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A-RINGS

BY

MANFRED DUGAS (Waco, TX) and SHALOM FEIGELSTOCK (Ramat Gan)

Abstract. A ring R is called an E-ring if every endomorphism of R+, the additive
group of R, is multiplication on the left by an element of R. This is a well known notion
in the theory of abelian groups. We want to change the “E” as in endomorphisms to an
“A” as in automorphisms: We define a ring to be an A-ring if every automorphism of R+

is multiplication on the left by some element of R. We show that many torsion-free finite
rank (tffr) A-rings are actually E-rings. While we have an example of a mixed A-ring that
is not an E-ring, it is still open if there are any tffr A-rings that are not E-rings. We will
employ the Strong Black Box [5] to construct large integral domains that are A-rings but
not E-rings.

0. Introduction. Let R be a ring and R+ the additive group of R. For
a ∈ R define al, ar ∈ End(R+) by al(x) = ax and ar(x) = xa for all x ∈ R.
Let Rl = {al : a ∈ R} and Rr = {ar : a ∈ R}. Then R is called an E-ring
if End(R+) = Rl. This notion of an E-ring is well known in abelian group
theory, and we refer the reader to the survey article [8] for more information
about E-rings and related literature. [1, Section 14] is a good source for
E-rings R such that R+ is torsion-free of finite rank, or tffr for short.

We want to modify the definition of E-rings by considering only the
group Aut(R+) of automorphisms of R+ instead of the entire ring of endo-
morphisms of R+.

Definition. The ring R is called an A-ring if Aut(R+) ⊆ Rl. If R+ has
elements of order 2, we require 1 ∈ R. (We will show 1 ∈ R if R+ has no
elements of order 2.) If an abelian group G is the additive group of some
A-ring, then we call G an A-group.

We will see that each A-ring R has a unity 1 ∈ R and Aut(R+) =
(U(R))l, where U(R) is the group of units of R. Moreover, we will show
that U(R) ⊆ Z(R), the center of R, for any A-ring R, which implies that
U(R) ≈ Aut(R+) is commutative. In Section 1 we obtain some information
on abelian groups G with Aut(G) commutative.
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In Section 2 we concentrate on tffr A-rings. While we have an example of
a mixed A-ring that is not an E-ring, it is open if there are any tffr A-rings
that are not E-rings. Our results seem to indicate that there are no such
rings. We will show that each strongly indecomposable tffr A-ring is indeed
an E-ring and any tffr A-ring of rank two is an E-ring. We define the notion
of a strong A-ring and show that all tffr strong A-rings are E-rings. The
key to this result is that quasi-summands of strong A-rings are again strong
A-rings, a property that seems to be elusive for A-rings in general.

In the last section we give a construction of commutative, torsion-free A-
rings of large (> 2ℵ0) cardinality. We start with a suitable integral domain S
and construct a commutative S-algebra R such that Aut(R+) = (U(S))l but
End(R+) = Rl[γ] ≈ R[x], the polynomial ring in a single variable over R.
This shows that R is not an E-ring. We will use the Strong Black Box, as
developed in [5], in our construction. This prediction principle is also used
in [4], and the forthcoming monograph [7] will contain a detailed description
of the Strong Black Box.

1. Preliminaries. Recall that a ring R is called an E-ring if End(R+) =
Rl, as defined in the introduction. We will show that every E-ring has a unity
1 ∈ R. Usually, the definition of E-rings states “1 ∈ R”, which is not needed:

Since idR ∈ End(R+), there is some e ∈ R such that el = idR. Thus
ex = x for all x ∈ R and we have e2 = e. Since er ∈ End(R+), there is some
a ∈ R such that er = al. Thus xe = ax for all x ∈ R, and e = ee = ae (for
x = e) and ae = a2 (for x = a), which implies e = a2. Thus xe = (xe)e =
(ax)e = a(xe) = a(ax) = a2x = ex = x for all x ∈ R. This shows that
1 = e ∈ R.

Now assume that R is an A-ring as defined in the introduction. We prove
that R has an identity if R has no elements of additive order 2:

Since idR ∈ Aut(R+), there is some e ∈ R such that idR = el and
thus ex = x for all x ∈ R and e2 = e. Now we have a decomposition
R+ = R · e ⊕ (idR − er)(R) and there is a θ ∈ Aut(R+) such that θ�R·e =
idR·e and θ�(idR−er)(R) = −id(idR−er)(R). Then θ = bl for some b ∈ R and
θ2 = idR. This implies, for all x ∈ R, bxe = xe and b(x − xe) = −x + xe.
Thus bx − xe = −x + xe and bx + x = 2xe, which yields b2 + b = 2be and
b2e + be = 2be2 = 2be. Now we have b2e = be. Since (bl)2 = idR, we have
b2e = e and we get e = be. Thus x = ex = bex = bx for all x ∈ R, which
shows that θ = bl = el = idR and 2(idR − er)(R) = {0}. If R+ has no
elements of order 2, then we conclude idR = er and 1 = e ∈ R.

From now on, we will assume that 1 ∈ R for each A-ring R.
Since Aut(R+) is a group, we have Aut(R+) = (U(R))l, U(R) the group

of units of R. If s ∈ U(R), then α = sr ∈ Aut(R+) and α = tl for some
t ∈ R. Now s = sr(1) = α(1) = tl(1) = t and we have xs = tx = sx for
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all x ∈ R and s ∈ Z(R). It follows that U(R) ⊆ Z(R). If w ∈ R is some
nilpotent element, then 1+w ∈ U(R) ⊆ Z(R) and it follows that w ∈ Z(R).
Thus, if N(R) is the nilradical of R, then N(R) = Nil(R) := {w ∈ R : w
nilpotent}.

Now assume that R is a ring, 1 ∈ R, such that each α ∈ Aut(R) com-
mutes with all the elements in Rr. Then α(x)r = α(xr) for all r, x ∈ R and
α = (α(1))l. We collect what we just proved in

1.1. Proposition. Let R be a ring. Then the following hold :

(1) If R is an A-ring , then 1 ∈ R, Aut(R+) = (U(R))l and U(R) ⊆
Z(R).

(2) If R is an A-ring , then the nilradical N(R) is contained in Z(R),
where N(R) = Nil(R) := {w ∈ R : w nilpotent}.

(3) If α ◦ ar = ar ◦α for all α ∈ Aut(R+), a ∈ R, and 1 ∈ R, then R is
an A-ring.

Recall that if G ≈ R+ is the additive group of an A-ring, we call G an
A-group.

We will exhibit an example of an A-ring R such that (U(R))l = Aut(R+)
is not contained in the center of End(R+). This is also our first example of
an A-ring that is not an E-ring.

1.2. Example. Let G = Z(2)⊕Z and define a ring R with R+ = G and
with the multiplication

(ε, z)(ε′, z′) = ((εz′ + ε′z) mod 2, zz′)

for ε, ε′ ∈ Z(2) = {0, 1} and z, z′ ∈ Z. Let mod 2 : Z→ Z(2) be the natural
epimorphism. Then, letting matrices operate from the right,

End(G) =
[
Z(2) 0

Z mod 2 Z

]

is not a commutative ring (and thus not an E-ring), but

Aut(G) =
[
{1} 0

Z mod 2 {1,−1}

]

is a commutative group, as one easily verifies. Let

α =
[

1 0
1 1

]
∈ Aut(G), ψ =

[
1 0
1 0

]
∈ End(G).

Then

αψ =
[

1 0
2 mod 2 0

]
=
[

1 0
0 0

]
, but ψα =

[
1 0
1 0

]
,
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which shows Aut(G)  Z(End(G)). On the other hand,

(ε, z)
[

1 0
z′ mod 2 1

]
= (ε+ zz′ mod 2, z) = (ε, z)(z′ mod 2, 1),

(ε, z)
[

1 0
z′ mod 2 −1

]
= (ε+ zz′ mod 2,−z) = (−ε+ zz′ mod 2,−z)

= (ε, z)(z′ mod 2,−1),

which shows that G is an A-group. Also note that G allows two non-
isomorphic ring structures.

Since A-groups have commutative automorphism groups, we want to
collect some information about abelian groups with that peculiar property.
It is known [3, Corollary 115.2] that an abelian torsion p-group G has Aut(G)
commutative iff G is cocyclic or p = 2 and G ≈ Z(2)⊕Z(2∞). It seems that
the prime p = 2 always causes trouble for automorphisms!

Next we will look at mixed groups with commutative automorphism
group.

1.3. Theorem. Let G be a mixed group with Aut(G) commutative. Let
P = {p prime : t(G)p 6= 0}. Then, for each p ∈ P , there is a natural number
kp and a subgroup H(p) such that G = Z(pkp) ⊕ H(p). If (p, kp) 6= (2, 1),
then pH(p) = H(p) and t(H(p))p = {0}. Moreover , H(p) is fully invariant
in G. If (p, kp) = (2, 1), then G = Z(2) ⊕ H(2), H(2) is 2-torsion-free and
Aut(H(2)) induces only the identity on H(2)/2H(2).

Proof. Assume that t(G) is not reduced, i.e. there is a prime p ∈ P and
a subgroup K of G such that G = Z(p∞)⊕K. Since G is mixed, there is an
element k ∈ K with infinite order. Let f : kZ → Z(p∞) with o(f(k)) > 2.
Then f extends to a homomorphism ϕ : K → Z(p∞). Consider

ψ+ =
[

1 0
ϕ 1

]
, ψ− =

[
1 0
ϕ −1

]
∈ Aut(G).

Then

ψ+ψ− =
[

1 0
2ϕ −1

]
, ψ−ψ+ =

[
1 0
0 −1

]
,

which implies 2ϕ = 0, a contradiction to 2ϕ(k) = 2f(k) 6= 0.
Since t(G)p is reduced, t(G)p has a cyclic summand 〈a〉 with G = 〈a〉⊕H

for some subgroup H of G. If t(H)p 6= 0 we may repeat this step and find a
cyclic subgroup 〈b〉 of H such that G = 〈a〉 ⊕ 〈b〉 ⊕ L for some subgroup L
of G. It follows that Aut(〈a〉⊕〈b〉) ⊆ Aut(G) is commutative, a contradiction
to [3, 115.2].

Thus G = Z(pkp) ⊕ H(p) and H(p) is p-torsion-free. If H(p) 6= pH(p),
there is an element in H(p)/pkpH(p) that generates a direct summand of
order pkp . Thus there is a ϕ ∈ Hom(H(p),Z(pkp)) such that ϕ is surjective.



A-RINGS 281

Now construct ψ+ and ψ− as above and conclude that 2ϕ = 0. Thus p = 2
and k2 = 1.

Now consider the case G = Z(2) ⊕ H (2). Recall that H(2) has no ele-
ments of order 2 and Aut(G) is commutative. Moreover,

⋂{Ker(ϕ) : ϕ ∈
Hom(H(2),Z(2))} = 2H(2). Let π ∈ Aut(H(p)). Then

ψ1 =
[

1 0
0 π

]
, ψ2 =

[
1 0
ϕ π

]
∈ Aut(G)

commute and so ϕ = πϕ. This means that 0 = (−1 +π)ϕ and H(−1 + π) ⊆
Ker(ϕ) for all ϕ∈Hom(H(2),Z(2)). Thus H(−1+π)⊆2H and Aut(H)�H/2H
= {idH/2H}. The converse is easy to verify.

1.4. Theorem. Let G be a group with t(G)2 = 0 and Aut(G) commu-
tative. If G = A⊕B then Aut(G) = Aut(A)× Aut(B). If G is an A-group,
then A and B are A-groups and both are fully invariant in G.

Proof. Let ϕ ∈ Hom(B,A) and define ψ+/− as in the proof of 1.3. Then
again we infer 2ϕ = 0, which now implies that ϕ = 0. Thus Hom(A,B) =
0 = Hom(B,A) and Aut(G) = Aut(A) × Aut(B). Moreover, if R is a ring
with R+ = G, then A and B are ideals and there are subrings S and T of R
such that R = S × T and S+ = A and T+ = B.

If t(G)2 6= 0, we can say the following:

1.5. Corollary. Let G = Z(2)⊕H with H not torsion. The following
are equivalent :

(I) Aut(G) is commutative.
(II) (a) t(H)2 = 0 and Aut(H) is commutative.

(b) Either 2H = H (and thus H is fully invariant in G), or 2H 6= H
and Aut(H) induces the identity on H/2H.

Proof. By Theorem 1.3, t(G)2 = Z(2) and thus t(H)2 = 0. Thus

Aut(G) =
[

Aut(Z2) 0
Hom(H,Z(2)) Aut(H)

]
.

The rest is easy verification.

The following example shows that the case 2H 6= H can actually occur:

1.6. Example. Pick three distinct odd primes p, q, r and define H =
(e1Z[1/p]⊕ e2Z[1/q]) + (e1 + e2)Z[1/r]. Then H is 2-reduced and Aut(H) =
{1,−1}. Thus, for G = Z(2)⊕H, we see that

Aut(G) =
[

1 0
Hom(H,Z(2)) {1,−1}

]
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is commutative. Note that End(H) = Z, and thus

End(G) =
[

Z(2) 0
Hom(H,Z(2)) Z

]
.

Now let θ : G → End(G) be a homomorphism. Since Hom(H,Z) = 0 we
infer 2θ(G) = 0 and there is no ring R, 1 ∈ R, such that R+ = G. Thus G is
an example of a group G with Aut(G) commutative that is not an A-group.

We will now determine which completely decomposable groups are A-
groups. We leave the easy proof to the reader.

1.7. Theorem. Let G =
⊕

i∈I Ai with Ai a subgroup of Q for all i ∈ I.
Then Aut(G) is commutative if and only if the types of the Ai’s are pairwise
incomparable. Moreover , G is an A-group if and only if Aut(G) is commu-
tative, I is finite, and the types of all the Ai’s are idempotent if and only if
G is an E-group.

1.8. Theorem. Let G be a mixed group with Aut(G) commutative. Let
P = {p prime : t(G)p 6= 0} and assume 2 6∈ P. Then there are natural
numbers kp such that t(G)p = Z(pkp) and t(G) =

⊕
p∈P Z(pkp). If P is

finite, then G = Z(
∏
p∈P p

kp) ⊕ H, where H is torsion-free and p-divisible
for all p ∈ P.

If P is infinite, then there is a pure subgroup A of
∏
p∈P Z(pkp) and a

torsion-free, P -divisible group H such that G = A ⊕H and both A and H
are fully invariant in G. Moreover , Aut(A) and Aut(H) are commutative
and Aut(G) = Aut(A)× Aut(H).

Proof. Let P ′ be the set of all primes not in P. Let S = Z[1/p : p ∈ P ′].
Consider the short exact sequence 0 → t(G) → G → G/t(G) → 0. By
Theorem 1.3, t(G) =

⊕
p∈P Z(pkp) and G/t(G) is P -divisible. Now we tensor

by S and obtain 0 → t(G) ∼= t(G)⊗ S → G ⊗ S → (G/t(G))⊗ S → 0 and
(G/t(G))⊗S is divisible. There are pure subgroups A and H of G such that
A⊗S is the reduced part of G⊗S and H ⊗S is the divisible part of G⊗S.
Moreover, t(G⊗S) ∼= t(G). This implies that t(G) ⊆ A, A/t(G) is P -divisible
and H is torsion-free. This shows that A is the P -adic closure of t(G) in G.
Since t(G) is P ′-divisible, so is A. Now G ⊆ (A ⊗ S) ⊕ (H ⊗ S) = A ⊕H.
Thus G = A ⊕ H and A is a pure subgroup of the P -adic closure of t(G),
namely

∏
p∈P Z(pkp).

1.9. Proposition. Let R = (Z(pn),+, ∗) be a unital ring with additive
group Z(pn). Then R is isomorphic to the ring Z(pn).

Proof. It is easy to see that there is a v ∈ U(Z(pn)) such that x∗y = vxy
for all x, y ∈ Z(pn). The map θ : Z(pn) → R with θ(x) = v−1x is a ring
isomorphism.
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1.10. Theorem. Let G be a mixed A-group and R an A-ring with
R+ = G. Assume that t(G)2 = 0 and that G has no torsion-free summand.
Then P = {p prime : t(G)p 6= 0} is infinite and R is a pure subring of∏
p∈P Z(pkp), where t(G)p = Z(pkp) for all p ∈ P. Moreover , all such A-

rings are E-rings.

Proof. Since t(G)p is fully invariant in G, the subring t(G) of R is iso-
morphic to the natural ring structure by 1.9. By 1.8, G is isomorphic to a
pure subgroup of

∏
p∈P Z(pkp), the P -adic completion of t(G). By continuity

we may assume that R is a subring of the natural ring
∏
p∈P Z(pkp). Any

such ring is an E-ring (cf. [6]).

The example at the beginning shows that the hypothesis t(G)2 = 0 is
needed in 1.10.

2. Torsion-free finite rank (tffr) A-rings. We will now consider
A-groups and A-rings that are torsion-free of finite rank (tffr). While it is
known that all E-rings R have N(R) = {0} (cf. [1, Corollary 14.7]), we can
only prove something weaker for A-rings.

2.1. Proposition. Let R be a tffr A-ring and N = N(R) the nilradical
of R. Then N2 = 0.

Proof. By a result due to Beaumont–Pierce (see [1, Corollary 14.2]) there
is a subring T of R and an integer n such that nR ⊆ T ⊕N ⊆ R. Let s ∈ N
and θ : R → R be the map that is the composition of multiplication by n,
followed by the natural projection onto N, followed by the multiplication
by s ∈ N. Then nNs is contained in the image of θ. Moreover, by 1.1(2),
s is nilpotent, and thus θ is nilpotent. Now 1 − θ ∈ Aut(R+) and is thus a
multiplication. This shows that θ is a multiplication by some element r ∈ R.
Now n = n1 ∈ T and T ⊂ Ker(θ), which implies that 0 = θ(n1) = nθ(1) =
nr and r = 0. Thus θ = 0 and nNs = {0} for all s ∈ N, which means
N2 = {0}.

2.2. Theorem. If R is a tffr strongly indecomposable A-ring , then R is
an E-ring.

Proof. By a result due to J. D. Reid (cf. [3, 92.3]), QEnd(R+) is an
artinian algebra and a local ring in which all non-units are nilpotent. Let
ϕ ∈ End(R+) be such that ϕ(1) = 0. Then Ker(ϕ) 6= {0} and ϕ induces an
element in QEnd(R+) that is nilpotent. Thus ϕ is nilpotent and 1 − ϕ ∈
Aut(R+) is a multiplication. This implies that ϕ is a multiplication with
ϕ(1) = 0. Thus ϕ = 0 and Hom(R+/〈1〉, R+) = {0}, which implies that R
is an E-ring.

2.3. Proposition. If R is a tffr A-ring of rank 2, then R is an E-ring.
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Proof. Let G = R+ and let k be the number of distinct types of elements
of G. By another result due to Beaumont–Pierce (see [1, Theorem 3.2]), the
following are possible:

(a) k = 1, G is strongly indecomposable or G = A ⊕ B with A ∼= B. In
the latter case, Aut(G) is not commutative.

(b) k = 2 and G is strongly indecomposable or else G = A ⊕ B with
type(A) < type(B). In the latter case, Aut(G) is not commutative.

(c) k = 3 and G is strongly indecomposable or there is some k ∈ N such
that kG ⊆ A ⊕ B ⊆ G and A,B have incomparable types. In the latter
case, if G ∼= A⊕B, then G is an E-group, otherwise G is almost completely
decomposable but indecomposable and A,B are subrings of Q that are fully
invariant in G. Thus G is an E-group.

(d) k > 3 and G is strongly indecomposable.

Thus we may assume that G is strongly indecomposable and G is an E-group
by Theorem 2.2.

We now define a class of tffr rings in terms of their quasi-automorphisms
and quasi-units.

2.4. Definition. A tffr ring R is called a strong A-ring if U(QEnd(R+))
= U(QRl), i.e. Rl and End(R+) have the same quasi-units.

Our goal is to show that all strong A-rings are actually E-rings. The
proof is presented in a sequence of propositions. Here is the first step:

2.5. Proposition. Let R be a tffr ring , 1 ∈ R. Then R is a strong
A-ring if and only if each element of U(QEnd(R+)) commutes with each
element of Rr. Thus {a ∈ R : Ker(ar) = 0} is contained in Z(R).

Proof. Suppose R is a strong A-ring and let α ∈ U(QEnd(R+)) =
U(QRl). Then there is a natural number n and b ∈ R such that nα = bl.
Now bl commutes with each element of Rr. Thus α commutes with each
element of Rr.

To show the converse, let α ∈ U(QEnd(R+)) and a ∈ R. Then for
all x ∈ R we have α(xa) = α(x)a and α(a) = α(1)a for all a ∈ R. Let
β = α−1. As before we have β(a) = β(1)a for all a ∈ R and it follows that
α(1)β(1) = 1, which shows that α(1) ∈ U(QR) and α ∈ U(QRl), and R is
a strong A-ring.

2.6. Proposition. Each tffr strong A-ring R is an A-ring.

Proof. Let α ∈ Aut(R+). Then there is a natural number n such that
nα = rl for some r ∈ R. Thus nα(1) = r ∈ nR and r = ns for some s ∈ R,
and it follows that α = sl. Since α ∈ Aut(R+), there is t ∈ R with α(t) = 1
and we have st = 1 and s is a unit in R. This shows that R is an A-ring.
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2.7. Proposition. Let R be a strong A-ring. Then U(QR) ⊆ QZ(R)
and U(QEnd(R+)) is commutative.

Proof. Let b be a quasi-unit of R. Then br ∈ U(QEnd(R+)) = U(QRl)
and for some m ∈ N we have mbr = al for some a ∈ R. Now mb = mbr(1) =
al(1) = a and it follows that br = bl and b is in the center of R.

Note. If R is a tffr E-ring, then R is a strong A-ring, because in this
case End(R+) = Rl.

Next we show that strong A-rings quasi-decompose just like E-rings.

2.8. Proposition. Let R be a strong A-ring such that R+ $ H ⊕K is
a quasi-decomposition. Then H, K are strong A-rings and Hom(H,K) =
0 = Hom(K,H).

Proof. There is a natural number n such that n(H ⊕K) ⊆ R ⊆ H ⊕K.
Let πH : H ⊕ K → H and πK : H ⊕ K → K be the natural projections.
Let H ′ = πH(R) and K ′ = πK(R). Then H is quasi-equal to H ′ since
nH ⊆ H ′ ⊆ H. The same holds for K and K ′. Thus, we may assume that
πH and πK are onto. Let ϕ ∈ Hom(H,K). With matrices operating on the
right, we have elements

ψ+ =
[
n nϕ
0 n

]
, ψ− =

[
n nϕ
0 −n

]

in End(R). Moreover, ψ+, ψ− ∈ U(QEnd(R+)), a commutative group by
2.7. Thus ψ+ψ− = ψ−ψ+ and ϕ = 0 follows. This shows Hom(H,K) = 0 =
Hom(K,H).

For h ∈ H, the map (nh)r : nH → R is a homomorphism and (nh)r :
H → H ⊕ K. Thus (nH)(nH) ⊆ H and also (nK)(nK) ⊆ K. Moreover
(nH)(nK) ⊆ H ∩ K = 0. Thus (nH)(nK) = 0 = (nK)(nH). Now let
h1, h2 ∈ H. Then there are elements k1, k2 ∈ K with h1 + k1 ∈ R and
h2 +k2 ∈ R. It follows that n2(h1 +k1)(h2 +k2) = (nh1 +nk1)(nh2 +nk2) =
(nh1)(nh2)+ (nk1)(nk2) = h3 +k3 ∈ n2R ⊆ n2(H⊕K). Thus h3 = n2h4 for
some h4 ∈ H and we can define h1h2 = h4. This makes H into a ring and
the same works for K. This shows that n(H ⊕K) ⊆ R ⊆ H ⊕K ≈ H ×K
is an inclusion of subrings.

Let α ∈ U(QEnd(H)). Then

ψ =
[
nα 0
0 n

]
∈ U(QEnd(R+)).

Thus there is a natural number m such that mψ = (h + k)l with h + k a
quasi-unit of R. We get mnα = ψ�H = hl and thus α ∈ U(QHl). Thus H is
a strong A-ring and the same holds for K.

Now we can prove our result:
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2.9. Theorem. Let R be a tffr strong A-ring. Then R is an E-ring.

Proof. By 2.8 we have n(R1 × . . . × Rk) ⊆ R ⊆ R1 × . . . × Rk where
each Ri is a strongly indecomposable strong A-ring and Hom(Ri, Rj) = 0
for each 1 ≤ i 6= j ≤ k. By 2.2 and 2.6, each Ri is an E-ring, which implies
that R is an E-ring (cf. [1, Corollary 14.7]).

3. Large A-rings. While we have not been able to find tffr A-rings
that are not E-rings, we are more successful in the infinite rank case. We
will prove the following result:

3.1. Theorem. Let κ, µ, λ be infinite cardinals such that µκ = µ and
λ = µ+, the successor cardinal of µ. Let S be an integral domain such
that |S| ≤ κ and S+ is torsion-free and p-reduced for the prime integer p.
Moreover , assume that there is some p-adic integer π such that π is tran-
scendental over S. Then there exists an S-algebra R such that :

(a) |R| = λ and R is an integral domain.
(b) End(R+) = Rl[γ] ≈ R[x] and γ is an injective ring homomorphism

of R but γ is not surjective.
(c) Aut(R+) = (U(S))l.

Thus R is an integral domain and an A-ring that is not an E-ring.

We could prove this theorem in almost the same way as in the construc-
tion of large E-rings in [2], but we prefer to apply a more sophisticated
version of the Black Box as introduced in [5] because this new version is
easier to apply and also presents a λ-filtration of our desired ring R. We
will present the main steps leading to the Strong Black Box [5] without
duplicating the proofs. Let S have the properties as given in 3.1. Then⋂
i<ω p

iS = {0} and S is Hausdorff in its p-adic topology.
Let B = S[xα,n : α < λ, n < ω] be the commutative polynomial ring

with indeterminates xα,n. Let M be the set of all monomials m ∈ B, i.e.
m =

∏k
i=1 x

ei
αi,ni with ei > 0 and {(αi, ni) : 1 ≤ i ≤ k} a finite subset

of λ × ω. Each a ∈ B has a unique representation a =
∑
m∈Amam where

am ∈ S and A a finite subset of M. We define deg(m) =
∑k
i=1 ei to be the

degree of the monomial m. Note that B =
⊕

m∈M Sm is a free S-module.
Let B̂ be the p-adic completion of B and let ⊆∗ denote “contained as a
p-pure subgroup”. For any g =

∑
mam ∈ B̂ ⊆ ∏m∈M Ŝm we define the

support of g to be [g] = {m ∈M : am 6= 0} and if M is a subset of B̂, then
[M ] =

⋃
g∈M [g].

We define the λ-support of g ∈ B̂ by [g]λ = {α < λ : there are m ∈ [g],
n < ω and m′ ∈ M such that m = xα,nm

′}. Note that [g]λ is an at most
countable set of ordinals below λ and [g]λ is the set of all ordinals α < λ such
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that some variable xα,n actually shows up in the representation of g ∈ B̂ as a
multivariate polynomial. Finally we define an S-linear ring homomorphism
γ : B → B by γ(xα,n) = xα,n+1 for all α < λ and n < ω.

Next define a norm by ‖{α}‖ = α + 1 for any α < λ and ‖M‖ =
supα∈M ‖α‖ for any subset M ⊆ λ. Moreover ‖g‖ = ‖[g]λ‖ for any g ∈ B̂.
Note that ‖g‖ = min{β < λ : [g]λ ⊆ β} and [g]λ ⊆ β holds iff g ∈ B̂β where
Bβ = S[xα,n : α < β, n < ω].

Fix, once and for all, bijections hα : µ → α for all µ ≤ α < λ such that
hµ = idµ and for technical reasons we define hβ = idµ as well for β < µ.

3.2. Definition. Define P to be a canonical subalgebra of B if P =
S[xα,n : α ∈ I, n < ω] for some I ⊂ λ with |I| ≤ κ such that hα(I ∩ µ) =
I ∩ hα(µ) for all α ∈ I.

Accordingly, an additive homomorphism ϕ : P → B̂ is canonical if P
is canonical and ϕ(P ) ⊆ P̂ . We also define [ϕ] = [P ], [ϕ]λ = [P ]λ, and
‖ϕ‖ = ‖P‖. Moreover, let E be a stationary subset of λ◦ = {α < λ : α has
countable cofinality} such that λ◦ − E is stationary in λ as well.

We are now ready to state

3.3. Strong Black Box. Let µ, κ, λ, S, B, E be as above. Then there
is a family of canonical homomorphisms ϕβ , β < λ, such that :

(1) ‖ϕβ‖ ∈ E for all β < λ.
(2) ‖ϕ%‖ ≤ ‖ϕβ‖ for all % ≤ β < λ.
(3) ‖[ϕ%]λ ∩ [ϕβ]λ‖ < ‖[ϕβ]λ‖ for all % < β < λ.

(4) Prediction. For any homomorphism ψ : B → B̂ and for any sub-
set I of λ with |I| ≤ κ, the set {α ∈ E : there is β < λ with ‖[ϕβ ]λ‖ = α
and I ⊆ [ϕβ]λ} is stationary in λ.

Remark. In the older version of the Black Box some ordinal λ∗ with
|λ∗| = λ was used to enumerate the canonical homomorphisms. In our set-
ting it turns out that λ∗ = λ: If there is a canonical homomorphism ϕλ then
‖ϕλ‖ = δ < λ and we have λ (distinct) canonical subalgebras of cardinality
≤ κ contained in a set of cardinality µ with µκ = µ. But there are only µ
such subalgebras, and not λ = µ+ of them.

The one thing we need to prove in detail is the (algebraic) Step Lemma
which will allow us to eliminate unwanted homomorphisms.

3.4. Step Lemma. Let S, B, γ be as above and π a p-adic integer which
is transcendental over S. Moreover , the following is given:

(1) Let P = S[xα,n : α ∈ I∗, n < ω] for some subset I∗ of λ and let M
be a subring of B̂ with P ⊆∗ M ⊆∗ B̂ such that π is transcendental over
M and γ(M) ⊆M.
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(2) There is a set I = {αi : i < ω } ⊂ λ with αi < αj for all i < j < ω
such that I ⊆ I∗ = [P ]λ and I ∩ [g]λ is finite for all g ∈M.

(3) Let ψ : P → M̂ be a homomorphism that is not in (M [γ])�P .
Then there is some y ∈ P̂ such that ψ(y) 6∈ M ′ = (M [γi(y) : i < ω])∗.
Moreover , π is transcendental over M ′. The element y will be either x =∑
i<ω p

ixαi,0 or y = x+bπ with a suitable element b ∈ P. Note that γk(x) =∑
i<ω p

ixαi,k for all k < ω. Also

(4) M and M ′ have the same group of units.

Proof. Let x =
∑
i<ω p

ixαi,0 and assume ψ(x) ∈ M ′ = (M [γi(y) :
i < ω])∗. Then for some a < ω we have paψ(x) ∈M [γi(x) : i < ω]. Note that
by the disjointness condition (2) the p-adic integer π is still transcendental
over M ′. Let

(∗) paψ(x) =
∑

m∈T
mam

where m is a monomial in the elements γi(x), i < ω. Choose a representation
such that N = max{deg(m) : m ∈ T} is the least possible.

Assume N ≥ 2. Now pick another variable x0 = xδ,0 ∈ P such that
none of the xδ,n occurs in any of the finitely many am, m ∈ T, and define
y = x + πx0. Moreover, define M ′′ = (M [γi(y) : i < ω])∗ and assume
ψ(y) ∈ M ′′. Then there are some a′ < ω and bm′ ∈ M and a set T ′ of
monomials in the variables γi(y) such that

(∗∗) pa
′
ψ(x+ πx0) =

∑

m′∈T ′
m′bm′ .

We now multiply equation (∗) by pa
′

and equation (∗∗) by pa and sub-
tract the former from the latter to obtain

(∗∗∗) pa+a′ψ(x0)π =
∑

m′∈T ′
pam′bm′ −

∑

m∈T
pa
′
mam ∈Mπ.

For each monomial m′ ∈ T ′ we form the monomial m′′ by simply erasing
the γi(x0π) term. (In other words, we set x0 = 0.) Now we expand the
monomials m′ ∈ T ′ and collect like terms by powers of π. This turns (∗∗∗)
into

(#) pa+a′ψ(x0)π = πN
′
gN ′+

N ′−1∑

j=1

πjgj+
( ∑

m′∈T ′
pam′′bm′−

∑

m∈T
pa
′
mam

)
.

Note that N ′ ≥ 1, all gj ∈ M, and (
∑
m′∈T ′ p

am′bm′ −
∑
m∈T p

a′mam)
∈M ′. Moreover, ψ(x0) ∈M by hypothesis.

First of all, this implies
∑
m′∈T ′ p

am′bm′−
∑
m∈T p

a′mam = 0 and N ′ =
N ≥ 2 and {m′′ : m′ ∈ T ′} = T . Moreover pabm′ = pa

′
am for all m ∈ T.
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Note that gN = 0 as well, because N = N ′ ≥ 2. We need to have a closer
look at that term. Note that

0 = gN =
∑

m∈T, deg(m)=N

pam̃bm′ =
∑

m∈T, deg(m)=N

pa
′
m̃am

where m̃ is the monomial obtained from m (or m′) by replacing γi(x) (or
γi(x0 + x)) by γi(x0) = xδ,i. Since m 7→ m̃ is injective, and all xδ,i are
transcendental over the am, by the choice of xδ,0, we conclude that am = 0
whenever m ∈ T and deg(m) = N. This is a contradiction to the minimality
of N.

Thus we may assume that N = 1 and we have, by way of contradiction,
for x chosen as above,

(+) paψ(x) =
k∑

i=0

aiγ
i(x) for some ai ∈M.

We define M ′ as above as well.
Assume that paψ�P 6=

∑k
i=0 aiγ

i. Then there is some w ∈ P with
paψ(w) 6= ∑k

i=0 aiγ
i(w). Let y = wπ + x and define M ′′ for this choice.

Now assume that

(++) pa
′
ψ(wπ + x) =

∑

m∈T
mbm

where m is a monomial in the variables γi(bπ + x). As above we subtract
pa
′
(+) from pa(++) and obtain pa

∑
m∈T mbm − pa

′∑k
i=0 aiγ

i(x) ∈ πM ′.
Thus pa

∑
m∈T mbm = pa

′∑k
i=0 aiγ

i(x) and the maximal degree of polyno-
mials in T is at most 1. Thus we have

(+++) pa
′
ψ(bπ + x) =

k′∑

i=0

biγ
i(wπ + x).

Again we do our subtraction and obtain

pa+a′ψ(w)π = pa
k′∑

i=0

biγ
i(w)π + pa

k′∑

i=0

biγ
i(x)− pa′

k′∑

i=0

aiγ
i(x).

The fact that π is transcendental over M ′ now tells us that k = k′ and
pabi = pa

′
ai for all 0 ≤ i ≤ k. Therefore,

pa+a′ψ(w) = pa
k′∑

i=0

biγ
i(w) = pa

′
k∑

i=0

aiγ
i(w)

and it follows that ψ(w) =
∑k
i=0 aiγ

i(w), a contradiction to the choice of w.
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Now we are finally down to the case where

paψ�P =
k∑

i=0

aiγ
i with ai ∈M.

We may pick some variable x̃ from P such that none of the γj(x̃), j < ω,

occurs in any of the ai ∈ M and get paψ(x̃) =
∑k
i=0 aiγ

i(x̃) ∈ paM. Thus
ai = pami with mi ∈M and ψ�P = (

∑k
i=0miγ

i)�P .
Now we need to prove (4). Suppose u ∈ M ′ is a unit in M ′ such that

u 6∈ M. Let k be minimal such that u ∈ (M [γi(x) : 0 ≤ i ≤ k])∗ =
((M [γi(x) : 0 ≤ i < k])[γk(x)])∗. Note that γk(x) is transcendental over
M [γi(x) : 1 ≤ i < k]. If v is the inverse of u, then v ∈ ((M [γi(x) : 1 ≤ i <
k])[γk(x)])∗ as well. This shows that k = 0, since in polynomial rings only
constants are units and we obtain u, v ∈ (M [x])∗. Since x is transcendental
over M, we infer u ∈M.

We will now construct our ring R.
Let ϕβ , β < λ, be the sequence of canonical homomorphisms provided by

the Strong Black Box 3.3. Let Pβ = S[xα,n : α ∈ [ϕβ ]λ, n < ω] be the domain
of ϕβ . We will construct R as the union of a λ-filtration R =

⋃
β<λR

β of
p-pure subrings of B̂ with R0 = P0 such that

(∗) Rβ ⊆
(
S
[ ⋃

α<β

P̂α

])
∗

and {g ∈ B : ‖g‖ < ‖ϕβ‖} ⊂ Rβ .

If β is a limit ordinal, we let Rβ =
⋃
α<β R

α. Now suppose we have
already constructed Rβ . Consider the canonical homomorphism ϕβ . Since
‖ϕβ‖ ∈ λ◦ is a limit ordinal of countable cofinality, there are ordinals α0 <
α1 < . . . < αn < . . . in [ϕβ ]λ such that ‖ϕβ‖ = supn<ω{αn}. Let I = {αn :
n < ω}. Then I ∩ [g]λ is finite by (∗) and condition (2) in 3.3. If ϕβ maps Pβ
into Rβ and ϕβ is not induced by some map in Rβ [γ], then apply the Step
Lemma to I, P = Pβ , M = Rβ , and ψ = ϕβ . Thus there is some y = yβ
∈ P̂β and Rβ+1 = (Rβ [γi(yβ) : i < ω])∗ such that π is transcendental over
Rβ+1 and ϕβ(yβ) 6∈ Rβ+1. Moreover, Rβ+1 satisfies (∗), because yβ ∈ P̂β .

If ϕβ ∈ (Rβ [γ])�Pβ , then we do not need to apply the Step Lemma and
we simply define Rβ+1 = (Rβ [γi(yβ) : i < ω])∗, where yβ =

∑
i<ω p

ixαi,0.

3.5. Lemma. Let R be the ring constructed above. The following hold :

(a) {γi(yβ) : β < λ, i < ω} is transcendental over B.
(b) If g ∈ R−B, then there is a finite subset N of λ×ω and a < ω such

that pag ∈ B[γi(yβ) : (β, i) ∈ N ] and [g]λ∩ [γi(yβ)]λ is infinite iff (β, i) ∈ N.
If ‖g‖ is a limit ordinal , then ‖g‖ = ‖yβ‖ where β is the largest ordinal

such that (β, j) ∈ N for some j < ω. Moreover ,
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(c) R ∩ P̂β ⊆ Rβ+1 for all β < λ.

(d) U(R) = U(S).

The proof of 3.5 is the same as that of Lemma 2.2.4 and 2.2.5(a) in [5]
and left to the reader. (For example, clause (c) follows from (b) and 3.3(3).
Moreover, (d) follows from 3.4(4).)

We will now show that End(R+) = R[γ]. Again, we can almost copy the
proof of 2.2.1 from [5]. We want to outline the proof anyway.

Let R =
⋃
β<λR

β be the ring constructed above. Obviously, R[γ] ⊆
End(R+) by the construction of R. Moreover, π is transcendental over each
Rβ and thus R and the Rβ , β < λ, form a λ-filtration of R. Let I =
{αi : i < ω} ⊂ λ be such that αi < αj for all i < j < ω such that
η = supi<ω{αi} ∈ λ◦ − E 6= ∅ by the choice of E. Then [g]λ ∩ I is finite for
all g ∈ R.

Let ψ ∈ End(R+) − R[γ]. By the Step Lemma, there is some y ∈ B̂
such that y =

∑
i<ω p

ixαi,0 up to, possibly, a π-multiple of some element
in B, and ψ(y) 6∈ (R[γi(y) : i < ω])∗. Now we apply 3.3 and conclude
that E′ = {α ∈ E : there is β < λ such that ‖ϕβ‖ = α and ϕβ ⊂ ψ and
[y] ⊆ [ϕβ ]} is stationary in λ. Let C = {β : ψ(Rβ) ⊆ Rβ}. This set is a
cub (closed unbounded subset) of λ. Thus E′′ = E′ ∩ C is stationary in λ
and we may pick some η < α ∈ E′′. Then there is some β < λ such that
α = ‖ϕβ‖ and ϕβ ⊂ ψ and [y] ⊆ [Pβ ] = [ϕβ]. Recall that η = ‖y‖ and
y ∈ P̂β. Thus Rβ+1 was constructed such that ψ(yβ) = ϕβ(yβ) 6∈ Rβ+1 and
ϕβ(yβ) ∈ P̂β . By 3.5(c) we have ψ(yβ) 6∈ R, a contradiction to ψ ∈ End(R+).
This proves 3.1(b). To show part (c), observe that for any automorphism α
of R+, α is a unit in Rl[γ], which is isomorphic to a polynomial ring over
the integral domain Rl ≈ R. Thus α ∈ R is a unit in R and by 3.5(d) we
have α ∈ U(R) = U(S).

Added in proof (June 2003). The first named author has a forthcoming paper
answering the question stated in the introduction: All tffr A-rings are indeed E-rings.
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