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ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS

BY

LOUKAS GRAFAKOS (Columbia, MO)

Abstract. It is shown that maximal truncations of nonconvolution L2-bounded sin-
gular integral operators with kernels satisfying Hörmander’s condition are weak type (1, 1)
and Lp-bounded for 1 < p < ∞. Under stronger smoothness conditions, such estimates
can be obtained using a generalization of Cotlar’s inequality. This inequality is not ap-
plicable here and the point of this article is to treat the boundedness of such maximal
singular integral operators in an alternative way.

1. Introduction. Consider a function k(x) on Rn \ {0} which satisfies

sup
R>0

�
R≤|x|≤2R

|k(x)| dx <∞,

sup
y∈Rn\{0}

�
|x|≥2|y|

|k(x− y)− k(x)| dx <∞,(1)

sup
0<R1<R2<∞

∣∣∣
�

R1≤|x|≤R2

k(x) dx
∣∣∣ <∞.

It is a classical result of Benedek, Calderón, and Panzone [1] that any linear
operator T given by convolution with a tempered distribution W in S ′(Rn)
which coincides with k on Rn\{0} extends to a bounded operator on L2(Rn).
By the standard theory, such an operator T must be of weak type (1, 1) and
also Lp(Rn)-bounded for 1 < p <∞. Moreover, it was shown by Rivière [5]
that the maximal operator

T ∗(f)(x) = sup
ε>0
|T (fχ|x− · |≥ε)(x)|

is also bounded on Lp(Rn) for 1 < p <∞ and is of weak type (1, 1).
The purpose of this note is to extend Rivière’s theorem to the noncon-

volution setting, although the analogous L2 boundedness is still an open
question under the general kernel conditions given below.
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Suppose that K(x, y) is a complex-valued function on Rn×Rn\D, where
D = {(x, x) : x ∈ Rn} is the diagonal of R2n. We assume that K satisfies
the size condition

sup
R>0

�
R≤|x−y|≤2R

|K(x, y)| dy = A1 <∞(2)

and the smoothness estimate

sup
y,z∈Rn
y 6=z

�
|x−y|≥2|y−z|

|K(x, y)−K(x, z)| dx ≤ A2 <∞,(3)

often referred to as Hörmander’s condition. It follows from the equivalence
of the T1 theorem given in [6, Chapter VII, Section 3.4, Theorem 4] that
the condition

sup
x0∈Rn
ε,N>0

(
1
Nn

�
|x−x0|<N

∣∣∣
�

ε<|x−y|≤N
K(x, y) dy

∣∣∣
2
dx

)1/2

= A3 <∞(4)

is necessary for the L2-boundedness of an operator with kernel K that sat-
isfies (2). Therefore (4) plays the role of the third condition in (1), but we
will not assume that K satisfies (4) here.

We denote by K∗(x, y) = K(y, x) the transpose kernel of K(x, y) and
we let (2)∗, (3)∗, and (4)∗ be conditions (2), (3), and (4) respectively with
K∗ in place of K.

It is still an open question whether the six conditions (2), (3), (4), (2)∗,
(3)∗, and (4)∗ imply that a continuous linear operator T from S(Rn) into
S ′(Rn) whose Schwartz kernel coincides with K on Rn × Rn \ D admits
a bounded extension from L2(Rn) into itself. (This is known under less
stringent conditions on K, see [3]). Such an operator T is related to the
kernel K in the following way: If f is a Schwartz function on Rn whose
support is not all of Rn, then

T (f)(x) =
�
Rn
K(x, y)f(y) dy whenever x ∈ Rn \ supp f.(5)

Assuming however that T , as defined in (5), admits an extension which is
L2-bounded, we will obtain the boundedness of the corresponding maximal
singular integral operator using only conditions (2) and (3) on K and K∗.
By the classical theory such a T admits an extension (also denoted by T )
which is of weak type (1, 1) and bounded on Lp(Rn) for 1 < p < ∞ with
norms

‖T‖L1→L1,∞ ≤ cn(A1 + A2 + ‖T‖L2→L2),(6)

‖T‖Lp→Lp ≤ cn max(p, (p−1)−1)(A1 + A2 + ‖T‖L2→L2),(7)
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where cn depends only on the dimension. Here L1,∞ denotes the space
weak L1.

It is not easy to define the maximal singular integral operator corre-
sponding to T on Lp under the general conditions (2) and (3) on K. Indeed,
the problem is that the integral � |x−y|≥εK(x, y)f(y) dy may not converge
absolutely, even for f in L∞(Rn). Moreover, even the doubly truncated in-
tegral � ε≤|x−y|≤N K(x, y)f(y) dy may not converge absolutely for f ∈ Lp(Rn)
if p <∞. To define things properly, for 0 < ε < N ≤ ∞ we set

Kε,N (x, y) = K(x, y)χε≤|x−y|<N
and we introduce linear operators

T ε,N (f)(x) =
�
Rn
Kε,N (x, y)f(y) dy

for f in the Schwartz class S(Rn). If we assume that K and K∗ satisfy
conditions (2) and (3) and that the operator T , as defined in (5), is L2

bounded with norm

‖T‖L2→L2 = sup
f∈S(Rn)
f 6=0

‖T (f)‖L2

‖f‖L2
= B <∞,

it follows from [6, Chapter I, 7.1 Appendix, Proposition 1 and the subsequent
note] that the operators T ε,N are also L2 bounded uniformly in ε and N
with norm at most a dimensional multiple of the quantity A1 +B, i.e.

sup
0<N<∞

sup
0<ε<N

‖T ε,N‖L2→L2 ≤ Cn(A1 +B).

(This is shown for the truncated operators T ε,∞, but note that T ε,N =
T ε,∞ − TN,∞.) It then follows by standard theory that the truncated oper-
ators T ε,N also admit extensions (also denoted by T ε,N ) which are of weak
type (1, 1) and bounded on Lp(Rn) for 1 < p <∞ with norms

‖T ε,N‖L1→L1,∞ ≤ cn(A1 + A2 +B),

‖T ε,N‖Lp→Lp ≤ cn max(p, (p− 1)−1)(A1 + A2 +B),

for some dimensional constant cn. We therefore have an appropriate defini-
tion of T ε,N (f) when f lies in

⋃
1≤p<∞ L

p(Rn). For such f we set

T ∗(f) = sup
0<N<∞

sup
0<ε<N

∣∣T ε,N (f)
∣∣(8)

and we note that in view of the discussion above, the right hand side in (8) is
well defined. T ∗ is called the maximal singular integral operator associated
with T . Note that we defined the maximal singular integral using a double
truncation since we would like to be able to realize T ε,N (f) as a convergent
integral if f is a bounded function.

We now state our main result.
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Theorem 1. Suppose that K and K∗ satisfy (2), (3), and that the lin-
ear operator T associated with K as in (5) has an L2-bounded extension
with norm B. Then there exist dimensional constants Cn, C ′n such that the
estimate

‖T ∗(f)‖Lp(Rn) ≤Cn(A1 + A2 +B) max(p, (p−1)−1)‖f‖Lp(Rn)(9)

is valid for all 1 < p <∞ and all f in Lp(Rn), and

‖T ∗(f)‖L1,∞(Rn) ≤ C ′n(A1 + A2 +B)‖f‖L1(Rn)(10)

for all f ∈ L1(Rn).

It is a classical result (cf. [4], [6]) that estimates (9) and (10) can be
obtained using a generalization of Cotlar’s inequality [2] if the smoothness
condition (3) is replaced by the more restrictive Lipschitz type condition

|K(x, y)−K(z, y)|+ |K∗(x, y)−K∗(z, y)| ≤ A |x− z|γ
|x− y|n+γ(11)

whenever |x − z| ≤ 1
2 |x − y|. The point of this article is to extend these

estimates to rougher kernels which fail to satisfy (11) (and thus Cotlar’s
inequality), but which satisfy the weaker Hörmander smoothness condition
(3). Our approach is based on that of Rivière [5] but presents some extra
complications in view of the additional upper truncations of the kernel K.

Corollary 1. With the same hypotheses as in Theorem 1, if f is com-
pactly supported and of class L logL, then T ∗(f) is integrable over a ball.

The corollary is an easy consequence of Theorem 1 using the fact that
‖T ∗‖Lp→Lp ≤ Cn(p− 1)−1 as p→ 1 and Yano’s [7] extrapolation result. See
also Zygmund [8, (4.41)].

2. The main decomposition. Fix α, γ > 0. Recall the Calderón–
Zygmund decomposition of an integrable function f on Rn at height αγ
which guarantees the existence of functions g and b on Rn such that

(P1) f = g + b.
(P2) ‖g‖L1 ≤ ‖f‖L1 , ‖g‖L∞ ≤ 2nαγ, thus ‖g‖Lp ≤ (2nαγ)1/p′‖f‖1/p

L1 for
1 < p <∞.

(P3) b =
∑

j bj where each bj is supported in a cube Qj . Furthermore
the cubes Qk and Qj have disjoint interiors when j 6= k.

(P4) � Qj bj(x) dx = 0.

(P5) ‖bj‖L1 ≤ 2n+1αγ|Qj|.
(P6)

∑
j |Qj| ≤ (αγ)−1‖f‖L1 .

We will refer to g as the good function and b as the bad function of this
decomposition. For a cube Q we will denote by Q∗ a cube concentric with
Q with sidelength l(Q∗j) = 5

√
n l(Qj).
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The following lemma is the key ingredient in the proof of Theorem 1.

Lemma 1. Suppose that f is an integrable function on Rn, α, γ > 0 and
let f = g + b be the Calderón–Zygmund decomposition of f at height αγ.
Let T and K be as in Theorem 1. If γ ≤ (2n+5A1)−1, then∣∣∣∣

{
x ∈

(⋃

j

Q∗j
)c

: |T ∗(b)(x)| > α

2

}∣∣∣∣ ≤ 2n+8A2
‖f‖L1

α
.(12)

We will prove Lemma 1 in Section 3. We now prove Theorem 1 using
Lemma 1.

We begin with the proof of (9). Fix 1 < p < ∞ and a function f ∈
Lp(Rn)∩L∞(Rn) which we take initially to have compact support. We have

T ε,N (f)(x) =
�

ε≤|x−y|<N
K(x, y)f(y) dy = T ε,∞(f)(x)− TN,∞(f)(x)

=
�

ε≤|x−y|
K(x, y)f(y) dy −

�
N≤|x−y|

K(x, y)f(y) dy

=
�

ε≤|x−y|
(K(x, y)−K(z1, y))f(y) dy +

�
ε≤|x−y|

K(z1, y)f(y) dy

−
�

N≤|x−y|
(K(x, y)−K(z2, y))f(y) dy −

�
N≤|x−y|

K(z2, y)f(y) dy

=
�

ε≤|x−y|
(K(x, y)−K(z1, y))f(y) dy + T (f)(z1)− T (fχ|x− · |<ε)(z1)

−
�

N≤|x−y|
(K(x, y)−K(z2, y))f(y) dy − T (f)(z2) + T (fχ|x− · |<N )(z2),

where z1 and z2 are arbitrary points in Rn that satisfy |z1 − x| ≤ ε/2 and
|z2−x| ≤ N/2. We used the fact that f has compact support in order to be
able to write T ε,∞(f) and TN,∞(f) as convergent integrals.

At this point we take absolute values, average over |z1 − x| ≤ ε/2 and
|z2 − x| ≤ N/2, and we apply Hölder’s inequality in two terms. We obtain
the estimate

|T ε,N (f)(x)| ≤ 1
vn

(
2
ε

)n �
|z1−x|≤ε/2

�
|x−y|≥ε

|K(x, y)−K(z1, y)| |f(y)| dy dz1

+
1
vn

(
2
ε

)n �
|z1−x|≤ε/2

|T (f)(z1)| dz1

+
(

1
vn

(
2
ε

)n �
|z1−x|≤ε/2

|T (fχ|x− · |<ε)(z1)|p dz1

)1/p
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+
1
vn

(
2
N

)n �
|z2−x|≤N/2

�
|x−y|≥N

|K(x, y)−K(z2, y)| |f(y)| dy dz2

+
1
vn

(
2
N

)n �
|z2−x|≤N/2

|T (f)(z2)| dz2

+
(

1
vn

(
2
N

)n �
|z2−x|≤N/2

|T (fχ|x− · |<N )(z2)|p dz2

)1/p

,

where vn is the volume of the unit ball in Rn. Applying condition (3)∗ and
estimate (7) we obtain for f in Lp(Rn) ∩ L∞(Rn) with compact support

(13) |T ε,N (f)(x)| ≤ 2A2‖f‖L∞ +
1
vn

(
2
ε

)n �
|z1−x|≤ε/2

|T (f)(z1)| dz1

+
1
vn

(
2
N

)n �
|z2−x|≤N/2

|T (f)(z2)| dz2

+ cn(A2 +B) max(p, (p− 1)−1)
(

1
vn

(
2
ε

)n �
|z1−x|≤ε

|f(z1)|p dz1

)1/p

+ cn(A2 +B) max(p, (p− 1)−1)
(

1
vn

(
2
N

)n �
|z2−x|≤N

|f(z2)|p dz2

)1/p

.

We now use density to remove the compact support condition on f and
obtain (13) for all functions f in Lp(Rn) ∩ L∞(Rn). Taking the supremum
over all 0 < ε < N and over all N > 0 we deduce that for all f ∈ Lp(Rn) ∩
L∞(Rn) we have the estimate

T ∗(f)(x) ≤ 2A2‖f‖L∞ + Sp(f)(x),(14)

where Sp is the sublinear operator defined by

Sp(f)(x) = 2M(T (f))(x) + 2n+1cn(A2 +B) max(p, (p− 1)−1)M(|f |p)(x)1/p,

and M is the Hardy–Littlewood maximal operator.
Recalling that M maps L1 into L1,∞ with bound at most 3n (and also

Lp into Lp,∞ with bound at most 2 · 3n/p for 1 < p <∞), we conclude that
Sp maps Lp(Rn) into Lp,∞(Rn) with norm at most

‖Sp‖Lp→Lp,∞ ≤ c̃n(A2 +B) max(p, (p− 1)−1) ,(15)

where c̃n is another dimensional constant.
Now fix 1 < p < ∞ and f ∈ Lp(Rn). Let α > 0. Write f = fα + fα,

where
fα = fχ|f |≤α/(16A2) and fα = fχ|f |>α/(16A2).



MAXIMAL SINGULAR INTEGRALS 173

The function fα is in L∞ ∩ Lp and fα is in L1 ∩ Lp. Moreover, it is easy to
see that

‖fα‖L1 ≤ (16A2/α)p−1‖f‖pLp .(16)

Apply the Calderón–Zygmund decomposition to fα at height αγ to write
fα = gα + bα, where gα is the good function and bα is the bad function of
this decomposition. We obtain

‖gα‖Lp ≤ 2n/p
′
(αγ)1/p′‖fα‖1/p

L1 ≤ 2(n+4)/p′(A2γ)1/p′‖f‖Lp .(17)

We now use (14) to get

|{x ∈ Rn : T ∗(f)(x) > α}| ≤ b1 + b2 + b3,(18)

where
b1 = |{x ∈ Rn : 2A2‖fα‖L∞ + Sp(fα)(x) > α/4}|,
b2 = |{x ∈ Rn : 2A2‖gα‖L∞ + Sp(gα)(x) > α/4}|,
b3 = |{x ∈ Rn : T ∗(bα)(x) > α/2}|.

Observe that 2A2‖fα‖L∞ ≤ α/8. Select

γ =
1

2n+5(A1 + A2)
.

Using (P2) we obtain

2A2‖gα‖L∞ ≤ A22n+1αγ ≤ α2−4 < α/8

and therefore

(19)
b1 ≤ |{x ∈ Rn : Sp(fα)(x) > α/8}|,
b2 ≤ |{x ∈ Rn : Sp(gα)(x) > α/8}|.

Since γ ≤ (2n+5A1)−1, it follows from (12) that

b3 ≤
∣∣∣
⋃

j

Q∗j
∣∣∣+ 2n+8A2

‖fα‖L1

α
≤
(

(5
√
n)n

γ
+ 2n+8A2

)‖fα‖L1

α

and using (16) we obtain

b3 ≤ Cn(A1 + A2)pα−p‖f‖pLp .
Using Chebyshev’s inequality in (19) and (15) we finally obtain

b1 + b2 ≤ (8/α)p(c̃n)p(A1 + A2 +B)p max(p, (p− 1)−1)p(‖f‖pLp + ‖gα‖pLp).
Combining the estimates for b1, b2, and b3 and using (17) we obtain

‖T ∗(f)‖Lp,∞ ≤ Cn(A1 + A2 +B) max(p, (p− 1)−1)‖f‖Lp(Rn).(20)

The only difference between estimate (20) and the required estimate (9)
is that the Lp norm on the left is replaced by the Lp,∞ norm. Once (10)
is established below, interpolating between L1 → L1,∞ and L2p → L2p,∞

would yield the required estimate (9) for p near 1; also interpolating between
L(p+1)/2 → L(p+1)/2,∞ and L2p → L2p,∞ would yield (9) for p near∞ (it may
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be helpful to use here the value of the Marcinkiewicz interpolation constant
calculated in [4, p. 30]).

We now proceed with the proof of (10). Given f in L1(Rn) we apply the
Calderón–Zygmund decomposition of f at height γα for some γ, α > 0. We
then write f = g + b, where b =

∑
j bj and each bj is supported in some

cube Qj .
Using (9) we have

|{x ∈ Rn : |T ∗(f)(x)| > α}|

≤
∣∣∣∣
{
x ∈ Rn : |T ∗(g)(x)| > α

2

}∣∣∣∣+

∣∣∣∣
{
x ∈ Rn :, |T ∗(b)(x)| > α

2

}∣∣∣∣

≤ 4
α2 ‖T

∗(g)‖2L2 +
∣∣∣
⋃

j

Q∗j
∣∣∣+

∣∣∣∣
{
x 6∈

⋃

j

Q∗j : |T ∗(b)(x)| > α

2

}∣∣∣∣

≤ 4
α2 C

2
n(A1 + A2 +B)2‖g‖2L2

+
∑

j

|Q∗j |+
∣∣∣∣
{
x 6∈

⋃

j

Q∗j : |T ∗(b)(x)| > α

2

}∣∣∣∣

≤ 2n+2

α
γC2

n(A1 + A2 +B)2‖f‖L1

+
(5
√
n)n

αγ
‖f‖L1 +

∣∣∣∣
{
x 6∈

⋃

j

Q∗j : |T ∗(b)(x)| > α

2

}∣∣∣∣.

Choosing γ = (2n+5(A1 + A2 + B))−1 and using Lemma 1 we obtain the
required estimate

|{x ∈ Rn : |T ∗(f)(x)| > α}| ≤ C ′n(A1 +A2 +B)
‖f‖L1

α

with C ′n = 2−3C2
n + (5

√
n)n2n+5 + 2n+8. This concludes the proof of (10).

It remains to prove Lemma 1; this will be done in the next section.

3. The proof of Lemma 1. We now turn our attention to Lemma 1.
The estimate claimed in the lemma will be a consequence of the fact that
for x ∈ (

⋃
j Q
∗
j)

c we have the key inequality

T ∗(b)(x) ≤ 4E1(x) + 2n+2αγE2(x) + 2n+3αγA1,(21)

where
E1(x) =

∑

j

�
Qj

|K(x, y)−K(x, yj)| |bj(y)| dy,

E2(x) =
∑

j

�
Qj

|K(x, y)−K(x, yj)| dy,

and yj is the center of Qj .
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If we had (21), then we could easily derive (12). Indeed, fix γ ≤
(2n+5A1)−1. Then 2n+3αγA1 < α/3 and using (21) we obtain

(22)

∣∣∣∣
{
x ∈

(⋃

j

Q∗j
)c

: |T ∗(b)(x)| > α

2

}∣∣∣∣

≤
∣∣∣∣
{
x ∈

(⋃

j

Q∗j
)c

: 4E1(x) >
α

12

}∣∣∣∣

+

∣∣∣∣
{
x ∈

(⋃

j

Q∗j
)c

: 2n+2αγE2(x) >
α

12

}∣∣∣∣

≤ 48
α

�
(
⋃
j Q
∗
j )c

E1(x) dx+ 2n+6γ
�

(
⋃
j Q
∗
j )c

E2(x) dx,

since α/2 = α/3 + α/12 + α/12. We have

(23)
�

(
⋃
j Q
∗
j )c

E1(x) dx ≤
∑

j

�
Qj

|bj(y)|
�

(Q∗j )c

|K(x, y)−K(x, yj)| dx dy

≤
∑

j

�
Qj

|bj(y)|
�

|x−yj |≥2|y−yj |
|K(x, y)−K(x, yj)| dx dy

≤ A2

∑

j

�
Qj

|bj(y)| dy = A2

∑

j

‖bj‖L1 ≤ A22n+1‖f‖L1 ,

where we used the fact that if x ∈ (Q∗j )
c then |x−yj | ≥ 1

2 l(Q
∗
j) = 5

2

√
n l(Qj).

But since |y−yj | ≤ 1
2

√
n l(Qj) this implies that |x−yj | ≥ 2|y−yj |. Here we

used the fact that the diameter of a cube is equal to
√
n times its sidelength.

Likewise we can obtain
�

(
⋃
j Q
∗
j )c

E2(x) dx ≤ A2

∑

j

|Qj| ≤ A2
‖f‖L1

αγ
.(24)

Combining (23) and (24) with (22) yields (12).
Therefore the main task in the proof of (12) is to show (21). Recall

that b =
∑

j bj and to estimate T ∗(b) it suffices to estimate each |T ε,N (bj)|
uniformly in ε and N . To achieve this we will use the estimate

|T ε,N (bj)| ≤ |T ε,∞(bj)|+ |TN,∞(bj)| .(25)

We work with T ε,∞ and we note that TN,∞ can be treated similarly. For
fixed x 6∈ ⋃j Q

∗
j and ε > 0 we define

J1(x, ε) = {j : |x− y| < ε for all y ∈ Qj},
J2(x, ε) = {j : |x− y| > ε for all y ∈ Qj},
J3(x, ε) = {j : |x− y| = ε for some y ∈ Qj}.
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Note that T ε,∞(bj)(x) = 0 whenever x 6∈ ⋃j Q
∗
j and j ∈ J1(x, ε). Also note

that Kε,∞(x, y) = K(x, y) whenever x 6∈ ⋃j Q
∗
j , j ∈ J2(x, ε) and y ∈ Qj .

Therefore

(26) sup
ε>0
|T ε,∞(b)(x)|

≤ sup
ε>0

∣∣∣
∑

j∈J2(x,ε)

T (bj)(x)
∣∣∣+ sup

ε>0

∣∣∣
∑

j∈J3(x,ε)

T (bjχ|x− · |≥ε)(x)
∣∣∣,

but since

sup
ε>0

∣∣∣
∑

j∈J2(x,ε)

T (bj)(x)
∣∣∣ ≤

∑

j

|T (bj)(x)| = E1(x),(27)

it suffices to estimate the second term on the right in (26).
Here we need to make some geometric observations. Fix ε > 0, x ∈

(
⋃
j Q
∗
j )

c and also fix a cube Qj with j ∈ J3(x, ε). Then we have

ε ≥ 1
2(l(Q∗j)− l(Qj)) = 1

2(5
√
n− 1)l(Qj) ≥ 2

√
n l(Qj).(28)

Since j ∈ J3(x, ε) there exists a y0 ∈ Qj with |x − y0| = ε. Using (28) we
deduce that for any y ∈ Qj we have

ε/2 ≤ ε−√n l(Qj) ≤ |x− y0| − |y − y0| ≤ |x− y|,
|x− y| ≤ |x− y0|+ |y − y0| ≤ ε+

√
n l(Qj) ≤ 3ε/2.

We have therefore proved that
⋃

j∈J3(x,ε)

Qj ⊂ B(x, 3ε/2) \B(x, ε/2).

We now let cj(ε) = |Qj|−1 � Qj bj(y)χ|x−y|≥ε(y) dy and we note that
property (P5) of the Calderón–Zygmund decomposition yields the estimate
|cj(ε)| ≤ 2n+1αγ. Then

sup
ε>0

∣∣∣
∑

j∈J3(x,ε)

�
Qj

K(x, y)bj(y)χ|x−y|≥ε(y) dy
∣∣∣

≤ sup
ε>0

∣∣∣
∑

j∈J3(x,ε)

�
Qj

K(x, y)(bj(y)χ|x−y|≥ε(y)− cj(ε)) dy
∣∣∣

+ sup
ε>0

∣∣∣
∑

j∈J3(x,ε)

cj(ε)
�
Qj

K(x, y) dy
∣∣∣

≤ sup
ε>0

∣∣∣
∑

j∈J3(x,ε)

�
Qj

(K(x, y)−K(x, yj))(bj(y)χ|x−y|≥ε(y)− cj(ε)) dy
∣∣∣

+ 2n+1αγ sup
ε>0

�
B(x,3ε/2)\B(x,ε/2)

|K(x, y)| dy
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≤
∑

j

�
Qj

|K(x, y)−K(x, yj)|(|bj(y)|+ 2n+1αγ) dy

+ 2n+1αγ sup
ε>0

�
ε/2≤|x−y|≤3ε/2

|K(x, y)| dy

≤ E1(x) + 2n+1αγE2(x) + 2n+1αγ(2A1).

The last estimate above, together with (27) and combined with (25) and
the analogous estimate for supN>0 |TN,∞(b)(x)| (which can be obtained en-
tirely similarly), yields (21). This finishes the proof of Lemma 1 and thus of
Theorem 1.
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