βψ̂(ξ)| ≤ CN (1 + |ξ|)−N for each β.

Remark 3. Referred to as size estimates of Heideman type, more ex-
tensive and precise L1 estimates can be found in Lemma 2.1 of [BPT].

We shall need a version of Calderón’s reproducing formula in the follow-
ing form whose proof is a minor modification of those in Theorems 4.6 and
5.1 of [CT]. (For a reference to its historical developments, see the remark
after Lemma 2.3 of [BPT].)

Lemma B3. Let ϕ be a Schwartz function with supt>0 |ϕ̂(tξ)| > 0 for
ξ 6= 0 and let ζ, as in Lemma A2, be a Schwartz function such that ζ̂ has
compact support away from the origin and

∞\
0

ϕ̂(sξ)ζ̂(sξ)
ds

s
= 1 (ξ 6= 0).

(i) Let ψ be a Schwartz function such that (∂σψ̂)(0) = 0 for all |σ| ≤ ℓ.
If f ∈ Aℓ+1 or f ∈ Lα with 0 ≤ α ≤ ℓ+ 1, then the identity

(13) (f ∗ ψt)(x) =
∞\
0

(f ∗ ϕs ∗ ζs ∗ ψt)(x)
ds

s

holds for almost every x ∈ R
n and for each t > 0, where the integral

converges absolutely.

(ii) If ψ̂ has support away from the origin, then the identity (13) remains
valid for a general tempered distribution f .

Lemma B4. Assume f ∈ A[2α]+1 or f ∈ Lβ for some 0 ≤ β ≤ [2α] + 1.
Let u(x, t) = (f ∗ ϕt)(x), v(x, t) = (f ∗ ψt)(x) with ϕ, ψ ∈ O2α. Then

‖Sα(u)‖p ≈ ‖Sα(v)‖p (0 < p <∞).
Proof. In view of the equivalence ‖Sα(u)‖p ≈ ‖gαλ (u)‖p for 0 < p < ∞

and λ > max (n/p, n/2), it will be sufficient to show that

(14) Sα(v)(x) ≤ Cα,λ gαλ (u)(x) (λ > 0).

Let ζ be as in Lemma B3. By (i) of Lemma B3, since ψ ∈ O2α, we have

v(y, t) =

∞\
0

\
Rn

u(z, s)(ζs ∗ ψt)(y − z) dz
ds

s

under the stated hypothesis on f . Fix x ∈ R
n. For y ∈ B(x, t), we have
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|v(y, t)| ≤
∞\
0

[\
|u(z, s)|2

(
1 +
|z − x|
s

)−2λ
dz

]1/2

×
(
1 +

t

s

)λ[\(
1 +
|z|
s

)2λ
|ζs ∗ ψt(z)|2 dz

]1/2
ds

s

≤ C
∞\
0

[\
|u(z, s)|2

(
1 +
|z − x|
s

)−2λ
dz

]1/2

× s−n/2
(
1 +

t

s

)λ(
t

s

)ℓ(
1 +

t

s

)−N
ds

s

where ℓ = [2α] + 1 in view of Lemma B2 and the fact ψ ∈ O2α. Applying
the Cauchy–Schwarz inequality, we see that |v(y, t)| is bounded by

C

[∞\
0

\
|u(z, s)|2

(
1 +
|z − x|
s

)−2λ
s−n
(
t

s

)ℓ(
1 +

t

s

)−N+λ
dz

ds

s

]1/2

×
[∞\
0

(
t

s

)ℓ(
1 +

t

s

)−N+λ
ds

s

]1/2
.

Choosing N > ℓ + λ, observe that the quantity on the second line is a
constant independent of t. Therefore,

[Sα(v)(x) ]2 =

∞\
0

\
B(x,t)

|v(y, t)|2 t−n−2α dy dt
t

≤ C
∞\
0

\
Rn

|u(z, s)|2
(
1 +
|z − x|
s

)−2λ
s−n−2α

×
[∞\
0

(
t

s

)ℓ−2α(
1 +

t

s

)−N+λ
dt

t

]
dz

ds

s

≤ C[gαλ (u)(x)]2

because ℓ− 2α = 1 + [2α]− 2α > 0 so that the quantity inside the bracket
is again a constant independent of s. This completes the proof.

The following is the main result of this section.

Theorem B5. Let f be a tempered distribution on R
n. Given α ≥ 0, let

u(x, t) = (f ∗ ϕt)(x) with ϕ ∈ O2α and 0 < p <∞.
(i) If f ∈ Iα(Hp), then Sα(u) ∈ Lp with ‖Sα(u)‖p ≈ ‖f‖Iα(Hp).
(ii) Assume that Sα(u) ∈ Lp. If f ∈ Aα ∪ Lα, then f ∈ Iα(Hp) with
‖f‖Iα(Hp) ≤ Cα,p‖Sα(u)‖p. For a general f , there exist a polynomial
P and g ∈ Hp such that f = Iα(g + P ) and ‖g‖Hp ≤ Cα,p‖Sα(u)‖p.
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Proof. Assume f = Iα(g) with a unique g ∈ Hp. Choose ψ ∈ O such
that ψ̂ has support away from the origin. Set

Ψ = Iα(ψ), U(x, t) = (g ∗ Ψt)(x), V (x, t) = (f ∗ ψt)(x).
As is easily verified, U = t−α V and so S(U)(x) = Sα(V )(x). According to
Theorem A4 and Lemma B4,

‖Sα(u)‖p ≈ ‖Sα(V )‖p = ‖S(U)‖p ≈ ‖g‖Hp = ‖f‖Iα(Hp)
since V ∈ O2α and f ∈ Aα ∪ Lα by Lemma A3. This proves (i).
Assume now Sα(u) ∈ Lp. With the same Schwartz functions ψ, Ψ as

above, we set W (x, t) = (Λαf ∗ Ψt)(x) this time. Then W = t−α V and
S(W )(x) = Sα(V )(x). Since ψ has support away from the origin, the identity
(13) holds and so does the inequality (14). It follows that

‖S(W )‖p = ‖Sα(v)‖p ≤ Cα,p ‖Sα(u)‖p <∞.
The stated properties of (ii) follow now from Theorem A4.

Remark 4. If we replace Sα(u) by Sαb (u) with any b > 0 or by g
α
λ (u)

with any λ > max(n/p, n/2), Theorem B5 remains unchanged. When α = 0,
Theorem B5 reduces to Theorem A4. As we shall see in the next section,
assertion (ii) turns out to be valid with the minimal class Oα of admissible
Schwartz functions.

Corollary B6. Let Hpα=H
p∩Iα(Hp) with ‖f‖Hpα=‖f‖Hp+‖f‖Iα(Hp).

For a tempered distribution f and ϕ ∈ O2α, let u(x, t) = (f ∗ ϕt)(x). Then
f ∈ Hpα for 0 < p ≤ 2 if and only if f ∈ Hp and Sα(u) ∈ Lp. Moreover ,

‖f‖Hpα ≈ ‖f‖Hp + ‖Sα(u)‖p (0 < p ≤ 2).

C. A variant of Littlewood–Paley g-functions. It is known that
Hardy–Sobolev spaces may be realized as particular instances of Triebel–
Lizorkin spaces. To be more precise, given a smoothing index α ∈ R and
scale indices 0 < p < ∞, 0 < q ≤ ∞, let Ḟαp,q denote the associated
homogeneous Triebel–Lizorkin space, the set of all tempered distributions f
on R

n satisfying

(15) ‖f‖Ḟαp,q =
∥∥∥
[∑

j∈Z

(2jα|f ∗ ψ2−j |)q
]1/q∥∥∥

p
<∞

where ψ is any Schwartz function on R
n such that the support of ψ̂ is

contained in {1/2 ≤ |ξ| ≤ 2} and |ψ̂(ξ)| ≥ c > 0 for 3/5 ≤ |ξ| ≤ 5/3.
According to Triebel’s books [T1], [T2], we have the special identification

Ḟ 0p,2 = H
p, Ḟαp,2 = Iα(H

p) (α > 0, 0 < p <∞).
In [BPT], Bui, Paluszyński and Taibleson established a list of characteri-

zations for Ḟαp,q spaces. To single out what we need from their work, consider
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a modification of the Littlewood–Paley g-function defined by

(16) gαϕ(f)(x) =

(∞\
0

|(f ∗ ϕt)(x)|2
dt

t1+2α

)1/2
.

A close inspection of Theorems 3.1 and 6.1 of [BPT] and Theorem A5 yields
the following characterization result for Iα(H

p) spaces.

Theorem C1 (Bui, Paluszyński and Taibleson). Given α ≥ 0 and 0 <
p <∞, let f be a tempered distribution on R

n and ϕ ∈ Oα.
(i) If f ∈ Iα(Hp), then gαϕ(f) ∈ Lp with ‖gαϕ(f)‖p ≈ ‖f‖Iα(Hp).
(ii) If gαϕ(f) ∈ Lp, then there exist a polynomial P and h ∈ Hp such that

f = Iα(h + P ) and ‖h‖Hp ≤ Cα,p‖gαϕ(f)‖p. If f satisfies the extra
condition f ∈ Lα, then f ∈ Iα(Hp) with ‖f‖Iα(Hp) ≤ Cα,p‖gαϕ(f)‖p.

Remark 5. In view of Lemmas A1 and A2, the admissible class Oα
is optimal in the sense that the above results are no longer valid if ϕ has
vanishing moments of order less than [α] or if it violates a condition in
Lemma A2. For a Schwartz function ϕ on R

n, put u(x, t) = (f ∗ ϕt)(x). As
u(x, t) is continuous in t > 0, we have

|(f ∗ ϕt)(x)|2 = lim
b→0

1

|B(x, bt)|
\

B(x,bt)

|u(y, t)|2 dy.

It follows from Fatou’s lemma and a simple computation that

(17) gαϕ(f)(x) ≤
1√
ωn
lim inf
b→0
[Sαb (u)(x)].

Since O2α ⊂ Oα, combined with Theorem C1, this pointwise inequality
implies directly the second part of Theorem B5 with the optimal class Oα
of admissible Schwartz functions. Although plausible, however, we do not
know if the first part of Theorem B5 remains valid with Oα in place of O2α.

D. Proofs of Strichartz’s conjecture. To begin with, we make use
of our characterization of Iα(H

p) by variants of Lusin S-functions to prove
Strichartz’s conjecture on Tm,α.

Theorem D1. Let f be a locally integrable function on R
n. For a pos-

itive integer m with m > α, suppose that Tm,α(f) ∈ Lp for n/(n + α) < p
<∞. Then there exist a polynomial P and g ∈ Hp such that
(18) f = Iα(g + P ) with ‖g‖Hp ≤ Cα,p‖Tm,α(f)‖p.
Proof. Choose ϕ ∈ C∞0 (B(0, 1/2)) which has vanishing moments at least

up to the order max (m− 1, [2α]) and |ϕ̂(tξ)| does not vanish identically as
a function of t > 0 for ξ 6= 0. Put u(x, t) = (f ∗ ϕt)(x). Clearly, ϕ ∈ O2α.
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Fix x ∈ R
n. For y ∈ B(0, 1/2), it results from the cancelation condition of

ϕ that

u(x+ ty, t) =
\[
f(x+ t(y − w))−

∑

|σ|<m

(∂σf)(x)

σ!
[t(y − w)]σ

]
ϕ(w) dw.

Thus |u(x+ ty, t)| is bounded by a constant times\
B

∣∣∣∣f(x+ tz)−
∑

|σ|<m

(∂σf)(x)

σ!
(tz)σ
∣∣∣∣ dz =

\
B

|Qmtz(x)| dz

and consequently \
B(0,1/2)

|u(x+ ty, t)|2 dy ≤ C
[\
B

|Qmtz(x)| dz
]2
.

Inserting this estimate in the definition of

Sα1/2(u)(x) = 2
n

(∞\
0

\
B(0,1/2)

|u(x+ ty, t)|2 dy dt

t1+2α

)1/2
,

we obtain the pointwise estimate Sα1/2(u)(x) ≤ C Tm,α(f)(x) from which the
desired conclusion follows immediately by Theorem B5.

Remark 6. Since Tm,α annihilates any polynomial of degree less thanm,
it would be inevitable to have a polynomial factor in the theorem without
imposing an additional condition on f such as f ∈ Aα ∪ Lα.
Corollary D2. Let f be a locally integrable function on R

n and let m
be a positive integer with m−1 < α < m. Then f ∈ Hpα for n/(n+α) < p ≤ 2
if and only if f ∈ Hp and Tm,α(f) ∈ Lp. Moreover ,

‖f‖Hpα ≈ ‖f‖Hp + ‖Tm,α(f)‖p.
Dealing with Dm,α, we shall exploit variants of Littlewood–Paley g-

functions in proving Strichartz’s conjecture. When α is an integer, however,
it is not necessary to appeal to a characterization of Iα(H

p).

Theorem D3. Let f be a locally integrable function on R
n. For integers

1 ≤ k < m, if Dm,k(f) ∈ Lp for n/(n+ k) < p <∞, then f ∈ Ik(Hp) and

(19) ‖f‖Ik(Hp) ≈
∑

|σ|=k

‖∂σf‖Hp ≤ Ck,p‖Dm,k(f)‖p.

Proof. Fix a multi-index σ with |σ| = k. Choose a Schwartz function ζ
with ζ̂(0) 6= 0 and define

ψ(x) = (∂σζ)(x), Ψ(x) =
m∑

j=1

(−1)m−j
(
m

j

)
(−j)k
jn

ζ

(
−x
j

)
.
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Note that Ψ̂(0) 6= 0. Setting U(x, t) = [(∂σf) ∗ Ψt](x), we shall derive

(20) U+(x) = sup
t>0
|U(x, t)| ≤ CkDm,k(f)(x)

from which the result follows immediately. On account of the identity

(21) ∆my f(x) =
m∑

j=0

(−1)m−j
(
m

j

)
f(x+ jy)

and ψ̂(0) = 0, we obtain

U(x, t) = t−k[f ∗ (∂σΨ)t](x)

= t−k
\
f(x− y)

{ m∑

j=1

(−1)m−j
(
m

j

)
(jt)−nψ

(
− y
jt

)}
dy

= t−k
\
(∆my f)(x)ψt(y) dy.

For any nonnegative measurable function g, we may write

(22)
\

Rn

g(x) dx = log 2

∞\
0

\
A

g(ry)rn dy
dr

r
,

where A = {1/2 ≤ |y| ≤ 1} (see [Sz2]). It follows that

|U(x, t)| ≤ Ct−k
∞\
0

\
A

|∆mryf(x)| |ψt(ry)|rn dy
dr

r
.

Since |ψt(ry)| ≤ Cn t−n (1 + r/t)−N for y ∈ A and any N > 0, we get

|U(x, t)| ≤ Ct−k
∞\
0

\
A

|∆mryf(x)| dy
(
r

t

)n(
1 +

r

t

)−N
dr

r

≤ C
(∞\
0

[\
B

|∆mryf(x)| dy
]2 dr

r1+2k

)1/2

×
(∞\
0

(
r

t

)2n+2k(
1 +

r

t

)−2N
dr

r

)1/2
= CDm,k(f)(x)

where we take N > n+ k, which proves the inequality (20).

Theorem D4. Let f be a locally integrable function on R
n. For a posi-

tive integer m with m > α, suppose that Dm,α(f) ∈ Lp for n/(n + α) < p
<∞. Then there exist a polynomial P and g ∈ Hp such that

(23) f = Iα(g + P ) with ‖g‖Hp ≤ Cα,p‖Dm,α(f)‖p.
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Proof. Choose a radial Schwartz function θ such that θ̂ has compact
support away from the origin and define

ϕ(x) =

m∑

j=1

(−1)m−j
(
m

j

)
j−nθ

(
−x
j

)
.

In view of Theorem C1, it will be sufficient to show that

(24) gαϕ(f)(x) ≤ CαDm,α(f)(x).
As is easily verified, (f ∗ ϕt)(x) =

T
(∆my f)(x)θt(y) dy. From this point on,

we reproduce the arguments in [Sz2]. Using (22), we get

|(f ∗ ϕt)(x)| ≤ C
∞\
0

\
A

|∆mryf(x)| |θt(ry)|rn dy
dr

r
.

Setting

K(r) = rn+α−1/2 sup
y∈Rn

|θ(ry)|, u(r) = r−α−1/2
\
A

|∆mryf(x)| dy,

it is straightforward to derive the estimate

(25) t−α−1/2|(f ∗ ϕt)(x)| ≤
C

t

∞\
0

K

(
r

t

)
u(r) dr = C(Hu)(t).

A classical theorem of Hardy–Littlewood–Pólya states that the operator H
maps Lp(0,∞) boundedly into itself for 1 < p <∞ if

‖H‖p→p =
∞\
0

|K(r)|r−1/p dr <∞.

Since this condition certainly holds for p = 2, taking the L2(0,∞) norm on
both sides of (25), we obtain (24).
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