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POTENTIAL THEORY OF HYPERBOLIC BROWNIAN MOTION
IN TUBE DOMAINS

BY

GRZEGORZ SERAFIN (Wroc law)

Abstract. Let X = {X(t); t ≥ 0} be the hyperbolic Brownian motion on the real
hyperbolic space Hn = {x ∈ Rn : xn > 0}. We study the Green function and the Poisson
kernel of tube domains of the form D × (0,∞) ⊂ Hn, where D is any Lipschitz domain
in Rn−1. We show how to obtain formulas for these functions using analogous objects for
the standard Brownian motion in R2n. We give formulas and uniform estimates for the
set Da = {x ∈ Hn : x1 ∈ (0, a)}. The constants in the estimates depend only on the
dimension of the space.

1. Introduction. Potential theory on hyperbolic spaces is governed by
the Laplace–Beltrami operator. It is the unique (up to a multiplicative con-
stant) differential operator of order two which is invariant under isometries
of the space. One of the main objects in the theory are the Green function
and the Poisson kernel of subdomains. Although a purely analytical ap-
proach to this subject is possible, we rely on a probabilistic method, which
is particularly convenient when dealing with subdomains. Our basic object
of study is the hyperbolic Brownian motion (HBM), which is the canonical
diffusion on the hyperbolic space Hn = {x ∈ Rn : xn > 0} with half the
Laplace–Beltrami operator as generator. In recent years there is a growing
interest in the hyperbolic Brownian motion. We refer the reader to [BCF],
[B–Y], [G], [M], where such fundamental objects as the heat kernel and the
global Green function were investigated. The hyperbolic Brownian motion is
strongly related to the geometric Brownian motion and the Bessel processes.
For details see [Y2] and [B–Y]. This process is also interesting from the point
of view of physics (see [GS]) and risk theory in financial mathematics (see
[D], [Y3]).

Recently, many papers have appeared concerning harmonic measures of
subdomains (equivalently: Poisson kernels for HBM). We point out three of
them. In [BGS] the authors provided some formulas along with the asymp-
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totics of the Poisson kernel of the set {x ∈ Hn : xn > a}, whose boundary
is a horocycle. The Poisson kernel of the ball was considered in the real
hyperbolic space (see [BM]) and also in the complex one (see [Z]). Further-
more, [MS] dealt with HBM with drift exiting the set {x ∈ Hn : x1 > 0}.
The paper [CFZ] shows that the Green functions and the Poisson kernels for
bounded sets (in hyperbolic metric) are comparable with analogous objects
in Euclidean space. For unbounded sets this result does not hold. Although
explicit formulas are really intricate and often expressed by special functions,
they seem to be crucial for obtaining estimates.

In the present paper we denote by X = {X(t); t ≥ 0} the HBM on the
half-space model Hn = {x ∈ Rn : xn > 0} of the real hyperbolic space. We
investigate the potential theory for tube domains S of the form

(1) S = {x ∈ Hn : (x1, . . . , xn−1) ∈ D},

where D is any Lipschitz domain in Rn−1. The set A ⊂ Rd, d = 1, 2, . . . ,
is a Lipschitz domain if for every x ∈ ∂A there exist a radius r > 0 and
a bijection fx : Br(x)→ B1(0) such that fx and f−1x are Lipschitz functions
and fx(∂A ∩ Bx(r)) = {y ∈ B1(0) : yn = 0}, fx(A ∩ Bx(r)) = {y ∈ B1(0) :
yn > 0}. Here, Br(x) is the open ball of radius r centered at x. Note that
S is unbounded in Hn. Its boundary ∂S, as a subset of Rn, consists of two
parts of totally different nature:

∂1S = ∂D × (0,∞), ∂2S = D × {0} .

The first part coincides with the boundary of S as a subset of Hn. The other
part does not belong to Hn but it can be reached by HBM in infinite time.
We define

(2) S̃ = {x ∈ R2n : (x1, . . . , xn−1) ∈ D},

which is an analogue of the set S in 2n-dimensional Euclidean space. We
exhibit in Theorem 1.1 the relationship between hyperbolic and Euclidean
potential theory on S and S̃, respectively.

We will consider several diffusions, so we introduce some universal no-
tations and definitions for related objects. Let {Ψ(t); t ≥ 0} be a con-
tinuous process in Rm starting from any x ∈ Rm. For any Lipschitz do-
main A ⊂ Rm we define the first exit time from A for the process Ψ(t)
as τΨA = inf {t > 0 : Ψ(t) /∈ A}. Analogously, we define the Green function
GΨA(x, y) and the Poisson kernel PΨA (x, y) of A as follows:

GΨA(x, y) =

∞�

0

Px(Ψ(t) ∈ dy, t < τΨA ) dt/dy, x, y ∈ A,

PΨA (x, y) = Px(Ψ(τΨA ) ∈ dy)/dy, x ∈ A, y ∈ ∂A,
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where the measure Px corresponds to the process starting from x ∈ Rm. For
n < m and x ∈ Rm we denote x = (x−, x+), where x− = (x1, . . . , xn−1) and
x+ = (xn, . . . , xm). Let W = {W (t); t ≥ 0} be the standard 2n-dimensional
Brownian motion. Since τW

S̃
is independent of the vector (Wn(t), . . . ,W2n(t)),

the Green function GW
S̃

(x, y) and the Poisson kernel PW
S̃

(x, y) depend only

on x−, y− and the squared Euclidean distance |x+−y+|2 between x+ and y+.
We will write

GW
S̃

(x, y) = GW
S̃

(x−, y−, |x+ − y+|2), x, y ∈ S̃,

PW
S̃

(x, y) = PW
S̃

(x−, y−, |x+ − y+|2), x ∈ S̃, y ∈ ∂S̃.

Theorem 1.1. Let S be of the form (1). The Green function of the set
S for HBM is given by

GXS (x, y) =
2πn/2

Γ (n/2)

xn−1n

yn

1�

−1
(1− u2)n/2−1GW

S̃
(x−, y−, x2n + y2n + 2xnynu) du,

where x, y ∈ S and S̃ is defined by (2). The Poisson kernel of the set S for
HBM is given by

PXS (x, y) = 2πn/2xn−1n

×


yn

Γ (n/2)

1�

−1
(1− u2)n/2−1PW

S̃
(x−, y−, x2n + y2n + 2xnynu) du, y ∈ ∂1S,

√
π

Γ ((n− 1)/2)
GW
S̃

(x−, y−, x2n), y ∈ ∂2S,

where x ∈ S.

The proof of Theorem 1.1 given in Section 2 is based on considering a
Brown–Bessel process. This general method was introduced by Molchanov
and Ostrowski [MO]. An example of a set of the form (1) is Da = {x ∈ Hn :
0 < x1 < a}, a > 0. Reflections with respect to the hyperplanes
{x ∈ Hn : x1 = 0} and {x ∈ Hn : x1 = a} are isometries of Hn, there-
fore it is natural to call Da a strip. We apply Theorem 1.1 and provide
formulas for the Green function GXDa(x, y) and the Poisson kernel PXDa(x, y)
of the set Da in Theorem 1.2. We also give their estimates in Theorem 1.3.

Theorem 1.2. For x, y ∈ Da we have

GXDa(x, y) =
(−1/2)n−1

πn/2Γ (n/2)ynn

1�

−1
(1− s2)n/2−1

× ∂n−1

∂sn−1
ln

[
1 +

2 sin(πx1/a) sin(πy1/a)

cosh(π
√

2xnyn(cosh ρ̃+ s)/a)− cos(π(x1−y1)/a)

]
ds.
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For x ∈ Da, y ∈ ∂1Da, the Poisson kernel of Da is given by

PXDa(x, y) =
(−1/2)n−1π1−n/2

aΓ (n/2)yn−2n

1�

−1
(1− u2)n/2−1

× ∂n−1

∂un−1
sin(π(x1 − y1)/a)

cosh(π
√

2xnyn(cosh ρ̃+u)/a)−cos(π(x1−y1)/a)
du ,

where x̃ = (0, x2, x3, . . . , xn) and ρ̃ = dHn(x̃, ỹ) is the hyperbolic distance
between x̃ and ỹ. For x ∈ Da, y ∈ ∂2Da we have

PXDa(x, y) =
(−1)n−1xn−1n

Γ ((n−1)/2)π(n−1)/2

× ∂n−1

∂ξn−1
ln

[
1+

2 sin(πx1/a) sin(πy1/a)

cosh(π
√
ξ/a)−cos(π(x1−y1)/a)

]
ξ=|x̃−ỹ|2

.

The integral in the first two formulas can be computed for even n by
integrating by parts n− 2 times. However, this leads to a sum of oscillating
components, and the above-given integral form is much more useful for find-

ing the estimates given below. We write f
c� g whenever there exists c > 1

such that c−1f(x) < g(x) < cf(x) for all arguments x.

Theorem 1.3. There exists c = c(n) such that for x ∈ Da, we have

GXDa(x, y)
c� e−π|x−y|/a

an+1xnyn

(
xn
yn

)n/2 |x−y|2∧ (δa(x1)δa(y1))

(cosh ρ+ |x− y|/a)n/2
an+1 + |x−y|n+1

|x− y|n
,

where y ∈ Da, ρ = dHn(x, y) and δa(s) = min{s, a− s}. Moreover,

PXDa(x, y)
c�



δa(x1)e
−π|x−y|/a

an+1|x− y|n

(
xn
yn

)n/2 an+1 + |x− y|n+1

(cosh ρ+ |x−y|/a)n/2
, y ∈ ∂1Da,

xn−1n

an+1
exp(−π|x− y|/a)(|x− y|2 ∧ [δa(x1)δa(y1)])

× an+1 + |x− y|n+1

|x− y|2n
, y ∈ ∂2Da.

Such precise estimates for unbounded subsets of the hyperbolic space
were known only for the set {x ∈ Hn : xn > a} [BMR] and the hyperbolic
half-space D∞ = {x ∈ Hn : x1 > 0} [MS]. We refer the reader to [MS] for
simplified formulas when a =∞. For arguments in some domains, PXDa(x, y)

on ∂1Da and the Poisson kernel of (0, 1) × Rn−1 for standard Brownian
motion in Rn are comparable, for example when |x − y| < a and when
xn, yn are bounded and bounded away from zero. However, they are not
comparable in general.

The organization of the paper is as follows. In the Preliminaries we pro-
vide some facts about Bessel processes, since they play an important role
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in the proof of Theorem 1.1. Next we introduce the half-space model of the
real hyperbolic space and describe the structure of the hyperbolic Brownian
motion. In Section 3 we give the proof of Theorem 1.1 together with some
comments. In Section 4 we prove Theorems 1.2 and 1.3. In the Appendix
we collect some technical lemmas and compute the Poisson kernel and the
Green function of the strip in R2.

2. Preliminaries

2.1. Bessel process. We denote by R(ν) = {R(ν)(t); t ≥ 0} the Bessel
process with index ν ∈ R, starting from R(ν)(0) = x > 0. As we will see
in Section 2.2, studying HBM requires using Bessel processes with negative
index. For ν ≤ −1 the point 0 is killing. In the case −1 < ν < 0, that
is, when the point 0 is non-singular, we impose the killing condition at 0.
Then, the transition density function, with respect to the Lebesgue measure,
is given by (see [BS, p. 134])

(3) g
(ν)
t (x,w) =

w

t

(
w

x

)ν
exp

(
−x

2 + w2

2t

)
I|ν|

(
xw

t

)
, x, w > 0,

where Iν(z) is the modified Bessel function of the first kind.

Let us denote by B = {B(t); t ≥ 0} the one-dimensional Brownian
motion starting from 0 and by B(ν) = {B(t) + νt; t ≥ 0} the Brownian
motion with constant drift ν ∈ R. The Bessel process is related to the
geometric Brownian motion {x exp(B(ν)(t)); t ≥ 0}, x > 0, by the Lamperti
relation,

{x exp(B(ν)(t)); t ≥ 0} d
= {R(ν)(A(ν)

x (t)); t ≥ 0},

where the integral functional A
(ν)
x (t) is defined by

(4) A(ν)
x (t) = x2

t�

0

exp(2Bs + 2νs) ds.

The density function f
(ν)
x,t of

(
A

(ν)
x (t), x exp(Bn(t) + νt)

)
was computed

in [Y3]. We have

(5) f
(ν)
x,t (u, v) =

(
v

x

)ν
e−ν

2t/2 1

uv
exp

(
−x

2 + v2

2u

)
θxv/u(t), x, u, v, t > 0,

where

(6) θr(t) =
r

(2π3t)1/2

∞�

0

e(π
2−b2)/(2t)e−r cosh b sinh(b) sin

(
πb

t

)
db, r, t>0.
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Moreover, the Laplace transform of the function θr is given by (see [Y1])

(7)

∞�

0

e−λtθr(t) dt = I√2λ(r).

Whenever ν is strictly negative, the limit of A
(ν)
x (t) as t→∞ exists a.s. The

density function h
(ν)
x (u) of A

(ν)
x (∞) is given by (see [D])

(8) h(ν)x (u) =
x−2ν

Γ (−ν)2−ν
e−x

2/(2u)

u1−ν
1l(0,∞)(u).

2.2. Hyperbolic space Hn and hyperbolic Brownian motion. For
n = 1, 2, . . . we consider the half-space model of the n-dimensional real
hyperbolic space

Hn = {x ∈ Rn : xn > 0}.
The Riemannian volume element is given by

dVn =
1

xnn
dx1 . . . dxn,

where dx1 . . . dxn is the Lebesgue measure on Rn. The hyperbolic distance
dHn(x, y) between x, y ∈ Hn is described by the formula

cosh dHn(x, y) = 1 +
|x− y|2

2xnyn
,

where |x − y| is the Euclidean distance between x and y. The Laplace–
Beltrami operator is given by

∆ = x2n

n∑
k=1

∂2

∂x2k
− n− 2

2
xn

∂

∂xn
.

We define the hyperbolic Brownian motion X(t) as the canonical dif-
fusion on the whole of Hn with generator 1

2∆. The structure of the pro-
cess is described by the following representation. If we denote by B(t) =
(B1(t), . . . , Bn(t)) the standard n-dimensional Brownian motion starting
from (x1, . . . , xn−1, 0), then

(9) X(t)
d
=

(
B1(A

(−(n−1)/2)
xn (t)), . . . , Bn−1(A

(−(n−1)/2)
xn (t)),

xn exp

(
Bn(t)− n− 1

2
t

))
.

Here, the functional A
(−(n−1)/2)
xn (t) defined by (4) is associated with Bn(t).

In addition, using the Lamperti relation, we get

{X(t); t ≥ 0} (d)
= {Y (A(−(n−1)/2)

xn (t)); t ≥ 0},(10)
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where

(11) Y (t) = (B1(t), . . . , Bn−1(t), R
(−(n−1)/2)(t)).

The process R(−(n−1)/2)(t) is the Bessel process starting from xn > 0 and
independent of (B1(t), . . . , Bn−1(t)).

3. Proof of Theorem 1.1. Let us note that the representation (11) of
HBM simplifies many arguments. In particular, we have

Lemma 3.1. For any Lipschitz domain U ⊂ Hn,

X(τXU )
d
= Y (τYU ).

Proof. From (10) the process Z(t) = Y (A
(−(n−1)/2)
xn (t)) is a hyperbolic

Brownian motion. Since the functional A
(−(n−1)/2)
xn (t) is continuous and in-

creasing a.s., we obtain τYU = A
(−(n−1)/2)
xn (τZU ) a.s. Hence

X(τXU )
d
= Z(τZU ) = Y (A(−(n−1)/2)

xn (τZU ))
a.s.
= Y (τYU ).

From now on, we will consider sets of the form (1). The absolute conti-
nuity relationship for the laws of the Bessel processes with different indices
(see [MY, (2.2), p. 314]) implies

Px(R(−(n−1)/2)(t) ∈ dy) =

(
x

y

)n−1
Px(R((n−1)/2)(t) ∈ dy), x, y > 0.

Moreover, the process R((n−1)/2)(t) has an interpretation as the Euclidean
norm of (n+ 1)-dimensional Brownian motion. Since the first n− 1 coordi-
nates of the process Y (t) are identical with (n − 1)-dimensional Brownian
motion, we can deduce the relationship between Y (t) and 2n-dimensional
Brownian motion.

Proof of Theorem 1.1. Let us denote by pDt (·, ·) the density function
of (n − 1)-dimensional Brownian motion killed on exiting the set D. Since

(9) holds and A
(−(n−1)/2)
xn (t) is continuous and increasing a.s., the density

function of HBM killed on exiting S is given by

∞�

0

pDu (x−, y−)f
(−(n−1)/2)
xn,t (u, yn) du.

Hence, using the Fubini–Tonelli theorem, we get

GXS (x, y) =

∞�

0

∞�

0

pDu (x−, y−)f
(−(n−1)/2)
xn,t (u, yn) du dt
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(5)
=

∞�

0

pDu (x−, y−)

(
xn
yn

)(n−1)/2 1

uyn
exp

(
−x

2
n + y2n
2u

)

×
∞�

0

e−((n−1)/2)
2t/2θxnyn/u(t) dt du

(7)
=

∞�

0

pDu (x−, y−)

(
xn
yn

)(n−1)/2 exp
(
−x2n+y

2
n

2u

)
uyn

I(n−1)/2

(
xnyn
u

)
du.

We will use the following integral formula (see [GR, 8.431]):

(12) Iν(z) =
(z/2)ν

Γ (ν + 1/2)Γ (1/2)

1�

−1
(1− s2)ν−1/2e−zs ds,

where z > 0 and ν > −1/2. It follows that

GXS (x, y)

=
2πn/2

Γ (n/2)

xn−1n

yn

1�

−1
(1− s2)n/2−1

∞�

0

pDu (x−, y−)
exp
(
−x2n+y

2
n+2xnyns
2u

)
(2πu)(n+1)/2

du ds

=
2πn/2

Γ (n/2)

xn−1n

yn

1�

−1
(1− s2)n/2−1GWD×Rn+1(x−, y−, x2n + y2n + 2xnyns) ds.

To prove formulas for the Poisson kernel we use Lemma 3.1. It implies
that PXS (x, y) = P YS (x, y) for x ∈ S and y ∈ ∂S. We define two exit times

τ1 = inf{t > 0 : (W1(t), . . . ,Wn−1(t)) /∈ D} = τWD×Rn+1 ,

τ2 = inf{t > 0 : R(−(n−1)/2)(t) = 0}.

We have

τYD×(0,∞) = τ1 ∧ τ2,

and the continuity of sample paths of the hyperbolic Brownian motion im-
plies Y (τi) ∈ ∂iS for i = 1, 2. Let us denote the density function of the vec-
tor ((W1(τ

W
D×Rn+1), . . . ,Wn−1(τ

W
D×Rn+1)), τWD×Rn+1) by kx−(y−, t). The exit

time τWD×Rn+1 depends only on the first n − 1 coordinates of W (t). Since
(W1(t), . . . ,Wn−1(t)) is independent of (Wn+1(t), . . . ,W2n−1(t),W2n(t)), we
obtain

(13) PWD×Rn+1(x−, y−, |x+ − y+|2) =

∞�

0

exp
(
− 1

2t |x
+ − y+|2

)
(2πt)(n+1)/2

kx−(y−, t) dt.

Using the independence of the processes (B1(t), . . . , Bn−1(t)) andR(−n−1
2

)(t),



HYPERBOLIC BROWNIAN MOTION 35

we get

P YS (x, y) =

∞�

0

g
(−(n−1)/2)
t (xn, yn)kx−(y−, t) dt

(3)
=

∞�

0

yn
t

(
xn
yn

)(n−1)/2
exp

(
−x

2
n+y2n
2t

)
I(n−1)/2

(
xnyn
t

)
kx−(y−, t) dt.

By (12) we get

P YS (x,y) =
2πn/2xn−1n yn
Γ (n/2)

1�

−1
(1− u2)n/2−1

×
∞�

0

exp
(
− 1

2t(x
2
n + y2n + 2xnynu)

)
(2πt)(n+1)/2

kx−(y−, t) dt du

(13)
=

2πn/2xn−1n yn
Γ (n/2)

1�

−1
(1−u2)n/2−1PWD×Rn+1(x−, y−, x2n+y2n+2xnynu) du.

The Poisson kernel on ∂2Da is given by

P YS (x, y) = Px (Y (τ2) ∈ dy; τ2 < τ1) .

According to the Lamperti relation we have

Xn(t) = xn exp(Bn(t)− (n− 1)t)
(d)
= R(−(n−1)/2)(Axn(t)).

The left-hand side of the above equation tends to 0 as t→∞ a.s. It follows
that

τ2
(d)
= Axn(∞).

As before, τ2 is independent of (B1(t), . . . , Bn−1(t)), hence by (8) we get

P YS (x, y) =

∞�

0

pDt (x−, y−)
xn−1n

Γ ((n− 1)/2)2(n−1)/2
e−x

2
n/(2t)

t(n+1)/2
dt

=
2xn−1n π(n+1)/2

Γ ((n− 1)/2)
GW
S̃

(x−, y−, x2n).

Remark. Theorem 1.1 can be proven using the interpretation of the
process R((n−1)/2)(t) as the Euclidean norm of the (n+1)-dimensional Brow-
nian motion. This would lead to integration over a sphere, which explains
the appearance of the factor (1 − u2)n/2−1 in the formulas. However, that
proof would be longer and more complicated than the one given above.

4. Poisson kernel of the strip. Let us recall that

Da = {x ∈ Hn; 0 < x1 < a}, a > 0.
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The boundary ∂Da consists of two parts: ∂1Da = {x ∈ Hn : x1 ∈ {0, a}}
and ∂2Da = {x ∈ Rn : xn = 0, 0 ≤ x1 ≤ a}. Let τXDa be the first exit time
from Da for the hyperbolic Brownian motion

τXDa = inf{s > 0 : X(s) /∈ Da}.

Whenever τXDa <∞, the variable X(τXDa) is supported on the set ∂1Da. For

τXDa = ∞, the random variable X(τXDa) takes values in the set ∂2Da. It is
well defined because limt→∞X(t) exists a.s.

According to Theorem 1.1 we start by considering the Euclidean case.
Let us recall that W (t) = (W1(t), . . . ,W2n(t)) is the standard BM. The set
in R2n which corresponds to Da is D̃a = (0, a)× R2n−1. We define τW1

(0,a) as

the first exit time of the process W1(t) from the set D̃a,

τW1

(0,a) = inf{t > 0 : W1(t) /∈ (0, a)} = inf{t > 0 : W (t) /∈ D̃a}.

We denote

η(w, t) =
∞∑

k=−∞

w + 2ka√
2π t3/2

exp

(
−(w + 2ka)2

2t

)
, w ∈ R.

Then we have [BS, 3.0.6(a), (b), p. 212]

(14) Px1(W1(τ
W1

(0,a)) = y1, τ
W1

(0,a) ∈ dt)
= η(|x1 − y1|, t), x1 ∈ (0, a), y1 ∈ {0, a}.

Since the random variables τW1

(0,a) and (W2(t),W3(t), . . . ,W2n(t)) are inde-

pendent, we obtain the following formula for the Poisson kernel of the set D̃a:

(15) PW
D̃a

(x, y) =

∞�

0

1

(2πt)n−1/2
e−|x̃−ỹ|

2/(2t)η(|x1 − y1|, t) dt,

where x̃ = (0, x2, x3, . . . , xn) and ỹ = (0, y2, y3, . . . , yn). For w ∈ R and ξ > 0
we define

(16) Φan(w, ξ) :=
1

(2π)(n−1)/2

∞�

0

t(1−n)/2e−ξ/(2t)η(w, t) dt.

Note that

(17) PW
D̃a

(x, y) = Φa2n(|x1 − y1|, |x̃− ỹ|2).

In the next lemma we present a differential formula for the function Φan(w, ξ).

Lemma 4.1. Let a > 0 and n = 1, 2, . . . . For w ∈ R and ξ > 0 we have

(18) Φa2n(w, ξ) =
(−1)n−1

2aπn−1
∂n−1

∂ξn−1
sin(πw/a)

cosh(π
√
ξ/a)− cos(πw/a)

.
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Proof. For w ∈ (0, a) we have

η(w, t) = Pw(τa ∈ dt, W1(τa) = 0)

≤ Pw(inf{s > 0 : W1(s) > 0} ∈ dt) =
w√

2π t3/2
e−w

2/(2t).

By continuity of both functions, the above inequality also holds for w = 0.
This implies the uniform integrability of (16) for fixed w ∈ [0, a) and ξ
from every compact subset of (0,∞). It allows us to change the order of
differentiation and integration in the expression

∂

∂ξ
Φan(w, ξ) =

1

(2π)(n−1)/2
∂

∂ξ

∞�

0

t−(n−1)/2e−ξ/(2t)η(w, t) dt

=
1

(2π)(n−1)/2

∞�

0

t−(n−1)/2
∂

∂ξ
e−ξ/(2t)η(w, t) dt = −πΦan+2(w, ξ).

Consequently, for n = 1, 2, . . . ,

(19) Φa2n(w, ξ) =
(−1)n−1

πn−1
∂n−1

∂ξn−1
Φa2(w, ξ).

From (17) and Theorem 5.1 (see Appendix) we get

Φa2(w, ξ) =
1

2a

sin(πw/a)

cosh(π
√
ξ/a)− cos(πw/a)

.

The result for all w ∈ R comes from the fact that both sides of (18) are odd
and 2a-periodic with respect to w.

Proof of Theorem 1.2. Fix x ∈ Da. For y ∈ ∂1Da we combine (18), (17)
and Theorem 1.1 to get

(20) PXDa(x, y) =
2πn/2

Γ (n/2)
xn−1n yn

1�

−1
(1− u2)(n−2)/2

× Φa2n
(
|x1 − y1|,

n−1∑
k=2

|xk − yk|2 + x2n + y2n + 2xnynu
)
du

=
(−1/2)n−1π1−n/2

aΓ (n/2)yn−2n

1�

−1
(1− u2)(n−2)/2

× ∂n−1

∂un−1
sin(π(x1 − y1)/a)

cosh(π
√

2xnyn(cosh ρ̃+ u)/a)− cos(π(x1 − y1)/a)
du.

The Green function of (0, a)×R2n−1 for the 2n-dimensional Brownian motion
W (t) is given by

GW(0,a)×R2n−1(x, y) =

∞�

0

γ(t;x1, y1)
1

(2πt)(2n−1)/2
exp

(
−|x̃− ỹ|

2

2t

)
dt,
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where γ(t;x, y) is the transition density of the one-dimensional standard
Brownian motion killed on exiting (0, a), given by [BS, p. 122]:

γ(t; v, w) =
1√
2πt

∞∑
k=−∞

[
exp

(
−(v − w + 2ka)2

2t

)

− exp

(
−(v + w + 2ka)2

2t

)]
, v, w ∈ (0, a).

Let us define

φa2n(v, w, ξ) =

∞�

0

γ(t; v, w)
1

(2πt)(2n−1)/2
exp

(
− ξ

2t

)
dt.

Since γ(t; v, w) is less than 1√
2πt
e−(v−w)

2/(2t) (the density of standard Brow-

nian motion), we can differentiate under the integral sign to obtain

(21) φa2n(v, w, ξ) =
1

(−π)n−1
∂n−1

∂ξn−1
φa2(v, w, ξ).

Using the second part of Theorem 5.1, we obtain

(22) φa2(x1, y1, ξ) =
1

2π
ln

[
1 +

2 sin(πx1/a) sin(πy1/a)

cosh(π
√
ξ/a)− cos(π(x1 − y1)/a)

]
.

Then

GW(0,a)×R2n−1(x, y) = φa2n(x1, y1, |x̃− ỹ|2)

=
(−1)n−1

2πn
∂n−1

∂ξn−1
ln

[
1 +

2 sin(πx1/a) sin(πy1/a)

cosh(π
√
ξ/a)− cos(π(x1 − y1)/a)

]
ξ=|x̃−ỹ|2

.

By Theorem 1.1 we get

PXDa(x, y) =
(−1)n−1xn−1n

Γ ((n− 1)/2)π(n−1)/2

× ∂n−1

∂ξn−1
ln

[
1 +

2 sin(πx1/a) sin(πy1/a)

cosh(π
√
ξ/a)− cos(π(x1 − y1)/a)

]
ξ=|x̃−ỹ|2

,

where y ∈ ∂2Da. Moreover

GXDa(x, y) =
2πn/2xn−1

Γ (n/2)yn

1�

−1
(1− s2)n/2−1φa2n(x1, y1, 2xnyn(cosh ρ̃+ s)) ds

=
(−1/2)n−1

πn/2Γ (n/2)ynn

1�

−1
(1− s2)n/2−1

× ∂n−1

∂sn−1
ln

[
1+

2 sin(πx1/a) sin(πy1/a)

cosh(π
√

2xnyn(cosh ρ̃+s)/a)−cos(π(x1−y1)/a)

]
ds.
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To estimate the Poisson kernel of Da we need the estimates of Φa2n(w, ξ) in
Lemma 4.3. In the proof we consider the function

(23) Λn(ξ, w) :=
2(−π)n

sinw
Φπ2(n+1)(w, ξ) =

∂n

∂ξn
1

cosh
√
ξ − cosw

,

where w ∈ R, ξ > 0 and n = 0, 1, 2, . . . . A more convenient form of this
function is a sum of elementary functions, which is given in Lemma 4.2.

Lemma 4.2. For w ∈ R, ξ > 0 and n = 1, 2, . . . ,

(24) Λn(ξ, w) =
n∑
k=1

∑
|αk|=n−k

(−1)kcnαk

∏k
i=1

∂1+α
k
i

∂ξ1+α
k
i

cosh
√
ξ

(cosh
√
ξ − cosw)k+1

,

where αk denotes a k-dimensional multi-index. Moreover, the constants cn
αk

satisfy

(1) cn
αk
≥ 0.

(2) cnαn = n! for αn = (0, . . . , 0).
(3)

∑n
k=1

∑
|αk|=n−k(−1)kcn

αk
= (−1)n.

Proof. We use induction on n. Let us denote

h(n)(ξ) =
∂n

∂ξn
cosh

√
ξ, ξ > 0.

For n = 1 we have

Λ1(ξ, w) = − h′(ξ)

(cosh
√
ξ − cosw)2

.

Assume that (24) is true for a fixed n ∈ N. Differentiating the right-hand
side, we get

(25)

n∑
k=1

∑
|αk|=n−k

(−1)kcnαk

[∑k
m=1

∏k
i=1 h

(1+(αk+ekm)i)(ξ)

(cosh
√
ξ − cosw)k+1

− (k + 1)
h(1)(ξ)

∏k
i=1 h

(1+αki )(ξ)

(cosh
√
ξ − cosw)k+2

]
=

n∑
k=1

∑
|αk|=n+1−k

(−1)k
k∑

m=1

cnαk−ekm

∏k
i=1 h

(1+αki )(ξ)

(cosh
√
ξ − cosw)k+1

+

n+1∑
k=2

∑
|αk|=n+1−k

αkk=0

(−1)kk cnαk�Nk−1

∏k
i=1 h

(1+αki )(ξ)

(cosh
√
ξ − cosw)k+1

,

where ekm is the k-dimensional multi-index with the mth coordinate 1 and
the others 0. We also make the convention that cn

αk−ekm
= 0 if αkm = 0. We
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can see that all components of the above sums are of the form (24) and
have proper signs. The coefficient cn+1

n,αn+1 which appears in the last sum for

k = n+ 1 is equal to (n+ 1)!. Moreover, (25) yields the formula for the sum
of the coefficients:

n+1∑
k=1

∑
|αk|=n+1−k

(−1)kcn+1
αk

=

n∑
k=1

∑
|αk|=n−k

(−1)kcnαk
( k∑
m=1

1− (k + 1)
)

=

n∑
k=1

∑
|αk|=n−k

(−1)kcnαk(k − (k + 1))

= −
n∑
k=1

∑
|αk|=n−k

(−1)kcnαk = (−1)n+1.

This yields (24) for n+ 1, completing the proof.

Lemma 4.3. For ξ > 0 and w ∈ (0, a) we have

Φa2n(w, ξ)
c� w(a− w)

an+2
exp

(
−π
a

√
ξ

)
an+1 + (ξ + w2)(n+1)/2

(ξ + w2)n
.

Proof. Since Φa2n(w,ξ)has the following scaling property (see Lemma 5.2):

Φan(w, ξ) =
1

an−1
Φ1
n

(
w

a
,
ξ

a2

)
,

it is enough to prove the lemma for a = π. Using (23) we can write

Φπ2(n+1)(w, ξ)
c� w(π − w)Λn(ξ, w).

Recall that

h(n)(ξ) =
∂n

∂ξn
cosh

√
ξ =

∞∑
k=n

ξk−n

(2k)!

k!

(k − n)!
.

It is easy to see that

(26) h(n)(0+) := lim
ξ→0+

h(n)(ξ) =
n!

(2n)!

and

lim
ξ+w2→0

ξ + w2

cosh
√
ξ − cosw

= lim
ξ+w2→0

ξ + w2

1 + 1
2ξ + o(ξ)− 1 + 1

2w
2 + o(w2)

= lim
ξ+w2→0

2

1 + o(ξ)+o(w2)
ξ+w2

= 2.
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Hence

lim
ξ+w2→0

(ξ + w2)n+1Λn(ξ, w)

(24)
= lim

ξ+w2→0

n∑
k=1

∑
|αk|=n−k

(−1)kcnαk

k∏
i=1

h(1+α
k
i )(ξ)(ξ + w2)n−k

×
(

ξ + w2

cosh
√
ξ − cosw

)k+1

= 2(−1)nn!.

The last equality follows from (26) and Lemma 4.2(2). Consequently,

lim
ξ+w2→0

e
√
ξ (ξ + w2)n+1

1 + (ξ + w2)n/2+1
(−1)nΛn(ξ, w) = 2n!.

We will show now that

(27) lim
ξ→∞

h(n)(ξ)ξn/2e−
√
ξ = 2−n−1.

We have

2n+1h(n)(ξ)ξn/2e−
√
ξ = 2e−

√
ξ
∞∑
k=n

ξk−n/2

(2k − n)!

2nk!(2k − n)!

(k − n)!(2k)!

= 2e−
√
ξ
∞∑
k=n

ξk−n/2

(2k − n)!

(n−1∏
j=0

2(k − j)
(2k − j)

)
.

The series
∑∞

k=n ξ
k−n/2/(2k − n)! is equal to sinh

√
ξ for odd n and to

cosh
√
ξ for even n up to the first dn/2e components, so it behaves like

e
√
ξ/2 for large ξ. Moreover

lim
k→∞

n−1∏
j=0

2(k − j)
(2k − j)

= 1.

In order to obtain (27) we use Lemma 5.4. Thus

lim
ξ+w2→∞

(ξ + w2)n/2e
√
ξΛn(ξ, w)

(24)
= lim

ξ+w2→∞

(
ξ + w2

ξ

)n/2 n∑
k=1

∑
|αk|=n−k

(−1)kcnαk

×
k∏
i=1

h(1+α
k
i )(ξ)ξ(1+α

k
i )/2

e
√
ξ

(
e
√
ξ

cosh
√
ξ − cosw

)k+1

(27)
= 2−n+1

n∑
k=1

∑
|αk|=n−k

(−1)kcnαk = (−1)n2−n+1.
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The factor
( ξ+w2

ξ

)n/2
vanishes because w ∈ (0, π), so limξ+w2→∞

ξ+w2

ξ = 1.
It follows that

lim
ξ+w2→∞

e
√
ξ (ξ + w2)n+1

1 + (ξ + w2)n/2+1
(−1)nΛn(ξ, w) = 2−n+1.

What we have already proved is that there exists a constant c > 0 such that

(28)
1

c
< Λn(ξ, w)

(
1 + (ξ + w2)n/2+1

(ξ + w2)n+1
e−
√
ξ

)−1
< c

for ξ+w2 < ε and for ξ+w2 > M , for some ε,M > 0. The function Λn(ξ, w)
is continuous on the set A = ([0,∞)× [0, π])− {0, 0}, by (24). Moreover, it
is positive on (0,∞)× (0, π), by (17). It is also positive on (0,∞)× {0, π},
since the Poisson kernel of the strip (0, π) × R2n−1 for Brownian motion
(given by (17)) behaves locally as the distance from the boundary, so it is
positive on the whole set A. The set {(ξ, w) ∈ A : ε ≤ ξ + w2 ≤ M} is
compact, so there exists a constant c > 0 such that (28) holds for every
(ξ, w) ∈ A.

Proof of Theorem 1.3. By Theorem 1.1 and scaling properties for stan-
dard Brownian motion we get

GXDa(x, y) =

(
π

a

)n−1
GXDπ

(
π

a
x,
π

a
y

)
,

PXDa(x, y) =

(
π

a

)n−1
PXDπ

(
π

a
x,
π

a
y

)
,

so that it is sufficient to prove the result for a = π. For y ∈ ∂1Dπ we apply
Lemma 4.3 to (20) to get

PXDπ(x, y)
c� x1(π − x1)xnn

1�

−1
(1− u2)(n−2)/2e−

√
2xnyn(cosh ρ+u)

× 1 + (2xnyn(cosh ρ+ u))(n+1)/2

(2xnyn(cosh ρ+ u))n
du.

Now we use Lemma 5.3 with p = 2xnyn, q = cosh ρ−1, r = 0, α = (n− 2)/2,
β = (n+ 1)/2 and γ = n to obtain the required formula. To get asymptotic
behavior for y ∈ ∂2D, we rewrite (22) for a = π as

φπ2 (x1, y1, ξ) =

x1+y1�

x1−y1

Φπ2 (w, ξ) dw.
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Using (21) we get

φπ2n(x1, y1, |x̃− ỹ|2) =
1

(−π)n−1
∂n−1

∂ξn−1

x1+y1�

x1−y1

Φπ2 (w, ξ) dw

∣∣∣∣
ξ=|x̃−ỹ|2

=
1

(−π)n−1

x1+y1�

x1−y1

∂n−1

∂ξn−1
Φπ2 (w, ξ) dw

∣∣∣∣
ξ=|x̃−ỹ|2

(19)
=

x1+y1�

x1−y1

Φπ2n(w, |x̃− ỹ|2) dw.

The properties

Φπn(−w, ξ) = −Φπn(w, ξ), Φπn(π + w, ξ) = −Φπn(π − w, ξ)
give

φπ2n(x1, y1, |x̃− ỹ|2) =

π−|x1+y1−π|�

|x1−y1|

Φπ2n(w, |x̃− ỹ|2) dw.

Note that for x1, y1 ∈ (0, π) we have

0 ≤ |x1 − y1| < π − |x1 + y1 − π| ≤ π.
By Lemma 4.3 we see that

(29) φπ2n(x1, y1, |x̃− ỹ|2)

c� e−|x̃−ỹ|
π−|x1+y1−π|�

|x1−y1|

w(π − w)
πn+1 + (|x̃− ỹ|2 + w2)(n+1)/2

(|x̃− ỹ|2 + w2)n
dw.

We will show that

(30) φπ2n(x1, y1, |x̃− ỹ|2)
c� e−|x−y| δπ(x1)δπ(y1)

|x− y|2 + δπ(x1)δπ(y1)

πn+1 + (|x− y|2)(n+1)/2

(|x− y|2)n−1
,

where δπ(s) = min{s, π − s}. Since x1, y1 ∈ (0, π), we have

e−|x̃−ỹ|
c� e−|x−y|.

For |x1 − y1| ≤ π/2 we apply Lemma 5.5 to obtain

φπ2n(x1, y1, |x̃− ỹ|2)
c� e−|x−y|

π−|x1+y1−π|�

|x1−y1|

w
πn+1 +(|x̃− ỹ|2 + w2)(n+1)/2

(|x̃− ỹ|2+ w2)n
dw

=
e−|x−y|

2

(π−|x1+y1−π|)2�

|x1−y1|2

πn+1 +(|x̃− ỹ|2 +w)(n+1)/2

(|x̃− ỹ|2 + w)n
dw.
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Then, for |x̃− ỹ| > π, we have

φπ2n(x1, y1, |x̃− ỹ|2)
c� e−|x−y|

(π−|x1+y1−π|)2�

|x1−y1|2

1

|x̃− ỹ|n−1
dw

= e−|x−y|
(π − |x1 + y1 − π|)2 − (x1 − y1)2

(|x̃− ỹ|2)(n−1)/2
.

Putting α = x1 and β = π − y1 in Lemma 5.7, we get

(π − |x1 + y1 − π|)2 − (x1 − y1)2
c� x1y1(π − x1)(π − y1)

π2 − (x1 − y1)2
.

Together with the condition |x1 − y1| < π/2 this gives

(31) (π − |x1 + y1 − π|)2 − (x1 − y1)2
c� δπ(x1)δπ(y1).

Consequently,

φπ2n(x1, y1, |x̃− ỹ|2)
c� e−|x−y|x1y1(π − x1)(π − y1)

|x̃− ỹ|n−1
,

which satisfies (30) under the current assumptions. For |x̃− ỹ| ≤ π we have

φπ2n(x1, y1, |x̃− ỹ|2)
c� e−|x−y|

(π−|x1+y1−π|)2�

|x1−y1|2

1

(|x̃− ỹ|2 + w)n
dw

= e−|x−y|
(

1

(|x− y|2)n−1
− 1

(|x̃− ỹ|2 + (π − |x1 + y1 − π|)2)n−1

)
.

Now, we use Lemma 5.6 and (31) to get

φπ2n(x1, y1, |x̃− ỹ|2)
c� (π − |x1 + y1 − π|)2 − (x1 − y1)2

|x̃− ỹ|2 + (π − |x1 + y1 − π|)2
1

(|x− y|2)n−1
c� δπ(x1)δπ(y1)

|x̃− ỹ|2 + (π − |x1 + y1 − π|)2
1

(|x− y|2)n−1
.

Again, it is comparable with (30). Since fg
f+g

c� f ∧g for positive functions f

and g, we put f = |x− y|2, g = δa(x1)δa(y1) and get the desired formula.

Let us now consider the case when |x1 − y1| > π/2. This implies that
π/2 < |x1 − y1| < π − |x1 + y1 − π| < π, so we can estimate the variable w
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in (29) by π or by |x1 − y1|. Thus,

π−|x1+y1−π|�

|x1−y1|

w(π − w)
πn+1 + (|x̃− ỹ|2 + w2)(n+1)/2

(|x̃− ỹ|2 + w2)n
dw(32)

c�
π−|x1+y1−π|�

|x1−y1|

(π − w)
πn+1 + |x− y|n+1

|x− y|2n
dw

=
πn+1 + |x− y|n+1

|x− y|2n
(
(|x1 + y1| − π)2 − (x+ y − π)2

)
c� x1y1(π − x1)(π − y1)

(x1 + y1)(2π − x1 − y1)
πn+1 + |x− y|n+1

|x− y|2n
,

where the last equivalence follows from Lemma 5.7. By the assumptions
|x1 − y1| > π/2 and |x̃− ỹ| ≤ π we get

π/2 < x1 + y1 < 3π/2,

π/2 < 2π − x1 − y1 < 3π/2,

|x− y| c� |x− y|+ δπ(x1)δπ(y1).

Applying these formulas to (32) we obtain (30). Since GW(0,π)×R2n−1(x, y) =

φπ2n(x1, y1, |x̃− ỹ|2), taking into account Theorem 1.1 completes the estima-
tion of the Poisson kernel PXDa(x, y). The estimates of the Green function

GW(0,π)×R2n−1(x, y) imply also

GXDπ(x,y)
c� δπ(x1)δπ(y1)x

n−1
n

yn

1�

−1
(1− u2)(n−2)/2

× e−
√

2xnyn(cosh ρ+u)

xnyn(coshρ+u)+δa(x1)δa(y1)

1+(2xnyn(coshρ+u))(n+1)/2

(2xnyn(cosh ρ+ u))n−1
du.

We apply Lemma 5.3 with p = 2xnyn, q = cosh ρ − 1, r = δa(x1)δa(y1),
α = (n− 2)/2, β = (n+ 1)/2 and γ = n− 1 to obtain

GXDπ(x, y)
c� e−|x−y|

xnyn

(
xn
yn

)n/2
× δa(x1)δa(y1)(
|x− y|2 + δa(x1)δa(y1)

)
|x− y|n−2

1 + |x− y|n+1

(|x− y|+ cosh ρ)n/2
.
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5. Appendix

Theorem 5.1. Let W (t) = (W1(t),W2(t)) be a two-dimensional Brow-
nian motion. Then

PW(−π/4,π/4)×R(x, y) =
1

π

sin 2|x1 − y1|
cosh 2(x2 − y2)− cos 2(x1 − y1)

,

where x ∈ (−π/4, π/4)×R, y ∈ {−π/4, π/4}×R. For x, y ∈ (−π/4, π/4)×R
we get

GW(−π/4,π/4)×R(x, y) =
1

2π
ln

[
1 +

2 cos 2x1 cos 2y1
cosh 2(x2 − y2)− cos 2(x1 − y1)

]
.

Proof. For x ∈ R and y ∈ (−π/4, π/4),

tan(x+ iy) =
sin 2x

cosh 2y + cos 2x
+ i

sinh 2y

cosh 2y + cos 2x
= u(x, y) + iv(x, y).

This function is a continuous bijection from the set [−π/4, π/4]×R onto the
set {(u, v) ∈ R2 : u2 + v2 ≤ 1} − {(0, 1), (0,−1)}. For fixed y0 ∈ R we have

{tan(π/4 + it) : t < y0} =

{
1

cosh 2t
+ i

sinh 2t

cosh 2t
: t < y0

}
= {u+ iv : u > 0, u2 + v2 = 1, v/u < sinh 2y0}(33)

= {eiϕ : ϕ ∈ (−π/2, arctan(sinh 2y0))}.(34)

Brownian motion is space-homogeneous, so it is sufficient to consider x =
(x1, 0). Since the function tan z is holomorphic on {z ∈ C : |<(z)| < π/2},
the process Y (t) = (Y1(t), Y2(t)) = (u(W1(t),W2(t)), v(W1(t),W2(t))) is an-
other Brownian motion with a continuous time-change. Hence, the density
function of Y (τW(−π/4,π/4)×R) is the Poisson kernel of the ball B(0, 1), which

is well known and given by

P YB(0,1)(u,w) =
1− |u|2

2π|u− w|2
,

where u ∈ B(0, 1) and w ∈ ∂B(0, 1). Denoting τ := τW(−π/4,π/4)×R we get

Px(W1(τ) = π/4,W2(τ) < t)

(33)
= P(tanx1,0)

(
Y1(τ) > 0, Y1(τ)/Y2(τ) < sinh 2t

)
(34)
=

1

2π

arctan(sinh 2t)�

−π/2

1− (tanx1)
2

(tanx1 − cosϕ)2 + sin2 ϕ
dϕ

=
1

2π

arctan(sinh 2t)�

−π/2

cos 2x1
1− cosϕ sin 2x1

dϕ.
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Changing variables according to tanϕ = sinh 2u, we obtain dϕ
cos2 ϕ

=

2 cosh 2u du. Moreover,

1/cos2 ϕ = tan2 ϕ+ 1 = sinh2 2u+ 1 = cosh2 2u,

cosϕ = 1/cosh 2u,

dϕ =
2 cosh 2u du

sinh2 2u+ 1
du =

2du

cosh 2u
.

Consequently, for y1 = π/4, we have

P
(
B1(τ

B) = π/4, B2(τ
B) < t

)
=

1

π

t�

−∞

cos 2x1
cosh 2u− sin 2x1

du

=
1

π

t�

−∞

sin 2(y1 − x1)
cosh 2u− cos 2(x1 − y1)

du.

The symmetry of Brownian motion gives us, for y1 = −π/4,

P(x1,0)
(
B1(τ

B) = −π/4, B2(τ
B) ∈ dt

)
= P(−x1,0)(−B1(τ

B) = π/4, B2(τB) ∈ dt
)

(35)
=

1

π

cos(−2x1)

cosh 2t− sin(−2x1)

=
1

π

sin 2(x1 − y1)
cosh 2t− cos 2(x1 − y1)

.

The Green function GW(−π/4,π/4)×R(x, y) is harmonic in the interior of the set

(−π/4, π/4)×R, vanishes at the boundary and its derivative with respect to
the normal vector is equal at the boundary to the Poisson kernel (see [C]).
It is easy to check that the formula given in the theorem satisfies all these
conditions.

Lemma 5.2. The function Φan(w, ξ) defined by (16) has the following
scaling property:

Φan(w, ξ) =
1

an−1
Φ1
n

(
w

a
,
ξ

a2

)
.

Proof. From (16) and (14) we obtain

Φan(w, ξ) =

∞�

0

1

(2πt)(n−1)/2
e−ξ/(2t)

∞∑
k=−∞

w + 2ka√
2π t3/2

exp

(
−(w + 2ka)2

2t

)
dt

= a

∞�

0

1

(2πt)(n−1)/2
e
− ξ/a2

2t/a2

∞∑
k=−∞

w/a+ 2k√
2π t3/2

exp

(
−(w/a+ 2k)2

2t/a2

)
dt.

Changing variables t/a2 = u ends the proof.
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Lemma 5.3. There exists c = c(α, β, γ) such that for p, q > 0, r ≥ 0 and
α ≥ 0, β > (α+ 1)/2, γ > α+ 1 we have

1�

−1
(1− u2)α e−

√
p(q+1+u)

p(q + 1 + u) + r

1 + (p(q + 1 + u))β

(p(q + 1 + u))γ
du

c� e−
√
pqp−γ−1qα−γ

(1 + r/(pq))

(1 + pq)β

(
√
pq + q + 1)α+1

.

If r = 0, then it is sufficient that γ > α.

Proof. Let us denote the integral on the left-hand side of the above
equivalence by I(p, q). The function (1−u2)α is symmetric and non-negative,
and the other two factors under the integral are decreasing. It follows that
the integral over (−1, 1) is smaller than twice the integral over (−1, 0). Thus,
using the estimate 1 + u ≤ 1− u2 ≤ 2(1 + u) for u ∈ (−1, 0), we get

I(p, q)
c�

0�

−1
(1 + u)α

e−
√
p(q+1+u)

p(q + 1 + u) + r

1 + (p(q + 1 + u))β

(p(q + 1 + u))γ
du.

Substituting u + 1 = q[(t + 1)2 − 1] = qt(t + 2) with q + 1 + u = q(t + 1)2

and du = 2q(t+ 1)dt we get

(35) I(p, q)
c� e−

√
pqqα−γ

pγ+1

w(q)�

0

[t(t+ 2)]αe−
√
pq t

(t+ 1)2 + r/(pq)

1 + (
√
pq(t+ 1))2β

(t+ 1)2γ−1
dt,

where w(q) =
√

1 + 1/q − 1. If w(q) < 1, then

I(p, q)
c� e−

√
pqp−γ−1qα−γ

(1 + pq)β

1 + r/(pq)

w(q)�

0

tαe−
√
pq t dt(36)

c� e−
√
pqp−γ−1qα−γ

1 + r/(pq)

(1 + pq)β

(
√
pq + 1/w(q))α+1

.

The second estimate comes from [BMR, Lemma 12]. For w(q) ≥ 1 we divide

the integral in (35) into
	1
0 +

	w(q)
1 =: I1 + I2. Then

I1
c� (1 + pq)β

1 + r/(pq)

1�

0

tαe−
√
pq t dt

c� (1 + pq)β

(1 + r/(pq))(1 +
√
pq)α+1

,

I2
c�
w(q)−1�

0

e−
√
pq(t+1)

(t+ 1)2 + r/(pq)

1 + (
√
pq(t+ 1))2β

(t+ 1)2γ−2α−1
dt
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≤ sups>0 e
−s(1 + s2β)

1 + r/(pq)

∞�

1

1

(t+ 1)2γ−2α−1+2 sgn r
dt

c� 1

1 + r/(pq)
.

Since β > (α+ 1)/2, we get I1+I2
c� I1. Combining this with (36) we obtain

I(p, q)
c� e−

√
pqp−γ−1qα−γ

1 + r/(pq)

(1 + pq)β

(
√
pq + 1/w(q) + 1)α+1

.

Moreover,

1/w(q) + 1 = q +
√
q2 + q + 1

c� 1 + q,

which ends the proof.

Lemma 5.4. Let

f(x) =

∞∑
k=0

akx
k, g(x) =

∞∑
k=0

bkx
k

for x > 0 and ak ∈ R, bk > 0, k = 0, 1, 2, . . . . If limk→∞ ak/bk = 1, then
limx→∞ f(x)/g(x) = 1.

Proof. Fix ε > 0. We will show that |f(x)/g(x)− 1| < ε for large x. We
have ∣∣∣∣f(x)

g(x)
− 1

∣∣∣∣ =

∣∣∣∣∑∞k=0(ak − bk)xk

g(x)

∣∣∣∣.
By the assumption limk→∞ ak/bk=1, there existsN ∈N such that |ak/bk−1|
< ε/2 for all k ≥ N . Then∣∣∣∣∑∞k=0(ak − bk)xk

g(x)

∣∣∣∣ ≤ ∣∣∣∣∑N−1
k=0 (ak − bk)xk

g(x)

∣∣∣∣+

∣∣∣∣∑∞k=N bk(ak/bk − 1)xk

g(x)

∣∣∣∣
≤
∣∣∣∣∑N−1

k=0 (ak − bk)xk

g(x)

∣∣∣∣+ ε/2.

Since bk > 0, the first term in the last expression is less than ε/2 for large x,
which ends the proof.

Lemma 5.5. Let f be a positive and decreasing function on (0, π). For
u ∈ (0, π/2) and u < v < π,

v�

u

w(π − w)f(w) dw
c� π

v�

u

wf(w) dw.
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Proof. If v < 3π/4, then π/4 < π−w < π for w ∈ (u, v), and the formula
is clearly true. For v ≥ 3π/4 we have

3π/4�

u

wf(w) dw >

3π/4�

π/2

wf(w) dw >
π

2

3π/4�

π/2

f(w) dw

>
1

2

v�

3π/4

πf(w) dw >
1

2

v�

3π/4

wf(w) dw,

hence

(37)

3π/4�

u

wf(w) dw >
1

2

v�

3π/4

wf(w) dw.

It follows that
v�

u

w(π − w)f(w) dw ≥
3π/4�

u

w(π − w)f(w) dw >
1

4
π

3π/4�

u

wf(w) dw

=
1

8
π

3π/4�

u

wf(w) dw +
1

8
π

3π/4�

u

wf(w) dw

(37)
>

1

8
π

3π/4�

u

wf(w) dw +
1

16
π

v�

3π/4

wf(w) dw

> π
1

16

v�

u

wf(w) dw.

The opposite inequality is obvious since π − w ≤ π.

We now recall [MS, Lemma 4].

Lemma 5.6. We have
1

xα
− 1

yα
c� y − x
yxα

for all y > x > 0.

Lemma 5.7. We have

(|α− β| − π)2 − (α+ β − π)2
c� αβ(π − α)(π − β)

(α+ β)(2π − α− β)

for all α, β ∈ (0, π).

Proof. Rewriting the left-hand side we get

(|α− β| − π)2 − (α+ β − π)2 = 2π(α+ β − |α− β|)− 4αβ

= 4(π(α ∧ β)− αβ)

= 4(α ∧ β)((π − α) ∧ (π − β)).

In the last step of the proof we use the fact that α ∧ β c� αβ
α+β .
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