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ON LOCAL WEAK CROSSED PRODUCT ORDERS

Th. THEOHARI-APOSTOLIDI and A. TOMPOULIDOU (Thessaloniki)

Abstract. Let A = (S/R,a) be a local weak crossed product order in the crossed
product algebra A = (L/K,«a) with integral cocycle, and H = {0 € Gal(L/K) | a(o,07")
€ 5™} the inertial group of «, for S* the group of units of S. We give a condition for the
first ramification group of L/ K to be a subgroup of H. Moreover we describe the Jacobson
radical of A without restriction on the ramification of L/K.

1. Introduction. Let R be a Dedekind domain with quotient field K,
let L be a finite Galois extension of K with Galois group G, and S be the
integral closure of R in L.

For a ring T, T* means the group of units and 7% := T\ {0}. Let
a : G X G — L* be a normalized cocycle, that is, a satisfies the cocycle
relation

(1.1) plafo,7))a(p,or) = oo, T)apo,7) forall p,o, 7€ G
and the relations
a(o,1)=a(l,o) =1 forallo € G.

It is known that the cocycle « is cohomologous to a cocycle taking values
in S#. So we assume in what follows that the cocycle o is normalized taking
values in S7. Then we can define the crossed product K-algebra

=(L/K,«a):= @ Lu,
celG
freely generated as an L-vector space by the symbols {u, | o € G} and with
multiplication given by the rule
rugyu, = xo(y)a(o, ey, Vx,y € L, Vo,7 € G.

It is well known that A is a central simple K-algebra and L is a maximal
commutative subalgebra of A consisting of all elements of A commuting with
all elements of L. (L/K,«) is also called a classical crossed product algebra.

Let A:= (S/R,a) := @ cq Sto. Then A is an R-order in A called the
weak crossed product order corresponding to A. If the cocycle a takes values
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in S*, i.e. it is a factor set, then A is called the classical crossed product
order corresponding to A. Let H be the inertial group of the cocycle «, that
is, H={0c € G|u, € A*} ={0 € G| a(o,07!) € S*}.

In Section 2 we give all the preliminary concepts and the results we need
in this article. In Section 3 we prove some properties of cocycles. The main
result of Section 3 is Theorem |3.5| where we give a condition for G'1, the first
ramification group of the extension L/K, to be a subgroup of H.

In case R is a complete discrete valuation ring, Kessler [20, Corollary 3.5]
proves that H is the unique subgroup of G with index m/(e, m), where m is
the Schur index of A and e is the ramification index of the extension L/K
in case A is optional.

In Section 4 we describe the Jacobson radical of A in case R is a complete
discrete valuation ring without restriction on the ramification of L/K. Our
result extends the relevant result of Haile [13] in case the extension L/K
is unramified, and that of Wilson [32] in case the extension L/K is tamely
ramified. In the case of a classical crossed product order, without any re-
striction on the ramification of the extension, the Jacobson radical of A has
been described by Chalatsis and Theohari-Apostolidi [7] (see also [27]).

Results of a similar nature for classical orders and Cohen—-Macaulay al-
gebras are discussed in [2], [3], [11], [10], |17], |22, Chapter 13], [23]-{26]
and [28]-[30].

We refer to |9] and |21] for the theory of orders and crossed product
algebras, and to [14]-{15] and [20] for weak crossed product orders.

2. Preliminaries

2.1. Cocycles. Let E/F be a finite Galois field extension with Galois
group
G=G(E/F).
Then we define the crossed product F-algebra
(E/F,a) = @ Eu,,
oeG

where a : G x G — FE is a normalized cocycle taking values in E. We
remark that some authors call cocycles taking values in F instead of E*
almost invertible. We refer to |15] and [13] for the theory of cocycles.

Let Z2(G, E) be the set of all cocycles of G on E. Then Z%(G, E) becomes
a monoid with multiplication

a-B(o,7)=alo,7)B(0,T)
for o, B € Z*(G,E) and 0,7 € G. Amap § : GxG — E* is called a principal
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cocycle if there are elements 0, € E*, for o € G, such that
§(o,7) = 6,0(0,)0

for 0,7 € G. The set B?(G, E*) of principal cocycles is a multiplicative
group and submonoid of Z2(G, E).

Let M?(G, E) := Z*(G, E)/B?*(G, E*). Then M?(G, E) is a monoid, and
two elements «, 3 € Z2(G, E) are called cohomologous if 3 = da for some
§ € B?(G, E*). Moreover every cocycle is cohomologous to a normalized co-
cycle, that is, satisfying the cocycle relation and the relation a(o,1) =1 =
a(1,0) for ¢ € G. The invertible elements of M?(G, E) form the usual coho-
mology group H?(G, E*). Each of the idempotents of the monoid M?(G, E)
is represented by a unique idempotent cocycle e € Z2(G, E) such that

M*(G,E) = M2(G, B),

where
MZ(G, E) :={[a] € M*(G,E) | 38 € Z*(G, E), [o][8] = [¢]}.

2.2. Local orders. For a ring T, rad T denotes the Jacobson radical of
T and T = T/radT.

Throughout this paper, R is a complete discrete valuation ring with
quotient field K, L a finite Galois field extension of K of degree n with
Galois group

(2.1) G = Gal(L/K),

S the integral closure of R in L, and 7S (resp. mx R) the unique maximal
ideal of S (resp. R). We assume that the residue field R of R is finite.
Let o : G x G — S# be a normalized cocycle of G on S#. Two elements
o, € Z%(G,S?) are equivalent over S if there is a map ¢ : G — S* such

that
§(c)a(8(7))

d(oT) Blo,7)

a(o,7) =
for all 0,7 € G. Let N?(G, S) be the set of equivalence classes of elements
of Z%(G,S%). N*(G,S) is a monoid under pointwise multiplication. Then
there is an epimorphism of monoids N2(G, S) — H?(G, K) and a canonical
map N2(G,S) — M?(G,S). This canonical map is given by reducing the
values of the cocycle modulo 7S (see [13]). To a cocycle a € Z2(G, S#)
corresponds a crossed product order

(2.2) = (S/R,a) = P Su,.

oeG
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The ring A is a free S-module with basis the symbols u,, ¢ € G, and
multiplication given by the relations

Uglr = a(0,7) = Ugr and uys = o(s)uy,

for o,7 € G and s € S. Then A is an R-order in the crossed product
K-algebra

(2.3) A:=(L/K,a).
We recall from [13] the following definition:

DEFINITION 2.4. Assume R,S,G = G(L/K) and A are as above. The
R-order A (2.2) is called a weak crossed product order in A (2.3)).

The K-algebra A is a central simple K-algebra (see |21]). Let
A2 M, (D) = Endp(V),

where D is a division ring with index, say m, and V' is the unique simple left
A-module which is an (A, D)-bimodule with (V' : L) = m and (V : D) =r.
We remark that A is a G-graded but not a strongly G-graded R-algebra,
since a(o,7) is not a unit of S, that is, u, is not an element of A* for all
o, 7 € G.

We need some more notation. Let A be the unique maximal R-order in D
with maximal ideal mp A for a prime element 7p of A. Then the ramification
index of D over K is m, i.e., tx A = m5 A, and m is also the inertial degree
of D over K, that is, m = (A: R) for A:= A/npA (see |21, §14]).

Let e be the ramification index of L over K, that is, xS = 7¢S, and f
be the inertia degree of L over K, that is, (S : R) = f. Then

n=ef =mr.

One of our objects of interest in this paper is the subgroup of G =
Gal(L/K) given by

(2.5) H:={0cecGlu,c A*}={0€G|als,07!) € S},

called the inertial group of the cocycle o (see [13]).

Let L be the field corresponding to the subgroup H, and S be the
integral closure of R in L. Then for ay := a|pxm, the crossed prod-
uct Ay = (S/S",ay) is an S¥-order in the crossed product L-algebra
(L/L* ap); of course Ay is a classical crossed product order since ayy takes
values in S*. Moreover A = Ay @ I, where I := @D, ¢y Sto.

In the study of the order A its overorders play a significant role. In [5]
Benz and Zassenhaus define a chain of orders

A=Ay, Aiy1:=0(rad ;) :={a € A|arad A; Crad A;}.
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This chain stops at a number x and it turns out that A, is a hereditary
order. In [§] Cliff and Weiss compute the number x in the case of a factor
set a, i.e., a cocycle taking values in S*. In [20] Kessler computes the number
x in the case of a cocycle and classifies all local hereditary crossed product
orders.

A principal order is a hereditary R-order I' such that rad I’ = npl" =
I'mp; each such element 7 is called a prime element of I'. For a discussion
of hereditary crossed product orders we refer also to [1], [16], [18], [31] and
for principal orders to [6], [12]. Now we sum up some properties of principal
orders from [4-6], [12] and |20, Theorem 1.5] that we need in this article.
We follow the notation introduced earlier.

THEOREM 2.6. Let A := (S/R,«a) be a weak crossed product order
inA:=(L/K,«) for a cocycle o : Gx G — S*, where G = Gal(L/K).
There exists exactly one hereditary order I' containing A which is a principal
order with the following properties:

(i) S=INL and nS = SNradl’, where rad ' = npl" = I'rp for a
prime element wr of I'.

(ii) There exists a number k € N which divides r such that r/k is the
block length of I' and (k,k,...,k) (r/ktimes) are the invariants
of I

(iii) 7" = 7BFT, that is, the ramification index of I' over R is mk
and (I' : R) = nrk.

(iv) T = Mr/k(Z)(k), where (k) means k copies.

(v) The ramification index of I' over S is d :== m/(e,m), that is, 7" =
7dl, and k = de/m = e/(e,m) and r/k = f/d. Hence d divides f.

Let Ky be the inertia field of the extension L/K, so (L : Ky) = e and
(Ko : K) = f. Moreover let K4 be the uniquely determined intermediate field
K < K4 < Ko with (K4 : K) =d, Gy := Gal(L/Kp) and G4 := Gal(L/Ky).
We denote by Ry (resp. R;) the integral closure of R in Ky (resp. K;), and by
o (resp. m4) a prime element of Ry (resp. Ry). Then S = Ry, (S : Ryq) = f/d
and (Ry: R) = d.

It follows from [20, Corollary 3.5] that the inertial group of « is a sub-
group of Gy.

3. Some properties of a cocycle. Let G be a group acting on a
field E, and N a normal subgroup of G with fixed field EVV. For a cocycle
a:G/NxG/N — EN let & : GxG — E be defined by a(o,7) = a(c N, 7N)
for 0,7 € G. Then & is also a cocycle, called the inflation of a. Moreover
for a cocycle 8 : G x G — E, the restriction S|yxn : N X N — E is also
a cocycle. In this section and the next we denote o, := o(z) for 0 € G and
re k.
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We consider the inflation map
Inf : M?(G/N,EN) = M2(G,E), [o] — [d],
and the restriction map
Res: M2(G, E) = MZ(N,E), 8]~ [Bl=nl,
using the notation of Subsection 2.1.
LEMMA 3.1. Let G be a group acting on a field E, and N be a normal
subgroup of G such that HY(N,E*) = 1. Let a : G x G — E be a cocycle

such that a|yxn € B?*(N,E*). Then « is cohomologous to a cocycle § :
G xG — EN such that §(o,7) = d(ony,mng) for allo,7 € G andni,ng € N.

Proof. Let N and a be as above. Since a|yxny € B2(N, E*), there is a
map p: N — E*, u(n) = pp, such that
(3.1) 04(”17 n2) = Hn, nlMﬂQ/%;llng
for all n;,ne € N. Hence a(ny,n2) # 0, and so N is a subgroup of the
inertial group of . We consider the elements ¢, € E* such that ¢, = uy,
for all n € N, and ¢, =1 forallc € G\ N.

Then the map v : G x G — E defined by

(3-2) ’7(0'7 T) = [9000907']71(:007'0[(07 T)

is cohomologous to a. Moreover from (3.1)) and (3.2)), and since N < H, we
get

(3.3) v(ni,n2) =1 and ~5(o,n) #0,

for all ny,n9,m € N and o € G. Let now T be a complete set of represen-
tatives of left cosets of IV in G such that 1 € T. Then if o0 € G, there exist
unique elements tg € T and ng € N depending on ¢ such that

(3.4) o = tgng.

Using the relation (3.4)), for 0 € G, we consider the elements A\, € E* such
that

(3.5) Ao = >\t0no = V(thnO)'
Then from (3.3 and (3.5)) we have
(3.6) A=7(l,n)=1 forallne N.

Moreover applying the cocycle equation ((1.1) for the cocycle v and the
elements t € T and n,n; € N, we get

t’)/("% nl)’Y(ta nnl) = 7(757 n)’y(tn, nl)a
which because of the relation (3.3) becomes
(3.7) v(t,nn1) = (¢, n)y(tn, n1).
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In addition, for o as in and n; € N, from and we get
Aony = Mgnony = Y(to, non1) = y(to, no)y(tono, n1) = Aey(o,n1).
Hence
(3.8) Aony = Agy(0,ny)  for all o € G and ny € N.
Now we define a new weak cocycle by
B:GxG—E with B(0,7) =\ AN (0, 7),

which is obviously cohomologous to 7. From (3.6 and (3.8)), and for 0 € G
and n € N, we get

B(Ua n) = A5 U/\n/\;,-lL’Y(U, 7’L) =1.
Hence
(3.9) B(o,n) =1 forallc € Gandne N.

Using the cocycle equation (|1.1)) for the weak cocycle S and the elements
o,7 € G and n € n, we get

’B(r,n)B(o, mn) = B(o,7)B(aT, n).
Then from we have
(3.10) B(o,m) = B(o,7) forall 0,7 € G and n € N.

Since N < @G, for n € N and 0 € G we have no = on’ for some n’ € N.

Using we get
(3.11) B(n1,no) = B(n1,on’) = B(n1,0).

Hence the cocycle equation ([1.1)) for 8 and the elements ny,n € N and
o € G becomes

nlﬁ(n’ U)B(nb 7’LO') = B(nl) n)ﬁ(nlna U)a
and from (3.11)) and (3.9) the above equation becomes
(3.12) "B(n,0)B(n,0) = B(nin, o).

We define the map (, : N — E*, n+— f(n,0), for 0 € G and n € N. From
(13.12)) we have

Co(ning) = "¢p(n2)Cs(n1)

for n1,n2 € N and o € G. Hence (, is a 1-cocycle, and since H'(G, E*) = 1,
there exists an element k, € E* such that

B(n,o) = Cy(n) = "kyk;!  for all n € N.
Hence

(3.13) B(n,0) = Co(n) = "kok, .
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Now we consider the elements 1, = ki, for o = tgng as in , and we get
V:GxG— E* with (0, 7) = b e, )

It is clear that 1 € B?(G, E*) and the following hold:

(3.14) Von = Yo = VYpe and Y, =1, forne N, oecdq.

Let § : G x G — E with §(0,7) = 9, -0, 3(0, 7). Then § is a cocycle
cohomologous to 3, and using (3.4), (3.10), (3.13) and (3.14) we obtain
consecutively

B(n,0) = Pn "Yotbng 6(n, 0),
B(n,tono) = U "YteneWign, (N, o),
B(n,to) = "ke, tolé(n o),
okt = "highi 3(n, o),
and finally
(3.15) d(n,o0) =1 forn € N and o € G.

Moreover from the definition of ¥ and §, and the equations (3.9)), (3.14) we
get the following implications, for § and for o € G and n € N:

Blo,n) = e “Pniby, 15(0 n), so 1=, 15(0 n),
that is,
(3.16) d0(oc,n)=1 foro e Gandn € N.

Now applying the cocycle equation for the cocycle 0 and for the ele-
ments o,7 € G and n € N, using and - we get

% (1,n)o(o, Tn) = 5(0,7’)5(07’, n),
and hence
(3.17) d(o,m™n) = (o, T),

for o, 7€ Gandn € N.

Again from the cocycle equation (|1.1]) for the elements o, n, 7 and for the
weak cocycle §, using (3.15) and (3.16)) for 0,7 € G and n € N, we obtain

%(n,7)0(o,nT) =0(0,n)d(om, 7),

so that

(3.18) d(o,nt) = d(on, 7')

Now for 0,7 € G and nq,n9 € N, and using and (3.18 -, we get
(3.19) d(ony,™ng) = 6(ony, ) = 0(o, n17') = 5(0, ™)) = d6(o,7),

where ny7 = mn} for some n} € N.
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In order to finish the proof of the lemma it is sufficient to prove that
§(o,n) € EN for 0,7 € G. For this, let n € N and 0,7 € G. Then the
cocycle equation ([1.1]) for the cocycle ¢ and for the elements n, o, 7 becomes

"6(o,7)0(n,071) = §(n,0)d(no, 7).
Now let no = on’ for some n’ € N. From (3.15) and (3.19)), the above

equation becomes
"§(o,7) = 6(no, ) = §(on’, 7) = (0, 7).
Hence 6(o,7) € EV and the result follows. =

THEOREM 3.2. Let G be a group acting on a field E, and N a nor-
mal subgroup of G with fized field EV such that H'(N,E*) = 1. Then the
sequence

1— M2(G/N,EN) 25 pm2(G, B) B HA(N, EY)

is exact. Moreover the equality H*>(N, E*) = 1 yields
M2?(G/N,EN) ~ M2(G, E).
Proof. First we prove that Ker(Inf) = {[¢]}. Let a : G/N x G/N — EV
be a weak cocycle and & : G x G — E be defined by &(o,7) = a(cN,7N).

Then Inf[a] = [&]. Let [o] € Ker(Inf), so [&] = [¢]. Then there exist elements
e € E*, for 0 € G, such that

&0, 7) = po “prpgté(o, 1) for o,7 € G.
We remark that for ny,no € N,
OAé(nlan2) =1, SO pnyny = fin, nl:unza

hence for the map v : G — E*, u(o) = po, we see that u|y is a 1-cocycle and
[u|n] € HY(N, E*) = 1, by assumption. Therefore, there exists an element
k € E* such that p(n) = "k -k=! for n € N. Now we consider the map
¢ : G — E* such that u(c) = %kk~t¢(o). Then

(3.20) p(n)=1 forne N,
and
6(0,7) = “rpiopz é(o, )
= Tkl (7)] kk™ (o) ["Tkk ™ p(oT)] e
= TTk(%k) ™" “p(7) Tk () (k) k(o) T E(o, 7),
and consequently
(3.21) a(0,7) = “p(1)p(0)p(0m) E(a, 7).
The above equation, for 7 =n € N, yields

(3.22) a(o,n) = ¢(o) ”@(n)(p(an)_lé(a, n).

(0,7



62 TH. THEOHARI-APOSTOLIDI AND A. TOMPOULIDOU

Since &(o,n) = £(o,n) = 1, using (3.20)), the equation (3.22)) gets the form
(3.23) p(on) =p(c) foroe G, neN.
Moreover, the equation (3.21)), for 0 =n € N, yields

A n 1A

Oé(?”L,T) = (p(n) SO(T)(P(TLT)_ 6(”‘77_)7
and since &(n,7) = £€(n,7) = 1, in view of (3.20)) we get
(3.24) "o(o) = p(no) for o€ G, ne N.

We remark that since N < G, we have no = on’ for some n’ € N. Hence
(13.24)) gets the form

n

(o) = p(no) = p(on') = ¢(0),
therefore we get

"o(o) = (o) foro e G, neN.
This means that ¢(c) € EV for o € G. So there exists the map

Y:G/N = EY,  4(gN) = p(g)
such that, for 0,7 €G, a(cN,7N) = (o N) " Np(7N)p(orN)te(o N, 7N).
In other words, the cocycle « is cohomologous to ¢ and so Ker(Inf) = {[¢]}.

To complete the proof we have to show that ResoInf = 1. Let [a] €

M2(G/N,EN) and [4] = Infla]. Then &(ni,n2) = 1 for ni,ny € N,
and so ResolInf[a] = [1]. Hence Im(Inf) C Ker(Res). In order to prove
that Ker(Res) C Im(Inf), let @« : G x G — FE be a cocycle such that
a|yxny € B*(G,E). Then from Lemma a is cohomologous to a co-
cycle B : G x G — E such that B(ony,mns) = B(o,7) € EN for 0,7 € G
and ny,n2 € N. Therefore there exists a cocycle v : G/N x G/N — EV,

v(eN,7N) = B(o,7), so that Inf[y] = [8] = [a], and this means that
Ker(Res) C Im(Inf). m

Let now R be a complete discrete valuation ring, let K, L, S, 7, 7S, G =
Gal(L/K), S, R, f be as in Section 2, and let G; denote the first ramification
group of L/K, that is:

DEFINITION 3.3.
G1={0€G|o(a) =a (mod(rg)?) for all a € S}.
The following result generalizes [7, Lemma 1.1], and implies the isomor-
phism H?(G/G1,5) = H*(G, S).

PROPOSITION 3.4. Let G = Gal(L/K) be as in (2.1) and let ¢ : G/G %

G/Gy — S be an idempotent cocycle, where Gy is the first ramification

group 1) of L/K. Then the inflation map M2(G/G1,S) Inf, M2(G,S) is

a group isomorphism.
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Proof. The first ramification group G acts trivially on the field S and
(|G1],[S™|) = 1, hence H'(G1,57) =1 [8, §39]. Also H*>(G1,S") = 1. Now
from Theorem [3.2] we get the exact sequence

1= M2(G/Gy,5) 25 M2(G,5) 2% H2(G1,57) =1,
and the result follows. =

Now we are able to prove one of the main results of this paper.

THEOREM 3.5. Let G = G(L/K) be the group (2.1), G1 = Ram;(L/K)
the first ramification group , and let £ : G x G — S be an idempotent
cocycle such that there exists an idempotent cocycle € : G/G1 x G/G1 — S
satisfying the relation é(o,7) = e(0G1,7G1). Then:

(i) For every cocycle oo : G x G — S such that [a] € M2(G,S), there
exists a cocycle B : G x G — 8 such that B 18 cohomologous to «
and B(U, T) =1 14f o or T belongs to G.

(ii) For every cocycle a: G x G — S# such that [a] € M2(G, S), where
a(o,7) = a(o,7) mod 7S, there erists a cocycle B : G x G — S
such that 8 is cohomologous to o and B(o,7) € 1+ 7S if o € Gy or
T e G,

(iii) The first ramification group G1 is a subgroup of the inertial group
H of the cocycle .

Proof. (i) We consider the inflation map
M2(G/Gy,S) M M2(G,5).
If a : G x G — S is a cocycle such that [o] € MZ(G,S) then, by Proposi-
tion there exists [3] € M2(G /Gy, S) such that Inf[] = [3] = [a]. Then
B : G x G — S is a cocycle having the required properties.

(ii) Let o : G x G — S¥ be a cocycle. Then from (i) there exists a cocycle
~ such that [y] = [@] and v(o,7) = 1 whenever o € G or 7 € G1. Therefore
there exist elements u, € S° for o € G such that a(o,7) = u, “urp,+ for
o€ GyorT € Gy Let u(o) = 5, € S for some s, € S. Then a(o,7) =
5,75,5,%, and hence @(0,7) = s,%,55+. So a(o,7) — s, %.s,1 € ©S
whenever o € Gy or 7 € G;. We remark that the cocycle 8 : G x G — S#,
B(o,7) = s;1 % 1syra(o, 7), has the required properties, and the result
follows.

(iii) From (ii) we see that f(o,7) € 1+ 7S if 0 € Gy or 7 € (1. Hence if
o € Gy or T € Gy, then f(o,7) € S*. Now from the definition of the inertial
group H and the fact that the cocycle « is cohomologous to £, we conclude
that 1 is a subgroup of H.

We remark that if @ : G x G — S* is a factor set, then there exists a
factor set 8 : G x G — S* cohomologous to « such that B(o,7) € 1 + 7S
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whenever o or 7 belongs to G (see |7, Lemma 1.3]). Theorem |3.5| gives a
condition for an analogous result to hold in the case of a cocycle, and hence
a condition for G; < H.

4. The Jacobson radical of A. Throughout this section we assume
that A is a weak crossed product order in the algebra for a
cocycle a : G x G — S#. In this section we study the Jacobson radical of A
for any finite field extension L/K and a local field K. We denote by rad the
Jacobson radical and follow the notation of the previous sections. We need
the following result of Wilson (see [32, Lemmas 2.3 and 2.5)).

LEMMA 4.1. Let a: G x G — S# be a weak cocycle. Then:

(i) For 0 € G and h € H, the elements a(o,h) and a(h,o) are both
units of S.
(ii) If o,7 € G\ H and oT € H, then a(o,T) is not a unit of S.
PROPOSITION 4.2. rad A =rad Ay © I, where I = @, cq_ g Sto.
Proof. Since A = Ay @ I, we consider the map
gO:AHEBI—>/1H/I‘ad/1H, Ag +x = Ay +rad Ay,

for x € I. It is clear that ¢ is an epimorphism of additive groups with kernel
equal to rad Ay @ I. We prove that ¢ preserves ring multiplication. Let
i, Ny € A and z,2” € I. Then

Mg +2) Ny +2') = Ag Ny + Aga’ + 2Ny + o2’
We remark that Ay}, € Ag. Moreover A/, 2N}, € I. Indeed, for h € H
and 0 € G — H we see that the elements

upty = a(h,0)upe and  usup = a(o, h)ugp

belong to I, and therefore Az’ and x\; belong to I. For the element zz/,

let
T = Z SeUy and o’ = Z Syl

ceG—H T7€G—H

Then za’ = > sy82a(0, T)ugr. If o7 ¢ H then u,, € I, and so za’ € I.
If or € H, then from Lemma [4.1ii) we deduce that a(o,7) € 7S and
$0870(0, T)ugr € TAg. But mAy C rad Ay, and so z2’ € rad Apy. Therefore
in any case xx’ € rad Ay & I. Hence

olAm +2)(Ng +2")] = ANy +rad Ay = o(Ag + x)p(Ng + 2').

So we get
Ag @I/(rad/lH @I) = AH/rad/lH,

and so rad Ay @ I D rad A, Ay being semisimple. It remains to prove that
rad A D rad Ay & 1. For this we have to prove that there is a natural number
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k such that (rad Ag®I)* C A, in other words (rad Ag®I)/7A s a nilpotent
ideal of the R-algebra A/m A, rad Ag®I being an ideal of A containing 7A. In
order to prove that (rad Ay ®I)/7 A is a nilpotent ideal of A/7A it is enough
to show that it has an R-basis consisting of nilpotent elements, by a theorem
of Wedderburn (see [19, Ch. 11, Theorem 1.15]). Since, for = € rad Ay, the
element x + A € A/mwA is nilpotent, it is enough to prove that an element
suy + A, for s € S and 0 € G — H, is nilpotent. For this let 0 € G — H
and k be the smallest natural number such that o* € H. Then

k—1
(o)t = (T a0, 0" ™) g
i=1
k—2 N
—i—1
= (H g a(o, ak_l)) “a(o, " Hugr.
i=1

Hence (uq)* € mA because a(o,0" 1) € ©5, by Lemma (ii). Therefore
rad A D rad Ay & I, and we have proved that rad A =rad Ay © 1. =

For the next theorem we need some more notation. Let H; be the first
ramification group of the field extension L/L¥ with corresponding field L1
and let a1 be the restriction of the factor set ay to Hy x Hi. Then

A, = (LT /LT op) = Endp, (Vi) = M,, (D)

for a division ring D; centrally containing L with index, say, m;. Moreover
let A; be the unique maximal S¥-order in Dy with maximal ideal Aymp,.
We remark that Ay, := (S71/SH ay) is a hereditary S¥-order in Ay, since
the extension Lt /LH is tamely ramified (see [31]).

THEOREM 4.3. Let A = (S/R,«) be a weak crossed product order
in the crossed product K-algebra A = (L/K, «) , and H be the inertial
group of the cocycle a.. Let Hy be the first ramification group of the extension
L/L, and X be a complete set of representatives of the left cosets of Hy
in H. Then

(i)
rad A = @WS’ug@( @ Sug(up—u1)> @( @ Sua).

ceX oeX ceG—H
peH—{1}

(ii) A/rad/l = AH/radAH = /1]-11/I‘ad/1]-11 = MfH(Al/Alel)eH/ml,
where fr is the inertial degree of the extension LJ/LY, ey is the
tame ramification degree of the extension L)LY, and my is the index
Of Dl.

Proof. (i) This follows from Proposition and |7, Proposition 1.4].
(ii) The result follows from Proposition and |7, Theorem 1.9]. m
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The above result extends the relevant result of Haile [13] for unramified
extensions and that of Wilson [32] for tamely ramified extensions.

5. Maximal orders containing A. We follow the notation of Subsection
Let I) be amaximal R-order in the crossed product algebra A = Endp (V)
containing the weak crossed product A . From the structure of
maximal orders (see |21} §17]), there exists a unique up to isomorphism inde-
composable I'p-lattice M full in V', i.e. KM =V, which is a (I, A)-lattice.
Let V = Lwy & -+ ® Lwy,. Then we can choose M = Sw; ® - - - & Sw,,, and
M is also an indecomposable left A-lattice and a (A, A)-bimodule. Of course
M is a left I'-lattice for the unique principal R-order I" in A containing
A (see Theorem . From the structure of hereditary orders we deduce
that I; = Enda (W%M), 0 <i < k-1, are all the non-isomorphic maximal
R-orders in A containing I, where I" = ﬂi:ol Iand 7o M,0 <i < k—1, are
all the non-isomorphic indecomposable I'-lattices. Therefore I;,0 < i < k—1,
are all the non-isomorphic maximal R-orders containing A. Moreover W}M ,
0 < i < k—1, are also non-isomorphic indecomposable left A-lattices, full in
V and (4, A)-bimodules. If N is another such left A-lattice, then Enda(N)
will be a maximal R-order in A, and hence one of I, 0 < i < k — 1. This
means that N is isomorphic to one of W}M ,0<1¢<k-—1.So we conclude
with the following:

PROPOSITION 5.1. Let A be a crossed product algebra (2.3)) and let V =
Lwi & - - -® Lwy, be the unique simple (A, D)-bimodule. Let M = Swi & - - - &
Swy, and Iy := Enda(M). Then:

(i) I} :== 7t0p, 0 < i < k — 1, are all the mazimal R-orders in A
containing the weak crossed product order A .

(ii) W}M, 0 <i < k-1, are all the non-isomorphic indecomposable
A-lattices which are (A, A)-bimodules.
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