COLLOQUIUM MATHEMATICUM

A-RINGS

BY
MANFRED DUGAS (Waco, TX) and SHALOM FEIGELSTOCK (Ramat Gan)

Abstract

A ring R is called an E-ring if every endomorphism of R^{+}, the additive group of R, is multiplication on the left by an element of R. This is a well known notion in the theory of abelian groups. We want to change the "E" as in endomorphisms to an "A" as in automorphisms: We define a ring to be an A-ring if every automorphism of R^{+} is multiplication on the left by some element of R. We show that many torsion-free finite rank (tffr) A-rings are actually E-rings. While we have an example of a mixed A-ring that is not an E-ring, it is still open if there are any tffr A-rings that are not E-rings. We will employ the Strong Black Box [5] to construct large integral domains that are A-rings but not E-rings.

0. Introduction. Let R be a ring and R^{+}the additive group of R. For $a \in R$ define $a_{l}, a_{r} \in \operatorname{End}\left(R^{+}\right)$by $a_{l}(x)=a x$ and $a_{r}(x)=x a$ for all $x \in R$. Let $R_{l}=\left\{a_{l}: a \in R\right\}$ and $R_{r}=\left\{a_{r}: a \in R\right\}$. Then R is called an E-ring if $\operatorname{End}\left(R^{+}\right)=R_{l}$. This notion of an E-ring is well known in abelian group theory, and we refer the reader to the survey article [8] for more information about E-rings and related literature. [1, Section 14] is a good source for E-rings R such that R^{+}is torsion-free of finite rank, or $t f f r$ for short.

We want to modify the definition of E-rings by considering only the group $\operatorname{Aut}\left(R^{+}\right)$of automorphisms of R^{+}instead of the entire ring of endomorphisms of R^{+}.

Definition. The ring R is called an A-ring if $\operatorname{Aut}\left(R^{+}\right) \subseteq R_{l}$. If R^{+}has elements of order 2 , we require $1 \in R$. (We will show $1 \in R$ if R^{+}has no elements of order 2.) If an abelian group G is the additive group of some A-ring, then we call G an A-group.

We will see that each A-ring R has a unity $1 \in R$ and $\operatorname{Aut}\left(R^{+}\right)=$ $(U(R))_{l}$, where $U(R)$ is the group of units of R. Moreover, we will show that $U(R) \subseteq Z(R)$, the center of R, for any A-ring R, which implies that $U(R) \approx \operatorname{Aut}\left(R^{+}\right)$is commutative. In Section 1 we obtain some information on abelian groups G with $\operatorname{Aut}(G)$ commutative.

[^0]In Section 2 we concentrate on tffr A-rings. While we have an example of a mixed A-ring that is not an E-ring, it is open if there are any tffr A-rings that are not E-rings. Our results seem to indicate that there are no such rings. We will show that each strongly indecomposable tffr A-ring is indeed an E-ring and any tffr A-ring of rank two is an E-ring. We define the notion of a strong A-ring and show that all tffr strong A-rings are E-rings. The key to this result is that quasi-summands of strong A-rings are again strong A-rings, a property that seems to be elusive for A-rings in general.

In the last section we give a construction of commutative, torsion-free Arings of large $\left(>2^{\aleph_{0}}\right)$ cardinality. We start with a suitable integral domain S and construct a commutative S-algebra R such that Aut $\left(R^{+}\right)=(U(S))_{l}$ but $\operatorname{End}\left(R^{+}\right)=R_{l}[\gamma] \approx R[x]$, the polynomial ring in a single variable over R. This shows that R is not an E-ring. We will use the Strong Black Box, as developed in [5], in our construction. This prediction principle is also used in [4], and the forthcoming monograph [7] will contain a detailed description of the Strong Black Box.

1. Preliminaries. Recall that a ring R is called an E-ring if $\operatorname{End}\left(R^{+}\right)=$ R_{l}, as defined in the introduction. We will show that every E-ring has a unity $1 \in R$. Usually, the definition of E-rings states " $1 \in R$ ", which is not needed:

Since $\operatorname{id}_{R} \in \operatorname{End}\left(R^{+}\right)$, there is some $e \in R$ such that $e_{l}=\operatorname{id}_{R}$. Thus $e x=x$ for all $x \in R$ and we have $e^{2}=e$. Since $e_{r} \in \operatorname{End}\left(R^{+}\right)$, there is some $a \in R$ such that $e_{r}=a_{l}$. Thus $x e=a x$ for all $x \in R$, and $e=e e=a e$ (for $x=e$) and $a e=a^{2}\left(\right.$ for $x=a$), which implies $e=a^{2}$. Thus $x e=(x e) e=$ $(a x) e=a(x e)=a(a x)=a^{2} x=e x=x$ for all $x \in R$. This shows that $1=e \in R$.

Now assume that R is an A-ring as defined in the introduction. We prove that R has an identity if R has no elements of additive order 2 :

Since $\operatorname{id}_{R} \in \operatorname{Aut}\left(R^{+}\right)$, there is some $e \in R$ such that $\operatorname{id}_{R}=e_{l}$ and thus $e x=x$ for all $x \in R$ and $e^{2}=e$. Now we have a decomposition $R^{+}=R \cdot e \oplus\left(\mathrm{id}_{R}-e_{r}\right)(R)$ and there is a $\theta \in \operatorname{Aut}\left(R^{+}\right)$such that $\theta \Gamma_{R \cdot e}=$ $\mathrm{id}_{R \cdot e}$ and $\theta \Gamma_{\left(\mathrm{id}_{R}-e_{r}\right)(R)}=-\mathrm{id}_{\left(\mathrm{id}_{R}-e_{r}\right)(R)}$. Then $\theta=b_{l}$ for some $b \in R$ and $\theta^{2}=\operatorname{id}_{R}$. This implies, for all $x \in R, b x e=x e$ and $b(x-x e)=-x+x e$. Thus $b x-x e=-x+x e$ and $b x+x=2 x e$, which yields $b^{2}+b=2 b e$ and $b^{2} e+b e=2 b e^{2}=2 b e$. Now we have $b^{2} e=b e$. Since $\left(b_{l}\right)^{2}=\operatorname{id}_{R}$, we have $b^{2} e=e$ and we get $e=b e$. Thus $x=e x=b e x=b x$ for all $x \in R$, which shows that $\theta=b_{l}=e_{l}=\operatorname{id}_{R}$ and $2\left(\mathrm{id}_{R}-e_{r}\right)(R)=\{0\}$. If R^{+}has no elements of order 2 , then we conclude $\operatorname{id}_{R}=e_{r}$ and $1=e \in R$.

From now on, we will assume that $1 \in R$ for each A-ring R.
Since $\operatorname{Aut}\left(R^{+}\right)$is a group, we have $\operatorname{Aut}\left(R^{+}\right)=(U(R))_{l}, U(R)$ the group of units of R. If $s \in U(R)$, then $\alpha=s_{r} \in \operatorname{Aut}\left(R^{+}\right)$and $\alpha=t_{l}$ for some $t \in R$. Now $s=s_{r}(1)=\alpha(1)=t_{l}(1)=t$ and we have $x s=t x=s x$ for
all $x \in R$ and $s \in Z(R)$. It follows that $U(R) \subseteq Z(R)$. If $w \in R$ is some nilpotent element, then $1+w \in U(R) \subseteq Z(R)$ and it follows that $w \in Z(R)$. Thus, if $N(R)$ is the nilradical of R, then $N(R)=\operatorname{Nil}(R):=\{w \in R: w$ nilpotent $\}$.

Now assume that R is a ring, $1 \in R$, such that each $\alpha \in \operatorname{Aut}(R)$ commutes with all the elements in R_{r}. Then $\alpha(x) r=\alpha(x r)$ for all $r, x \in R$ and $\alpha=(\alpha(1))_{l}$. We collect what we just proved in
1.1. Proposition. Let R be a ring. Then the following hold:
(1) If R is an A-ring, then $1 \in R$, $\operatorname{Aut}\left(R^{+}\right)=(U(R))_{l}$ and $U(R) \subseteq$ $Z(R)$.
(2) If R is an A-ring, then the nilradical $N(R)$ is contained in $Z(R)$, where $N(R)=\operatorname{Nil}(R):=\{w \in R: w$ nilpotent $\}$.
(3) If $\alpha \circ a_{r}=a_{r} \circ \alpha$ for all $\alpha \in \operatorname{Aut}\left(R^{+}\right), a \in R$, and $1 \in R$, then R is an A-ring.

Recall that if $G \approx R^{+}$is the additive group of an A-ring, we call G an A-group.

We will exhibit an example of an A-ring R such that $(U(R))_{l}=\operatorname{Aut}\left(R^{+}\right)$ is not contained in the center of $\operatorname{End}\left(R^{+}\right)$. This is also our first example of an A-ring that is not an E-ring.
1.2. EXAMPLE. Let $G=\mathbb{Z}(2) \oplus \mathbb{Z}$ and define a ring R with $R^{+}=G$ and with the multiplication

$$
(\varepsilon, z)\left(\varepsilon^{\prime}, z^{\prime}\right)=\left(\left(\varepsilon z^{\prime}+\varepsilon^{\prime} z\right) \bmod 2, z z^{\prime}\right)
$$

for $\varepsilon, \varepsilon^{\prime} \in \mathbb{Z}(2)=\{0,1\}$ and $z, z^{\prime} \in \mathbb{Z}$. Let $\bmod 2: \mathbb{Z} \rightarrow \mathbb{Z}(2)$ be the natural epimorphism. Then, letting matrices operate from the right,

$$
\operatorname{End}(G)=\left[\begin{array}{cc}
\mathbb{Z}(2) & 0 \\
\mathbb{Z} \bmod 2 & \mathbb{Z}
\end{array}\right]
$$

is not a commutative ring (and thus not an E-ring), but

$$
\operatorname{Aut}(G)=\left[\begin{array}{cc}
\{1\} & 0 \\
\mathbb{Z} \bmod 2 & \{1,-1\}
\end{array}\right]
$$

is a commutative group, as one easily verifies. Let

$$
\alpha=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \in \operatorname{Aut}(G), \quad \psi=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right] \in \operatorname{End}(G)
$$

Then

$$
\alpha \psi=\left[\begin{array}{cc}
1 & 0 \\
2 \bmod 2 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad \text { but } \quad \psi \alpha=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],
$$

which shows $\operatorname{Aut}(G) \varsubsetneqq Z(\operatorname{End}(G))$. On the other hand,

$$
\begin{aligned}
(\varepsilon, z)\left[\begin{array}{cc}
1 & 0 \\
z^{\prime} \bmod 2 & 1
\end{array}\right] & =\left(\varepsilon+z z^{\prime} \bmod 2, z\right)=(\varepsilon, z)\left(z^{\prime} \bmod 2,1\right) \\
(\varepsilon, z)\left[\begin{array}{cc}
1 & 0 \\
z^{\prime} \bmod 2 & -1
\end{array}\right] & =\left(\varepsilon+z z^{\prime} \bmod 2,-z\right)=\left(-\varepsilon+z z^{\prime} \bmod 2,-z\right) \\
& =(\varepsilon, z)\left(z^{\prime} \bmod 2,-1\right)
\end{aligned}
$$

which shows that G is an A-group. Also note that G allows two nonisomorphic ring structures.

Since A-groups have commutative automorphism groups, we want to collect some information about abelian groups with that peculiar property. It is known [3, Corollary 115.2] that an abelian torsion p-group G has $\operatorname{Aut}(G)$ commutative iff G is cocyclic or $p=2$ and $G \approx \mathbb{Z}(2) \oplus \mathbb{Z}\left(2^{\infty}\right)$. It seems that the prime $p=2$ always causes trouble for automorphisms!

Next we will look at mixed groups with commutative automorphism group.
1.3. Theorem. Let G be a mixed group with $\operatorname{Aut}(G)$ commutative. Let $P=\left\{p\right.$ prime $\left.: t(G)_{p} \neq 0\right\}$. Then, for each $p \in P$, there is a natural number k_{p} and a subgroup $H^{(p)}$ such that $G=\mathbb{Z}\left(p^{k_{p}}\right) \oplus H^{(p)}$. If $\left(p, k_{p}\right) \neq(2,1)$, then $p H^{(p)}=H^{(p)}$ and $t\left(H^{(p)}\right)_{p}=\{0\}$. Moreover, $H^{(p)}$ is fully invariant in G. If $\left(p, k_{p}\right)=(2,1)$, then $G=\mathbb{Z}(2) \oplus H^{(2)}, H^{(2)}$ is 2-torsion-free and Aut $\left(H^{(2)}\right)$ induces only the identity on $H^{(2)} / 2 H^{(2)}$.

Proof. Assume that $t(G)$ is not reduced, i.e. there is a prime $p \in P$ and a subgroup K of G such that $G=\mathbb{Z}\left(p^{\infty}\right) \oplus K$. Since G is mixed, there is an element $k \in K$ with infinite order. Let $f: k \mathbb{Z} \rightarrow \mathbb{Z}\left(p^{\infty}\right)$ with $o(f(k))>2$. Then f extends to a homomorphism $\varphi: K \rightarrow \mathbb{Z}\left(p^{\infty}\right)$. Consider

$$
\psi^{+}=\left[\begin{array}{ll}
1 & 0 \\
\varphi & 1
\end{array}\right], \quad \psi^{-}=\left[\begin{array}{cc}
1 & 0 \\
\varphi & -1
\end{array}\right] \in \operatorname{Aut}(G)
$$

Then

$$
\psi^{+} \psi^{-}=\left[\begin{array}{cc}
1 & 0 \\
2 \varphi & -1
\end{array}\right], \quad \psi^{-} \psi^{+}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

which implies $2 \varphi=0$, a contradiction to $2 \varphi(k)=2 f(k) \neq 0$.
Since $t(G)_{p}$ is reduced, $t(G)_{p}$ has a cyclic summand $\langle a\rangle$ with $G=\langle a\rangle \oplus H$ for some subgroup H of G. If $t(H)_{p} \neq 0$ we may repeat this step and find a cyclic subgroup $\langle b\rangle$ of H such that $G=\langle a\rangle \oplus\langle b\rangle \oplus L$ for some subgroup L of G. It follows that $\operatorname{Aut}(\langle a\rangle \oplus\langle b\rangle) \subseteq \operatorname{Aut}(G)$ is commutative, a contradiction to $[3,115.2]$.

Thus $G=\mathbb{Z}\left(p^{k_{p}}\right) \oplus H^{(p)}$ and $H^{(p)}$ is p-torsion-free. If $H^{(p)} \neq p H^{(p)}$, there is an element in $H^{(p)} / p^{k_{p}} H^{(p)}$ that generates a direct summand of order $p^{k_{p}}$. Thus there is a $\varphi \in \operatorname{Hom}\left(H^{(p)}, \mathbb{Z}\left(p^{k_{p}}\right)\right)$ such that φ is surjective.

Now construct ψ^{+}and ψ^{-}as above and conclude that $2 \varphi=0$. Thus $p=2$ and $k_{2}=1$.

Now consider the case $G=\mathbb{Z}(2) \oplus H^{(2)}$. Recall that $H^{(2)}$ has no elements of order 2 and $\operatorname{Aut}(G)$ is commutative. Moreover, $\bigcap\{\operatorname{Ker}(\varphi): \varphi \in$ $\left.\operatorname{Hom}\left(H^{(2)}, \mathbb{Z}(2)\right)\right\}=2 H^{(2)}$. Let $\pi \in \operatorname{Aut}\left(H^{(p)}\right)$. Then

$$
\psi_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & \pi
\end{array}\right], \quad \psi_{2}=\left[\begin{array}{cc}
1 & 0 \\
\varphi & \pi
\end{array}\right] \in \operatorname{Aut}(G)
$$

commute and so $\varphi=\pi \varphi$. This means that $0=(-1+\pi) \varphi$ and $H(-1+\pi) \subseteq$ $\operatorname{Ker}(\varphi)$ for all $\varphi \in \operatorname{Hom}\left(H^{(2)}, \mathbb{Z}(2)\right)$. Thus $H(-1+\pi) \subseteq 2 H$ and $\operatorname{Aut}(H) \upharpoonright_{H / 2 H}$ $=\left\{\mathrm{id}_{H / 2 H}\right\}$. The converse is easy to verify.
1.4. Theorem. Let G be a group with $t(G)_{2}=0$ and Aut (G) commutative. If $G=A \oplus B$ then $\operatorname{Aut}(G)=\operatorname{Aut}(A) \times \operatorname{Aut}(B)$. If G is an A-group, then A and B are A-groups and both are fully invariant in G.

Proof. Let $\varphi \in \operatorname{Hom}(B, A)$ and define $\psi^{+/-}$as in the proof of 1.3. Then again we infer $2 \varphi=0$, which now implies that $\varphi=0$. Thus $\operatorname{Hom}(A, B)=$ $0=\operatorname{Hom}(B, A)$ and $\operatorname{Aut}(G)=\operatorname{Aut}(A) \times \operatorname{Aut}(B)$. Moreover, if R is a ring with $R^{+}=G$, then A and B are ideals and there are subrings S and T of R such that $R=S \times T$ and $S^{+}=A$ and $T^{+}=B$.

If $t(G)_{2} \neq 0$, we can say the following:
1.5. Corollary. Let $G=\mathbb{Z}(2) \oplus H$ with H not torsion. The following are equivalent:
(I) $\operatorname{Aut}(G)$ is commutative.
(II) (a) $t(H)_{2}=0$ and $\operatorname{Aut}(H)$ is commutative.
(b) Either $2 H=H$ (and thus H is fully invariant in G), or $2 H \neq H$ and $\operatorname{Aut}(H)$ induces the identity on $H / 2 H$.

Proof. By Theorem 1.3, $t(G)_{2}=\mathbb{Z}(2)$ and thus $t(H)_{2}=0$. Thus

$$
\operatorname{Aut}(G)=\left[\begin{array}{cc}
\operatorname{Aut}\left(\mathbb{Z}_{2}\right) & 0 \\
\operatorname{Hom}(H, \mathbb{Z}(2)) & \operatorname{Aut}(H)
\end{array}\right] .
$$

The rest is easy verification.
The following example shows that the case $2 H \neq H$ can actually occur:
1.6. Example. Pick three distinct odd primes p, q, r and define $H=$ $\left(e_{1} \mathbb{Z}[1 / p] \oplus e_{2} \mathbb{Z}[1 / q]\right)+\left(e_{1}+e_{2}\right) \mathbb{Z}[1 / r]$. Then H is 2-reduced and $\operatorname{Aut}(H)=$ $\{1,-1\}$. Thus, for $G=\mathbb{Z}(2) \oplus H$, we see that

$$
\operatorname{Aut}(G)=\left[\begin{array}{cc}
1 & 0 \\
\operatorname{Hom}(H, \mathbb{Z}(2)) & \{1,-1\}
\end{array}\right]
$$

is commutative. Note that $\operatorname{End}(H)=\mathbb{Z}$, and thus

$$
\operatorname{End}(G)=\left[\begin{array}{cc}
\mathbb{Z}(2) & 0 \\
\operatorname{Hom}(H, \mathbb{Z}(2)) & \mathbb{Z}
\end{array}\right] .
$$

Now let $\theta: G \rightarrow \operatorname{End}(G)$ be a homomorphism. Since $\operatorname{Hom}(H, \mathbb{Z})=0$ we infer $2 \theta(G)=0$ and there is no ring $R, 1 \in R$, such that $R^{+}=G$. Thus G is an example of a group G with $\operatorname{Aut}(G)$ commutative that is not an A-group.

We will now determine which completely decomposable groups are Agroups. We leave the easy proof to the reader.
1.7. Theorem. Let $G=\bigoplus_{i \in I} A_{i}$ with A_{i} a subgroup of \mathbb{Q} for all $i \in I$. Then $\operatorname{Aut}(G)$ is commutative if and only if the types of the A_{i} 's are pairwise incomparable. Moreover, G is an A-group if and only if $\operatorname{Aut}(G)$ is commutative, I is finite, and the types of all the A_{i} 's are idempotent if and only if G is an E-group.
1.8. Theorem. Let G be a mixed group with $\operatorname{Aut}(G)$ commutative. Let $P=\left\{p\right.$ prime $\left.: t(G)_{p} \neq 0\right\}$ and assume $2 \notin P$. Then there are natural numbers k_{p} such that $t(G)_{p}=\mathbb{Z}\left(p^{k_{p}}\right)$ and $t(G)=\bigoplus_{p \in P} \mathbb{Z}\left(p^{k_{p}}\right)$. If P is finite, then $G=\mathbb{Z}\left(\prod_{p \in P} p^{k_{p}}\right) \oplus H$, where H is torsion-free and p-divisible for all $p \in P$.

If P is infinite, then there is a pure subgroup A of $\prod_{p \in P} \mathbb{Z}\left(p^{k_{p}}\right)$ and a torsion-free, P-divisible group H such that $G=A \oplus H$ and both A and H are fully invariant in G. Moreover, $\operatorname{Aut}(A)$ and $\operatorname{Aut}(H)$ are commutative and $\operatorname{Aut}(G)=\operatorname{Aut}(A) \times \operatorname{Aut}(H)$.

Proof. Let P^{\prime} be the set of all primes not in P. Let $S=\mathbb{Z}\left[1 / p: p \in P^{\prime}\right]$. Consider the short exact sequence $0 \rightarrow t(G) \rightarrow G \rightarrow G / t(G) \rightarrow 0$. By Theorem 1.3, $t(G)=\bigoplus_{p \in P} \mathbb{Z}\left(p^{k_{p}}\right)$ and $G / t(G)$ is P-divisible. Now we tensor by S and obtain $0 \rightarrow t(G) \cong t(G) \otimes S \rightarrow G \otimes S \rightarrow(G / t(G)) \otimes S \rightarrow 0$ and $(G / t(G)) \otimes S$ is divisible. There are pure subgroups A and H of G such that $A \otimes S$ is the reduced part of $G \otimes S$ and $H \otimes S$ is the divisible part of $G \otimes S$. Moreover, $t(G \otimes S) \cong t(G)$. This implies that $t(G) \subseteq A, A / t(G)$ is P-divisible and H is torsion-free. This shows that A is the P-adic closure of $t(G)$ in G. Since $t(G)$ is P^{\prime}-divisible, so is A. Now $G \subseteq(A \otimes S) \oplus(H \otimes S)=A \oplus H$. Thus $G=A \oplus H$ and A is a pure subgroup of the P-adic closure of $t(G)$, namely $\prod_{p \in P} \mathbb{Z}\left(p^{k_{p}}\right)$.
1.9. Proposition. Let $R=\left(\mathbb{Z}\left(p^{n}\right),+, *\right)$ be a unital ring with additive group $\mathbb{Z}\left(p^{n}\right)$. Then R is isomorphic to the ring $\mathbb{Z}\left(p^{n}\right)$.

Proof. It is easy to see that there is a $v \in U\left(\mathbb{Z}\left(p^{n}\right)\right)$ such that $x * y=v x y$ for all $x, y \in \mathbb{Z}\left(p^{n}\right)$. The map $\theta: \mathbb{Z}\left(p^{n}\right) \rightarrow R$ with $\theta(x)=v^{-1} x$ is a ring isomorphism.
1.10. Theorem. Let G be a mixed A-group and R an A-ring with $R^{+}=G$. Assume that $t(G)_{2}=0$ and that G has no torsion-free summand. Then $P=\left\{p\right.$ prime $\left.: t(G)_{p} \neq 0\right\}$ is infinite and R is a pure subring of $\prod_{p \in P} \mathbb{Z}\left(p^{k_{p}}\right)$, where $t(G)_{p}=\mathbb{Z}\left(p^{k_{p}}\right)$ for all $p \in P$. Moreover, all such A rings are E-rings.

Proof. Since $t(G)_{p}$ is fully invariant in G, the subring $t(G)$ of R is isomorphic to the natural ring structure by 1.9. By $1.8, G$ is isomorphic to a pure subgroup of $\prod_{p \in P} \mathbb{Z}\left(p^{k_{p}}\right)$, the P-adic completion of $t(G)$. By continuity we may assume that R is a subring of the natural ring $\prod_{p \in P} \mathbb{Z}\left(p^{k_{p}}\right)$. Any such ring is an E-ring (cf. [6]).

The example at the beginning shows that the hypothesis $t(G)_{2}=0$ is needed in 1.10.
2. Torsion-free finite rank (tffr) A-rings. We will now consider A-groups and A-rings that are torsion-free of finite rank (tffr). While it is known that all E-rings R have $N(R)=\{0\}$ (cf. [1, Corollary 14.7]), we can only prove something weaker for A-rings.
2.1. Proposition. Let R be a tffr A-ring and $N=N(R)$ the nilradical of R. Then $N^{2}=0$.

Proof. By a result due to Beaumont-Pierce (see [1, Corollary 14.2]) there is a subring T of R and an integer n such that $n R \subseteq T \oplus N \subseteq R$. Let $s \in N$ and $\theta: R \rightarrow R$ be the map that is the composition of multiplication by n, followed by the natural projection onto N, followed by the multiplication by $s \in N$. Then $n N s$ is contained in the image of θ. Moreover, by 1.1(2), s is nilpotent, and thus θ is nilpotent. Now $1-\theta \in \operatorname{Aut}\left(R^{+}\right)$and is thus a multiplication. This shows that θ is a multiplication by some element $r \in R$. Now $n=n 1 \in T$ and $T \subset \operatorname{Ker}(\theta)$, which implies that $0=\theta(n 1)=n \theta(1)=$ $n r$ and $r=0$. Thus $\theta=0$ and $n N s=\{0\}$ for all $s \in N$, which means $N^{2}=\{0\}$.
2.2. Theorem. If R is a tffr strongly indecomposable A-ring, then R is an E-ring.

Proof. By a result due to J. D. Reid (cf. [3, 92.3]), $\mathbb{Q} \operatorname{End}\left(R^{+}\right)$is an artinian algebra and a local ring in which all non-units are nilpotent. Let $\varphi \in \operatorname{End}\left(R^{+}\right)$be such that $\varphi(1)=0$. Then $\operatorname{Ker}(\varphi) \neq\{0\}$ and φ induces an element in $\mathbb{Q} \operatorname{End}\left(R^{+}\right)$that is nilpotent. Thus φ is nilpotent and $1-\varphi \in$ $\operatorname{Aut}\left(R^{+}\right)$is a multiplication. This implies that φ is a multiplication with $\varphi(1)=0$. Thus $\varphi=0$ and $\operatorname{Hom}\left(R^{+} /\langle 1\rangle, R^{+}\right)=\{0\}$, which implies that R is an E-ring.
2.3. Proposition. If R is a tffr A-ring of rank 2 , then R is an E-ring.

Proof. Let $G=R^{+}$and let k be the number of distinct types of elements of G. By another result due to Beaumont-Pierce (see [1, Theorem 3.2]), the following are possible:
(a) $k=1, G$ is strongly indecomposable or $G=A \oplus B$ with $A \cong B$. In the latter case, $\operatorname{Aut}(G)$ is not commutative.
(b) $k=2$ and G is strongly indecomposable or else $G=A \oplus B$ with type $(A)<\operatorname{type}(B)$. In the latter case, $\operatorname{Aut}(G)$ is not commutative.
(c) $k=3$ and G is strongly indecomposable or there is some $k \in \mathbb{N}$ such that $k G \subseteq A \oplus B \subseteq G$ and A, B have incomparable types. In the latter case, if $G \cong A \oplus B$, then G is an E-group, otherwise G is almost completely decomposable but indecomposable and A, B are subrings of \mathbb{Q} that are fully invariant in G. Thus G is an E-group.
(d) $k>3$ and G is strongly indecomposable.

Thus we may assume that G is strongly indecomposable and G is an E-group by Theorem 2.2.

We now define a class of tffr rings in terms of their quasi-automorphisms and quasi-units.
2.4. Definition. A tffr ring R is called a strong A-ring if $U\left(\mathbb{Q} \operatorname{End}\left(R^{+}\right)\right)$ $=U\left(\mathbb{Q} R_{l}\right)$, i.e. R_{l} and $\operatorname{End}\left(R^{+}\right)$have the same quasi-units.

Our goal is to show that all strong A-rings are actually E-rings. The proof is presented in a sequence of propositions. Here is the first step:
2.5. Proposition. Let R be a tffr ring, $1 \in R$. Then R is a strong A-ring if and only if each element of $U\left(\mathbb{Q} \operatorname{End}\left(R^{+}\right)\right)$commutes with each element of R_{r}. Thus $\left\{a \in R: \operatorname{Ker}\left(a_{r}\right)=0\right\}$ is contained in $Z(R)$.

Proof. Suppose R is a strong A-ring and let $\alpha \in U\left(\mathbb{Q} \operatorname{End}\left(R^{+}\right)\right)=$ $U\left(\mathbb{Q} R_{l}\right)$. Then there is a natural number n and $b \in R$ such that $n \alpha=b_{l}$. Now b_{l} commutes with each element of R_{r}. Thus α commutes with each element of R_{r}.

To show the converse, let $\alpha \in U\left(\mathbb{Q} \operatorname{End}\left(R^{+}\right)\right)$and $a \in R$. Then for all $x \in R$ we have $\alpha(x a)=\alpha(x) a$ and $\alpha(a)=\alpha(1) a$ for all $a \in R$. Let $\beta=\alpha^{-1}$. As before we have $\beta(a)=\beta(1) a$ for all $a \in R$ and it follows that $\alpha(1) \beta(1)=1$, which shows that $\alpha(1) \in U(\mathbb{Q} R)$ and $\alpha \in U\left(\mathbb{Q} R_{l}\right)$, and R is a strong A-ring.

2.6. Proposition. Each tffr strong A-ring R is an A-ring.

Proof. Let $\alpha \in \operatorname{Aut}\left(R^{+}\right)$. Then there is a natural number n such that $n \alpha=r_{l}$ for some $r \in R$. Thus $n \alpha(1)=r \in n R$ and $r=n s$ for some $s \in R$, and it follows that $\alpha=s_{l}$. Since $\alpha \in \operatorname{Aut}\left(R^{+}\right)$, there is $t \in R$ with $\alpha(t)=1$ and we have $s t=1$ and s is a unit in R. This shows that R is an A-ring.
2.7. Proposition. Let R be a strong A-ring. Then $U(\mathbb{Q} R) \subseteq \mathbb{Q} Z(R)$ and $U\left(\mathbb{Q} \operatorname{End}\left(R^{+}\right)\right)$is commutative.

Proof. Let b be a quasi-unit of R. Then $b_{r} \in U\left(\mathbb{Q} \operatorname{End}\left(R^{+}\right)\right)=U\left(\mathbb{Q} R_{l}\right)$ and for some $m \in \mathbb{N}$ we have $m b_{r}=a_{l}$ for some $a \in R$. Now $m b=m b_{r}(1)=$ $a_{l}(1)=a$ and it follows that $b_{r}=b_{l}$ and b is in the center of R.

Note. If R is a tffr E-ring, then R is a strong A-ring, because in this case $\operatorname{End}\left(R^{+}\right)=R_{l}$.

Next we show that strong A-rings quasi-decompose just like E-rings.
2.8. Proposition. Let R be a strong A-ring such that $R^{+} \doteq H \oplus K$ is a quasi-decomposition. Then H, K are strong A-rings and $\operatorname{Hom}(H, K)=$ $0=\operatorname{Hom}(K, H)$.

Proof. There is a natural number n such that $n(H \oplus K) \subseteq R \subseteq H \oplus K$. Let $\pi_{H}: H \oplus K \rightarrow H$ and $\pi_{K}: H \oplus K \rightarrow K$ be the natural projections. Let $H^{\prime}=\pi_{H}(R)$ and $K^{\prime}=\pi_{K}(R)$. Then H is quasi-equal to H^{\prime} since $n H \subseteq H^{\prime} \subseteq H$. The same holds for K and K^{\prime}. Thus, we may assume that π_{H} and π_{K} are onto. Let $\varphi \in \operatorname{Hom}(H, K)$. With matrices operating on the right, we have elements

$$
\psi^{+}=\left[\begin{array}{cc}
n & n \varphi \\
0 & n
\end{array}\right], \quad \psi^{-}=\left[\begin{array}{cc}
n & n \varphi \\
0 & -n
\end{array}\right]
$$

in $\operatorname{End}(R)$. Moreover, $\psi^{+}, \psi^{-} \in U\left(\mathbb{Q} \operatorname{End}\left(R^{+}\right)\right)$, a commutative group by 2.7. Thus $\psi^{+} \psi^{-}=\psi^{-} \psi^{+}$and $\varphi=0$ follows. This shows $\operatorname{Hom}(H, K)=0=$ $\operatorname{Hom}(K, H)$.

For $h \in H$, the map $(n h)_{r}: n H \rightarrow R$ is a homomorphism and $(n h)_{r}:$ $H \rightarrow H \oplus K$. Thus $(n H)(n H) \subseteq H$ and also $(n K)(n K) \subseteq K$. Moreover $(n H)(n K) \subseteq H \cap K=0$. Thus $(n H)(n K)=0=(n K)(n H)$. Now let $h_{1}, h_{2} \in H$. Then there are elements $k_{1}, k_{2} \in K$ with $h_{1}+k_{1} \in R$ and $h_{2}+k_{2} \in R$. It follows that $n^{2}\left(h_{1}+k_{1}\right)\left(h_{2}+k_{2}\right)=\left(n h_{1}+n k_{1}\right)\left(n h_{2}+n k_{2}\right)=$ $\left(n h_{1}\right)\left(n h_{2}\right)+\left(n k_{1}\right)\left(n k_{2}\right)=h_{3}+k_{3} \in n^{2} R \subseteq n^{2}(H \oplus K)$. Thus $h_{3}=n^{2} h_{4}$ for some $h_{4} \in H$ and we can define $h_{1} h_{2}=h_{4}$. This makes H into a ring and the same works for K. This shows that $n(H \oplus K) \subseteq R \subseteq H \oplus K \approx H \times K$ is an inclusion of subrings.

Let $\alpha \in U(\mathbb{Q} \operatorname{End}(H))$. Then

$$
\psi=\left[\begin{array}{cc}
n \alpha & 0 \\
0 & n
\end{array}\right] \in U\left(\mathbb{Q} \operatorname{End}\left(R^{+}\right)\right)
$$

Thus there is a natural number m such that $m \psi=(h+k)_{l}$ with $h+k$ a quasi-unit of R. We get $m n \alpha=\psi \upharpoonright_{H}=h_{l}$ and thus $\alpha \in U\left(\mathbb{Q} H_{l}\right)$. Thus H is a strong A-ring and the same holds for K.

Now we can prove our result:
2.9. Theorem. Let R be a tffr strong A-ring. Then R is an E-ring.

Proof. By 2.8 we have $n\left(R_{1} \times \ldots \times R_{k}\right) \subseteq R \subseteq R_{1} \times \ldots \times R_{k}$ where each R_{i} is a strongly indecomposable strong A-ring and $\operatorname{Hom}\left(R_{i}, R_{j}\right)=0$ for each $1 \leq i \neq j \leq k$. By 2.2 and 2.6, each R_{i} is an E-ring, which implies that R is an E-ring (cf. [1, Corollary 14.7]).
3. Large A-rings. While we have not been able to find tffr A-rings that are not E-rings, we are more successful in the infinite rank case. We will prove the following result:
3.1. Theorem. Let κ, μ, λ be infinite cardinals such that $\mu^{\kappa}=\mu$ and $\lambda=\mu^{+}$, the successor cardinal of μ. Let S be an integral domain such that $|S| \leq \kappa$ and S^{+}is torsion-free and p-reduced for the prime integer p. Moreover, assume that there is some p-adic integer π such that π is transcendental over S. Then there exists an S-algebra R such that:
(a) $|R|=\lambda$ and R is an integral domain.
(b) $\operatorname{End}\left(R^{+}\right)=R_{l}[\gamma] \approx R[x]$ and γ is an injective ring homomorphism of R but γ is not surjective.
(c) $\operatorname{Aut}\left(R^{+}\right)=(U(S))_{l}$.

Thus R is an integral domain and an A-ring that is not an E-ring.
We could prove this theorem in almost the same way as in the construction of large E-rings in [2], but we prefer to apply a more sophisticated version of the Black Box as introduced in [5] because this new version is easier to apply and also presents a λ-filtration of our desired ring R. We will present the main steps leading to the Strong Black Box [5] without duplicating the proofs. Let S have the properties as given in 3.1. Then $\bigcap_{i<\omega} p^{i} S=\{0\}$ and S is Hausdorff in its p-adic topology.

Let $B=S\left[x_{\alpha, n}: \alpha<\lambda, n<\omega\right]$ be the commutative polynomial ring with indeterminates $x_{\alpha, n}$. Let \mathbb{M} be the set of all monomials $m \in B$, i.e. $m=\prod_{i=1}^{k} x_{\alpha_{i}, n_{i}}^{e_{i}}$ with $e_{i}>0$ and $\left\{\left(\alpha_{i}, n_{i}\right): 1 \leq i \leq k\right\}$ a finite subset of $\lambda \times \omega$. Each $a \in B$ has a unique representation $a=\sum_{m \in A} m a_{m}$ where $a_{m} \in S$ and A a finite subset of \mathbb{M}. We define $\operatorname{deg}(m)=\sum_{i=1}^{k} e_{i}$ to be the degree of the monomial m. Note that $B=\bigoplus_{m \in \mathbb{M}} S m$ is a free S-module. Let \widehat{B} be the p-adic completion of B and let \subseteq_{*} denote "contained as a p-pure subgroup". For any $g=\sum m a_{m} \in \widehat{B} \subseteq \prod_{m \in \mathbb{M}} \widehat{S} m$ we define the support of g to be $[g]=\left\{m \in M: a_{m} \neq 0\right\}$ and if M is a subset of \widehat{B}, then $[M]=\bigcup_{g \in M}[g]$.

We define the λ-support of $g \in \widehat{B}$ by $[g]_{\lambda}=\{\alpha<\lambda$: there are $m \in[g]$, $n<\omega$ and $m^{\prime} \in \mathbb{M}$ such that $\left.m=x_{\alpha, n} m^{\prime}\right\}$. Note that $[g]_{\lambda}$ is an at most countable set of ordinals below λ and $[g]_{\lambda}$ is the set of all ordinals $\alpha<\lambda$ such
that some variable $x_{\alpha, n}$ actually shows up in the representation of $g \in \widehat{B}$ as a multivariate polynomial. Finally we define an S-linear ring homomorphism $\gamma: B \rightarrow B$ by $\gamma\left(x_{\alpha, n}\right)=x_{\alpha, n+1}$ for all $\alpha<\lambda$ and $n<\omega$.

Next define a norm by $\|\{\alpha\}\|=\alpha+1$ for any $\alpha<\lambda$ and $\|M\|=$ $\sup _{\alpha \in M}\|\alpha\|$ for any subset $M \subseteq \lambda$. Moreover $\|g\|=\left\|[g]_{\lambda}\right\|$ for any $g \in \widehat{B}$. Note that $\|g\|=\min \left\{\beta<\lambda:[g]_{\lambda} \subseteq \beta\right\}$ and $[g]_{\lambda} \subseteq \beta$ holds iff $g \in \widehat{B}_{\beta}$ where $B_{\beta}=S\left[x_{\alpha, n}: \alpha<\beta, n<\omega\right]$.

Fix, once and for all, bijections $h_{\alpha}: \mu \rightarrow \alpha$ for all $\mu \leq \alpha<\lambda$ such that $h_{\mu}=\operatorname{id}_{\mu}$ and for technical reasons we define $h_{\beta}=\operatorname{id}_{\mu}$ as well for $\beta<\mu$.
3.2. Definition. Define P to be a canonical subalgebra of B if $P=$ $S\left[x_{\alpha, n}: \alpha \in I, n<\omega\right]$ for some $I \subset \lambda$ with $|I| \leq \kappa$ such that $h_{\alpha}(I \cap \mu)=$ $I \cap h_{\alpha}(\mu)$ for all $\alpha \in I$.

Accordingly, an additive homomorphism $\varphi: P \rightarrow \widehat{B}$ is canonical if P is canonical and $\varphi(P) \subseteq \widehat{P}$. We also define $[\varphi]=[P],[\varphi]_{\lambda}=[P]_{\lambda}$, and $\|\varphi\|=\|P\|$. Moreover, let E be a stationary subset of $\lambda^{\circ}=\{\alpha<\lambda: \alpha$ has countable cofinality $\}$ such that $\lambda^{\circ}-E$ is stationary in λ as well.

We are now ready to state
3.3. Strong Black Box. Let $\mu, \kappa, \lambda, S, B, E$ be as above. Then there is a family of canonical homomorphisms $\varphi_{\beta}, \beta<\lambda$, such that:
(1) $\left\|\varphi_{\beta}\right\| \in E$ for all $\beta<\lambda$.
(2) $\left\|\varphi_{\varrho}\right\| \leq\left\|\varphi_{\beta}\right\|$ for all $\varrho \leq \beta<\lambda$.
(3) $\left\|\left[\varphi_{\varrho}\right]_{\lambda} \cap\left[\varphi_{\beta}\right]_{\lambda}\right\|<\left\|\left[\varphi_{\beta}\right]_{\lambda}\right\|$ for all $\varrho<\beta<\lambda$.
(4) Prediction. For any homomorphism $\psi: B \rightarrow \widehat{B}$ and for any subset I of λ with $|I| \leq \kappa$, the set $\left\{\alpha \in E:\right.$ there is $\beta<\lambda$ with $\left\|\left[\varphi_{\beta}\right]_{\lambda}\right\|=\alpha$ and $\left.I \subseteq\left[\varphi_{\beta}\right]_{\lambda}\right\}$ is stationary in λ.

Remark. In the older version of the Black Box some ordinal λ^{*} with $\left|\lambda^{*}\right|=\lambda$ was used to enumerate the canonical homomorphisms. In our setting it turns out that $\lambda^{*}=\lambda$: If there is a canonical homomorphism φ_{λ} then $\left\|\varphi_{\lambda}\right\|=\delta<\lambda$ and we have λ (distinct) canonical subalgebras of cardinality $\leq \kappa$ contained in a set of cardinality μ with $\mu^{\kappa}=\mu$. But there are only μ such subalgebras, and not $\lambda=\mu^{+}$of them.

The one thing we need to prove in detail is the (algebraic) Step Lemma which will allow us to eliminate unwanted homomorphisms.
3.4. Step Lemma. Let S, B, γ be as above and π a p-adic integer which is transcendental over S. Moreover, the following is given:
(1) Let $P=S\left[x_{\alpha, n}: \alpha \in I^{*}, n<\omega\right]$ for some subset I^{*} of λ and let M be a subring of \widehat{B} with $P \subseteq_{*} M \subseteq_{*} \widehat{B}$ such that π is transcendental over M and $\gamma(M) \subseteq M$.
(2) There is a set $I=\left\{\alpha_{i}: i<\omega\right\} \subset \lambda$ with $\alpha_{i}<\alpha_{j}$ for all $i<j<\omega$ such that $I \subseteq I^{*}=[P]_{\lambda}$ and $I \cap[g]_{\lambda}$ is finite for all $g \in M$.
(3) Let $\psi: P \rightarrow \widehat{M}$ be a homomorphism that is not in $(M[\gamma]) \upharpoonright_{P}$.

Then there is some $y \in \widehat{P}$ such that $\psi(y) \notin M^{\prime}=\left(M\left[\gamma^{i}(y): i<\omega\right]\right)_{*}$. Moreover, π is transcendental over M^{\prime}. The element y will be either $x=$ $\sum_{i<\omega} p^{i} x_{\alpha_{i}, 0}$ or $y=x+b \pi$ with a suitable element $b \in P$. Note that $\gamma^{k}(x)=$ $\sum_{i<\omega} p^{i} x_{\alpha_{i}, k}$ for all $k<\omega$. Also
(4) M and M^{\prime} have the same group of units.

Proof. Let $x=\sum_{i<\omega} p^{i} x_{\alpha_{i}, 0}$ and assume $\psi(x) \in M^{\prime}=\left(M\left[\gamma^{i}(y)\right.\right.$: $i<\omega])_{*}$. Then for some $a<\omega$ we have $p^{a} \psi(x) \in M\left[\gamma^{i}(x): i<\omega\right]$. Note that by the disjointness condition (2) the p-adic integer π is still transcendental over M^{\prime}. Let

$$
\begin{equation*}
p^{a} \psi(x)=\sum_{m \in T} m a_{m} \tag{*}
\end{equation*}
$$

where m is a monomial in the elements $\gamma^{i}(x), i<\omega$. Choose a representation such that $N=\max \{\operatorname{deg}(m): m \in T\}$ is the least possible.

Assume $N \geq 2$. Now pick another variable $x_{0}=x_{\delta, 0} \in P$ such that none of the $x_{\delta, n}$ occurs in any of the finitely many $a_{m}, m \in T$, and define $y=x+\pi x_{0}$. Moreover, define $M^{\prime \prime}=\left(M\left[\gamma^{i}(y): i<\omega\right]\right)_{*}$ and assume $\psi(y) \in M^{\prime \prime}$. Then there are some $a^{\prime}<\omega$ and $b_{m^{\prime}} \in M$ and a set T^{\prime} of monomials in the variables $\gamma^{i}(y)$ such that

$$
\begin{equation*}
p^{a^{\prime}} \psi\left(x+\pi x_{0}\right)=\sum_{m^{\prime} \in T^{\prime}} m^{\prime} b_{m^{\prime}} \tag{**}
\end{equation*}
$$

We now multiply equation $(*)$ by $p^{a^{\prime}}$ and equation $(* *)$ by p^{a} and subtract the former from the latter to obtain

$$
\begin{equation*}
p^{a+a^{\prime}} \psi\left(x_{0}\right) \pi=\sum_{m^{\prime} \in T^{\prime}} p^{a} m^{\prime} b_{m^{\prime}}-\sum_{m \in T} p^{a^{\prime}} m a_{m} \in M \pi \tag{***}
\end{equation*}
$$

For each monomial $m^{\prime} \in T^{\prime}$ we form the monomial $m^{\prime \prime}$ by simply erasing the $\gamma^{i}\left(x_{0} \pi\right)$ term. (In other words, we set $x_{0}=0$.) Now we expand the monomials $m^{\prime} \in T^{\prime}$ and collect like terms by powers of π. This turns ($* * *$) into
(\#) $\quad p^{a+a^{\prime}} \psi\left(x_{0}\right) \pi=\pi^{N^{\prime}} g_{N^{\prime}}+\sum_{j=1}^{N^{\prime}-1} \pi^{j} g_{j}+\left(\sum_{m^{\prime} \in T^{\prime}} p^{a} m^{\prime \prime} b_{m^{\prime}}-\sum_{m \in T} p^{a^{\prime}} m a_{m}\right)$.
Note that $N^{\prime} \geq 1$, all $g_{j} \in M$, and $\left(\sum_{m^{\prime} \in T^{\prime}} p^{a} m^{\prime} b_{m^{\prime}}-\sum_{m \in T} p^{a^{\prime}} m a_{m}\right)$ $\in M^{\prime}$. Moreover, $\psi\left(x_{0}\right) \in M$ by hypothesis.

First of all, this implies $\sum_{m^{\prime} \in T^{\prime}} p^{a} m^{\prime} b_{m^{\prime}}-\sum_{m \in T} p^{a^{\prime}} m a_{m}=0$ and $N^{\prime}=$ $N \geq 2$ and $\left\{m^{\prime \prime}: m^{\prime} \in T^{\prime}\right\}=T$. Moreover $p^{a} b_{m^{\prime}}=p^{a^{\prime}} a_{m}$ for all $m \in T$.

Note that $g_{N}=0$ as well, because $N=N^{\prime} \geq 2$. We need to have a closer look at that term. Note that

$$
0=g_{N}=\sum_{m \in T, \operatorname{deg}(m)=N} p^{a} \widetilde{m} b_{m^{\prime}}=\sum_{m \in T, \operatorname{deg}(m)=N} p^{a^{\prime}} \widetilde{m} a_{m}
$$

where \widetilde{m} is the monomial obtained from m (or m^{\prime}) by replacing $\gamma^{i}(x)$ (or $\left.\gamma^{i}\left(x_{0}+x\right)\right)$ by $\gamma^{i}\left(x_{0}\right)=x_{\delta, i}$. Since $m \mapsto \widetilde{m}$ is injective, and all $x_{\delta, i}$ are transcendental over the a_{m}, by the choice of $x_{\delta, 0}$, we conclude that $a_{m}=0$ whenever $m \in T$ and $\operatorname{deg}(m)=N$. This is a contradiction to the minimality of N.

Thus we may assume that $N=1$ and we have, by way of contradiction, for x chosen as above,

$$
\begin{equation*}
p^{a} \psi(x)=\sum_{i=0}^{k} a_{i} \gamma^{i}(x) \quad \text { for some } a_{i} \in M \tag{+}
\end{equation*}
$$

We define M^{\prime} as above as well.
Assume that $p^{a} \psi \upharpoonright_{P} \neq \sum_{i=0}^{k} a_{i} \gamma^{i}$. Then there is some $w \in P$ with $p^{a} \psi(w) \neq \sum_{i=0}^{k} a_{i} \gamma^{i}(w)$. Let $y=w \pi+x$ and define $M^{\prime \prime}$ for this choice. Now assume that

$$
\begin{equation*}
p^{a^{\prime}} \psi(w \pi+x)=\sum_{m \in T} m b_{m} \tag{++}
\end{equation*}
$$

where m is a monomial in the variables $\gamma^{i}(b \pi+x)$. As above we subtract $p^{a^{\prime}}(+)$ from $p^{a}(++)$ and obtain $p^{a} \sum_{m \in T} \bar{m} b_{m}-p^{a^{\prime}} \sum_{i=0}^{k} a_{i} \gamma^{i}(x) \in \pi M^{\prime}$. Thus $p^{a} \sum_{m \in T} \bar{m} b_{m}=p^{a^{\prime}} \sum_{i=0}^{k} a_{i} \gamma^{i}(x)$ and the maximal degree of polynomials in T is at most 1. Thus we have

$$
(+++) \quad p^{a^{\prime}} \psi(b \pi+x)=\sum_{i=0}^{k^{\prime}} b_{i} \gamma^{i}(w \pi+x)
$$

Again we do our subtraction and obtain

$$
p^{a+a^{\prime}} \psi(w) \pi=p^{a} \sum_{i=0}^{k^{\prime}} b_{i} \gamma^{i}(w) \pi+p^{a} \sum_{i=0}^{k^{\prime}} b_{i} \gamma^{i}(x)-p^{a^{\prime}} \sum_{i=0}^{k^{\prime}} a_{i} \gamma^{i}(x)
$$

The fact that π is transcendental over M^{\prime} now tells us that $k=k^{\prime}$ and $p^{a} b_{i}=p^{a^{\prime}} a_{i}$ for all $0 \leq i \leq k$. Therefore,

$$
p^{a+a^{\prime}} \psi(w)=p^{a} \sum_{i=0}^{k^{\prime}} b_{i} \gamma^{i}(w)=p^{a^{\prime}} \sum_{i=0}^{k} a_{i} \gamma^{i}(w)
$$

and it follows that $\psi(w)=\sum_{i=0}^{k} a_{i} \gamma^{i}(w)$, a contradiction to the choice of w.

Now we are finally down to the case where

$$
p^{a} \psi \upharpoonright_{P}=\sum_{i=0}^{k} a_{i} \gamma^{i} \quad \text { with } a_{i} \in M
$$

We may pick some variable \widetilde{x} from P such that none of the $\gamma^{j}(\widetilde{x}), j<\omega$, occurs in any of the $a_{i} \in M$ and get $p^{a} \psi(\widetilde{x})=\sum_{i=0}^{k} a_{i} \gamma^{i}(\widetilde{x}) \in p^{a} M$. Thus $a_{i}=p^{a} m_{i}$ with $m_{i} \in M$ and $\psi \upharpoonright_{P}=\left(\sum_{i=0}^{k} m_{i} \gamma^{i}\right) \upharpoonright_{P}$.

Now we need to prove (4). Suppose $u \in M^{\prime}$ is a unit in M^{\prime} such that $u \notin M$. Let k be minimal such that $u \in\left(M\left[\gamma^{i}(x): 0 \leq i \leq k\right]\right)_{*}=$ $\left(\left(M\left[\gamma^{i}(x): 0 \leq i<k\right]\right)\left[\gamma^{k}(x)\right]\right)_{*}$. Note that $\gamma^{k}(x)$ is transcendental over $M\left[\gamma^{i}(x): 1 \leq i<k\right]$. If v is the inverse of u, then $v \in\left(\left(M\left[\gamma^{i}(x): 1 \leq i<\right.\right.\right.$ $\left.k])\left[\gamma^{k}(x)\right]\right)_{*}$ as well. This shows that $k=0$, since in polynomial rings only constants are units and we obtain $u, v \in(M[x])_{*}$. Since x is transcendental over M, we infer $u \in M$.

We will now construct our ring R.
Let $\varphi_{\beta}, \beta<\lambda$, be the sequence of canonical homomorphisms provided by the Strong Black Box 3.3. Let $P_{\beta}=S\left[x_{\alpha, n}: \alpha \in\left[\varphi_{\beta}\right]_{\lambda}, n<\omega\right]$ be the domain of φ_{β}. We will construct R as the union of a λ-filtration $R=\bigcup_{\beta<\lambda} R^{\beta}$ of p-pure subrings of \widehat{B} with $R^{0}=P_{0}$ such that

$$
\begin{equation*}
R^{\beta} \subseteq\left(S\left[\bigcup_{\alpha<\beta} \widehat{P}_{\alpha}\right]\right)_{*} \quad \text { and } \quad\left\{g \in B:\|g\|<\left\|\varphi_{\beta}\right\|\right\} \subset R^{\beta} \tag{*}
\end{equation*}
$$

If β is a limit ordinal, we let $R^{\beta}=\bigcup_{\alpha<\beta} R^{\alpha}$. Now suppose we have already constructed R^{β}. Consider the canonical homomorphism φ_{β}. Since $\left\|\varphi_{\beta}\right\| \in \lambda^{\circ}$ is a limit ordinal of countable cofinality, there are ordinals $\alpha_{0}<$ $\alpha_{1}<\ldots<\alpha_{n}<\ldots$ in $\left[\varphi_{\beta}\right]_{\lambda}$ such that $\left\|\varphi_{\beta}\right\|=\sup _{n<\omega}\left\{\alpha_{n}\right\}$. Let $I=\left\{\alpha_{n}\right.$: $n<\omega\}$. Then $I \cap[g]_{\lambda}$ is finite by $(*)$ and condition (2) in 3.3. If φ_{β} maps P_{β} into R^{β} and φ_{β} is not induced by some map in $R^{\beta}[\gamma]$, then apply the Step Lemma to $I, P=P_{\beta}, M=R^{\beta}$, and $\psi=\varphi_{\beta}$. Thus there is some $y=y_{\beta}$ $\in \widehat{P}_{\beta}$ and $R^{\beta+1}=\left(R^{\beta}\left[\gamma^{i}\left(y_{\beta}\right): i<\omega\right]\right)_{*}$ such that π is transcendental over $R^{\beta+1}$ and $\varphi_{\beta}\left(y_{\beta}\right) \notin R^{\beta+1}$. Moreover, $R^{\beta+1}$ satisfies $(*)$, because $y_{\beta} \in \widehat{P}_{\beta}$.

If $\varphi_{\beta} \in\left(R^{\beta}[\gamma]\right) \upharpoonright_{P_{\beta}}$, then we do not need to apply the Step Lemma and we simply define $R^{\beta+1}=\left(R^{\beta}\left[\gamma^{i}\left(y_{\beta}\right): i<\omega\right]\right)_{*}$, where $y_{\beta}=\sum_{i<\omega} p^{i} x_{\alpha_{i}, 0}$.
3.5. Lemma. Let R be the ring constructed above. The following hold:
(a) $\left\{\gamma^{i}\left(y_{\beta}\right): \beta<\lambda, i<\omega\right\}$ is transcendental over B.
(b) If $g \in R-B$, then there is a finite subset N of $\lambda \times \omega$ and $a<\omega$ such that $p^{a} g \in B\left[\gamma^{i}\left(y_{\beta}\right):(\beta, i) \in N\right]$ and $[g]_{\lambda} \cap\left[\gamma^{i}\left(y_{\beta}\right)\right]_{\lambda}$ is infinite iff $(\beta, i) \in N$.

If $\|g\|$ is a limit ordinal, then $\|g\|=\left\|y_{\beta}\right\|$ where β is the largest ordinal such that $(\beta, j) \in N$ for some $j<\omega$. Moreover,
(c) $R \cap \widehat{P}_{\beta} \subseteq R^{\beta+1}$ for all $\beta<\lambda$.
(d) $U(R)=U(S)$.

The proof of 3.5 is the same as that of Lemma 2.2.4 and 2.2.5(a) in [5] and left to the reader. (For example, clause (c) follows from (b) and 3.3(3). Moreover, (d) follows from 3.4(4).)

We will now show that $\operatorname{End}\left(R^{+}\right)=R[\gamma]$. Again, we can almost copy the proof of 2.2.1 from [5]. We want to outline the proof anyway.

Let $R=\bigcup_{\beta<\lambda} R^{\beta}$ be the ring constructed above. Obviously, $R[\gamma] \subseteq$ $\operatorname{End}\left(R^{+}\right)$by the construction of R. Moreover, π is transcendental over each R^{β} and thus R and the $R^{\beta}, \beta<\lambda$, form a λ-filtration of R. Let $I=$ $\left\{\alpha_{i}: i<\omega\right\} \subset \lambda$ be such that $\alpha_{i}<\alpha_{j}$ for all $i<j<\omega$ such that $\eta=\sup _{i<\omega}\left\{\alpha_{i}\right\} \in \lambda^{\circ}-E \neq \emptyset$ by the choice of E. Then $[g]_{\lambda} \cap I$ is finite for all $g \in R$.

Let $\psi \in \operatorname{End}\left(R^{+}\right)-R[\gamma]$. By the Step Lemma, there is some $y \in \widehat{B}$ such that $y=\sum_{i<\omega} p^{i} x_{\alpha_{i, 0}}$ up to, possibly, a π-multiple of some element in B, and $\psi(y) \notin\left(R\left[\gamma^{i}(y): i<\omega\right]\right)_{*}$. Now we apply 3.3 and conclude that $E^{\prime}=\left\{\alpha \in E\right.$: there is $\beta<\lambda$ such that $\left\|\varphi_{\beta}\right\|=\alpha$ and $\varphi_{\beta} \subset \psi$ and $\left.[y] \subseteq\left[\varphi_{\beta}\right]\right\}$ is stationary in λ. Let $C=\left\{\beta: \psi\left(R^{\beta}\right) \subseteq R^{\beta}\right\}$. This set is a cub (closed unbounded subset) of λ. Thus $E^{\prime \prime}=E^{\prime} \cap C$ is stationary in λ and we may pick some $\eta<\alpha \in E^{\prime \prime}$. Then there is some $\beta<\lambda$ such that $\alpha=\left\|\varphi_{\beta}\right\|$ and $\varphi_{\beta} \subset \psi$ and $[y] \subseteq\left[P_{\beta}\right]=\left[\varphi_{\beta}\right]$. Recall that $\eta=\|y\|$ and $y \in \widehat{P}_{\beta}$. Thus $R^{\beta+1}$ was constructed such that $\psi\left(y_{\beta}\right)=\varphi_{\beta}\left(y_{\beta}\right) \notin R^{\beta+1}$ and $\varphi_{\beta}\left(y_{\beta}\right) \in \widehat{P}_{\beta}$. By $3.5(\mathrm{c})$ we have $\psi\left(y_{\beta}\right) \notin R$, a contradiction to $\psi \in \operatorname{End}\left(R^{+}\right)$. This proves 3.1(b). To show part (c), observe that for any automorphism α of R^{+}, α is a unit in $R_{l}[\gamma]$, which is isomorphic to a polynomial ring over the integral domain $R_{l} \approx R$. Thus $\alpha \in R$ is a unit in R and by $3.5(\mathrm{~d})$ we have $\alpha \in U(R)=U(S)$.

Added in proof (June 2003). The first named author has a forthcoming paper answering the question stated in the introduction: All tffr A-rings are indeed E-rings.

REFERENCES

[1] D. M. Arnold, Finite Rank Torsion Free Abelian Groups and Rings, Lecture Notes in Math. 931, Springer, Berlin, 1982.
[2] M. Dugas, A. Mader and C. Vinsonhaler, Large E-rings exist, J. Algebra 108 (1987), 88-101.
[3] L. Fuchs, Infinite Abelian Groups I and II, Academic Press, New York, 1970 and 1973.
[4] R. Göbel, S. Shelah and L. Strüngmann, Generalized E-rings, in: Proc. 2002 Venice Algebra Conf., to appear.
[5] R. Göbel and S. Wallutis, An algebraic version of the black box, to appear.
[6] P. Schultz, The endomorphism ring of the additive group of a ring, J. Austral. Math. Soc. 15 (1973), 60-69.
[7] J. Trlifaj, Approximations and Endomorphism Algebras of Modules, de Gruyter, Berlin, 2003.
[8] C. Vinsonhaler, E-rings and related structures, in: Non-Noetherian Commutative Ring Theory, Math. Appl. 520, Kluwer, Dordrecht, 2002, 387-402.

Department of Mathematics
Baylor University
Waco, Texas 76798, U.S.A.
E-mail: Manfred_Dugas@baylor.edu

Department of Mathematics
Bar-Ilan University
Ramat Gan, Israel
E-mail: feigel@macs.biu.ac.il

Received 2 January 2003;
revised 4 March 2003

[^0]: 2000 Mathematics Subject Classification: 20K30, 20K20, 20 K 15.
 Research of M. Dugas partially supported by Baylor University's Summer Sabbatical Program.

