ON SELFINJECTIVE ARTIN ALGEBRAS HAVING
NONPERIODIC GENERALIZED STANDARD
AUSLANDER–REITEN COMPONENTS

BY
ANDRZEJ SKOWROŃSKI (Toruń) and KUNIO YAMAGATA (Tokyo)

Dedicated to Otto Kerner on the occasion of his sixtieth birthday

Abstract. We describe the structure of all selfinjective artin algebras having at least
three nonperiodic generalized standard Auslander–Reiten components. In particular, all
selfinjective artin algebras having a generalized standard Auslander–Reiten component of
Euclidean type are described.

Throughout the paper, by an algebra is meant a basic, connected, artin
algebra (associative, with an identity) over a fixed commutative artinian
ring k. For an algebra A, we denote by $\text{mod} \ A$ the category of finitely gen-
erated right A-modules, and by $D: \text{mod} \ A \to \text{mod} \ A^{\text{op}}$ the standard duality
$\text{Hom}_k(-, E)$, where E is a minimal injective cogenerator in $\text{mod} \ k$. An al-
gebra A is called selfinjective if $A \cong D(A)$ in $\text{mod} \ A$, that is, the projective
A-modules are injective. If A is a selfinjective algebra, then the left and the
right socles of A coincide, and we denote them by $\text{soc} \ A$. Two selfinjective al-
gebras A and \hat{A} are said to be socle equivalent if the factor algebras $A/\text{soc} \ A$ and
$\hat{A}/\text{soc} \ A$ are isomorphic.

An important class of selfinjective algebras is formed by the algebras of
the form \hat{B}/G where \hat{B} is the repetitive algebra (see [9]) (locally bounded, without
identity)

$$\hat{B} = \bigoplus_{r \in \mathbb{Z}} (B_r \oplus (DB)_r)$$

of an algebra B, where $B_r = B$ and $(DB)_r = DB$ for all $r \in \mathbb{Z}$, the
multiplication in \hat{B} is defined by

$$(a_r, f_r)_r \cdot (b_r, g_r)_r = (a_r b_r, a_r g_r + f_r b_{r+1})_r$$

for $a_r, b_r \in B_r$, $f_r, g_r \in (DB)_r$, and G is an admissible group of auto-
morphisms of \hat{B}. More precisely, for a fixed set $\mathcal{E} = \{e_i \mid 1 \leq i \leq m\}$ of
primitive orthogonal idempotents of B with $1_B = e_1 + \ldots + e_m$, consider

2000 Mathematics Subject Classification: 16D50, 16G10, 16G60, 16G70.
the canonical set $\tilde{E} = \{e_{j,r}| 1 \leq j \leq m, r \in \mathbb{Z}\}$ of primitive orthogonal idempotents of \hat{B} such that $e_{j,r}\hat{B} = (e_jB)_r \oplus (e_jDB)_r$ for $1 \leq j \leq m$ and $r \in \mathbb{Z}$. By an automorphism of \hat{B} we mean a k-algebra automorphism of \hat{B} which fixes \tilde{E}. A group G of automorphisms of \hat{B} is said to be admissible if the induced action of G on \tilde{E} is free and has finitely many orbits. Then the orbit algebra \hat{B}/G is a selfinjective algebra and the G-orbits in \tilde{E} form a canonical set of primitive orthogonal idempotents of \hat{B}/G whose sum is the identity of \hat{B}/G (see [7]). We denote by $\nu_{\hat{B}}$ the Nakayama automorphism of \hat{B} whose restriction to each copy $B_r \oplus (DB)_r$ is the identity map $B_r \oplus (DB)_r \to B_{r+1} \oplus (DB)_{r+1}$. Then the infinite cyclic group $(\nu_{\hat{B}})$ generated by $\nu_{\hat{B}}$ is admissible and $\hat{B}/(\nu_{\hat{B}})$ is the trivial extension $B \ltimes D(B)$ of B by DB. An automorphism φ of \hat{B} is said to be positive (respectively, rigid) when $\varphi(B_r) \subseteq \sum_{i \geq r}(B_i \oplus (DB)_i)$ (respectively, $\varphi(B_r) = B_r$) for any $r \in \mathbb{Z}$. Moreover, φ is said to be strictly positive if it is positive but not rigid.

We refer to [12] for more information on the automorphisms of repetitive algebras, and to [29] for general background on selfinjective algebras.

For an algebra A, we denote by Γ_A the Auslander–Reiten quiver of A, and by τ_A and τ_A^- the Auslander–Reiten translations $D\text{Tr}$ and $\text{Tr}D$, respectively. We shall identify the vertices of Γ_A with the corresponding indecomposable A-modules. By a component of Γ_A we mean a connected component of the translation quiver Γ_A. A component C of Γ_A is called regular if C contains neither a projective module nor an injective module. A subquiver Γ of Γ_A is said to be right stable (respectively, left stable) if τ_A^- (respectively, τ_A) is defined on all modules in Γ. A component C of Γ_A is called nonperiodic if C does not contain τ_A-periodic modules, that is, modules X with $X = \tau_A^iX$ for some $m \geq 1$. Following [21], a subquiver D of Γ_A is said to be generalized standard if $\text{rad}^\infty_A(X,Y) = 0$ for all modules X and Y in D. Recall that $\text{rad}^\infty_A(X,Y)$ is the intersection of all finite powers $\text{rad}^m_A(X,Y)$, for $m \geq 1$, of the radical $\text{rad}_A(X,Y)$ of $\text{Hom}_A(X,Y)$. Finally, the annihilator $r_A(\Sigma)$ of a subquiver Σ of Γ_A is the intersection of the (right) annihilators $r_A(X)$ of all modules X in Σ. Clearly, $r_A(\Sigma)$ is a two-sided ideal of A. If $r_A(\Sigma) = 0$ then Σ is said to be faithful. We refer to [2] for background on the Auslander–Reiten theory.

In this paper we are interested in the structure of selfinjective algebras whose Auslander–Reiten quiver contains nonperiodic generalized standard components. There has been work connecting tilting theory (see [8], [16], [17]) with selfinjective algebras via trivial extension algebras (see [1], [14], [19], [27]). Recently, a more general class of selfinjective algebras of tilted type has attracted much attention (see [6], [13], [17], [21–25]). Let B be a tilted algebra of type Δ (see [8]) which is not a Dynkin quiver. Then the
Auslander–Reiten quiver $\Gamma_\widehat{B}$ of \widehat{B} is of the form

$$\Gamma_{\widehat{B}} = \bigvee_{p \in \mathbb{Z}} (X_p \vee R_p)$$

where, for each $p \in \mathbb{Z}$, X_p is a component with the stable part of the form $\mathbb{Z}\Delta$, R_p is a family of components whose stable parts are tubes (if Δ is Euclidean) or of type $\mathbb{Z}\mathbb{A}_\infty$ (if Δ is wild), and $\nu_\widehat{B}(X_p) = X_{p+2}$ and $\nu_\widehat{B}(R_p) = R_{p+2}$ for the induced action of $\nu_\widehat{B}$ on $\Gamma_{\widehat{B}}$ (see [1], [6], [19]). Further, an automorphism φ of \widehat{B} is positive (respectively, strictly positive) if and only if there exists $q \geq 0$ (respectively, $q > 0$) such that $\varphi(X_p) = X_{p+q}$ and $\varphi(R_p) = R_{p+q}$ for all $p \in \mathbb{Z}$. In fact, it is known that any admissible group G of automorphisms of \widehat{B} is an infinite cyclic group generated by a strictly positive automorphism g of \widehat{B} (see [6, Lemma 3.6]). Further, the push-down functor $F_\lambda^B : \text{mod} \ B \to \text{mod} \widehat{B}/G$, associated to the Galois covering $F^B : \widehat{B} \to \widehat{B}/G$, is dense and preserves the Auslander–Reiten sequences (see [6, 3.7]). Therefore, if $g(X_0) = X_m$ with $m \geq 1$, then $\Gamma_{\widehat{B}/G}$ is obtained from $\Gamma_{\widehat{B}}$ by identifying, via F_λ^B, X_p with X_{p+m} and R_p with R_{p+m}, for all $p \in \mathbb{Z}$. Thus $\Gamma_{\widehat{B}/G}$ is of the form

$$F_\lambda^B(X_0) \vee F_\lambda^B(R_0) \vee F_\lambda^B(X_1) \vee F_\lambda^B(R_1) \vee \ldots \vee F_\lambda^B(X_{m-1}) \vee F_\lambda^B(R_{m-1}).$$

Moreover, we have $m \geq 2$ (respectively, $m \geq 3$) if and only if G is generated by an automorphism of the form $\varphi \nu_B$ for some positive (respectively, strictly positive) automorphism φ of \widehat{B} (see [6, Proposition 3.8 and Corollary 3.9]). Finally, for $m \geq 3$, all nonperiodic components $F_\lambda^B(X_r)$, $0 \leq r \leq m - 1$, are generalized standard (see [6, Corollaries 3.9 and 3.10]). We also mention that, for an arbitrary tilted algebra $B = \text{End}_H(T)$ of type Δ, there exist tilted algebras $B_1 = \text{End}_H(T_1)$ and $B_2 = \text{End}_H(T_2)$ of type Δ, given by tilting H-modules T_1 and T_2 without nonzero preprojective or nonzero preinjective direct summands, respectively, such that $\widehat{B}_1 \cong \widehat{B} \cong \widehat{B}_2$ (see [1] and [13]).

Theorem 1. Let A be a selfinjective algebra. Then the Auslander–Reiten quiver Γ_A of A admits at least three nonperiodic generalized standard components if and only if A is isomorphic to an algebra $\widehat{B}/(\varphi \nu_B)$, where B is a tilted algebra not of Dynkin type and φ is a strictly positive automorphism of B.

Proof. The sufficiency part follows from the results stated above. For the necessity, assume that Γ_A admits at least three nonperiodic generalized standard components. We know from [21, Theorem 2.3] that all such components have only finitely many T_A-orbits. Let C be a nonperiodic generalized standard component of Γ_A. Then it follows from the dual of [11, Theorem 3.4] that C admits a right stable full translation subquiver D of
the form \((-N)\Delta\), for some (finite) valued quiver \(\Delta\) without oriented cycles, which is closed under successors in \(\mathcal{C}\). Let \(M\) be the direct sum of modules lying on \(\Delta\), \(I\) the annihilator \(r_A(\mathcal{D})\) of \(\mathcal{D}\) in \(A\), and \(B = A/I\). Then \(\mathcal{D}\) is a faithful full translation subquiver of the Auslander–Reiten quiver \(\Gamma_B\) closed under successors (in \(\Gamma_B\)), and \(M\) is a faithful \(B\)-module (see [20, Lemma 3]). Since \(\mathcal{C}\) is a generalized standard component of \(\Gamma_A\), \(\mathcal{D}\) is a generalized standard subquiver of \(\Gamma_B\), and we infer from [22, Proposition 5.3] that \(M\) is a tilting \(B\)-module, \(H = \text{End}_B(M)\) is a hereditary algebra of type \(\Delta\), and hence \(B\) is a tilted algebra of the form \(B \cong \text{End}_H(T)\), for the tilting \(H\)-module \(T = DM\) (see [20, Theorem 3]). In fact, \(\mathcal{D}\) is a full translation subquiver of the connecting component \(C_T\) of \(\Gamma_B\) determined by \(T\), and hence \(T\) has no nonzero preprojective direct summands (because \(\mathcal{D}\) does not contain injective modules) (see [17]).

We may choose a complete set \(\{e_i\mid 1 \leq i \leq n\}\) of primitive orthogonal idempotents of \(A\) such that \(1 = e_1 + \ldots + e_n\) and \(\{e_i\mid 1 \leq i \leq m\}\), for some \(m \leq n\), is the set of all idempotents \(e_i\) with \(i \in \{1, \ldots, n\}\) which are not in \(I\). Then the idempotent \(e = e_1 + \ldots + e_m\) is uniquely determined by \(I\) up to an inner automorphism, and is called a residual identity of \(B = A/I\) (see [22]). We proved in [22, Theorem 5.1] that \(IeI = 0\) and \(Ie\) is an injective cogenerator in \(\text{mod} \ B\). Clearly, the ordinary quiver \(Q_B\) of \(B\) has no oriented cycles, since \(B\) is a tilted algebra (see [8]). Therefore, applying [24, Theorem 4.1], we conclude that \(A\) is socle equivalent to an algebra \(\Lambda = \widehat{B}/(\psi\nu_B)\) for a positive automorphism \(\psi\) of \(\hat{B}\). Since the factor algebras \(A/\text{soc} \ A\) and \(\Lambda/\text{soc} \ \Lambda\) are isomorphic, the Auslander–Reiten quivers \(\Gamma_A/\text{soc} \ A\) and \(\Gamma_{\Lambda/\text{soc} \ \Lambda}\) are also isomorphic, and hence there is a canonical correspondence between the components of \(\Gamma_A\) and \(\Gamma_{\Lambda}\). In fact, it follows from [24, Proposition 5.1(ii)] that there is a bijection between the nonperiodic generalized standard components of \(\Gamma_A\) and \(\Gamma_{\Lambda}\).

Invoking now our assumption on \(A\), we conclude that \(\Gamma_A\) admits at least three nonperiodic generalized standard components, and consequently \(\psi\) is a strictly positive automorphism of \(\hat{B}\). But then, for the Nakayama automorphism \(\nu\) of \(A\), we have \(e_i \neq \psi e(i)\) for all \(i \in \{1, \ldots, n\}\) (see [25, Lemma 4.1]). Applying now [25, Proposition 2.5] we conclude that the canonical algebra epimorphism \(eAe \to eAe/eIe\) splits. Finally, applying [24, Theorem 3.8], we infer that \(A\) is isomorphic to an algebra of the form \(\widehat{B}/(\varphi\nu_B)\) for a positive automorphism \(\varphi\) of \(\hat{B}\), which is in fact strictly positive, because the number of nonperiodic generalized standard components in \(\Gamma_A\) is at least three. This finishes the proof.

In the above proof we have faced the situation when two selfinjective algebras of the forms \(A = \widehat{B}/(\varphi\nu_B)\) and \(\Lambda = \widehat{B}/(\psi\nu_B)\), for a tilted algebra \(B\) (not of Dynkin type) and strictly positive automorphisms \(\varphi\) and \(\psi\) of \(\hat{B}\),
are socle equivalent. We point out that A and Λ can be nonisomorphic, as the following example shows.

Example 2. Let Q be a finite connected quiver with sink-source orientation, and k a field. Fix a source x in Q and consider the quiver Δ obtained from Q by adding two arrows $x \xrightarrow{\alpha} y$ and $x \xrightarrow{\beta} z$, where $y \neq z$ are not vertices of Q. Then Δ has again a sink-source orientation, and consequently the path algebra $B = K\Delta$ of Δ is a radical square zero hereditary algebra.

Let σ be the automorphism of the algebra B induced by the automorphism of Δ exchanging the arrows α and β, and keeping the other arrows of Δ unchanged. Then σ induces an automorphism φ of B whose restriction to each part B_r is φ_Δ [12, Lemma 3.1]. Fix $m \geq 1$, take the strictly positive automorphisms $\varphi_m = \nu_B^m$ and $\psi_m = \omega \nu_B^m$ of B, and consider the algebras $A(m) = B/(\varphi_m \nu_B)$ and $\Lambda(m) = B/(\psi_m \nu_B)$. Then $A(m)$ is a selfinjective algebra whose Nakayama permutation (see [29] for definition) has order m, $\Lambda(m)$ is a selfinjective algebra whose Nakayama permutation has order $2m$, and consequently $A(m)$ and $\Lambda(m)$ are nonisomorphic. On the other hand, the socle factors $A(m)/\text{soc } A(m)$ and $\Lambda(m)/\text{soc } \Lambda(m)$ are radical square zero algebras having the same ordinary (Gabriel) quiver, and hence they are isomorphic. Therefore, $A(m)$ and $\Lambda(m)$ are socle equivalent.

Following [3, 8.2] an algebra A is said to be *strictly wild* if there are modules X and Y in $\text{mod } A$ whose endomorphism rings $\text{End}_A(X)$ and $\text{End}_A(Y)$ are division rings, $\text{Hom}_A(X,Y) = 0 = \text{Hom}_A(Y,X)$ and the inequality $\text{dim}_{\text{End}_A(Y)} \text{Ext}^1_A(X,Y) \cdot \text{dim} \text{Ext}^1_A(X,Y)_{\text{End}_A(X)} \geq 5$ holds. If k is a field, then it follows from [15, 5.4] (see also [3, Lemma 8.2]) that A is strictly wild if and only if there is a field extension K of k and a $K\langle x, y \rangle$-A-bimodule M which is finitely generated projective over $K\langle x, y \rangle$ and such that the tensor product functor $- \otimes_{K\langle x, y \rangle} M : \text{Mod } K\langle x, y \rangle \rightarrow \text{Mod } A$ is fully faithful. Here, $K\langle x, y \rangle$ denotes the free associative K-algebra in two generators, and $\text{Mod } K\langle x, y \rangle$ and $\text{Mod } A$ the categories of all $K\langle x, y \rangle$-modules and all A-modules, respectively. Moreover, an algebra A is said to be *wild* (see [3, 7.4]) if there exists a field extension K of k and a $K\langle x, y \rangle$-A-bimodule M, finitely generated and projective as $K\langle x, y \rangle$-module, such that the functor $- \otimes_{K\langle x, y \rangle} M : \text{Mod } K\langle x, y \rangle \rightarrow \text{Mod } A$ preserves indecomposability and isomorphism classes of modules. It is known that a wild hereditary algebra is strictly wild (see [3, Theorem 8.4]) but in general a wild algebra need not be strictly wild.

Theorem 3. Let A be a selfinjective algebra. Then the following statements are equivalent:

(i) A is not strictly wild and Γ_A admits a nonperiodic generalized standard component.
(ii) A is not wild and Γ_A admits a nonperiodic generalized standard component.

(iii) Γ_A admits a nonperiodic component and all nonperiodic components of Γ_A are generalized standard.

(iv) Γ_A admits a generalized standard component of Euclidean type.

(v) A is isomorphic to an algebra $\widehat{B}/(\varphi \nu_B)$, where B is a tilted algebra of Euclidean type and φ is a strictly positive automorphism of \widehat{B}.

Proof. It follows from the proof of Theorem 1 that if Γ_A admits a nonperiodic generalized standard component C then A is socle equivalent to an algebra $A = \widehat{B}/(\psi \nu_B)$, where B is a tilted algebra $B = \text{End}_H(T)$, for a hereditary algebra H of type Δ not being a Dynkin quiver and a tilting H-module T without nonzero preprojective (equivalently, preinjective) direct summands, and ψ is a positive automorphism of \widehat{B}. Further, we know from [21, Corollary 3.3] and [18] that C is regular if and only if Δ is a wild quiver with at least three vertices and T is a regular tilting H-module. Moreover, it follows from [6, Corollary 3.9] that if Γ_A admits a nonregular nonperiodic generalized standard component then ψ is strictly positive, and hence all nonperiodic components of Γ_A are generalized standard. Finally, it follows from [3, Theorem 8.4] and [26, Theorem 7.5] (see also [10, Theorem 6.2]) that if Δ is wild then B is strictly wild, and consequently A is strictly wild.

Assume (i) holds. Then it follows from the above statements that Δ is a Euclidean quiver, and consequently all nonperiodic components of Γ_A are nonregular. Since, by the assumption (i), Γ_A admits at least one nonperiodic generalized standard component, we then infer that ψ is strictly positive, and consequently Γ_A admits at least three nonperiodic generalized standard components. Invoking now Theorem 1 we deduce that A is isomorphic to an algebra $\widehat{B}/(\varphi \nu_B)$ for a strictly positive automorphism φ of \widehat{B}. Hence (v) holds. Further, the equivalence (iv)\Leftrightarrow(v) and the implication (v)\Rightarrow(iii) are also direct consequences of the above discussion. Moreover, the implication (ii)\Rightarrow(i) follows from the well known fact that every strictly wild algebra is wild (see [3, Lemma 8.2]).

Assume (iii) holds. It has been shown in [21, Theorem 2.3] that every generalized standard component of an Auslander–Reiten quiver contains at most finitely many nonperiodic orbits. On the other hand, if Δ is wild then Γ_A admits nonperiodic components with stable parts of the form $\mathbb{Z}A_{\infty}$, and consequently admits nonperiodic components which are not generalized standard. Therefore, Δ is a Euclidean quiver, and as above $A \cong \widehat{B}/(\varphi \nu_B)$ for a strictly positive automorphism φ of \widehat{B}. Hence the implication (iii)\Rightarrow(v) holds. Moreover, it follows from the structure of the module categories of selfinjective algebras of Euclidean type (see [1], [4], [19]) that $A \cong \widehat{B}/(\varphi \nu_B)$.
is not wild, and consequently the implication (iii)\Rightarrow(ii) also holds. This finishes the proof.

In [24, Theorem 5.5] we proved that a selfinjective algebra A is socle equivalent to an algebra $\tilde{B}/(\varphi\nu_{\tilde{B}})$, where B is a tilted algebra not of Dynkin type and φ is a positive automorphism of \tilde{B}, if and only if Γ_A admits a nonperiodic generalized standard right stable (respectively, left stable) full translation subquiver which is closed under successors (respectively, predecessors) in Γ_A. We exhibit below a class of algebras showing that in general we cannot replace “socle equivalent” by “isomorphic” without assuming that φ is strictly positive.

Let K be a finite field extension of a field k of characteristic 2 such that the Hochschild cohomology group $H^2(K, K)$ is nonzero, where K is considered as a k-algebra (see [5], [22], [28] for existence of such extensions). Take a 2-cocycle $\alpha : K \times K \to K$ corresponding to a nonsplittable extension $0 \to K \to L \to K \to 0$. Now let $Q = (Q_0, Q_1)$ be a finite quiver without oriented cycles and double arrows and $H = KQ$ be the path algebra of Q over K. For each vertex i of Q, choose a primitive idempotent e_i of H, and for each path from i to j in Q, choose an element $h_{ji} = e_jh_{ji}e_i$ of H. Then $DH = \text{Hom}_K(KQ, K) \cong \text{Hom}_K(KQ, k)$ has a dual basis e_i^*, h_{ji}^* over K. Let $\tilde{H} = H \oplus DH$ be the direct sum of K-spaces. Define multiplication on \tilde{H} in the following way:

$$(a, u)(b, v) = (ab, av + ub + \sum_{i \in Q_0} \alpha(a_i, b_i)e_i^*)$$

for $a, b \in H$, $u, v \in DH$, where a_i and b_i are elements of K such that

$$a = \sum a_ie_i + \sum r_{ji}h_{ji}, \quad b = \sum b_ie_i + \sum s_{ji}h_{ji},$$

for $r_{ji}, s_{ji} \in K$, are the basis presentations of a and b. Thus we have an algebra extension

$$0 \to DH \to \tilde{H} \overset{\varrho}{\to} H \to 0$$

with the canonical morphism ϱ and the embedding $DH \to \tilde{H}$. Moreover, \tilde{H} is selfinjective, and even weakly symmetric (see [28]). The elements $\tilde{e}_i = (e_i - \alpha(1, 1)e_i^*) \in \tilde{H}$, $i \in Q_0$, form a complete set of primitive orthogonal idempotents of \tilde{H}. We have proved in [22, Proposition 6.1] that for each $i \in Q_0$ there exists a commutative diagram

$$
\begin{array}{cccccc}
0 & \longrightarrow & \tilde{e}_i(DH) & \longrightarrow & e_i\tilde{H}e_i & e_iDH_e_i & \longrightarrow & 0 \\
\downarrow & & \psi_1 & & \psi & & \psi_0 \\
0 & \longrightarrow & K & \longrightarrow & L & \longrightarrow & K & \longrightarrow & 0
\end{array}
$$

with ψ_0, ψ_1, ψ being algebra isomorphisms. Since the elements $e_i^*, i \in Q_0,$
belong to the socle of \tilde{H}, we find that \tilde{H} is socle equivalent to the trivial extension $H \times DH = \tilde{H}/(\nu_{\tilde{H}})$. On the other hand, we have the following fact.

Proposition 4. The algebra \tilde{H} is not isomorphic to an algebra of the form $\tilde{B}/(\varphi\nu_{\tilde{B}})$, where B is a k-algebra and φ is a positive automorphism of \tilde{B}.

The proposition follows directly from the above diagram of nonsplittable extensions and the following general fact.

Proposition 5. Let k be a field, A a k-algebra and A a Hochschild extension of A by DA. Assume that:

(i) A is isomorphic to an algebra of the form $\tilde{B}/(\varphi\nu_{\tilde{B}})$, where B is a k-algebra and φ is a positive automorphism of \tilde{B}.

(ii) There exists a primitive idempotent e of A such that $e\Lambda e$ is a simple k-algebra.

Then $e\Lambda e \cong e\Lambda e \times D(e\Lambda e)$.

Proof. Since A is weakly symmetric [28], it follows from [12, Theorem 2.2] that $A \cong \tilde{B}/(\varphi\nu_{\tilde{B}}) \cong B \times (DB)_{\sigma}$, where σ is an algebra automorphism of B of the identity permutation type (see [12, Section 2] for definition). Let e_1, \ldots, e_n be a complete set of primitive orthogonal idempotents of A with $1 = e_1 + \ldots + e_n$. Let $f : A \to B \times (DB)_{\sigma}$ be an algebra isomorphism, and let $f(e_i) = (e'_i, u_i), e'_i \in B, u_i \in DB$, for $1 \leq i \leq n$. Then $\{f(e_i) | 1 \leq i \leq n\}$ and $\{(e'_i, 0) | 1 \leq i \leq n\}$ are two complete sets of orthogonal primitive idempotents of $B \times (DB)_{\sigma}$. Since there is an algebra automorphism mapping $f(e_i)$ to $(e'_i, 0)$ for all i, renumbering the vertices if necessary, we may assume that $f(e_i) = (e'_i, 0)$ for all i. For simplicity of notation, we put $e_i = (e'_i, 0), 1 \leq i \leq n$. Since the permutation type of the automorphism σ is identity, the restriction of σ to e_iBe_i defines an automorphism σ_i of e_iBe_i, and we have an isomorphism $e_i(B \times (DB)_{\sigma})e_i \cong (e_iBe_i) \times D(e_iBe_i)_{\sigma_i}$. Invoking [12, Theorem 2.2] again, we conclude that, for the primitive idempotent e of A, there exist i with $1 \leq i \leq n$ and an algebra isomorphism

$$e \Lambda e \cong e_i Be_i \times D(e_iBe_i)_{\sigma_i} \cong \tilde{B}_i/(\varphi_i\nu_{\tilde{B}_i})$$

for $B_i = e_iBe_i$ and a positive automorphism φ_i of \tilde{B}_i. Since $e \Lambda e$ is by our assumption a simple k-algebra, applying [12, Proposition 2.4], we conclude that $e \Lambda e \cong e\Lambda e \times D(e\Lambda e)$.

Acknowledgements. The research described in this paper was made during the visit of the first named author to the Tokyo University of Agriculture and Technology (November 2002). He gratefully acknowledges support.
REFERENCES

