VOL. 96

NO. 2

A-RINGS

ВY

MANFRED DUGAS (Waco, TX) and SHALOM FEIGELSTOCK (Ramat Gan)

Abstract. A ring R is called an E-ring if every endomorphism of R^+ , the additive group of R, is multiplication on the left by an element of R. This is a well known notion in the theory of abelian groups. We want to change the "E" as in endomorphisms to an "A" as in automorphisms: We define a ring to be an A-ring if every automorphism of R^+ is multiplication on the left by some element of R. We show that many torsion-free finite rank (tffr) A-rings are actually E-rings. While we have an example of a mixed A-ring that is not an E-ring, it is still open if there are any tffr A-rings that are not E-rings. We will employ the Strong Black Box [5] to construct large integral domains that are A-rings but not E-rings.

0. Introduction. Let R be a ring and R^+ the additive group of R. For $a \in R$ define $a_l, a_r \in \text{End}(R^+)$ by $a_l(x) = ax$ and $a_r(x) = xa$ for all $x \in R$. Let $R_l = \{a_l : a \in R\}$ and $R_r = \{a_r : a \in R\}$. Then R is called an *E*-ring if $\text{End}(R^+) = R_l$. This notion of an E-ring is well known in abelian group theory, and we refer the reader to the survey article [8] for more information about E-rings and related literature. [1, Section 14] is a good source for E-rings R such that R^+ is torsion-free of finite rank, or *tffr* for short.

We want to modify the definition of E-rings by considering only the group $\operatorname{Aut}(R^+)$ of automorphisms of R^+ instead of the entire ring of endomorphisms of R^+ .

DEFINITION. The ring R is called an A-ring if $\operatorname{Aut}(R^+) \subseteq R_l$. If R^+ has elements of order 2, we require $1 \in R$. (We will show $1 \in R$ if R^+ has no elements of order 2.) If an abelian group G is the additive group of some A-ring, then we call G an A-group.

We will see that each A-ring R has a unity $1 \in R$ and $\operatorname{Aut}(R^+) = (U(R))_l$, where U(R) is the group of units of R. Moreover, we will show that $U(R) \subseteq Z(R)$, the center of R, for any A-ring R, which implies that $U(R) \approx \operatorname{Aut}(R^+)$ is commutative. In Section 1 we obtain some information on abelian groups G with $\operatorname{Aut}(G)$ commutative.

²⁰⁰⁰ Mathematics Subject Classification: 20K30, 20K20, 20K15.

Research of M. Dugas partially supported by Baylor University's Summer Sabbatical Program.

In Section 2 we concentrate on tffr A-rings. While we have an example of a mixed A-ring that is not an E-ring, it is open if there are any tffr A-rings that are not E-rings. Our results seem to indicate that there are no such rings. We will show that each strongly indecomposable tffr A-ring is indeed an E-ring and any tffr A-ring of rank two is an E-ring. We define the notion of a strong A-ring and show that all tffr strong A-rings are E-rings. The key to this result is that quasi-summands of strong A-rings are again strong A-rings, a property that seems to be elusive for A-rings in general.

In the last section we give a construction of commutative, torsion-free Arings of large $(> 2^{\aleph_0})$ cardinality. We start with a suitable integral domain Sand construct a commutative S-algebra R such that $\operatorname{Aut}(R^+) = (U(S))_l$ but $\operatorname{End}(R^+) = R_l[\gamma] \approx R[x]$, the polynomial ring in a single variable over R. This shows that R is not an E-ring. We will use the Strong Black Box, as developed in [5], in our construction. This prediction principle is also used in [4], and the forthcoming monograph [7] will contain a detailed description of the Strong Black Box.

1. Preliminaries. Recall that a ring R is called an E-ring if $End(R^+) = R_l$, as defined in the introduction. We will show that every E-ring has a unity $1 \in R$. Usually, the definition of E-rings states " $1 \in R$ ", which is not needed:

Since $\operatorname{id}_R \in \operatorname{End}(R^+)$, there is some $e \in R$ such that $e_l = \operatorname{id}_R$. Thus ex = x for all $x \in R$ and we have $e^2 = e$. Since $e_r \in \operatorname{End}(R^+)$, there is some $a \in R$ such that $e_r = a_l$. Thus xe = ax for all $x \in R$, and e = ee = ae (for x = e) and $ae = a^2$ (for x = a), which implies $e = a^2$. Thus $xe = (xe)e = (ax)e = a(xe) = a(ax) = a^2x = ex = x$ for all $x \in R$. This shows that $1 = e \in R$.

Now assume that R is an A-ring as defined in the introduction. We prove that R has an identity if R has no elements of additive order 2:

Since $\operatorname{id}_R \in \operatorname{Aut}(R^+)$, there is some $e \in R$ such that $\operatorname{id}_R = e_l$ and thus ex = x for all $x \in R$ and $e^2 = e$. Now we have a decomposition $R^+ = R \cdot e \oplus (\operatorname{id}_R - e_r)(R)$ and there is a $\theta \in \operatorname{Aut}(R^+)$ such that $\theta \upharpoonright_{R \cdot e} =$ $\operatorname{id}_{R \cdot e}$ and $\theta \upharpoonright_{(\operatorname{id}_R - e_r)(R)} = -\operatorname{id}_{(\operatorname{id}_R - e_r)(R)}$. Then $\theta = b_l$ for some $b \in R$ and $\theta^2 = \operatorname{id}_R$. This implies, for all $x \in R$, bxe = xe and b(x - xe) = -x + xe. Thus bx - xe = -x + xe and bx + x = 2xe, which yields $b^2 + b = 2be$ and $b^2e + be = 2be^2 = 2be$. Now we have $b^2e = be$. Since $(b_l)^2 = \operatorname{id}_R$, we have $b^2e = e$ and we get e = be. Thus x = ex = bex = bx for all $x \in R$, which shows that $\theta = b_l = e_l = \operatorname{id}_R$ and $2(\operatorname{id}_R - e_r)(R) = \{0\}$. If R^+ has no elements of order 2, then we conclude $\operatorname{id}_R = e_r$ and $1 = e \in R$.

From now on, we will assume that $1 \in R$ for each A-ring R.

Since $\operatorname{Aut}(R^+)$ is a group, we have $\operatorname{Aut}(R^+) = (U(R))_l$, U(R) the group of units of R. If $s \in U(R)$, then $\alpha = s_r \in \operatorname{Aut}(R^+)$ and $\alpha = t_l$ for some $t \in R$. Now $s = s_r(1) = \alpha(1) = t_l(1) = t$ and we have xs = tx = sx for all $x \in R$ and $s \in Z(R)$. It follows that $U(R) \subseteq Z(R)$. If $w \in R$ is some nilpotent element, then $1 + w \in U(R) \subseteq Z(R)$ and it follows that $w \in Z(R)$. Thus, if N(R) is the nilradical of R, then $N(R) = Nil(R) := \{w \in R : w nilpotent\}.$

Now assume that R is a ring, $1 \in R$, such that each $\alpha \in \operatorname{Aut}(R)$ commutes with all the elements in R_r . Then $\alpha(x)r = \alpha(xr)$ for all $r, x \in R$ and $\alpha = (\alpha(1))_l$. We collect what we just proved in

1.1. PROPOSITION. Let R be a ring. Then the following hold:

(1) If R is an A-ring, then $1 \in R$, $\operatorname{Aut}(R^+) = (U(R))_l$ and $U(R) \subseteq Z(R)$.

(2) If R is an A-ring, then the nilradical N(R) is contained in Z(R), where $N(R) = Nil(R) := \{w \in R : w \text{ nilpotent}\}.$

(3) If $\alpha \circ a_r = a_r \circ \alpha$ for all $\alpha \in Aut(R^+)$, $a \in R$, and $1 \in R$, then R is an A-ring.

Recall that if $G \approx R^+$ is the additive group of an A-ring, we call G an A-group.

We will exhibit an example of an A-ring R such that $(U(R))_l = \operatorname{Aut}(R^+)$ is not contained in the center of $\operatorname{End}(R^+)$. This is also our first example of an A-ring that is not an E-ring.

1.2. EXAMPLE. Let $G = \mathbb{Z}(2) \oplus \mathbb{Z}$ and define a ring R with $R^+ = G$ and with the multiplication

$$(\varepsilon, z)(\varepsilon', z') = ((\varepsilon z' + \varepsilon' z) \mod 2, zz')$$

for $\varepsilon, \varepsilon' \in \mathbb{Z}(2) = \{0, 1\}$ and $z, z' \in \mathbb{Z}$. Let mod $2 : \mathbb{Z} \to \mathbb{Z}(2)$ be the natural epimorphism. Then, letting matrices operate from the right,

$$\operatorname{End}(G) = \begin{bmatrix} \mathbb{Z}(2) & 0 \\ \mathbb{Z} \mod 2 & \mathbb{Z} \end{bmatrix}$$

is not a commutative ring (and thus not an E-ring), but

$$\operatorname{Aut}(G) = \begin{bmatrix} \{1\} & 0\\ \mathbb{Z} \mod 2 & \{1, -1\} \end{bmatrix}$$

is a commutative group, as one easily verifies. Let

$$\alpha = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \in \operatorname{Aut}(G), \quad \psi = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \in \operatorname{End}(G).$$

Then

$$\alpha \psi = \begin{bmatrix} 1 & 0 \\ 2 \mod 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \text{ but } \psi \alpha = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix},$$

which shows $\operatorname{Aut}(G) \subsetneq Z(\operatorname{End}(G))$. On the other hand,

$$\begin{aligned} (\varepsilon, z) \begin{bmatrix} 1 & 0\\ z' \mod 2 & 1 \end{bmatrix} &= (\varepsilon + zz' \mod 2, z) = (\varepsilon, z)(z' \mod 2, 1), \\ (\varepsilon, z) \begin{bmatrix} 1 & 0\\ z' \mod 2 & -1 \end{bmatrix} &= (\varepsilon + zz' \mod 2, -z) = (-\varepsilon + zz' \mod 2, -z) \\ &= (\varepsilon, z)(z' \mod 2, -1), \end{aligned}$$

which shows that G is an A-group. Also note that G allows two non-isomorphic ring structures.

Since A-groups have commutative automorphism groups, we want to collect some information about abelian groups with that peculiar property. It is known [3, Corollary 115.2] that an abelian torsion p-group G has $\operatorname{Aut}(G)$ commutative iff G is cocyclic or p = 2 and $G \approx \mathbb{Z}(2) \oplus \mathbb{Z}(2^{\infty})$. It seems that the prime p = 2 always causes trouble for automorphisms!

Next we will look at mixed groups with commutative automorphism group.

1.3. THEOREM. Let G be a mixed group with $\operatorname{Aut}(G)$ commutative. Let $P = \{p \text{ prime} : t(G)_p \neq 0\}$. Then, for each $p \in P$, there is a natural number k_p and a subgroup $H^{(p)}$ such that $G = \mathbb{Z}(p^{k_p}) \oplus H^{(p)}$. If $(p, k_p) \neq (2, 1)$, then $pH^{(p)} = H^{(p)}$ and $t(H^{(p)})_p = \{0\}$. Moreover, $H^{(p)}$ is fully invariant in G. If $(p, k_p) = (2, 1)$, then $G = \mathbb{Z}(2) \oplus H^{(2)}$, $H^{(2)}$ is 2-torsion-free and $\operatorname{Aut}(H^{(2)})$ induces only the identity on $H^{(2)}/2H^{(2)}$.

Proof. Assume that t(G) is not reduced, i.e. there is a prime $p \in P$ and a subgroup K of G such that $G = \mathbb{Z}(p^{\infty}) \oplus K$. Since G is mixed, there is an element $k \in K$ with infinite order. Let $f : k\mathbb{Z} \to \mathbb{Z}(p^{\infty})$ with o(f(k)) > 2. Then f extends to a homomorphism $\varphi : K \to \mathbb{Z}(p^{\infty})$. Consider

$$\psi^+ = \begin{bmatrix} 1 & 0 \\ \varphi & 1 \end{bmatrix}, \quad \psi^- = \begin{bmatrix} 1 & 0 \\ \varphi & -1 \end{bmatrix} \in \operatorname{Aut}(G).$$

Then

$$\psi^+\psi^- = \begin{bmatrix} 1 & 0\\ 2\varphi & -1 \end{bmatrix}, \quad \psi^-\psi^+ = \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix},$$

which implies $2\varphi = 0$, a contradiction to $2\varphi(k) = 2f(k) \neq 0$.

Since $t(G)_p$ is reduced, $t(G)_p$ has a cyclic summand $\langle a \rangle$ with $G = \langle a \rangle \oplus H$ for some subgroup H of G. If $t(H)_p \neq 0$ we may repeat this step and find a cyclic subgroup $\langle b \rangle$ of H such that $G = \langle a \rangle \oplus \langle b \rangle \oplus L$ for some subgroup Lof G. It follows that $\operatorname{Aut}(\langle a \rangle \oplus \langle b \rangle) \subseteq \operatorname{Aut}(G)$ is commutative, a contradiction to [3, 115.2].

Thus $G = \mathbb{Z}(p^{k_p}) \oplus H^{(p)}$ and $H^{(p)}$ is *p*-torsion-free. If $H^{(p)} \neq pH^{(p)}$, there is an element in $H^{(p)}/p^{k_p}H^{(p)}$ that generates a direct summand of order p^{k_p} . Thus there is a $\varphi \in \text{Hom}(H^{(p)}, \mathbb{Z}(p^{k_p}))$ such that φ is surjective. Now construct ψ^+ and ψ^- as above and conclude that $2\varphi = 0$. Thus p = 2 and $k_2 = 1$.

Now consider the case $G = \mathbb{Z}(2) \oplus H^{(2)}$. Recall that $H^{(2)}$ has no elements of order 2 and $\operatorname{Aut}(G)$ is commutative. Moreover, $\bigcap \{\operatorname{Ker}(\varphi) : \varphi \in \operatorname{Hom}(H^{(2)}, \mathbb{Z}(2))\} = 2H^{(2)}$. Let $\pi \in \operatorname{Aut}(H^{(p)})$. Then

$$\psi_1 = \begin{bmatrix} 1 & 0 \\ 0 & \pi \end{bmatrix}, \quad \psi_2 = \begin{bmatrix} 1 & 0 \\ \varphi & \pi \end{bmatrix} \in \operatorname{Aut}(G)$$

commute and so $\varphi = \pi \varphi$. This means that $0 = (-1 + \pi)\varphi$ and $H(-1 + \pi) \subseteq \text{Ker}(\varphi)$ for all $\varphi \in \text{Hom}(H^{(2)}, \mathbb{Z}(2))$. Thus $H(-1+\pi) \subseteq 2H$ and $\text{Aut}(H) \upharpoonright_{H/2H} = \{\text{id}_{H/2H}\}$. The converse is easy to verify.

1.4. THEOREM. Let G be a group with $t(G)_2 = 0$ and $\operatorname{Aut}(G)$ commutative. If $G = A \oplus B$ then $\operatorname{Aut}(G) = \operatorname{Aut}(A) \times \operatorname{Aut}(B)$. If G is an A-group, then A and B are A-groups and both are fully invariant in G.

Proof. Let $\varphi \in \text{Hom}(B, A)$ and define $\psi^{+/-}$ as in the proof of 1.3. Then again we infer $2\varphi = 0$, which now implies that $\varphi = 0$. Thus Hom(A, B) =0 = Hom(B, A) and $\text{Aut}(G) = \text{Aut}(A) \times \text{Aut}(B)$. Moreover, if R is a ring with $R^+ = G$, then A and B are ideals and there are subrings S and T of Rsuch that $R = S \times T$ and $S^+ = A$ and $T^+ = B$.

If $t(G)_2 \neq 0$, we can say the following:

1.5. COROLLARY. Let $G = \mathbb{Z}(2) \oplus H$ with H not torsion. The following are equivalent:

- (I) $\operatorname{Aut}(G)$ is commutative.
- (II) (a) $t(H)_2 = 0$ and Aut(H) is commutative.
 - (b) Either 2H = H (and thus H is fully invariant in G), or $2H \neq H$ and Aut(H) induces the identity on H/2H.

Proof. By Theorem 1.3, $t(G)_2 = \mathbb{Z}(2)$ and thus $t(H)_2 = 0$. Thus

$$\operatorname{Aut}(G) = \begin{bmatrix} \operatorname{Aut}(\mathbb{Z}_2) & 0\\ \operatorname{Hom}(H, \mathbb{Z}(2)) & \operatorname{Aut}(H) \end{bmatrix}.$$

The rest is easy verification. \blacksquare

The following example shows that the case $2H \neq H$ can actually occur:

1.6. EXAMPLE. Pick three distinct odd primes p, q, r and define $H = (e_1\mathbb{Z}[1/p] \oplus e_2\mathbb{Z}[1/q]) + (e_1 + e_2)\mathbb{Z}[1/r]$. Then H is 2-reduced and $\operatorname{Aut}(H) = \{1, -1\}$. Thus, for $G = \mathbb{Z}(2) \oplus H$, we see that

$$\operatorname{Aut}(G) = \begin{bmatrix} 1 & 0\\ \operatorname{Hom}(H, \mathbb{Z}(2)) & \{1, -1\} \end{bmatrix}$$

is commutative. Note that $\operatorname{End}(H) = \mathbb{Z}$, and thus

$$\operatorname{End}(G) = \begin{bmatrix} \mathbb{Z}(2) & 0\\ \operatorname{Hom}(H, \mathbb{Z}(2)) & \mathbb{Z} \end{bmatrix}.$$

Now let $\theta : G \to \text{End}(G)$ be a homomorphism. Since $\text{Hom}(H, \mathbb{Z}) = 0$ we infer $2\theta(G) = 0$ and there is no ring $R, 1 \in R$, such that $R^+ = G$. Thus G is an example of a group G with Aut(G) commutative that is not an A-group.

We will now determine which completely decomposable groups are Agroups. We leave the easy proof to the reader.

1.7. THEOREM. Let $G = \bigoplus_{i \in I} A_i$ with A_i a subgroup of \mathbb{Q} for all $i \in I$. Then $\operatorname{Aut}(G)$ is commutative if and only if the types of the A_i 's are pairwise incomparable. Moreover, G is an A-group if and only if $\operatorname{Aut}(G)$ is commutative, I is finite, and the types of all the A_i 's are idempotent if and only if G is an E-group.

1.8. THEOREM. Let G be a mixed group with Aut(G) commutative. Let $P = \{p \text{ prime} : t(G)_p \neq 0\}$ and assume $2 \notin P$. Then there are natural numbers k_p such that $t(G)_p = \mathbb{Z}(p^{k_p})$ and $t(G) = \bigoplus_{p \in P} \mathbb{Z}(p^{k_p})$. If P is finite, then $G = \mathbb{Z}(\prod_{p \in P} p^{k_p}) \oplus H$, where H is torsion-free and p-divisible for all $p \in P$.

If P is infinite, then there is a pure subgroup A of $\prod_{p \in P} \mathbb{Z}(p^{k_p})$ and a torsion-free, P-divisible group H such that $G = A \oplus H$ and both A and H are fully invariant in G. Moreover, $\operatorname{Aut}(A)$ and $\operatorname{Aut}(H)$ are commutative and $\operatorname{Aut}(G) = \operatorname{Aut}(A) \times \operatorname{Aut}(H)$.

Proof. Let P' be the set of all primes not in P. Let $S = \mathbb{Z}[1/p : p \in P']$. Consider the short exact sequence $0 \to t(G) \to G \to G/t(G) \to 0$. By Theorem 1.3, $t(G) = \bigoplus_{p \in P} \mathbb{Z}(p^{k_p})$ and G/t(G) is P-divisible. Now we tensor by S and obtain $0 \to t(G) \cong t(G) \otimes S \to G \otimes S \to (G/t(G)) \otimes S \to 0$ and $(G/t(G)) \otimes S$ is divisible. There are pure subgroups A and H of G such that $A \otimes S$ is the reduced part of $G \otimes S$ and $H \otimes S$ is the divisible part of $G \otimes S$. Moreover, $t(G \otimes S) \cong t(G)$. This implies that $t(G) \subseteq A, A/t(G)$ is P-divisible and H is torsion-free. This shows that A is the P-adic closure of t(G) in G. Since t(G) is P'-divisible, so is A. Now $G \subseteq (A \otimes S) \oplus (H \otimes S) = A \oplus H$. Thus $G = A \oplus H$ and A is a pure subgroup of the P-adic closure of t(G), namely $\prod_{p \in P} \mathbb{Z}(p^{k_p})$. ■

1.9. PROPOSITION. Let $R = (\mathbb{Z}(p^n), +, *)$ be a unital ring with additive group $\mathbb{Z}(p^n)$. Then R is isomorphic to the ring $\mathbb{Z}(p^n)$.

Proof. It is easy to see that there is a $v \in U(\mathbb{Z}(p^n))$ such that x * y = vxy for all $x, y \in \mathbb{Z}(p^n)$. The map $\theta : \mathbb{Z}(p^n) \to R$ with $\theta(x) = v^{-1}x$ is a ring isomorphism.

1.10. THEOREM. Let G be a mixed A-group and R an A-ring with $R^+ = G$. Assume that $t(G)_2 = 0$ and that G has no torsion-free summand. Then $P = \{p \text{ prime } : t(G)_p \neq 0\}$ is infinite and R is a pure subring of $\prod_{p \in P} \mathbb{Z}(p^{k_p})$, where $t(G)_p = \mathbb{Z}(p^{k_p})$ for all $p \in P$. Moreover, all such A-rings are E-rings.

Proof. Since $t(G)_p$ is fully invariant in G, the subring t(G) of R is isomorphic to the natural ring structure by 1.9. By 1.8, G is isomorphic to a pure subgroup of $\prod_{p \in P} \mathbb{Z}(p^{k_p})$, the P-adic completion of t(G). By continuity we may assume that R is a subring of the natural ring $\prod_{p \in P} \mathbb{Z}(p^{k_p})$. Any such ring is an E-ring (cf. [6]).

The example at the beginning shows that the hypothesis $t(G)_2 = 0$ is needed in 1.10.

2. Torsion-free finite rank (tffr) A-rings. We will now consider A-groups and A-rings that are torsion-free of finite rank (tffr). While it is known that all E-rings R have $N(R) = \{0\}$ (cf. [1, Corollary 14.7]), we can only prove something weaker for A-rings.

2.1. PROPOSITION. Let R be a tffr A-ring and N = N(R) the nilradical of R. Then $N^2 = 0$.

Proof. By a result due to Beaumont-Pierce (see [1, Corollary 14.2]) there is a subring T of R and an integer n such that $nR \subseteq T \oplus N \subseteq R$. Let $s \in N$ and $\theta : R \to R$ be the map that is the composition of multiplication by n, followed by the natural projection onto N, followed by the multiplication by $s \in N$. Then nNs is contained in the image of θ . Moreover, by 1.1(2), s is nilpotent, and thus θ is nilpotent. Now $1 - \theta \in \operatorname{Aut}(R^+)$ and is thus a multiplication. This shows that θ is a multiplication by some element $r \in R$. Now $n = n1 \in T$ and $T \subset \operatorname{Ker}(\theta)$, which implies that $0 = \theta(n1) = n\theta(1) =$ nr and r = 0. Thus $\theta = 0$ and $nNs = \{0\}$ for all $s \in N$, which means $N^2 = \{0\}$.

2.2. THEOREM. If R is a tffr strongly indecomposable A-ring, then R is an E-ring.

Proof. By a result due to J. D. Reid (cf. [3, 92.3]), $\mathbb{Q}\text{End}(R^+)$ is an artinian algebra and a local ring in which all non-units are nilpotent. Let $\varphi \in \text{End}(R^+)$ be such that $\varphi(1) = 0$. Then $\text{Ker}(\varphi) \neq \{0\}$ and φ induces an element in $\mathbb{Q}\text{End}(R^+)$ that is nilpotent. Thus φ is nilpotent and $1 - \varphi \in \text{Aut}(R^+)$ is a multiplication. This implies that φ is a multiplication with $\varphi(1) = 0$. Thus $\varphi = 0$ and $\text{Hom}(R^+/\langle 1 \rangle, R^+) = \{0\}$, which implies that R is an E-ring.

2.3. PROPOSITION. If R is a tffr A-ring of rank 2, then R is an E-ring.

Proof. Let $G = R^+$ and let k be the number of distinct types of elements of G. By another result due to Beaumont–Pierce (see [1, Theorem 3.2]), the following are possible:

(a) k = 1, G is strongly indecomposable or $G = A \oplus B$ with $A \cong B$. In the latter case, Aut(G) is not commutative.

(b) k = 2 and G is strongly indecomposable or else $G = A \oplus B$ with type(A) < type(B). In the latter case, Aut(G) is not commutative.

(c) k = 3 and G is strongly indecomposable or there is some $k \in \mathbb{N}$ such that $kG \subseteq A \oplus B \subseteq G$ and A, B have incomparable types. In the latter case, if $G \cong A \oplus B$, then G is an E-group, otherwise G is almost completely decomposable but indecomposable and A, B are subrings of \mathbb{Q} that are fully invariant in G. Thus G is an E-group.

(d) k > 3 and G is strongly indecomposable.

Thus we may assume that G is strongly indecomposable and G is an E-group by Theorem 2.2. \blacksquare

We now define a class of tffr rings in terms of their quasi-automorphisms and quasi-units.

2.4. DEFINITION. A tffr ring R is called a strong A-ring if $U(\mathbb{Q}\text{End}(R^+)) = U(\mathbb{Q}R_l)$, i.e. R_l and $\text{End}(R^+)$ have the same quasi-units.

Our goal is to show that all strong A-rings are actually E-rings. The proof is presented in a sequence of propositions. Here is the first step:

2.5. PROPOSITION. Let R be a tffr ring, $1 \in R$. Then R is a strong A-ring if and only if each element of $U(\mathbb{Q}\text{End}(R^+))$ commutes with each element of R_r . Thus $\{a \in R : \text{Ker}(a_r) = 0\}$ is contained in Z(R).

Proof. Suppose R is a strong A-ring and let $\alpha \in U(\mathbb{Q}\text{End}(R^+)) = U(\mathbb{Q}R_l)$. Then there is a natural number n and $b \in R$ such that $n\alpha = b_l$. Now b_l commutes with each element of R_r . Thus α commutes with each element of R_r .

To show the converse, let $\alpha \in U(\mathbb{Q}\text{End}(R^+))$ and $a \in R$. Then for all $x \in R$ we have $\alpha(xa) = \alpha(x)a$ and $\alpha(a) = \alpha(1)a$ for all $a \in R$. Let $\beta = \alpha^{-1}$. As before we have $\beta(a) = \beta(1)a$ for all $a \in R$ and it follows that $\alpha(1)\beta(1) = 1$, which shows that $\alpha(1) \in U(\mathbb{Q}R)$ and $\alpha \in U(\mathbb{Q}R_l)$, and R is a strong A-ring. \blacksquare

2.6. PROPOSITION. Each tffr strong A-ring R is an A-ring.

Proof. Let $\alpha \in \operatorname{Aut}(R^+)$. Then there is a natural number n such that $n\alpha = r_l$ for some $r \in R$. Thus $n\alpha(1) = r \in nR$ and r = ns for some $s \in R$, and it follows that $\alpha = s_l$. Since $\alpha \in \operatorname{Aut}(R^+)$, there is $t \in R$ with $\alpha(t) = 1$ and we have st = 1 and s is a unit in R. This shows that R is an A-ring.

2.7. PROPOSITION. Let R be a strong A-ring. Then $U(\mathbb{Q}R) \subseteq \mathbb{Q}Z(R)$ and $U(\mathbb{Q}\text{End}(R^+))$ is commutative.

Proof. Let b be a quasi-unit of R. Then $b_r \in U(\mathbb{Q}\text{End}(R^+)) = U(\mathbb{Q}R_l)$ and for some $m \in \mathbb{N}$ we have $mb_r = a_l$ for some $a \in R$. Now $mb = mb_r(1) = a_l(1) = a$ and it follows that $b_r = b_l$ and b is in the center of R.

NOTE. If R is a tffr E-ring, then R is a strong A-ring, because in this case $\operatorname{End}(R^+) = R_l$.

Next we show that strong A-rings quasi-decompose just like E-rings.

2.8. PROPOSITION. Let R be a strong A-ring such that $R^+ \stackrel{\circ}{=} H \oplus K$ is a quasi-decomposition. Then H, K are strong A-rings and Hom(H, K) = 0 = Hom(K, H).

Proof. There is a natural number n such that $n(H \oplus K) \subseteq R \subseteq H \oplus K$. Let $\pi_H : H \oplus K \to H$ and $\pi_K : H \oplus K \to K$ be the natural projections. Let $H' = \pi_H(R)$ and $K' = \pi_K(R)$. Then H is quasi-equal to H' since $nH \subseteq H' \subseteq H$. The same holds for K and K'. Thus, we may assume that π_H and π_K are onto. Let $\varphi \in \text{Hom}(H, K)$. With matrices operating on the right, we have elements

$$\psi^+ = \begin{bmatrix} n & n\varphi \\ 0 & n \end{bmatrix}, \quad \psi^- = \begin{bmatrix} n & n\varphi \\ 0 & -n \end{bmatrix}$$

in End(R). Moreover, $\psi^+, \psi^- \in U(\mathbb{Q}\text{End}(R^+))$, a commutative group by 2.7. Thus $\psi^+\psi^- = \psi^-\psi^+$ and $\varphi = 0$ follows. This shows Hom(H, K) = 0 = Hom(K, H).

For $h \in H$, the map $(nh)_r : nH \to R$ is a homomorphism and $(nh)_r : H \to H \oplus K$. Thus $(nH)(nH) \subseteq H$ and also $(nK)(nK) \subseteq K$. Moreover $(nH)(nK) \subseteq H \cap K = 0$. Thus (nH)(nK) = 0 = (nK)(nH). Now let $h_1, h_2 \in H$. Then there are elements $k_1, k_2 \in K$ with $h_1 + k_1 \in R$ and $h_2 + k_2 \in R$. It follows that $n^2(h_1 + k_1)(h_2 + k_2) = (nh_1 + nk_1)(nh_2 + nk_2) = (nh_1)(nh_2) + (nk_1)(nk_2) = h_3 + k_3 \in n^2R \subseteq n^2(H \oplus K)$. Thus $h_3 = n^2h_4$ for some $h_4 \in H$ and we can define $h_1h_2 = h_4$. This makes H into a ring and the same works for K. This shows that $n(H \oplus K) \subseteq R \subseteq H \oplus K \approx H \times K$ is an inclusion of subrings.

Let $\alpha \in U(\mathbb{Q}End(H))$. Then

$$\psi = \begin{bmatrix} n\alpha & 0\\ 0 & n \end{bmatrix} \in U(\mathbb{Q}\mathrm{End}(R^+)).$$

Thus there is a natural number m such that $m\psi = (h+k)_l$ with h+k a quasi-unit of R. We get $mn\alpha = \psi \upharpoonright_H = h_l$ and thus $\alpha \in U(\mathbb{Q}H_l)$. Thus H is a strong A-ring and the same holds for K.

Now we can prove our result:

2.9. THEOREM. Let R be a tffr strong A-ring. Then R is an E-ring.

Proof. By 2.8 we have $n(R_1 \times \ldots \times R_k) \subseteq R \subseteq R_1 \times \ldots \times R_k$ where each R_i is a strongly indecomposable strong A-ring and $\text{Hom}(R_i, R_j) = 0$ for each $1 \leq i \neq j \leq k$. By 2.2 and 2.6, each R_i is an E-ring, which implies that R is an E-ring (cf. [1, Corollary 14.7]).

3. Large A-rings. While we have not been able to find tffr A-rings that are not E-rings, we are more successful in the infinite rank case. We will prove the following result:

3.1. THEOREM. Let κ, μ, λ be infinite cardinals such that $\mu^{\kappa} = \mu$ and $\lambda = \mu^+$, the successor cardinal of μ . Let S be an integral domain such that $|S| \leq \kappa$ and S^+ is torsion-free and p-reduced for the prime integer p. Moreover, assume that there is some p-adic integer π such that π is transcendental over S. Then there exists an S-algebra R such that:

(a) $|R| = \lambda$ and R is an integral domain.

(b) $\operatorname{End}(R^+) = R_l[\gamma] \approx R[x]$ and γ is an injective ring homomorphism of R but γ is not surjective.

(c) $\operatorname{Aut}(R^+) = (U(S))_l$.

Thus R is an integral domain and an A-ring that is not an E-ring.

We could prove this theorem in almost the same way as in the construction of large E-rings in [2], but we prefer to apply a more sophisticated version of the Black Box as introduced in [5] because this new version is easier to apply and also presents a λ -filtration of our desired ring R. We will present the main steps leading to the Strong Black Box [5] without duplicating the proofs. Let S have the properties as given in 3.1. Then $\bigcap_{i \leq \omega} p^i S = \{0\}$ and S is Hausdorff in its p-adic topology.

Let $B = S[x_{\alpha,n} : \alpha < \lambda, n < \omega]$ be the commutative polynomial ring with indeterminates $x_{\alpha,n}$. Let \mathbb{M} be the set of all monomials $m \in B$, i.e. $m = \prod_{i=1}^{k} x_{\alpha_i,n_i}^{e_i}$ with $e_i > 0$ and $\{(\alpha_i, n_i) : 1 \le i \le k\}$ a finite subset of $\lambda \times \omega$. Each $a \in B$ has a unique representation $a = \sum_{m \in A} ma_m$ where $a_m \in S$ and A a finite subset of \mathbb{M} . We define $\deg(m) = \sum_{i=1}^{k} e_i$ to be the degree of the monomial m. Note that $B = \bigoplus_{m \in \mathbb{M}} Sm$ is a free S-module. Let \hat{B} be the p-adic completion of B and let \subseteq_* denote "contained as a p-pure subgroup". For any $g = \sum ma_m \in \hat{B} \subseteq \prod_{m \in \mathbb{M}} \hat{S}m$ we define the support of g to be $[g] = \{m \in M : a_m \neq 0\}$ and if M is a subset of \hat{B} , then $[M] = \bigcup_{q \in M} [g]$.

We define the λ -support of $g \in \widehat{B}$ by $[g]_{\lambda} = \{\alpha < \lambda : \text{there are } m \in [g], n < \omega \text{ and } m' \in \mathbb{M} \text{ such that } m = x_{\alpha,n}m'\}$. Note that $[g]_{\lambda}$ is an at most countable set of ordinals below λ and $[g]_{\lambda}$ is the set of all ordinals $\alpha < \lambda$ such

that some variable $x_{\alpha,n}$ actually shows up in the representation of $g \in \widehat{B}$ as a multivariate polynomial. Finally we define an S-linear ring homomorphism $\gamma: B \to B$ by $\gamma(x_{\alpha,n}) = x_{\alpha,n+1}$ for all $\alpha < \lambda$ and $n < \omega$.

Next define a norm by $\|\{\alpha\}\| = \alpha + 1$ for any $\alpha < \lambda$ and $\|M\| = \sup_{\alpha \in M} \|\alpha\|$ for any subset $M \subseteq \lambda$. Moreover $\|g\| = \|[g]_{\lambda}\|$ for any $g \in \widehat{B}$. Note that $\|g\| = \min\{\beta < \lambda : [g]_{\lambda} \subseteq \beta\}$ and $[g]_{\lambda} \subseteq \beta$ holds iff $g \in \widehat{B}_{\beta}$ where $B_{\beta} = S[x_{\alpha,n} : \alpha < \beta, n < \omega]$.

Fix, once and for all, bijections $h_{\alpha} : \mu \to \alpha$ for all $\mu \leq \alpha < \lambda$ such that $h_{\mu} = \mathrm{id}_{\mu}$ and for technical reasons we define $h_{\beta} = \mathrm{id}_{\mu}$ as well for $\beta < \mu$.

3.2. DEFINITION. Define P to be a canonical subalgebra of B if $P = S[x_{\alpha,n} : \alpha \in I, n < \omega]$ for some $I \subset \lambda$ with $|I| \leq \kappa$ such that $h_{\alpha}(I \cap \mu) = I \cap h_{\alpha}(\mu)$ for all $\alpha \in I$.

Accordingly, an additive homomorphism $\varphi : P \to \widehat{B}$ is canonical if P is canonical and $\varphi(P) \subseteq \widehat{P}$. We also define $[\varphi] = [P], [\varphi]_{\lambda} = [P]_{\lambda}$, and $\|\varphi\| = \|P\|$. Moreover, let E be a stationary subset of $\lambda^{\circ} = \{\alpha < \lambda : \alpha \text{ has countable cofinality}\}$ such that $\lambda^{\circ} - E$ is stationary in λ as well.

We are now ready to state

3.3. STRONG BLACK BOX. Let μ , κ , λ , S, B, E be as above. Then there is a family of canonical homomorphisms φ_{β} , $\beta < \lambda$, such that:

(1) $\|\varphi_{\beta}\| \in E \text{ for all } \beta < \lambda.$

(2) $\|\varphi_{\varrho}\| \leq \|\varphi_{\beta}\|$ for all $\varrho \leq \beta < \lambda$.

(3) $\|[\varphi_{\varrho}]_{\lambda} \cap [\varphi_{\beta}]_{\lambda}\| < \|[\varphi_{\beta}]_{\lambda}\|$ for all $\varrho < \beta < \lambda$.

(4) PREDICTION. For any homomorphism $\psi : B \to \widehat{B}$ and for any subset I of λ with $|I| \leq \kappa$, the set $\{\alpha \in E : \text{there is } \beta < \lambda \text{ with } \| [\varphi_{\beta}]_{\lambda} \| = \alpha$ and $I \subseteq [\varphi_{\beta}]_{\lambda} \}$ is stationary in λ .

REMARK. In the older version of the Black Box some ordinal λ^* with $|\lambda^*| = \lambda$ was used to enumerate the canonical homomorphisms. In our setting it turns out that $\lambda^* = \lambda$: If there is a canonical homomorphism φ_{λ} then $\|\varphi_{\lambda}\| = \delta < \lambda$ and we have λ (distinct) canonical subalgebras of cardinality $\leq \kappa$ contained in a set of cardinality μ with $\mu^{\kappa} = \mu$. But there are only μ such subalgebras, and not $\lambda = \mu^+$ of them.

The one thing we need to prove in detail is the (algebraic) Step Lemma which will allow us to eliminate unwanted homomorphisms.

3.4. STEP LEMMA. Let S, B, γ be as above and π a p-adic integer which is transcendental over S. Moreover, the following is given:

(1) Let $P = S[x_{\alpha,n} : \alpha \in I^*, n < \omega]$ for some subset I^* of λ and let M be a subring of \widehat{B} with $P \subseteq_* M \subseteq_* \widehat{B}$ such that π is transcendental over M and $\gamma(M) \subseteq M$.

(2) There is a set $I = \{\alpha_i : i < \omega\} \subset \lambda$ with $\alpha_i < \alpha_j$ for all $i < j < \omega$ such that $I \subseteq I^* = [P]_{\lambda}$ and $I \cap [g]_{\lambda}$ is finite for all $g \in M$.

(3) Let $\psi: P \to \widehat{M}$ be a homomorphism that is not in $(M[\gamma]) \upharpoonright_P$.

Then there is some $y \in \widehat{P}$ such that $\psi(y) \notin M' = (M[\gamma^i(y) : i < \omega])_*$. Moreover, π is transcendental over M'. The element y will be either $x = \sum_{i < \omega} p^i x_{\alpha_i,0}$ or $y = x + b\pi$ with a suitable element $b \in P$. Note that $\gamma^k(x) = \sum_{i < \omega} p^i x_{\alpha_i,k}$ for all $k < \omega$. Also

(4) M and M' have the same group of units.

Proof. Let $x = \sum_{i < \omega} p^i x_{\alpha_i,0}$ and assume $\psi(x) \in M' = (M[\gamma^i(y) : i < \omega])_*$. Then for some $a < \omega$ we have $p^a \psi(x) \in M[\gamma^i(x) : i < \omega]$. Note that by the disjointness condition (2) the *p*-adic integer π is still transcendental over M'. Let

(*)
$$p^a \psi(x) = \sum_{m \in T} m a_m$$

where m is a monomial in the elements $\gamma^i(x)$, $i < \omega$. Choose a representation such that $N = \max\{\deg(m) : m \in T\}$ is the least possible.

Assume $N \geq 2$. Now pick another variable $x_0 = x_{\delta,0} \in P$ such that none of the $x_{\delta,n}$ occurs in any of the finitely many $a_m, m \in T$, and define $y = x + \pi x_0$. Moreover, define $M'' = (M[\gamma^i(y) : i < \omega])_*$ and assume $\psi(y) \in M''$. Then there are some $a' < \omega$ and $b_{m'} \in M$ and a set T' of monomials in the variables $\gamma^i(y)$ such that

(**)
$$p^{a'}\psi(x+\pi x_0) = \sum_{m'\in T'} m'b_{m'}.$$

We now multiply equation (*) by $p^{a'}$ and equation (**) by p^a and sub-tract the former from the latter to obtain

(***)
$$p^{a+a'}\psi(x_0)\pi = \sum_{m'\in T'} p^a m' b_{m'} - \sum_{m\in T} p^{a'} m a_m \in M\pi.$$

- - /

For each monomial $m' \in T'$ we form the monomial m'' by simply erasing the $\gamma^i(x_0\pi)$ term. (In other words, we set $x_0 = 0$.) Now we expand the monomials $m' \in T'$ and collect like terms by powers of π . This turns (***) into

$$(\#) \quad p^{a+a'}\psi(x_0)\pi = \pi^{N'}g_{N'} + \sum_{j=1}^{N'-1}\pi^j g_j + \Big(\sum_{m'\in T'}p^am''b_{m'} - \sum_{m\in T}p^{a'}ma_m\Big).$$

Note that $N' \geq 1$, all $g_j \in M$, and $(\sum_{m' \in T'} p^a m' b_{m'} - \sum_{m \in T} p^{a'} m a_m) \in M'$. Moreover, $\psi(x_0) \in M$ by hypothesis.

First of all, this implies $\sum_{m' \in T'} p^a m' b_{m'} - \sum_{m \in T} p^{a'} m a_m = 0$ and $N' = N \ge 2$ and $\{m'' : m' \in T'\} = T$. Moreover $p^a b_{m'} = p^{a'} a_m$ for all $m \in T$.

A-RINGS

Note that $g_N = 0$ as well, because $N = N' \ge 2$. We need to have a closer look at that term. Note that

$$0 = g_N = \sum_{m \in T, \deg(m) = N} p^a \widetilde{m} b_{m'} = \sum_{m \in T, \deg(m) = N} p^{a'} \widetilde{m} a_m$$

where \widetilde{m} is the monomial obtained from m (or m') by replacing $\gamma^i(x)$ (or $\gamma^i(x_0 + x)$) by $\gamma^i(x_0) = x_{\delta,i}$. Since $m \mapsto \widetilde{m}$ is injective, and all $x_{\delta,i}$ are transcendental over the a_m , by the choice of $x_{\delta,0}$, we conclude that $a_m = 0$ whenever $m \in T$ and deg(m) = N. This is a contradiction to the minimality of N.

Thus we may assume that N = 1 and we have, by way of contradiction, for x chosen as above,

(+)
$$p^a \psi(x) = \sum_{i=0}^k a_i \gamma^i(x)$$
 for some $a_i \in M$.

We define M' as above as well.

Assume that $p^a \psi \upharpoonright_P \neq \sum_{i=0}^k a_i \gamma^i$. Then there is some $w \in P$ with $p^a \psi(w) \neq \sum_{i=0}^k a_i \gamma^i(w)$. Let $y = w\pi + x$ and define M'' for this choice. Now assume that

$$(++) p^{a'}\psi(w\pi+x) = \sum_{m\in T} mb_m$$

where *m* is a monomial in the variables $\gamma^i(b\pi + x)$. As above we subtract $p^{a'}(+)$ from $p^a(++)$ and obtain $p^a \sum_{m \in T} \overline{m} b_m - p^{a'} \sum_{i=0}^k a_i \gamma^i(x) \in \pi M'$. Thus $p^a \sum_{m \in T} \overline{m} b_m = p^{a'} \sum_{i=0}^k a_i \gamma^i(x)$ and the maximal degree of polynomials in *T* is at most 1. Thus we have

(+++)
$$p^{a'}\psi(b\pi+x) = \sum_{i=0}^{k'} b_i\gamma^i(w\pi+x).$$

Again we do our subtraction and obtain

$$p^{a+a'}\psi(w)\pi = p^a \sum_{i=0}^{k'} b_i \gamma^i(w)\pi + p^a \sum_{i=0}^{k'} b_i \gamma^i(x) - p^{a'} \sum_{i=0}^{k'} a_i \gamma^i(x).$$

The fact that π is transcendental over M' now tells us that k = k' and $p^a b_i = p^{a'} a_i$ for all $0 \le i \le k$. Therefore,

$$p^{a+a'}\psi(w) = p^a \sum_{i=0}^{k'} b_i \gamma^i(w) = p^{a'} \sum_{i=0}^k a_i \gamma^i(w)$$

and it follows that $\psi(w) = \sum_{i=0}^{k} a_i \gamma^i(w)$, a contradiction to the choice of w.

Now we are finally down to the case where

$$p^a \psi \!\!\upharpoonright_P = \sum_{i=0}^k a_i \gamma^i \quad \text{with } a_i \in M.$$

We may pick some variable \widetilde{x} from P such that none of the $\gamma^{j}(\widetilde{x}), j < \omega$, occurs in any of the $a_{i} \in M$ and get $p^{a}\psi(\widetilde{x}) = \sum_{i=0}^{k} a_{i}\gamma^{i}(\widetilde{x}) \in p^{a}M$. Thus $a_{i} = p^{a}m_{i}$ with $m_{i} \in M$ and $\psi \upharpoonright_{P} = (\sum_{i=0}^{k} m_{i}\gamma^{i}) \upharpoonright_{P}$.

Now we need to prove (4). Suppose $u \in M'$ is a unit in M' such that $u \notin M$. Let k be minimal such that $u \in (M[\gamma^i(x) : 0 \le i \le k])_* = ((M[\gamma^i(x) : 0 \le i < k])[\gamma^k(x)])_*$. Note that $\gamma^k(x)$ is transcendental over $M[\gamma^i(x) : 1 \le i < k]$. If v is the inverse of u, then $v \in ((M[\gamma^i(x) : 1 \le i < k])[\gamma^k(x)])_*$ as well. This shows that k = 0, since in polynomial rings only constants are units and we obtain $u, v \in (M[x])_*$. Since x is transcendental over M, we infer $u \in M$.

We will now construct our ring R.

Let $\varphi_{\beta}, \beta < \lambda$, be the sequence of canonical homomorphisms provided by the Strong Black Box 3.3. Let $P_{\beta} = S[x_{\alpha,n} : \alpha \in [\varphi_{\beta}]_{\lambda}, n < \omega]$ be the domain of φ_{β} . We will construct R as the union of a λ -filtration $R = \bigcup_{\beta < \lambda} R^{\beta}$ of p-pure subrings of \hat{B} with $R^0 = P_0$ such that

(*)
$$R^{\beta} \subseteq \left(S\left[\bigcup_{\alpha<\beta}\widehat{P}_{\alpha}\right]\right)_{*} \text{ and } \{g \in B : \|g\| < \|\varphi_{\beta}\|\} \subset R^{\beta}.$$

If β is a limit ordinal, we let $R^{\beta} = \bigcup_{\alpha < \beta} R^{\alpha}$. Now suppose we have already constructed R^{β} . Consider the canonical homomorphism φ_{β} . Since $\|\varphi_{\beta}\| \in \lambda^{\circ}$ is a limit ordinal of countable cofinality, there are ordinals $\alpha_0 < \alpha_1 < \ldots < \alpha_n < \ldots$ in $[\varphi_{\beta}]_{\lambda}$ such that $\|\varphi_{\beta}\| = \sup_{n < \omega} \{\alpha_n\}$. Let $I = \{\alpha_n : n < \omega\}$. Then $I \cap [g]_{\lambda}$ is finite by (*) and condition (2) in 3.3. If φ_{β} maps P_{β} into R^{β} and φ_{β} is not induced by some map in $R^{\beta}[\gamma]$, then apply the Step Lemma to $I, P = P_{\beta}, M = R^{\beta}, \text{ and } \psi = \varphi_{\beta}$. Thus there is some $y = y_{\beta} \in \widehat{P}_{\beta}$ and $R^{\beta+1} = (R^{\beta}[\gamma^i(y_{\beta}) : i < \omega])_*$ such that π is transcendental over $R^{\beta+1}$ and $\varphi_{\beta}(y_{\beta}) \notin R^{\beta+1}$. Moreover, $R^{\beta+1}$ satisfies (*), because $y_{\beta} \in \widehat{P}_{\beta}$.

If $\varphi_{\beta} \in (R^{\beta}[\gamma]) \upharpoonright_{P_{\beta}}$, then we do not need to apply the Step Lemma and we simply define $R^{\beta+1} = (R^{\beta}[\gamma^{i}(y_{\beta}): i < \omega])_{*}$, where $y_{\beta} = \sum_{i < \omega} p^{i} x_{\alpha_{i},0}$.

3.5. LEMMA. Let R be the ring constructed above. The following hold:

(a) $\{\gamma^i(y_\beta): \beta < \lambda, i < \omega\}$ is transcendental over B.

(b) If $g \in R - B$, then there is a finite subset N of $\lambda \times \omega$ and $a < \omega$ such that $p^a g \in B[\gamma^i(y_\beta) : (\beta, i) \in N]$ and $[g]_{\lambda} \cap [\gamma^i(y_\beta)]_{\lambda}$ is infinite iff $(\beta, i) \in N$.

If ||g|| is a limit ordinal, then $||g|| = ||y_{\beta}||$ where β is the largest ordinal such that $(\beta, j) \in N$ for some $j < \omega$. Moreover,

(c) $R \cap \widehat{P}_{\beta} \subseteq R^{\beta+1}$ for all $\beta < \lambda$. (d) U(R) = U(S).

The proof of 3.5 is the same as that of Lemma 2.2.4 and 2.2.5(a) in [5] and left to the reader. (For example, clause (c) follows from (b) and 3.3(3). Moreover, (d) follows from 3.4(4).)

We will now show that $\operatorname{End}(R^+) = R[\gamma]$. Again, we can almost copy the proof of 2.2.1 from [5]. We want to outline the proof anyway.

Let $R = \bigcup_{\beta < \lambda} R^{\beta}$ be the ring constructed above. Obviously, $R[\gamma] \subseteq$ End (R^+) by the construction of R. Moreover, π is transcendental over each R^{β} and thus R and the R^{β} , $\beta < \lambda$, form a λ -filtration of R. Let $I = \{\alpha_i : i < \omega\} \subset \lambda$ be such that $\alpha_i < \alpha_j$ for all $i < j < \omega$ such that $\eta = \sup_{i < \omega} \{\alpha_i\} \in \lambda^{\circ} - E \neq \emptyset$ by the choice of E. Then $[g]_{\lambda} \cap I$ is finite for all $g \in R$.

Let $\psi \in \operatorname{End}(R^+) - R[\gamma]$. By the Step Lemma, there is some $y \in \widehat{B}$ such that $y = \sum_{i < \omega} p^i x_{\alpha_{i,0}}$ up to, possibly, a π -multiple of some element in B, and $\psi(y) \notin (R[\gamma^i(y) : i < \omega])_*$. Now we apply 3.3 and conclude that $E' = \{\alpha \in E : \text{there is } \beta < \lambda \text{ such that } \|\varphi_\beta\| = \alpha \text{ and } \varphi_\beta \subset \psi \text{ and } [y] \subseteq [\varphi_\beta] \}$ is stationary in λ . Let $C = \{\beta : \psi(R^\beta) \subseteq R^\beta\}$. This set is a cub (closed unbounded subset) of λ . Thus $E'' = E' \cap C$ is stationary in λ and we may pick some $\eta < \alpha \in E''$. Then there is some $\beta < \lambda$ such that $\alpha = \|\varphi_\beta\|$ and $\varphi_\beta \subset \psi$ and $[y] \subseteq [P_\beta] = [\varphi_\beta]$. Recall that $\eta = \|y\|$ and $y \in \widehat{P}_\beta$. Thus $R^{\beta+1}$ was constructed such that $\psi(y_\beta) = \varphi_\beta(y_\beta) \notin R^{\beta+1}$ and $\varphi_\beta(y_\beta) \in \widehat{P}_\beta$. By 3.5(c) we have $\psi(y_\beta) \notin R$, a contradiction to $\psi \in \operatorname{End}(R^+)$. This proves 3.1(b). To show part (c), observe that for any automorphism α of R^+ , α is a unit in $R_l[\gamma]$, which is isomorphic to a polynomial ring over the integral domain $R_l \approx R$. Thus $\alpha \in R$ is a unit in R and by 3.5(d) we have $\alpha \in U(R) = U(S)$.

Added in proof (June 2003). The first named author has a forthcoming paper answering the question stated in the introduction: All tffr A-rings are indeed E-rings.

REFERENCES

- D. M. Arnold, Finite Rank Torsion Free Abelian Groups and Rings, Lecture Notes in Math. 931, Springer, Berlin, 1982.
- M. Dugas, A. Mader and C. Vinsonhaler, Large E-rings exist, J. Algebra 108 (1987), 88–101.
- [3] L. Fuchs, Infinite Abelian Groups I and II, Academic Press, New York, 1970 and 1973.
- [4] R. Göbel, S. Shelah and L. Strüngmann, *Generalized E-rings*, in: Proc. 2002 Venice Algebra Conf., to appear.
- [5] R. Göbel and S. Wallutis, An algebraic version of the black box, to appear.

- [6] P. Schultz, The endomorphism ring of the additive group of a ring, J. Austral. Math. Soc. 15 (1973), 60–69.
- [7] J. Trlifaj, Approximations and Endomorphism Algebras of Modules, de Gruyter, Berlin, 2003.
- C. Vinsonhaler, *E-rings and related structures*, in: Non-Noetherian Commutative Ring Theory, Math. Appl. 520, Kluwer, Dordrecht, 2002, 387–402.

Department of Mathematics Baylor University Waco, Texas 76798, U.S.A. E-mail: Manfred_Dugas@baylor.edu Department of Mathematics Bar-Ilan University Ramat Gan, Israel E-mail: feigel@macs.biu.ac.il

Received 2 January 2003; revised 4 March 2003

(4298)