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CONTINUOUS DEPENDENCE ON FUNCTION PARAMETERS

FOR SUPERLINEAR DIRICHLET PROBLEMS

BY

ALEKSANDRA ORPEL (Łódź)

Abstract. We discuss the existence of solutions for a certain generalization of the
membrane equation and their continuous dependence on function parameters. We apply
variational methods and consider the PDE as the Euler–Lagrange equation for a certain
integral functional, which is not necessarily convex and coercive. As a consequence of the
duality theory we obtain variational principles for our problem and some numerical results
concerning approximation of solutions.

1. Introduction. We are given two Carathéodory functions G̃ : Ω ×
R × R

m → R and H : Ω × R
n → R satisfying some growth conditions, Ω

being a bounded domain in R
n. We shall be dealing with the functional

Ju(x) =
\
Ω

{H(y,∇x(y))− G̃(y, x(y), u(y))} dy,(1.1)

defined on a certain subset of W 1,20 (Ω,R) for u ∈ U ⊂ L
∞(Ω,Rm). Investi-

gation of the existence of a minimizer for (1.1) leads to the question whether
there exists a solution of the boundary value problem

{
−divHz(y,∇x(y)) = G̃x(y, x(y), u(y)) for a.e. y ∈ Ω,

x|∂Ω = 0,
(1.2)

where Hz(y, z) =
[
d
dz1
H(y, z), . . . , ddznH(y, z)

]
for z = [z1, . . . , zn] ∈ R

n,

G̃x(y, x, u) denotes the differential of the function G̃(y, ·, u) for y ∈ Ω and

u ∈ R
m, the function u in (1.2) is in U := {w ∈ L∞(Ω,Rm); w(y) ∈ Ũ for

a.e. y ∈ Ω} and Ũ is a given subset of Rm.

The aim of this paper is to study two issues: 1) the existence of solutions
and 2) their continuous dependence on function parameters. We shall gener-

alize the results presented in [14], where Ω is an interval, G̃(y, ·, u) is convex
and satisfies some growth conditions. We show that weaker assumptions
made on G̃ (Ω ⊂ R

n, n ≥ 1, R ∋ x 7→ G̃(y, x, u) is not necessarily convex
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and coercive) are still sufficient to deduce the existence of a countable set
of solutions for (1.2).
The problem of the continuous dependence on parameters for some sys-

tems of ODE of the second order with function parameters was considered,
among others, in [8], [10], [17], [18]. The papers [8], [10] are based on direct
methods and deal with scalar or two-dimensional systems. In [17], [18] some
variational methods are applied in the case when u ∈ L∞([0, π],Rm). We
shall investigate an analogous problem for a PDE of elliptic type which often
appears in mathematical models of physical and technical phenomena.
Studying the existence problem for a given u ∈ U leads to the general-

ization of the membrane equation

− divHz(y,∇x(y)) = Gx(y, x(y)) for a.e. y ∈ Ω,(1.3)

x|∂Ω = 0,(1.4)

where G(y, x) = G̃(y, x, u(y)) for y ∈ Ω and x ∈ R. It is clear that (1.3) can
be considered as the Euler–Lagrange equation for the action functional

J(x) =
\
Ω

{H(y,∇x(y))−G(y, x(y))} dy.(1.5)

By a solution of this problem we mean an element x ∈W 1,20 (Ω,R) such that
for all ϕ ∈ C∞0 (Ω,R)\

Ω

Hz(y,∇x(y))∇ϕ(y) dy = −
\
Ω

Gx(y, x(y))ϕ(y) dy.

Moreover we show that Hz(·,∇x(·)) has a distributional divergence that is
an element of L2(Ω,R).
Similar existence problems have been discussed by numerous authors.

We mention [5] (for G of class C1), [7], [9], [12], [13], [15], [16], [19] (in
the case when H has the special form H(y, z) = 1

2 |z|
2 for y ∈ Ω, z ∈

R
n and G ∈ C1(Ω × R,R)). Most of these results are based on saddle
point theorems or mountain pass theorems and require G to satisfy some
smoothness conditions: Gx(·, ·) ∈ C(Ω × R,R), an estimate on Gx and the
following relation between G and Gx: there exist µ > 0 and r ≥ 0 such that
for |x| ≥ r,

0 < µG(y, x) ≤ xGx(y, x).(1.6)

Using these assumptions it is possible to obtain a classical solution of (1.3).
In this paper we are looking for a nonzero solution of (1.3)–(1.4) in the sense
mentioned above. A condition similar to (1.6) is also used in [2]. In [2], [11],
[20] the right-hand side of the equation is continuous. Here we omit condition
(1.6) and the continuity of Gx(y, ·). There are many papers investigating
PDEs of elliptic type in divergence form similar to our problem, among
others D. Gilbarg and N. Trudinger [5] for G ∈ C(Ω×R), A. Benkirane and
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A. Elmahi [1], and C. Ebmeyer and J. Frehse [3], where the right-hand side is
independent of x and Ω is a bounded n-dimensional polyhedral domain. In
[6] N. Grenon proves the existence of a solution x ∈W 1,p0 (Ω,R)∩L

∞(Ω,R),
p > 1, for the PDE

− divA(y, x,Dx) = H(y, x,Dx) in Ω,(1.7)

with Ω being an open domain in R
n, n ≥ 1 and A, H satisfying additional es-

timates. He derives this result from the existence of solution of an associated
symmetrized semilinear problem. Let us note that for A(y, x, ξ) = Hz(y, ξ)
and H(y, x, ξ) = Gx(y, x), (1.7) gives (1.3). In spite of this fact, we cannot
use the results presented in [6]. In our paper we will assume that G sat-
isfies the Carathéodory condition only, so that Gx(y, ·) is not necessarily
continuous. We also do not assume any additional estimate on Gx.
We shall assume throughout that the following holds:

Hypothesis (H). The set Ω is a bounded domain in R
n having a locally

Lipschitz boundary. The functions G : Ω × R → R and H : Ω × R
n → R

satisfy the Carathéodory condition, H(y, ·) is Gateaux differentiable and
convex for a.e. y ∈ Ω, G(y, ·) is differentiable for a.e. y ∈ Ω and I ∋ x 7→
G(y, x) is convex, where I is a certain closed interval.
Moreover, there exist constants b1, b2>0 and functions k1, k2∈L

1(Ω,R),
l1 ∈ L

1(Ω,R), l2 ∈ L
2(Ω,R) such that

b1
2
|z|2 + k1(y) ≤ H(y, z) ≤

b2
2
|z|2 + k2(y)

for a.e. y ∈ Ω and all z ∈ R
n and

|G(y, x(y))| ≤ l1(y) for a.e. y ∈ Ω,(1.8)

|Gx(y, x(y))| ≤ l2(y) for a.e. y ∈ Ω(1.9)

for all x ∈W 1,20 (Ω,R) ∩ L
∞(Ω,R) such that x(y) ∈ I for a.a. y ∈ Ω.

We see that under hypothesis (H), J is not, in general, bounded on

W 1,20 (Ω,R), so that we must look for critical points of (1.5) of “minmax”
type or find subsets on which the action functional J or its dual JD is
bounded. We shall apply another approach and choose special sets over
which we will calculate the minimum of J and JD. The usual methods ap-
plied to such problems include Morse theory and its generalizations, saddle
points theorems and mountain pass theorems (see e.g. [12], [15], [19]). But
none of these methods exhausts all critical points of J . Moreover, our as-
sumptions are not strong enough to use, for example, the mountain pass
theorem: G is not sufficiently smooth, we assume neither additional rela-
tions concerning Gx and G (see (1.6)) nor growth conditions on G, and in
consequence, J is not necessarily of class C1 and it does not satisfy, in gen-
eral, the PS-condition. We shall develop a duality theory which permits us
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to omit deformation lemmas, the Ekeland variational principle and PS type
conditions in our proof of the existence of critical points. Our approach also
enables a numerical characterization of solutions of our problem and gives
a measure of the duality gap between the primal and dual functionals.

2. The existence result. For given M,K > 0 and z1 ∈ W
1,2
0 (Ω,R) ∩

C(Ω,R) define

X := {x ∈W 1,20 (Ω,R) ∩ L
∞(Ω,R); divHz(·,∇x(·)) ∈ L

2(Ω,R),

‖x− z1‖L∞(Ω,R) ≤M, ‖∇x−∇z1‖L2(Ω,Rn) ≤ K, x(y) ∈ I a.e. in Ω}.

Consider the function G : Ω × R→ R ∪ {+∞} given by

G(y, x) =

{
G(y, x) for x ∈ I and y ∈ Ω,

+∞ for x ∈ R \ I and y ∈ Ω.

Now we define X as the largest subset of X having the property: for every
x ∈ X, there exists x̃ ∈ X such that

(2.1)
\
Ω

{〈x(y),−divHz(y,∇x̃(y))〉 −G
∗(y,−divHz(y,∇x̃(y))} dy

=
\
Ω

G(y, x(y)) dy,

where G∗(y, z) = supx∈R{zx − G(y, x)} for all z ∈ R and a.a. y ∈ Ω, that
is, for a.e. y ∈ Ω, R ∋ z 7→ G∗(y, z) is the Fenchel conjugate of the function
R ∋ x 7→ G(y, x) ([4]).
Throughout the paper we shall assume hypotheses (H) and (H1) given

below:

Hypothesis (H1). X 6= ∅.

In Section 2.4 we shall consider (1.3) for H(y, z) = 12k(y)|z|
2 for y ∈Ω,

z ∈ R
n and k ∈ C1(Ω,R) and formulate a sequence of assumptions concern-

ing G which make the set X nonempty.
Let

(2.2) Xd := {p ∈ L2(Ω,Rn); there exists x ∈ X such that

p(y) = Hz(y,∇x(y)) for a.e. y ∈ Ω}.

Now we give the following auxiliary result:

Remark 1. For every x ∈ X, there exists p ∈ Xd satisfying\
Ω

{〈x(y),−div p(y)〉 −G∗(y,−div p(y))} dy =
\
Ω

G(y, x(y)) dy.(2.3)

Proof. Fix x ∈ X. Then there exists x̃ ∈ X such that (2.1) holds, so
p(·) = Hz(·,∇x̃(·)) ∈ L

2(Ω,Rn) is inXd and satisfies the required relation.
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2.1. Duality. The aim of this section is to develop a duality describing
the connections between the critical values of J and the dual functional
JD : X

d → R defined as follows:

JD(p) =
\
Ω

{−H∗(y, p(y)) +G∗(y,−div p(y))} dy,(2.4)

where H∗(y, v) = supu∈Rn{〈v, u〉 −H(y, u)} for all v ∈ R
n and a.a. y ∈ Ω,

that is, for a.e. y ∈ Ω, R
n ∋ v 7→ H∗(y, v) is the Fenchel conjugate of

R
n ∋ u 7→ H(y, u) ([4]).
For all x ∈ X, we consider the functional Jx defined in L

2(Ω,R) as

Jx(g) =
\
Ω

{−H(y,∇x(y)) +G(y, g(y) + x(y))} dy.

It is clear that Jx(0) = −J(x) for all x ∈ X. For every x ∈ X define a

conjugate J#x : Xd → R of Jx by

(2.5) J#x (p)

= sup
g∈L2(Ω,R)

\
Ω

{〈g(y), div p(y)〉 −G(y, g(y) + x(y)) +H(y,∇x(y))} dy.

Now we will prove

Lemma 2.1.

J#x (p) =
\
Ω

{G∗(y, div p(y)) +H(y,∇x(y))− 〈x(y), div p(y)〉} dy.

Proof. Denote by F the functional defined in L2(Ω,R) by

F (u) =
\
Ω

f(y, u(y)) dy

and by F ∗ the conjugate function given by

F ∗(u∗) = sup
u∈L2(Ω,R)

{\
Ω

[u(y)u∗(y)− f(y, u(y))] dy
}

(2.6)

for all u∗ ∈ L2(Ω,R). Since there exists l1 ∈ L
1(Ω,R) such that |G(y, x(y))|

≤ l1(y) for a.e. y ∈ Ω and x ∈ I and G is a Carathéodory function in
Ω × I we can apply Proposition 2.1 from [4, Chapter IX] to f(y, x) =
G(y, x) + l1(y), which gives

F ∗(u∗) =
\
Ω

f∗(y, u∗(y)) dy,(2.7)

where f∗ is the Fenchel transform of R ∋ x 7→ f(y, x) for a.a. y ∈ Ω.We see
that for a.a. y ∈ Ω and all x ∈ R, f∗(y, x∗) = supx∈R{xx

∗−G(y, x)−l1(y)} =
G∗(y, x∗)− l1(y). So on the one hand (by (2.6))

F ∗(u∗) = sup
u∈L2(Ω,R)

{\
Ω

[u(y)u∗(y)−G(y, u(y))] dy
}
−
\
Ω

l1(y) dy
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and on the other hand (by (2.7))

F ∗(u∗) =
\
Ω

G∗(y, u∗(y)) dy −
\
Ω

l1(y) dy.

Finally,

sup
u∈L2(Ω,R)

{\
Ω

[u(y)u∗(y)−G(y, u(y))] dy
}
=
\
Ω

G∗(y, u∗(y)) dy.

Lemma 2.2. For all p ∈ Xd,

sup
x∈X
(−J#x (−p)) = −JD(p).(2.8)

Proof. Fix p ∈ Xd. From (2.2) we obtain the existence of x ∈ X satisfy-
ing p(·) = Hz(·,∇x(·)) a.e. on Ω, and consequently,\

Ω

{〈∇x(y), p(y)〉 −H(y,∇x(y))} dy =
\
Ω

H∗(y, p(y)) dy,(2.9)

so that \
Ω

H∗(y, p(y)) dy ≤ sup
x∈X

\
Ω

{〈∇x(y), p(y)〉 −H(y,∇x(y))} dy(2.10)

≤
\
Ω

H∗(y, p(y)) dy.

This implies

sup
x∈X
(−J#x (−p))

= sup
x∈X

\
Ω

{〈∇x(y), p(y)〉 −H(y,∇x(y))−G∗(y,−div p(y))} dy = −JD(p).

Lemma 2.3. For each x ∈ X,

sup
p∈Xd
(−J#x (−p)) = −J(x).(2.11)

Proof. Taking into account Remark 1, we infer that for each x ∈ X there
exists p ∈ Xd such that\

Ω

{〈x(y),−div p(y)〉 −G∗(y,−div p(y))} dy =
\
Ω

G(y, x(y)) dy.(2.12)

By arguments similar to those in the proof of (2.10), we obtain

(2.13) sup
p∈Xd

\
Ω

{〈x(y),−div p(y)〉 −G∗(y,−div p(y))} dy

=
\
Ω

G∗∗(y, x(y)) dy =
\
Ω

G(y, x(y)) dy,
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where the last equality is due to the assumptions on G. By (2.13) and (2.5)
we get

sup
p∈Xd
(−J#x (−p))

= sup
p∈Xd

\
Ω

{〈x(y),−div p(y)〉 −G∗(y,−div p(y))−H(y,∇x(y))} dy

=
\
Ω

{−H(y,∇x(y)) +G(y, x(y))} dy = −J(x).

Combining the two lemmas leads to a duality principle:

Theorem 2.4.
inf
x∈X
J(x) = inf

p∈Xd
JD(p).

2.2. Variational principles. This section is devoted to conditions neces-
sary for the existence of a minimizer for (1.5). We also present a variational
principle for minimizing sequences of J and JD. This result enables numer-
ical approximation of solutions for (1.3).

Theorem 2.5. Let x ∈ X satisfy J(x) = infx∈XJ(x). Then there exists
p ∈ Xd which is a minimizer of JD:

JD(p) = inf
p∈Xd
JD(p)(2.14)

and satisfies −div p ∈ ∂Jx(0) (where ∂Jx(0) denotes the subdifferential of
Jx at 0). Moreover

J#x (−p) + Jx(0) = 0,(2.15)

J#x (−p)− JD(p) = 0.(2.16)

Proof. By Remark 1 there exists p ∈ Xd such that (2.3) holds. This
gives (2.15). Let J∗x denote the Fenchel conjugate of Jx, that is, for all
g∗ ∈ L2(Ω,R),

J∗x(g
∗) = sup

g∈L2(Ω,R)

{\
Ω

〈g∗(y), g(y)〉 dy − Jx(g)
}
.

An easy computation shows that J∗x(−div p) = J
#
x (−p) and, as a conse-

quence, by (2.15) and the properties of the subdifferential, we have the
inclusion −div p ∈ ∂Jx(0).
Our task is now to prove that p is a minimizer of JD : X

d → R. Com-
bining the equalities Jx(0) = −J(x), (2.15) and Lemma 2.2 we deduce that

− J(x) = −J#x (−p) ≤ sup
x∈X
(−J#x (−p)) = −JD(p)(2.17)

and further Theorem 2.4 yields (2.14). Finally, (2.16) follows from (2.15)
and the equalities Jx(0) = −J(x) = −JD(p).
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Corollary 2.6. If x ∈ X is a minimizer of J : X → R, then x satisfies
(1.3).

Proof. By Theorem 2.5 we get the existence of p ∈ X for which (2.15)
and (2.16) hold. Hence\

Ω

{H∗(y, p(y)) +H(y,∇x(y))− 〈∇x(y), p(y)〉} dy = 0

and \
Ω

{G∗(y,−div p(y)) +G(y, x(y))− 〈x(y),−div p(y)〉} dy = 0.

Using the properties of the Fenchel conjugate, we obtain, for a.e. y ∈ Ω,

p(y) = Hz(y,∇x(y)) and − div p(y) = Gx(y, x(y))

for a.e. y ∈ Ω. These equalities imply (1.3).

Now we prove a numerical version of the above variational principle. We
present a result for minimizing sequences that is analogous to the previous
theorem.

Theorem 2.7. Let {xm}m∈N ⊂ X be a minimizing sequence of J : X
→ R. Then for each m ∈ N there exists pm ∈ X

d satisfying −div pm ∈
∂Jxm(0) and

inf
m∈N

JD(pm) = inf
p∈Xd
JD(p).(2.18)

Moreover for all m ∈ N,

Jxm(0) + J
#
xm(−pm) = 0,(2.19)

and for each ε > 0, there exists m0 ∈ N such that for all m > m0,

J#xn(−pm)− JD(pm) ≤ ε,(2.20)

|JD(pm)− J(xm)| ≤ ε.(2.21)

Proof. First observe that J : X → R is bounded below. Indeed, from
the definition of X and hypothesis (H) we infer that for all x ∈ X,

J(x) ≥
\
Ω

[
b1
2
|∇x|2 + k1(y)−G(y, x(y))

]
dy ≥

\
Ω

[k1(y)− l1(y)] dy.

Hence infm∈NJ(xm) =: c > −∞. As in the proof of Theorem 2.5, for each
m ∈ N there exists pm ∈ X

d satisfying (2.19) and −div pm ∈ ∂Jxm(0). We
proceed to show that {pm}m∈N is a minimizing sequence for JD : X

d → R.
To this end fix ε > 0. By the definition of c there exists m0 ∈ N such that
c + ε > J(xm) for all m > m0. Therefore, from the equalities Jxm(0) =
−J(xm), (2.19) and (2.11) we deduce that for all m > m0,

c+ ε > J(xm) = J
#
xm(−pm) ≥ infx∈X

(J#x (−pm)) = JD(pm).
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Using the last assertion and Theorem 2.4 we can derive that infp∈XdJD(p) =
infm∈NJD(pm) = c. Now (2.20) and (2.21) follow from the assertion above

and the fact that J#xm(−pm) ≤ c+ ε for all m > m0.

As a consequence of the previous theorem we obtain the following

Corollary 2.8. Suppose that {xm}m∈N ⊂ X is a minimizing sequence
for J on X. Then there exists a minimizing sequence {pm}m∈N ⊂ X

d with

− div pm(y) = Gx(y, xm(y))(2.22)

for a.e. y ∈ Ω and every m ∈ N. Moreover

lim
m→∞

\
Ω

{H∗(y, pm(y)) +H(y,∇xm(y))− 〈pm(y),∇xm(y)〉} dy = 0.(2.23)

2.3. The existence of solutions for the Dirichlet problem. This section is
devoted to the existence of a solution of (1.3).

Theorem 2.9. There exists a minimizer x0 ∈ X of the functional J on
X satisfying (1.3).

Proof. Consider a minimizing sequence {xm}m∈N ⊂ X of J : X → R.
Since X ⊂ X we infer that {∇xm}m∈N is bounded in the norm ‖ · ‖L2(Ω,Rn)
and further {xm}m∈N is bounded in W

1,2
0 (Ω,R). Thus, passing to a subse-

quence if necessary, we deduce that {xm}m∈N tends weakly to some x0 ∈

W 1,20 (Ω,R) and further xm → x0 in L
2(Ω,R) as m→∞. As a consequence,

we get pointwise convergence of a subsequence (still denoted by {xm}m∈N):
limm→∞ xm(y) = x0(y) for a.e. y ∈ Ω. Therefore

‖x0 − z1‖L∞(Ω,R) ≤M, ‖∇x0 −∇z1‖L2(Ω,Rn) ≤ K,

x0(y) ∈ I a.e. in Ω.
(2.24)

By Corollary 2.8 there exists a minimizing sequence {pm}m∈N ⊂ X
d for JD

with

− div pm(y) = Gx(y, xm(y))(2.25)

for a.e. y ∈ Ω and every m ∈ N. Moreover

lim
m→∞

\
Ω

{H∗(y, pm(y)) +H(y,∇xm(y))− 〈pm(y),∇xm(y)〉} dy = 0.(2.26)

By the assumptions concerning Gx and (2.25) the sequence {div pm}m∈N

is bounded in L2(Ω,R). Consequently, so is {
T
Ω〈div pm(y), xm(y)〉 dy}m∈N.

Moreover, the assumptions on H imply {pm}m∈N is bounded in L
2(Ω,Rn).

Finally, we conclude that there is a subsequence, still denoted by {pm}m∈N,
weakly convergent to some p0 in L

2(Ω,Rn) and such that div pm ⇁ z as
m→∞, where z ∈ L2(Ω,R).
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Now we show that div p0 = z in L
2(Ω,R). By the above,\

Ω

〈p0(y),∇h(y)〉 dy = lim
m→∞

\
Ω

〈pm(y),∇h(y)〉 dy

= − lim
m→∞

\
Ω

〈div pm(y), h(y)〉 dy = −
\
Ω

〈z(y), h(y)〉 dy

for any h ∈ C∞0 (Ω,R), hence, by the Euler–Lagrange lemma, div p0(y) =
z(y) for a.e. y ∈ Ω. On account of the above reasoning we obtain\

Ω

{G∗(y,−div p0(y)) +G(y, x0(y)) + 〈div p0(y), x0(y)〉} dy ≤ 0.(2.27)

Thus, by the properties of the Fenchel transform, we have equality in (2.27),
and as a consequence,

− div p0(y) = Gx(y, x0(y)) for a.e. y ∈ Ω.(2.28)

Similarly, by (2.23),

0 = lim
m→∞

\
Ω

{H∗(y, pm(y)) +H(y,∇xm(y))− 〈pm(y),∇xm(y)〉} dy

≥
\
Ω

[H∗(y, p0(y)) +H(y,∇x0(y))− 〈p0(y),∇x0(y)〉] dy.

By the last relation, analysis similar to that in the proof of (2.28) shows that

p0(y) = Hz(y,∇x0(y)) for a.e. y ∈ Ω.(2.29)

Combining (2.24), (2.29) and the relation div p0 ∈ L
2(Ω,R), we derive that

x0 ∈ X. (2.28) and (2.29) imply

−divHz(y,∇x0(y)) = Gx(y, x0(y))

for a.e. y ∈ Ω, so that x0 ∈ X.
Now we show that

inf
x∈X
J(x) = lim inf

m→∞

\
Ω

{H(y,∇xm(y))−G(y, xm(y))} dy ≥ J(x0).(2.30)

To see this, note that

lim inf
m→∞

\
Ω

H(y,∇xm(y)) dy ≥
\
Ω

H(y,∇x0(y)) dy,(2.31)

due to the weak lower semicontinuity of L2(Ω,Rn) ∋ z 7→
T
Ω H(y, z(y)) dy

and the fact that ∇xm ⇁ ∇x0 in L
2(Ω,Rn) as m → ∞. Moreover, from

the (strong) lower semicontinuity of X ∋ x 7→
T
Ω[−G(y, x(y))] dy and the

strong convergence of {xm}m∈N to x0 in L
2(Ω,R), we infer that

lim inf
m→∞

\
Ω

[−G(y, xm(y))] dy ≥
\
Ω

[−G(y, x0(y))] dy.(2.32)

Assertions (2.31) and (2.32) imply (2.30).
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An immediate consequence of this theorem and the definition of X is the
following

Corollary 2.10. If ‖z1‖L∞(Ω,R) > M or ‖∇z1‖L2(Ω,Rn) > K, then
there exists a nonzero solution of (1.3).

2.3.1. Applications. We shall apply our theory to derive an existence
result for the Dirichlet problem for a certain class of partial differential
equations. It is fairly easy to find an example of functions G and H satisfy-
ing (H); checking (H1) for a given G is more difficult. So we shall consider
the case when H has a special form and assume some additional conditions
on G, which make X nonempty. To this and we need the relevant theorems
from [5]:

Theorem 2.11 ([5, Theorem 9.15 for the PDE given below]). Let Ω be
a C1,1 domain in R

n. If f ∈ Lp(Ω,R) with 1 < p < ∞, then the Dirichlet
problem {

−div(k(y)∇u(y)) = f(y) for a.e. y ∈ Ω,

u ∈W 1,p0 (Ω,R),
(2.33)

where k ∈ C1(Ω,R) with k0 ≥ k(y) ≥ k0 > 0 for all y ∈ Ω, has a unique
solution u ∈W 2,p(Ω,R).

Theorem 2.12 ([5, Theorem 9.17]). Let Ω be a C1,1 domain in R
n. Then

there exists a constant c̃ (independent of u) such that

‖u‖W 2,p(Ω,R) ≤ c̃‖div(k∇u)‖Lp(Ω,R)(2.34)

for all u ∈W 2,p(Ω,R)∩W 1,p0 (Ω,R) with 1 < p <∞ and k ∈ C
1(Ω,R) with

k0 ≥ k(y) ≥ k0 > 0 for any y ∈ Ω.

Remark 2. Now we shall apply Theorem 2.9 to show that there exists at
least one solution of (1.3) forH(y, z) = 12k(y)|z|

2 andG satisfying hypothesis
(H). To this end we have to make some additional assumptions on G, which
guarantee that hypothesis (H1) holds. In the proof we will use Theorems
2.11 and 2.12.

Theorem 2.13. Assume that : k ∈ C1(Ω,R), k0≥k(y)≥k0 for all y∈Ω,
where Ω is a C1,1 bounded domain in R

n, G is differentiable with respect to
the second variable on R for a.e. y ∈ Ω and measurable in y for all x ∈ R,
and I ∋ x 7→ G(y, x) is convex , where I := [−b, b] and b is a certain positive
number. Let c̃ denote the constant of (2.34) for p = q and let s be the Sobolev
constant (see the remark below). Suppose additionally that there exists z ∈
Lq(Ω,R) such that Gx(·, z(·)) ∈ L

q(Ω,R) and ‖Gx(·, z(·))‖Lq(Ω,R) ≤ b/2sc̃,
and there exist constants q > n/2, 0 < S1 ≤ b/2sc̃ and a function l1 ∈
L1(Ω,R) such that

|G(y, x(y))| ≤ l1(y) for a.e. y ∈ Ω,



142 A. ORPEL

and

‖Gx(·, x(·))−Gx(·, z(·))‖Lq(Ω,R) < S1(2.35)

for all x ∈W 1,20 (Ω,R)∩L
∞(Ω,R) with x(y) ∈ I for a.a. y ∈ Ω. Then there

exists a solution x0 ∈ X of the Dirichlet problem for the PDE

− div(k(y)∇x0(y)) = Gx(y, x0(y)) for a.e. y ∈ Ω.(2.36)

Remark 3. Since q > n/2 and Ω ⊂ R
n is bounded, the Sobolev in-

equality implies that ‖u‖C(Ω,R) ≤ s‖u‖W 2,q
0
(Ω,R) for each u ∈W

2,q
0 (Ω,R).

Proof of Theorem 2.13. Let ˜̃c denote the constant of (2.34) for p = 2,
M := sc̃S1, K := ˜̃cS1|Ω|1/2−1/q, and let z ∈W 2,q0 (Ω,R) be a solution of the
equation

−div(k(y)∇z(y)) = Gx(y, z(y)) for a.e. y ∈ Ω

(the existence of z follows from Theorem 2.11). Then, by Theorem 2.12, we
have

‖z‖L∞(Ω,R) ≤ s‖z‖W 2,q
0
(Ω,R)

≤ sc̃‖div(k∇z)‖Lq(Ω,R)(2.37)

= sc̃‖Gx(·, z(·))‖Lq(Ω,R) < b.

First we recall that

X := {x ∈W 1,20 (Ω,R) ∩ L
∞(Ω,R); div(k∇x) ∈ L2(Ω,R),

‖u− z‖L∞(Ω,R) ≤M, ‖∇u−∇z‖L2(Ω,Rn) ≤ K, x(y) ∈ I for a.a. y ∈ Ω}.

Let

X0 := {x ∈W
2,2
0 (Ω,R) ∩ L

∞(Ω,R); ‖div(k∇x) +Gx(·, z(·))‖Lq(Ω,R) ≤ S1

and x(y) ∈ I for a.a. y ∈ Ω}.

Taking into account the definition of z and (2.37), we see that z ∈ X0. Now
we show that X0 ⊂ X. Indeed, fix x ∈ X0; using Remark 3 and Theorem
2.12 for p = q we get

‖x− z‖L∞(Ω,R) ≤ s‖x− z‖W 2,q
0
(Ω,R)

≤ sc̃‖div(k∇x− k∇z)‖Lq(Ω,R)(2.38)

= sc̃‖div(k∇x) +Gx(·, z(·))‖Lq(Ω,R) < sc̃S1.

Applying again Theorem 2.12 for p = 2 we have

‖∇x−∇z‖L2(Ω,Rn) ≤ ‖x− z‖W 2,2
0
(Ω,R) ≤

˜̃c‖div(k∇x− k∇z)‖L2(Ω,R)
≤ ˜̃c |Ω|1/2−1/q‖div(k∇x− k∇z)‖Lq(Ω,R) ≤ ˜̃c |Ω|1/2−1/qS1.

It is clear that div(k∇x) ∈ L2(Ω,R). Finally, x ∈ X.
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Now we prove that X0 has the following property: for every x ∈ X0,
there exists x̃ ∈ X0 such that\
Ω

{〈x(y),−div(k(y)∇x̃(y))〉−G∗(y,−div(k(y)∇x̃(y))} dy =
\
Ω

G(y, x(y)) dy.

To this end fix x ∈ X0. Since Gx(·, x(·)) ∈ L
q(Ω,R), by Theorem 2.11

there exists a unique solution x0 ∈W
1,q
0 (Ω,R)∩W

2,q(Ω,R) of the Dirichlet
problem for the equation

− div(k(y)∇x(y)) = Gx(y, x(y)) a.e. on Ω,(2.39)

so that

−div(k(y)∇x0(y)) ∈ ∂xG(y, x(y)).

The properties of the subdifferential now yield the required relation.

Moreover, by (2.35), we obtain

‖div(k(y)∇x0(y)) +Gx(·, z(·))‖Lq(Ω,R)
= ‖Gx(·, x(·))−Gx(·, z(·))‖Lq(Ω,R) < S1.

Taking into account this estimate, we see that

‖x0‖L∞(Ω,R) ≤ s‖x0‖W 2,q
0
(Ω,R)

≤ sc̃‖div(k∇x0z)‖Lq(Ω,R)

= sc̃‖Gx(·, x(·))‖Lq(Ω,R) ≤ b.

Finally, we conclude that x0 ∈ X0. Summarizing, X0 ⊂ X and X0 has the
required property, so that X0 ⊂ X. The relation X0 6= ∅ leads to X 6= ∅.
Now Theorem 2.9 yields the existence of a solution x0 ∈ X of (2.36).

Now we give an explicit example of (2.36) with G satisfying the assump-
tion of the previous theorem.

Example 1. We consider the special case of (2.36), when n = 4, q = 9,
Ω is a C1,1 bounded domain in R

4, k(y) = ‖y‖2
R4
+ 1 for all y ∈ Ω, G :

Ω × R→ R is given by

G(y, x) = a(y)(x9 − 5x8 − 2x7 + 24x6 + x),

where a ∈ L∞(Ω,R) with

0 < ‖a‖L∞(Ω,R) ≤
1

c̃s
min

{
1

60 9
√
|Ω|
,
1

12

}

and the constants ˜̃c, s, c̃ are defined as in Theorem 2.13. Then there exists
at least one solution x ∈W 1,20 (Ω,R) ∩ L

∞(Ω,R) of the problem

(2.40) − div((‖y‖2
R4
+ 1)∇x(y))

= a(y)[9(x(y))8 − 40(x(y))7 − 14(x(y))6 + 144(x(y))5 + 1] for a.e. y ∈ Ω

such that Ω ∋ y 7→ div((‖y‖2
R4
+ 1)∇x(y)) belongs to L2(Ω,R).
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Indeed, G satisfies all the assumptions of Theorem 2.13. Of course k ∈
C1(Ω,R), 1 ≤ k(y) ≤ 1+supy∈Ω ‖y‖

2
R4
<∞ for all y ∈ Ω, G is differentiable

with respect to the second variable in R for a.e. y ∈ Ω and measurable in y
for all x ∈ R.

Let S1 = 1/2c̃s, z(y) =
1
2 sin ‖y‖R4 ∈ L

∞(Ω,R) and let z ∈ W 2,9(Ω,R)
be a solution of the linear Dirichlet problem





−div((‖y‖2
R4
+ 1)∇z(y))

= a(y)[9(z(y))8 − 40(z(y))7 − 14(z(y))6 + 144(z(y))5 + 1]

for a.e. y ∈ Ω,

z ∈W 1,20 (Ω,R).

(The existence of z follows from Theorem 2.11.) It is worth noting that G
is convex with respect to the second variable in the interval [−1, 1], but it is
not convex in R. By the estimate on a, we have ‖Gx(·, z(·))‖Lq(Ω,R) ≤ 1/2sc̃.

It is obvious that if x(y) ∈ [−1, 1] for a.a. y ∈ Ω, then there exists a
constant l1 > 0 such that |G(y, x(y))| ≤ l1 for a.e. y ∈ Ω.

To end the proof it is sufficient to show that

‖Gx(·, x(·))−Gx(·, z(·))‖L9(Ω,R) < S1.

Indeed,

‖Gx(·, x(·))−Gx(·, z(·))‖L9(Ω,R)

≤ ‖a‖L∞(Ω,R)[‖9(x(y))
8 − 40(x(y))7 − 14(x(y))6 + 144(x(y))5‖L9(Ω,R)

+ ‖9(z(y))8 − 40(z(y))7 − 14(z(y))6 + 144(z(y))5‖L9(Ω,R)]

≤ 25 9
√
|Ω| ‖a‖L∞(Ω,R) < S1.

We have proved that G satisfies the assumptions of Theorem 2.13, which
yields the existence of a solution x0 ∈ X to (2.40).

2.3.2. Multiple solutions

Hypothesis (H2). Ω is a bounded domain of Rn having a locally Lip-
schitz boundary. The functions G : Ω×R→ R and H : Ω×R

n → R satisfy
the Carathéodory condition, H(y, ·) is Gateaux differentiable and convex for
a.e. y ∈ Ω, G(y, ·) is differentiable for a.e. y ∈ Ω and there exist constants
b3, b4 > 0 and functions k3, k4 ∈ L

1(Ω,R) such that for a.e. y ∈ Ω and all
z ∈ R

n,
b3
2
|z|2 + k3(y) ≤ H(y, z) ≤

b4
2
|z|2 + k4(y).

Moreover for each i from a certain subset N0 ⊂ N there exist functions
l1i ∈ L

1(Ω,R), l2i ∈ L
2(Ω,R) and an interval Ii such that Ii ∋ x 7→ G(y, x)
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is convex and

|G(y, x(y))| ≤ l1i (y) and |Gx(y, x(y))| ≤ l
2
i (y)

for all x ∈W 1,20 (Ω,R) ∩ L
∞(Ω,R) such that x(y) ∈ Ii for a.a. y ∈ Ω.

For given Mi,Ki > 0 and z1i ∈W
1,2
0 (Ω,R) ∩ C(Ω,R), i ∈ N0, define

X i := {x ∈W
1,2
0 (Ω,R) ∩ L

∞(Ω,R); divHz(·,∇x(·)) ∈ L
2(Ω,R),

‖x− z1i‖L∞(Ω,R) ≤Mi, ‖∇x−∇z1i‖L2(Ω,Rn) ≤ Ki, x(y) ∈ Ii a.e. in Ω}.

Hypothesis (H2′). Xi 6= ∅ for all i ∈ I, where Xi is the largest subset
of X i with property (2.1).

Using Theorem 2.9 for each Xi we get the existence of a countable set
of solutions for our problem.

Theorem 2.14. Assume hypotheses (H2) and (H2′). Then for all i ∈
N0 there exists a solution xi of the Dirichlet problem for (1.3) such that
div(Hz(y,∇xi(y)) ∈ L

2(Ω,R) and xi ∈ X i. If X i ∩Xj = ∅ for all i, j ∈ N0,
i 6= j, we obtain #S ≥ #N0, where S denotes the set of solutions for (1.3).

3. Dependence of solutions on function parameters. In this sec-
tion we shall consider the continuous dependence of solutions on parameters
for the elliptic PDE with function parameters and boundary conditions of
Dirichlet type described by (1.2).

Hypothesis (H3). G̃(y, x, u) = F (y, x)+xg(y, u), where g : Ω×R
m →

R is a Carathéodory function, Ω ∋ y 7→ g(y, u(y)) belongs to L2(Ω,R) for
all u ∈ U , and F satisfies hypothesis (H) (with G = F ).

For each u ∈ U we define Xu to be the largest subset of X having the
property: for every x ∈ Xu, there exists x̃ ∈ Xu such that

(3.1)
\
Ω

{F (y, x(y)) + F ∗(y,−divHz(y,∇x̃(y))− g(y, u(y)))

+x(y)[divHz(y,∇x̃(y)) + g(y, u(y))]} dy = 0.

Hypothesis (H4). For all u ∈ U , Xu 6= ∅.

Let

(3.2) Xdu := {p ∈ L
2(Ω,Rn); there exists x ∈ Xu such that

p(y) = Hz(y,∇x(y)) for a.e. y ∈ Ω}.

Without loss of generality we assume that 0 ∈ U and g(y, 0) = 0 a.e.
on Ω.

Theorem 3.1. Assume hypotheses (H3) and (H4). Let {um}m∈N ⊂ U be
a sequence such that {g(·, um(·))}m∈N converges weakly to g(·, 0) in L

2(Ω,R).
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For each m ∈ N let xm ∈ Xum satisfy

−divHz(y,∇xm(y))−g(y, um(y)) = Fx(y, xm(y)) for a.e. y ∈ Ω.(3.3)

Then there exists x0 ∈ X0 which is a solution of the equation

− divHz(y,∇x(y)) = Fx(y, x(y)) for a.e. y ∈ Ω(3.4)

such that {xm}m∈N converges weakly to x0 in W
1,2
0 (Ω,R).

Proof. Using the definition of X we derive that xm ⇁ x0 in W
1,2
0 (Ω,R)

as m→∞, and consequently, passing to a subsequence if necessary, xm →
x0 in L

2(Ω,R) as m→∞. Consider the sequence {pm}m∈N given by

pm(y) = Hz(y,∇xm(y)) a.e. on Ω.(3.5)

An analysis similar to that in the proof of Theorem 2.9 shows that pm ⇁ p0,
where p0 ∈ L

2(Ω,Rn), div p0 ∈ L
2(Ω,R) and div pm ⇁ div p0. Combining

(3.5) and (3.3) we have

0 = lim
m→∞

\
Ω

{H∗(y, pm(y)) +H(y,∇xm(y))− 〈pm(y),∇xm(y)〉} dy(3.6)

≥
\
Ω

{H∗(y, p0(y)) +H(y,∇x0(y))− 〈p0(y),∇x0(y)〉} dy,

and

0 = lim
m→∞

\
Ω

{F (y, xm(y)) + F
∗(y,−div pm(y)− g(y, um(y)))(3.7)

+xm(y) div pm(y) + xm(y)g(y, um(y))} dy

≥
\
Ω

[F (y, x0(y)) + F
∗(y,−div p0(y)) dy + x0(y) div p0(y)] dy.

Thus, by the properties of the Fenchel transform and the subdifferential, we
obtain for a.e. y ∈ Ω,

p0(y) = Hz(y,∇x0(y)) and − div p0(y) = Fx(y, x0(y)).

This gives (3.4) and the relation x0 ∈ X0.

Example 2. Suppose that the assumptions of Example 1 are satisfied.
Let us consider the following sequence of problems: for each m ∈ N,

(3.8) − div((‖y‖2
R4
+ 1)∇x(y)) = a(y)

[
9(x(y))8 − 40(x(y))7

− 14(x(y))6 + 144(x(y))5 + 1 +
‖y‖R4

[‖y‖2
R4
+ 1]m

]

for a.e. y ∈ Ω with Dirichlet boundary condition x|∂Ω = 0. An analysis simi-
lar to that in Example 1 shows that for eachm ∈ N, (3.8) has a solution xm ∈

W 1,20 (Ω,R)∩L
∞(Ω,R) with Ω ∋ y 7→ div((‖y‖2

R4
+1)∇xm(y)) belonging to

L2(Ω,R). Hence, by the uniform convergence of {‖y‖R4/[(‖y‖
2
R4
+ 1)m]}m∈N
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to 0 in Ω, Theorem 3.1 leads to the conclusion that {xm}m∈N converges

weakly to x0 inW
1,2
0 (Ω,R)∩L

∞(Ω,R), where x0 is a solution of the Dirich-
let problem for the PDE

−div((‖y‖2
R4
+ 1)∇x(y))

= a(y)[9(x(y))8 − 40(x(y))7 − 14(x(y))6 + 144(x(y))5 + 1].

for a.e. y ∈ Ω and Ω ∋ y 7→ div((‖y‖2
R4
+ 1)∇xm(y)) belongs to L

2(Ω,R).
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de Montréal, 1987.
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