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TIME ANALYTICITY AND BACKWARD UNIQUENESS FOR
THE BOUSSINESQ EQUATIONS

BY

QIANQIAN HOU and XIAOJING XU (Beijing)

Abstract. We prove that strong solutions of the Boussinesq equations in 2D and 3D
can be extended as analytic functions of complex time. As a consequence we obtain the
backward uniqueness of solutions.

1. Introduction. We consider the Boussinesq equations

(B)



∂v

∂t
+ (v · ∇)v = −∇p+ ν∆v + θen, (x, t) ∈ Ω × (0,∞),

∂θ

∂t
+ (v · ∇)θ = κ∆θ,

div v = 0,

v(x, 0) = v0(x), θ(x, 0) = θ0(x),

v(·, t)|∂Ω = 0, θ(·, t)|∂Ω = 0,

where v : Rn → Rn (n = 2, 3) is a vector field corresponding to the velocity,
θ : Rn → R is a scalar function denoting the temperature in the context
of thermal convection and the density in modeling geophysical fluids. We
assume that Ω ⊂ Rn is an open bounded domain with ∂Ω of class C2. In
problem (B), the viscosity ν and the diffusion coefficients κ are both positive
constants and en = (0, . . . , 1) denotes the unit vector in Rn.

The Boussinesq equations concerned here model large-scale atmospheric
and oceanic flows, and also play important roles in the study of Rayleigh–
Bénard convection (see, e.g., [6]). These equations retain some key features
of the 3D Navier–Stokes equations and the Euler equations such as the
vortex stretching mechanism. As pointed out in [4], the inviscid Boussinesq
equations can be identified with the 3D Euler equations for axisymmetric
flows.

In the 2D case, the global in time regularity of solutions to problem (B)
with ν > 0 and κ > 0 is well-known (see [1], [5], [9]); in the 3D case, the
local in time regularity of this problem is also known (see [7]). In this pa-
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per, we contribute to these theories by considering the analyticity in time of
solutions to the Boussinesq problem (B) and, to do it, we use the method
developed by Foiaş and Temam [3] who dealt with the Navier–Stokes equa-
tions. We prove that strong solutions of the Boussinesq problem (B) in 2D
and 3D can be extended as analytic functions of complex time; as a con-
sequence we obtain the backward uniqueness of solutions. Compared with
the Navier–Stokes system, in our case, we have to deal with an additional
difficulty: we need uniform estimates on both velocity and temperature at
the same time.

In order to study our problem, we first apply the Leray projector P to
the first equation of (B), and obtain the following system:

(B1)



∂v

∂t
+ νAv +B(v, v) = Pθen,

∂θ

∂t
+ (v · ∇)θ = κ∆θ,

v(x, 0) = v0(x), θ(x, 0) = θ0(x),

v(·, t)|∂Ω = 0, θ(·, t)|∂Ω = 0,

with the bilinear operator

B(u, v) = P(u · ∇)v,

the Stokes operator A = P(−∆) : D(A)→ H, and the spaces

H = PL2(Ω), D(A) = H2(Ω) ∩ V (Ω),

where

V (Ω) = {u ∈ H1
0 (Ω)n | div u = 0}.

We refer the readers to the book by Constantin and Foiaş [2] for more details.

We are now in a position to formulate the main results of this work. First,
in Theorem 1.1, we show that strong solutions in the 2D case are analytic
in a complex neighborhood of the real half-line (0,∞), and solutions in the
3D case are analytic in a neighborhood of (0, T0) for some T0 ∈ (0, ∞). As a
consequence, in Theorem 1.2 we derive the backward uniqueness of solution.

Theorem 1.1. Let v0 ∈ V (Ω), θ0 ∈ H1
0 (Ω), and ν, κ > 0.

(i) If n = 2, there exists an open neighborhood D of (0,∞) in C such
that the solution (v(t), θ(t)) to the Boussinesq problem (B) is ana-
lytic as the mappings v : D → D(A), θ : D → H1(Ω).

(ii) If n = 3, there exist T0 > 0 and an open neighborhood DT0 of (0, T0)
in C such that the solution of the Boussinesq problem (B) is analytic
as the mappings v : DT0 → D(A), θ : DT0 → H1(Ω).
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Remark 1.1. For n = 3, the interval [0, T0) in Theorem 1.1 is the max-
imal one on which the strong solutions exist.

Theorem 1.2 (Backward uniqueness). Let (v1, θ1), (v2, θ2) be two strong
solutions of the Boussinesq problem (B).

(i) In the 2D case: Assume that the initial data v1(0), v2(0) are in V (Ω)
and θ1(0), θ2(0) are in H1

0 (Ω). Suppose there exists t0 ≥ 0 such that
(v1(t0), θ1(t0)) = (v2(t0), θ2(t0)). Then (v1(t), θ1(t)) = (v2(t), θ2(t))
for all t ≥ 0.

(ii) In the 3D case: Assume that the initial data v1(0), v2(0) are in V (Ω)
and θ1(0), θ2(0) are in H1

0 (Ω). Set T0 = min(T1, T2), where [0, Ti)
is the existence interval of (vi, θi), i = 1, 2. If, for some t0 ∈ [0, T0),
(v1(t0), θ1(t0)) = (v2(t0), θ2(t0)) then (v1(t), θ1(t)) = (v2(t), θ2(t))
for all t ∈ [0, T0).

2. Preliminaries. In this section, we list some notations, and present
multilinear product estimates used in the proofs of the main theorems.

In order to extend system (B1) to complex time t, we need to complexify
the spaces H, V , D(A) and the corresponding operators. The complexifica-
tion of H is the Hilbert space

HC = {u1 + iu2 |u1 ∈ H, u2 ∈ H}, i =
√
−1,

with the scalar product

(u, v)C = (u1 + iu2, v1 + iv2)C = (u1, v1) + (u2, v2) + i[(u2, v1)− (u1, v2)].

Other spaces and corresponding operators will be defined in the analogous
way. Moreover, for simplicity of exposition, we omit the subscript C.

Following the usual practice, we denote the norm of H1
0 (Ω) by ‖ · ‖, the

norm of L2(Ω) by | · |; (· , ·) is the scalar product in complex L2(Ω) and
((· , ·)) is the scalar product in complex H1

0 (Ω).

Finally, we recall two classical lemmas, which can be obtained from
the Schwarz inequality and the Gagliardo–Nirenberg inequality (also see
[2, pp. 49 and 55]).

Lemma 2.1. Let Ω ⊂ Rn be a bounded domain with boundary of class
C2, n = 2, 3. There exists a constant C depending on Ω such that, for all
u ∈ H1

0 (Ω) and v ∈ H2(Ω),

|b(u, v, w)| ≤ C‖u‖ ‖v‖1/2‖v‖1/2
H2 |w|,

where

b(u, v, w) =
�

Ω

uj
∂vi
∂xj

wi dx.
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Lemma 2.2. Let Ω ⊂ Rn be a bounded domain with boundary of class
C2, n = 2, 3. There exists a constant C depending on Ω such that, for all
u ∈ H1

0 (Ω) and v ∈ H2(Ω),

|B(u, v)| ≤ C‖u‖ ‖v‖1/2‖v‖1/2
H2 .

Remark 2.1. By Lemma 2.1, for any w ∈ L2(Ω),

|(u · ∇v, w)| = |b(u, v, w)| ≤ C‖u‖ ‖v‖1/2‖v‖1/2
H2 |w|,

hence,

|u · ∇v| ≤ C‖u‖ ‖v‖1/2‖v‖1/2H2
.

3. Proof of Theorems 1.1 and 1.2. First, we prove Theorem 1.1.
Then Theorem 1.2 is obtained as its direct consequence.

In the following proof, it suffices to consider problem (B1) by the classical
existence theory (see [1], [5], [7], [9]).

We use the Galerkin method to construct the approximation system of
(B1) as follows:

(B2)



∂vm
∂t

+ νAvm +B(vm, vm) = Pθmen,

∂θm
∂t

+ (vm · ∇)θm = κ∆θm,

vm(x, 0) = v0m(x), θm(x, 0) = θ0m(x),

vm(·, t)|∂Ω = 0, θm(·, t)|∂Ω = 0,

where

vm =

m∑
k=1

cmk (t)ωk(x), θm =

m∑
k=1

dmk (t)ω̄k(x),

ωk(x) is an orthonormal basis in D(A), and ω̄k is an orthonormal basis
in H1

0 .
The solution (vm, θm) of the Galerkin approximation system (B2) is ob-

viously analytic in time, because (B2) is a finite-dimensional system with a
polynomial nonlinearity.

Proof of Theorem 1.1. The proof is divided into three steps. First, we
obtain estimates of ‖vm(seiϕ)‖ and ‖θm(seiϕ)‖; then we give uniform es-
timates of higher order derivatives of vm, θm; finally we take the limit as
m→∞ to achieve our goals.

Step 1. Let ϕ ∈ (−π/4, π/4) and take the time variable of the form
t = seiϕ for s > 0. Since the Stokes operator A is selfadjoint (see [2, p. 32,
Th. 4.3]), we have the identity

d

ds
‖vm(seiϕ)‖2 =

d

ds
(vm(seiϕ), Avm(seiϕ)),
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which implies

1

2

d

ds
‖vm(seiϕ)‖2 =

1

2

(
eiϕ

dvm
dt

, Avm

)
+

1

2

(
vm, e

iϕA
dvm
dt

)
= Re eiϕ

(
dvm
dt

, Avm

)
.

Multiplying the first equation of (B2) by Avme
iϕ, integrating, and taking

the real part, we deduce by the above identity that

1

2

d

ds
‖vm(seiϕ)‖2 + ν cosϕ|Avm(seiϕ)|2

= Re eiϕ
(
∂vm
∂t

, Avm

)
+ ν cosϕ|Avm(seiϕ)|2

= −Re eiϕ(B(vm, vm), Avm) + Re eiϕ(θmen, Avm).

By Lemma 2.1, we obtain

|Re eiϕ(B(vm, vm), Avm)| ≤ C‖vm‖3/2‖vm‖1/2H2 |Avm|.
Thus, using the inequality ‖vm‖H2 ≤ C|Avm| (see [2, p. 36, Prop. 4.7] this
inequality is still valid in the complex case), and the Young inequality, we
have

|Re eiϕ(B(vm, vm), Avm)| ≤ C‖vm‖3/2|Avm|3/2

≤ ν cosϕ

4
|Avm|2 +

C

ν3 cos3 ϕ
‖vm‖6.

Similarly, we get

|Re eiϕ(θmen, Avm)| ≤ ν cosϕ

4
|Avm|2 +

|θm|2

ν cosϕ
.

Hence,

d

ds
‖vm‖2 + ν cosϕ |Avm|2 ≤

2|θm|2

ν cosϕ
+

C

ν3 cos3 ϕ
‖vm‖6.

Multiplying scalarly the second equation of (B2) by (−∆)θm and by eiϕ,
and taking the real part, we get

1

2

d

ds
‖θm‖2 + κ cosϕ |∆θm|2 = Re eiϕ(vm · ∇θm, ∆θm).

Using Lemma 2.1, the inequality ‖θm‖H2 ≤ C|∆θm|, and the Young inequal-
ity we have

|Re eiϕ(vm · ∇θm, ∆θm)| ≤ ‖vm‖ ‖θm‖1/2‖θm‖1/2H2 |∆θm|

≤ C
(
‖vm‖ ‖θm‖1/2

(κ cosϕ)3/4

)4
+ δ

((
κ

2
cosϕ

)1/4
‖θm‖1/2H2

)4
+

((
κ

2
cosϕ

)1/2
|∆θm|

)2
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= C
1

κ3 cos3 ϕ
‖vm‖4‖θm‖2 +

(
κ

2
cosϕ

)
δ‖θm‖2H2 +

κ

2
cosϕ |∆θm|2

= C

(
1

κ2 cos2 ϕ
‖vm‖4

)(
1

κ cosϕ
‖θm‖2

)
+

(
κ

2
cosϕ

)
δ‖θm‖2H2 +

(
κ

2
cosϕ

)
|∆θm|2

≤ C ‖vm‖6

κ3 cos3 ϕ
+ C

‖θm‖6

κ3 cos3 ϕ
+

(
κ

2
cosϕ

)
δ‖θm‖2H2 +

(
κ

2
cosϕ

)
|∆θm|2.

For δ so small that δ‖θm‖2H2 ≤ 1
2 |∆θm|

2, combining the estimates above
we obtain

d

ds
(‖vm‖2 + ‖θm‖2) + ν cosϕ |Avm|2 + 2κ cosϕ |∆θm|2

≤ 2|θm|2

ν cosϕ
+ C

‖vm‖6

ν3 cos3 ϕ
+ 2C

‖vm‖6

κ3 cos3 ϕ
+ 2C

‖θm‖6

κ3 cos3 ϕ

+
κ

2
cosϕ |∆θm|2 + κ cosϕ |∆θm|2.

Hence, we deduce that

d

ds
(‖vm‖2 + ‖θm‖2) ≤

2|θm|2

ν cosϕ
+ C

‖vm‖6

ν3 cos3 ϕ
+ C

‖vm‖6

κ3 cos3 ϕ
+ C

‖θm‖6

κ3 cos3 ϕ
.

As ϕ ∈ (−π/4, π/4), we have
√

2/2 ≤ cosϕ ≤ 1, 1 ≤ 1/cosϕ ≤
√

2, so
that

(3.1)
d

ds
(‖vm‖2 + ‖θm‖2) ≤ Cκ,ν(‖θm‖2 + ‖vm‖6 + ‖θm‖6),

where Cκ,ν depends only on κ, ν. Denoting

Xm(s) = ‖vm(seiϕ)‖2 + ‖θm(seiϕ)‖2, X(0) = ‖v0‖2 + ‖θ0‖2,

we get the following estimate from (3.1):

d

ds
Xm(s) ≤ Cκ,ν(1 +Xm(s))3,

so
d

ds
(1 +Xm(s)) ≤ Cκ,ν(1 +Xm(s))3.

Integrating the above inequality in time over [0, s], we obtain

−1

2
(1 +Xm(s))−2|s0 ≤ Cκ,νs.

Thus
1− 2Cκ,νs(1 +Xm(0))2

(1 +Xm(0))2
≤ 1

(1 +Xm(s))2
.
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Choose s such that 1− 2Cκ,νs(1 +X(0))2 > 1/4, i.e.

s <
3

8Cκ,ν(1 + ‖v0‖2 + ‖θ0‖2)2
.

Then

1 +Xm(s) ≤ 1 +Xm(0)√
1− 2s(1 +Xm(0))2

≤ 1 +Xm(0)√
1− 2s(1 +X(0))2

≤ 2(1 +Xm(0)) ≤ 2(1 +X(0)),

that is,

(3.2) ‖vm(seiϕ)‖2 + ‖θm(seiϕ)‖2 ≤ 2(‖v0‖2 + ‖θ0‖2) + 1 for all t ∈ D,

where

D =

{
t = seiϕ

∣∣∣∣ ϕ ∈ (−π/4, π/4), 0 < s <
3

8Cκ,ν(1 + ‖v0‖2 + ‖θ0‖2)2

}
.

Step 2. In order to obtain a priori bounds for |Avm(t)| for t ∈ D we
use the first Cauchy formula to obtain a priori bounds for

∥∥dvm
dt

∥∥. Indeed,
for t ∈ D and k ∈ N, k ≥ 1,

(3.3)
dkvm
dtk

(t) =
k!

2πi

�

|z−t|=r/2

vm(z)

(z − t)k+1
dz,

where r = r(t, ∂D) is the distance of the time t to the boundary ∂D of D.
So we have ∥∥∥∥dkvmdtk

(t)

∥∥∥∥ ≤ 2kk!

rk
sup
t∈D
‖vm(t)‖.

By (3.2) for any compact set K ⊂ D, we get

(3.4) sup
t∈K

∥∥∥∥dkvmdtk
(t)

∥∥∥∥ ≤ 2kk!

[r(K, ∂D)]k
[2(‖v0‖2 + ‖θ0‖2) + 1]1/2,

where r(K, ∂D) = d(K, ∂D) is the distance of K to the boundary ∂D,
k = 0, 1, 2, . . . . In particular, taking k = 1 and using the first equation of
(B2), we deduce that

(3.5) sup
t∈K
|Avm(t)| ≤ C(K),

where C(K) is a positive constant depending on ν, ‖v0‖, ‖θ0‖, r(K, ∂D),
but not on m, namely

C(K) =
2

ν

(
1 +

2

r(K, ∂D)

)
[2(‖v0‖2 + ‖θ0‖2) + 1]1/2

+
C

ν2
[2(‖v0‖2 + ‖θ0‖2) + 1]3/2.
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The proof of (3.5) is straightforward. In fact, taking the L2 norm in the first
equation of (B2), using Lemma 2.2, the inequality ‖vm‖H2 ≤ C|Avm|, and
the Young inequality, we deduce that

ν|Avm(t)| ≤ |θm(t)|+
∣∣∣∣dvmdt (t)

∣∣∣∣+ |B(vm, vm)|

≤ |θm(t)|+
∣∣∣∣dvmdt (t)

∣∣∣∣+ C‖vm(t)‖3/2|Avm(t)|1/2

≤ |θm(t)|+
∣∣∣∣dvmdt (t)

∣∣∣∣+
ν

2
|Avm(t)|+ C

2ν
‖vm(t)‖3.

Hence

|Avm| ≤
2

ν
|θm|+

C

ν2
‖vm‖3 +

2

ν

∣∣∣∣dvmdt
∣∣∣∣.

Thus we deduce that

|Avm(t)| ≤ C(K).

Now we can use (3.5) instead of (3.2) in the estimate of the Cauchy
integral (3.3) and obtain, for every compact subset K of D, k ∈ N,∣∣∣∣Adkvmdtk

(t)

∣∣∣∣ ≤ 2kk!

[r(K, ∂D)]k
sup
t∈K′
|Avm(t)|,

where K ′ is the set

(3.6)
{
t ∈ D | d(t, ∂D) ≥ 1

2d(K, ∂D)
}
.

Thus

(3.7) sup
t∈K

∣∣∣∣Adkvmdtk
(t)

∣∣∣∣ ≤ 2kk!C(K ′)

[r(K, ∂D)]k
.

Similarly, we obtain estimates for
∥∥dkθm

dtk

∥∥ and |∆θm|, for k ∈ N, k ≥ 1:

sup
t∈K

∥∥∥∥dkθmdtk
(t)

∥∥∥∥ ≤ 2kk!

[r(K, ∂D)]k
[2(‖v0‖2 + ‖θ0‖2) + 1]1/2,(3.8)

sup
t∈K
|∆θm(t)| ≤ C ′(K),(3.9)

where the positive constant C ′(K) depends on κ, ‖v0‖, ‖θ0‖, K, but not
on m, and its expression is as follows:

C ′(K) =
C

κ2
[2(‖v0‖2 + ‖θ0‖)2 + 1]3/2

+
4

κr(K, ∂D)
[2(‖v0‖2 + ‖θ0‖)2 + 1]1/2.
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Actually, taking the L2 norm in the second equation of (B2), using Remark
2.1, the inequality ‖θm‖H2 ≤ C|∆θm| and the Young inequality, we obtain

κ|∆θm| ≤ |(vm · ∇)θm|+
∣∣∣∣dθmdt

∣∣∣∣
≤ ‖vm‖ · ‖θm‖1/2‖θm‖1/2H2 +

∣∣∣∣dθmdt
∣∣∣∣

≤ C‖vm‖ · ‖θm‖1/2|∆θm|1/2 +

∣∣∣∣dθmdt
∣∣∣∣

≤ C

2κ
‖vm‖2‖θm‖+

κ

2
|∆θm|+

∣∣∣∣dθmdt
∣∣∣∣,

so that

|∆θm| ≤
C

κ2
‖vm‖2‖θm‖+

2

κ

∣∣∣∣dθmdt
∣∣∣∣.

Thus we deduce that

|∆θm| ≤ C ′(K).

Using again the Cauchy formula and (3.9), we also obtain, for every
t ∈ K and k ∈ N, ∣∣∣∣∆dkθmdtk

(t)

∣∣∣∣ ≤ 2kk!

[r(K, ∂D)]k
sup
t∈K′
|∆θm(t)|,

sup
t∈K

∣∣∣∣∆dkθmdtk
(t)

∣∣∣∣ ≤ 2kk!C ′(K ′)

[r(K, ∂D)]k
,

where K ′ is defined in (3.6).

Step 3. Now we can pass to the limit as m→∞.
This limit process is similar to that in Temam’s book (see [8, pp. 62 and

63]). For completeness of exposition, we give the details here.
Since the set {vm ∈ VC | ‖vm‖ ≤ R} is compact in HC for any R ∈ (0,∞),

by the classical Rellich compactness theorem, we can extract a subsequence
{vmj} ⊂ {vm} which converges in HC, uniformly on every compact subset
of D, to v∗(t) ∈ HC which is analytic in D and by the lower semicontinuity
of the norm, satisfies

sup
t∈D
‖v∗(t)‖2 ≤ 2(‖v0‖2 + ‖θ0‖2) + 1.

Since the restriction of vm to the real axis coincides with the solution to
the Galerkin approximation in R+ of the Boussinesq equations, we deduce
that the restriction of v∗(t) to (0, ∞) in 2D and to some interval (0, T ′)
of the real axis in 3D coincides with the unique (strong) solution v of the
Boussinesq equations. Hence v∗ is nothing but the analytic continuation
of v to D. Without loss of generality, we denote the limit by v(t) instead
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of v∗. Further, we conclude that the whole sequence vm(·) converges to v(·)
uniformly on compact subsets of D in the norm of HC.

Because the embedding of D(A) in V is compact, it also follows from
(3.5) and the compactness theorem that, on every compact subset of D,

vm → v in V.

Moreover, we have

sup
t∈K
|Av(t)| ≤ C(K),

with the same constant C(K) as in (3.5). Finally, the estimates (3.4), (3.7)

imply that dkvm
dtk

converges to dkv
dtk

in V uniformly on every compact subset
K of D, and that

sup
t∈K

∥∥∥∥dkvdtk (t)

∥∥∥∥ ≤ 2kk!

[r(K, ∂D)]k
[2(‖v0‖2 + ‖θ0‖2) + 1]1/2,

sup
t∈K

∣∣∣∣Adkvdtk (t)

∣∣∣∣ ≤ 2kk!C(K ′)

[r(K, ∂D)]k
,

where K ′ is defined in (3.6).

With the same arguments, we deduce that θm converges to θ uniformly
on every compact subset K of D, and

sup
t∈K

∥∥∥∥dkθ(t)dtk

∥∥∥∥ ≤ 2kk!

[r(K, ∂D)]k
[2(‖v0‖2) + ‖θ0‖2) + 1]1/2,

sup
t∈K

∣∣∣∣∆dkθ(t)dtk

∣∣∣∣ ≤ 2kk!C ′(K ′)

[r(K, ∂D)]k
.

Finally, we observe that the reasoning conducted at t = 0 can be shifted
to any other point t0 ∈ (0,∞) such that v(t0) ∈ V , θ(t0) ∈ H1. We infer
that v is a D(A)-valued analytic function and θ is an H1-valued analytic
function in the region

{t0 + D(‖v(t0)‖, ‖θ(t0)‖)}
of C, for all t0 ∈ (0,∞) such that v(t0) ∈ V , θ(t0) ∈ H1.

In the 2D case, we know that the strong solutions globally exist and
have a uniform bound, i.e. there exists C such that for any t ∈ (0,∞) we
have ‖v(t)‖, ‖θ(t)‖ ≤ C. Moreover, D(‖v(t0)‖, ‖θ(t0)‖) depends only on the
norms in H1 of v(t0) and θ(t0), and decreases as ‖v(t0)‖ or ‖θ(t0)‖ increases.
Therefore, v and θ are analytic in the region⋃

t0∈(0,∞)

{t0 + D(C,C)}.

Hence, the proof of Theorem 1.1 in the 2D case is complete.
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In the 3D case, we only know the local well-posedness of strong solutions,
i.e. there exist T0 ∈ (0,∞) and constant C > 0 such that for any t ∈ (0, T0)
we have ‖v(t)‖, ‖θ(t)‖ ≤ C. Thus, the solutions are analytic in the region⋃

t0∈(0,T0)

{t0 + D(C,C)}.

Hence, the proof in the 3D case is also complete.

Proof of Theorem 1.2. According to Theorem 1.1, we can assume that
the function couples (v1(t), θ1(t)), (v2(t), θ2(t)) are both analytic in (0, T0)
for the 3D case and in (0,∞) for the 2D case, respectively. If (v1(t0), θ1(t0)) =
(v2(t0), θ2(t0)) then from the uniqueness of strong solutions to the Boussi-
nesq equations it follows that (v1(t), θ1(t)) = (v2(t), θ2(t)) for all t ≥ t0.
Using the analyticity of solutions, we obtain

(v1(t), θ1(t)) = (v2(t), θ2(t)) for all t > 0.

But (v1(t), θ1(t)), (v2(t), θ2(t)) tend strongly in (H, L2) to (v1(0), θ1(0)),
(v2(0), θ2(0)) as t → 0, respectively. Thus (v1(0), θ1(0)) = (v2(0), θ2(0))
must hold, too. This completes the proof of Theorem 1.2.
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