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ON LOCAL WEAK CROSSED PRODUCT ORDERS

BY

Th. THEOHARI-APOSTOLIDI and A. TOMPOULIDOU (Thessaloniki)

Abstract. Let Λ = (S/R, α) be a local weak crossed product order in the crossed
product algebra A = (L/K,α) with integral cocycle, and H = {σ ∈ Gal(L/K) | α(σ, σ−1)
∈ S∗} the inertial group of α, for S∗ the group of units of S. We give a condition for the
first ramification group of L/K to be a subgroup of H. Moreover we describe the Jacobson
radical of Λ without restriction on the ramification of L/K.

1. Introduction. Let R be a Dedekind domain with quotient field K,
let L be a finite Galois extension of K with Galois group G, and S be the
integral closure of R in L.

For a ring T , T ∗ means the group of units and T# := T \ {0}. Let
α : G × G → L∗ be a normalized cocycle, that is, α satisfies the cocycle
relation

(1.1) ρ(α(σ, τ))α(ρ, στ) = α(σ, τ)α(ρσ, τ) for all ρ, σ, τ ∈ G
and the relations

α(σ, 1) = α(1, σ) = 1 for all σ ∈ G.
It is known that the cocycle α is cohomologous to a cocycle taking values
in S#. So we assume in what follows that the cocycle α is normalized taking
values in S#. Then we can define the crossed product K-algebra

A := (L/K,α) :=
⊕
σ∈G

Luσ

freely generated as an L-vector space by the symbols {uσ | σ ∈ G} and with
multiplication given by the rule

xuσyuτ = xσ(y)α(σ, τ)uστ , ∀x, y ∈ L, ∀σ, τ ∈ G.
It is well known that A is a central simple K-algebra and L is a maximal
commutative subalgebra of A consisting of all elements of A commuting with
all elements of L. (L/K,α) is also called a classical crossed product algebra.

Let Λ := (S/R,α) :=
⊕

σ∈G Suσ. Then Λ is an R-order in A called the
weak crossed product order corresponding to A. If the cocycle α takes values
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in S∗, i.e. it is a factor set, then Λ is called the classical crossed product
order corresponding to A. Let H be the inertial group of the cocycle α, that
is, H = {σ ∈ G | uσ ∈ Λ∗} = {σ ∈ G | α(σ, σ−1) ∈ S∗}.

In Section 2 we give all the preliminary concepts and the results we need
in this article. In Section 3 we prove some properties of cocycles. The main
result of Section 3 is Theorem 3.5 where we give a condition for G1, the first
ramification group of the extension L/K, to be a subgroup of H.

In case R is a complete discrete valuation ring, Kessler [20, Corollary 3.5]
proves that H is the unique subgroup of G with index m/(e,m), where m is
the Schur index of A and e is the ramification index of the extension L/K
in case Λ is optional.

In Section 4 we describe the Jacobson radical of Λ in case R is a complete
discrete valuation ring without restriction on the ramification of L/K. Our
result extends the relevant result of Haile [13] in case the extension L/K
is unramified, and that of Wilson [32] in case the extension L/K is tamely
ramified. In the case of a classical crossed product order, without any re-
striction on the ramification of the extension, the Jacobson radical of A has
been described by Chalatsis and Theohari-Apostolidi [7] (see also [27]).

Results of a similar nature for classical orders and Cohen–Macaulay al-
gebras are discussed in [2], [3], [11], [10], [17], [22, Chapter 13], [23]–[26]
and [28]–[30].

We refer to [9] and [21] for the theory of orders and crossed product
algebras, and to [14]–[15] and [20] for weak crossed product orders.

2. Preliminaries

2.1. Cocycles. Let E/F be a finite Galois field extension with Galois
group

G = G(E/F ).

Then we define the crossed product F -algebra

A := (E/F, α) =
⊕
σ∈G

Euσ,

where α : G × G → E is a normalized cocycle taking values in E. We
remark that some authors call cocycles taking values in E instead of E∗

almost invertible. We refer to [15] and [13] for the theory of cocycles.

Let Z2(G,E) be the set of all cocycles ofG on E. Then Z2(G,E) becomes
a monoid with multiplication

α · β(σ, τ) = α(σ, τ)β(σ, τ)

for α, β ∈ Z2(G,E) and σ, τ ∈ G. A map δ : G×G→ E∗ is called a principal
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cocycle if there are elements δσ ∈ E∗, for σ ∈ G, such that

δ(σ, τ) = δσσ(δτ )δ−1στ

for σ, τ ∈ G. The set B2(G,E∗) of principal cocycles is a multiplicative
group and submonoid of Z2(G,E).

Let M2(G,E) := Z2(G,E)/B2(G,E∗). Then M2(G,E) is a monoid, and
two elements α, β ∈ Z2(G,E) are called cohomologous if β = δα for some
δ ∈ B2(G,E∗). Moreover every cocycle is cohomologous to a normalized co-
cycle, that is, satisfying the cocycle relation and the relation α(σ, 1) = 1 =
α(1, σ) for σ ∈ G. The invertible elements of M2(G,E) form the usual coho-
mology group H2(G,E∗). Each of the idempotents of the monoid M2(G,E)
is represented by a unique idempotent cocycle ε ∈ Z2(G,E) such that

M2(G,E) =
⋃
ε

M2
ε (G,E),

where

M2
ε (G,E) := {[α] ∈M2(G,E) | ∃β ∈ Z2(G,E), [α][β] = [ε]}.

2.2. Local orders. For a ring T , radT denotes the Jacobson radical of
T and T = T/radT .

Throughout this paper, R is a complete discrete valuation ring with
quotient field K, L a finite Galois field extension of K of degree n with
Galois group

(2.1) G = Gal(L/K),

S the integral closure of R in L, and πS (resp. πKR) the unique maximal
ideal of S (resp. R). We assume that the residue field R of R is finite.
Let α : G × G → S# be a normalized cocycle of G on S#. Two elements
α, β ∈ Z2(G,S#) are equivalent over S if there is a map δ : G → S∗ such
that

α(σ, τ) =
δ(σ)σ(δ(τ))

δ(στ)
β(σ, τ)

for all σ, τ ∈ G. Let N2(G,S) be the set of equivalence classes of elements
of Z2(G,S#). N2(G,S) is a monoid under pointwise multiplication. Then
there is an epimorphism of monoids N2(G,S)→ H2(G,K) and a canonical
map N2(G,S) → M2(G,S). This canonical map is given by reducing the
values of the cocycle modulo πS (see [13]). To a cocycle α ∈ Z2(G,S#)
corresponds a crossed product order

(2.2) Λ := (S/R,α) =
⊕
σ∈G

Suσ.
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The ring Λ is a free S-module with basis the symbols uσ, σ ∈ G, and
multiplication given by the relations

uσuτ = α(σ, τ) = uστ and uσs = σ(s)uσ,

for σ, τ ∈ G and s ∈ S. Then Λ is an R-order in the crossed product
K-algebra

(2.3) A := (L/K,α).

We recall from [13] the following definition:

Definition 2.4. Assume R,S,G = G(L/K) and A are as above. The
R-order Λ (2.2) is called a weak crossed product order in A (2.3).

The K-algebra A is a central simple K-algebra (see [21]). Let

A ∼= Mr(D) ∼= EndD(V ),

where D is a division ring with index, say m, and V is the unique simple left
A-module which is an (A,D)-bimodule with (V : L) = m and (V : D) = r.
We remark that Λ is a G-graded but not a strongly G-graded R-algebra,
since α(σ, τ) is not a unit of S, that is, uσ is not an element of Λ∗ for all
σ, τ ∈ G.

We need some more notation. Let ∆ be the unique maximal R-order in D
with maximal ideal πD∆ for a prime element πD of ∆. Then the ramification
index of D over K is m, i.e., πK∆ = πmD∆, and m is also the inertial degree
of D over K, that is, m = (∆ : R) for ∆ := ∆/πD∆ (see [21, §14]).

Let e be the ramification index of L over K, that is, πKS = πeS, and f
be the inertia degree of L over K, that is, (S : R) = f. Then

n = ef = mr.

One of our objects of interest in this paper is the subgroup of G =
Gal(L/K) given by

(2.5) H := {σ ∈ G | uσ ∈ Λ∗} = {σ ∈ G | α(σ, σ−1) ∈ S∗},

called the inertial group of the cocycle α (see [13]).

Let LH be the field corresponding to the subgroup H, and SH be the
integral closure of R in LH . Then for αH := α|H×H , the crossed prod-
uct ΛH := (S/SH , αH) is an SH -order in the crossed product LH -algebra
(L/LH , αH); of course ΛH is a classical crossed product order since αH takes
values in S∗. Moreover Λ = ΛH ⊕ I, where I :=

⊕
σ/∈H Suσ.

In the study of the order Λ its overorders play a significant rôle. In [5]
Benz and Zassenhaus define a chain of orders

Λ = Λ0, Λi+1 := O`(radΛi) := {a ∈ A | a radΛi ⊆ radΛi}.
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This chain stops at a number χ and it turns out that Λχ is a hereditary
order. In [8] Cliff and Weiss compute the number χ in the case of a factor
set α, i.e., a cocycle taking values in S∗. In [20] Kessler computes the number
χ in the case of a cocycle and classifies all local hereditary crossed product
orders.

A principal order is a hereditary R-order Γ such that radΓ = πΓΓ =
ΓπΓ ; each such element πΓ is called a prime element of Γ . For a discussion
of hereditary crossed product orders we refer also to [1], [16], [18], [31] and
for principal orders to [6], [12]. Now we sum up some properties of principal
orders from [4–6], [12] and [20, Theorem 1.5] that we need in this article.
We follow the notation introduced earlier.

Theorem 2.6. Let Λ := (S/R,α) be a weak crossed product order (2.2)
in A := (L/K,α) (2.3) for a cocycle α : G×G→ S#, where G = Gal(L/K).
There exists exactly one hereditary order Γ containing Λ which is a principal
order with the following properties:

(i) S = Γ ∩ L and πS = S ∩ radΓ , where radΓ = πΓΓ = ΓπΓ for a
prime element πΓ of Γ .

(ii) There exists a number k ∈ N which divides r such that r/k is the
block length of Γ and (k, k, . . . , k) (r/k times) are the invariants
of Γ .

(iii) πKΓ = πmkΓ Γ , that is, the ramification index of Γ over R is mk

and (Γ : R) = nrk.
(iv) Γ ∼= Mr/k(∆)(k), where (k) means k copies.
(v) The ramification index of Γ over S is d := m/(e,m), that is, πΓ =

πdΓΓ , and k = de/m = e/(e,m) and r/k = f/d. Hence d divides f .

Let K0 be the inertia field of the extension L/K, so (L : K0) = e and
(K0 : K) = f . Moreover letKd be the uniquely determined intermediate field
K ≤ Kd ≤ K0 with (Kd : K) = d, G0 := Gal(L/K0) and Gd := Gal(L/Kd).
We denote by R0 (resp. Rd) the integral closure of R in K0 (resp. Kd), and by
π0 (resp. πd) a prime element of R0 (resp. Rd). Then S = R0, (S : Rd) = f/d
and (Rd : R) = d.

It follows from [20, Corollary 3.5] that the inertial group of α is a sub-
group of Gd.

3. Some properties of a cocycle. Let G be a group acting on a
field E, and N a normal subgroup of G with fixed field EN . For a cocycle
α : G/N×G/N → EN , let α̂ : G×G→ E be defined by α̂(σ, τ) = α(σN, τN)
for σ, τ ∈ G. Then α̂ is also a cocycle, called the inflation of α. Moreover
for a cocycle β : G × G → E, the restriction β|N×N : N × N → E is also
a cocycle. In this section and the next we denote σx := σ(x) for σ ∈ G and
x ∈ E.
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We consider the inflation map

Inf : M2
ε (G/N,EN )→M2

ε̂ (G,E), [α] 7→ [α̂],

and the restriction map

Res : M2
ε̂ (G,E)→M2

ε̂ (N,E), [β] 7→ [β|N×N ],

using the notation of Subsection 2.1.

Lemma 3.1. Let G be a group acting on a field E, and N be a normal
subgroup of G such that H1(N,E∗) = 1. Let α : G × G → E be a cocycle
such that α|N×N ∈ B2(N,E∗). Then α is cohomologous to a cocycle δ :
G×G→ EN such that δ(σ, τ) = δ(σn1, τn2) for all σ, τ ∈ G and n1, n2 ∈ N .

Proof. Let N and α be as above. Since α|N×N ∈ B2(N,E∗), there is a
map µ : N → E∗, µ(n) = µn, such that

(3.1) α(n1, n2) = µn1
n1µn2µ

−1
n1n2

for all n1, n2 ∈ N . Hence α(n1, n2) 6= 0, and so N is a subgroup of the
inertial group of α. We consider the elements ϕσ ∈ E∗ such that ϕn = µn
for all n ∈ N , and ϕσ = 1 for all σ ∈ G \N .

Then the map γ : G×G→ E defined by

(3.2) γ(σ, τ) = [ϕσ
σϕτ ]−1ϕστα(σ, τ)

is cohomologous to α. Moreover from (3.1) and (3.2), and since N ≤ H, we
get

(3.3) γ(n1, n2) = 1 and γ(σ, n) 6= 0,

for all n1, n2, n ∈ N and σ ∈ G. Let now T be a complete set of represen-
tatives of left cosets of N in G such that 1 ∈ T . Then if σ ∈ G, there exist
unique elements t0 ∈ T and n0 ∈ N depending on σ such that

(3.4) σ = t0n0.

Using the relation (3.4), for σ ∈ G, we consider the elements λσ ∈ E∗ such
that

(3.5) λσ = λt0n0 = γ(t0, n0).

Then from (3.3) and (3.5) we have

(3.6) λn = γ(1, n) = 1 for all n ∈ N.
Moreover applying the cocycle equation (1.1) for the cocycle γ and the
elements t ∈ T and n, n1 ∈ N , we get

tγ(n, n1)γ(t, nn1) = γ(t, n)γ(tn, n1),

which because of the relation (3.3) becomes

(3.7) γ(t, nn1) = γ(t, n)γ(tn, n1).
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In addition, for σ as in (3.4) and n1 ∈ N , from (3.5) and (3.7) we get

λσn1 = λt0n0n1 = γ(t0, n0n1) = γ(t0, n0)γ(t0n0, n1) = λσγ(σ, n1).

Hence

(3.8) λσn1 = λσγ(σ, n1) for all σ ∈ G and n1 ∈ N.
Now we define a new weak cocycle by

β : G×G→ E with β(σ, τ) = λσ
σλτλ

−1
στ γ(σ, τ),

which is obviously cohomologous to γ. From (3.6) and (3.8), and for σ ∈ G
and n ∈ N , we get

β(σ, n) = λσ
σλnλ

−1
σnγ(σ, n) = 1.

Hence

(3.9) β(σ, n) = 1 for all σ ∈ G and n ∈ N.
Using the cocycle equation (1.1) for the weak cocycle β and the elements
σ, τ ∈ G and n ∈ n, we get

σβ(τ, n)β(σ, τn) = β(σ, τ)β(στ, n).

Then from (3.9) we have

(3.10) β(σ, τn) = β(σ, τ) for all σ, τ ∈ G and n ∈ N.
Since N E G, for n ∈ N and σ ∈ G we have nσ = σn′ for some n′ ∈ N .
Using (3.10) we get

(3.11) β(n1, nσ) = β(n1, σn
′) = β(n1, σ).

Hence the cocycle equation (1.1) for β and the elements n1, n ∈ N and
σ ∈ G becomes

n1β(n, σ)β(n1, nσ) = β(n1, n)β(n1n, σ),

and from (3.11) and (3.9) the above equation becomes

(3.12) n1β(n, σ)β(n1, σ) = β(n1n, σ).

We define the map ζσ : N → E∗, n 7→ β(n, σ), for σ ∈ G and n ∈ N . From
(3.12) we have

ζσ(n1n2) = n1ζσ(n2)ζσ(n1)

for n1, n2 ∈ N and σ ∈ G. Hence ζσ is a 1-cocycle, and since H1(G,E∗) = 1,
there exists an element kσ ∈ E∗ such that

β(n, σ) = ζσ(n) = nkσk
−1
σ for all n ∈ N.

Hence

(3.13) β(n, σ) = ζσ(n) = nkσk
−1
σ .
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Now we consider the elements ψσ = kt0 for σ = t0n0 as in (3.4), and we get

ψ : G×G→ E∗ with ψ(σ, τ) = ψσ
σψτψ

−1
στ .

It is clear that ψ ∈ B2(G,E∗) and the following hold:

(3.14) ψσn = ψσ = ψnσ and ψn = 1, for n ∈ N, σ ∈ G.
Let δ : G × G → E with δ(σ, τ) = ψσ

σψτψ
−1
στ β(σ, τ). Then δ is a cocycle

cohomologous to β, and using (3.4), (3.10), (3.13) and (3.14) we obtain
consecutively

β(n, σ) = ψn
nψσψ

−1
nσ δ(n, σ),

β(n, t0n0) = ψn
nψt0n0ψ

−1
t0n0

δ(n, σ),

β(n, t0) = nkt0k
−1
t0
δ(n, σ),

nkt0k
−1
t0

= nkt0k
−1
t0
δ(n, σ),

and finally

(3.15) δ(n, σ) = 1 for n ∈ N and σ ∈ G.
Moreover from the definition of ψ and δ, and the equations (3.9), (3.14) we
get the following implications, for β and for σ ∈ G and n ∈ N :

β(σ, n) = ψσ
σψnψ

−1
σnδ(σ, n), so 1 = ψσψ

−1
σ δ(σ, n),

that is,

(3.16) δ(σ, n) = 1 for σ ∈ G and n ∈ N.
Now applying the cocycle equation (1.1) for the cocycle δ and for the ele-
ments σ, τ ∈ G and n ∈ N , using (3.15) and (3.16) we get

σδ(τ, n)δ(σ, τn) = δ(σ, τ)δ(στ, n),

and hence

(3.17) δ(σ, τn) = δ(σ, τ),

for σ, τ ∈ G and n ∈ N .

Again from the cocycle equation (1.1) for the elements σ, n, τ and for the
weak cocycle δ, using (3.15) and (3.16) for σ, τ ∈ G and n ∈ N , we obtain

σδ(n, τ)δ(σ, nτ) = δ(σ, n)δ(σn, τ),

so that

(3.18) δ(σ, nτ) = δ(σn, τ).

Now for σ, τ ∈ G and n1, n2 ∈ N , and using (3.17) and (3.18), we get

(3.19) δ(σn1, τn2) = δ(σn1, τ) = δ(σ, n1τ) = δ(σ, τn′1) = δ(σ, τ),

where n1τ = τn′1 for some n′1 ∈ N.
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In order to finish the proof of the lemma it is sufficient to prove that
δ(σ, n) ∈ EN for σ, τ ∈ G. For this, let n ∈ N and σ, τ ∈ G. Then the
cocycle equation (1.1) for the cocycle δ and for the elements n, σ, τ becomes

nδ(σ, τ)δ(n, στ) = δ(n, σ)δ(nσ, τ).

Now let nσ = σn′ for some n′ ∈ N . From (3.15) and (3.19), the above
equation becomes

nδ(σ, τ) = δ(nσ, τ) = δ(σn′, τ) = δ(σ, τ).

Hence δ(σ, τ) ∈ EN and the result follows.

Theorem 3.2. Let G be a group acting on a field E, and N a nor-
mal subgroup of G with fixed field EN such that H1(N,E∗) = 1. Then the
sequence

1→M2
ε (G/N,EN )

Inf−−→M2
ε̂ (G,E)

Res−−→ H2(N,E∗)

is exact. Moreover the equality H2(N,E∗) = 1 yields

M2
ε (G/N,EN ) 'M2

ε̂ (G,E).

Proof. First we prove that Ker(Inf) = {[ε]}. Let α : G/N ×G/N → EN

be a weak cocycle and α̂ : G×G→ E be defined by α̂(σ, τ) = α(σN, τN).
Then Inf[α] = [α̂]. Let [α] ∈ Ker(Inf), so [α̂] = [ε̂]. Then there exist elements
µσ ∈ E∗, for σ ∈ G, such that

α̂(σ, τ) = µσ
σµτµ

−1
στ ε̂(σ, τ) for σ, τ ∈ G.

We remark that for n1, n2 ∈ N,
α̂(n1, n2) = 1, so µn1n2 = µn1

n1µn2 ,

hence for the map µ : G→ E∗, µ(σ) = µσ, we see that µ|N is a 1-cocycle and
[µ|N ] ∈ H1(N,E∗) = 1, by assumption. Therefore, there exists an element
k ∈ E∗ such that µ(n) = nk · k−1 for n ∈ N. Now we consider the map
ϕ : G→ E∗ such that µ(σ) = σkk−1ϕ(σ). Then

(3.20) ϕ(n) = 1 for n ∈ N,
and

α̂(σ, τ) = σµτµσµ
−1
στ ε̂(σ, τ)

= σ[τkk−1ϕ(τ)] σkk−1ϕ(σ)[στkk−1ϕ(στ)]−1ε̂(σ, τ)

= στk(σk)−1 σϕ(τ) σkk−1ϕ(σ)(στk)−1kϕ(στ)−1ε̂(σ, τ),

and consequently

(3.21) α̂(σ, τ) = σϕ(τ)ϕ(σ)ϕ(στ)−1ε̂(σ, τ).

The above equation, for τ = n ∈ N , yields

(3.22) α̂(σ, n) = ϕ(σ) σϕ(n)ϕ(σn)−1ε̂(σ, n).
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Since α̂(σ, n) = ε̂(σ, n) = 1, using (3.20), the equation (3.22) gets the form

(3.23) ϕ(σn) = ϕ(σ) for σ ∈ G, n ∈ N.
Moreover, the equation (3.21), for σ = n ∈ N , yields

α̂(n, τ) = ϕ(n) nϕ(τ)ϕ(nτ)−1ε̂(n, τ),

and since α̂(n, τ) = ε̂(n, τ) = 1, in view of (3.20) we get

(3.24) nϕ(σ) = ϕ(nσ) for σ ∈ G, n ∈ N.
We remark that since N E G, we have nσ = σn′ for some n′ ∈ N . Hence
(3.24) gets the form

nϕ(σ) = ϕ(nσ) = ϕ(σn′) = ϕ(σ),

therefore we get

nϕ(σ) = ϕ(σ) for σ ∈ G, n ∈ N.
This means that ϕ(σ) ∈ EN for σ ∈ G. So there exists the map

ψ : G/N → EN , ψ(gN) = ϕ(g)

such that, for σ, τ ∈G, α(σN, τN) = ψ(σN) σNψ(τN)ψ(στN)−1ε(σN, τN).
In other words, the cocycle α is cohomologous to ε and so Ker(Inf)={[ε]}.

To complete the proof we have to show that Res ◦ Inf = 1. Let [α] ∈
M2
ε (G/N,EN ) and [α̂] = Inf[α]. Then α̂(n1, n2) = 1 for n1, n2 ∈ N,

and so Res ◦ Inf[α] = [1]. Hence Im(Inf) ⊆ Ker(Res). In order to prove
that Ker(Res) ⊆ Im(Inf), let α : G × G → E be a cocycle such that
α|N×N ∈ B2(G,E). Then from Lemma 3.1, α is cohomologous to a co-
cycle β : G × G → E such that β(σn1, τn2) = β(σ, τ) ∈ EN for σ, τ ∈ G
and n1, n2 ∈ N. Therefore there exists a cocycle γ : G/N × G/N → EN ,
γ(σN, τN) = β(σ, τ), so that Inf[γ] = [β] = [α], and this means that
Ker(Res) ⊆ Im(Inf).

Let now R be a complete discrete valuation ring, let K,L, S, πK , πS,G =
Gal(L/K), S, R, f be as in Section 2, and let G1 denote the first ramification
group of L/K, that is:

Definition 3.3.

G1 = {σ ∈ G | σ(a) ≡ a (mod (πK)2) for all a ∈ S}.

The following result generalizes [7, Lemma 1.1], and implies the isomor-
phism H2(G/G1, S

∗
) ∼= H2(G,S).

Proposition 3.4. Let G = Gal(L/K) be as in (2.1) and let ε : G/G1×
G/G1 → S be an idempotent cocycle, where G1 is the first ramification

group (3.3) of L/K. Then the inflation map M2
ε (G/G1, S)

Inf−−→M2
ε̂ (G,S) is

a group isomorphism.
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Proof. The first ramification group G1 acts trivially on the field S and
(|G1|, |S

∗|) = 1, hence H1(G1, S
∗
) = 1 [8, §39]. Also H2(G1, S

∗
) = 1. Now

from Theorem 3.2 we get the exact sequence

1→M2
ε (G/G1, S

G1)
Inf−−→M2

ε̂ (G,S)
Res−−→ H2(G1, S

∗
) = 1,

and the result follows.

Now we are able to prove one of the main results of this paper.

Theorem 3.5. Let G = G(L/K) be the group (2.1), G1 = Ram1(L/K)
the first ramification group (3.3), and let ε̂ : G × G → S be an idempotent
cocycle such that there exists an idempotent cocycle ε : G/G1 ×G/G1 → S
satisfying the relation ε̂(σ, τ) = ε(σG1, τG1). Then:

(i) For every cocycle α : G × G → S such that [α] ∈ M2
ε̂ (G,S), there

exists a cocycle β̂ : G × G → S such that β̂ is cohomologous to α
and β̂(σ, τ) = 1 if σ or τ belongs to G1.

(ii) For every cocycle α : G×G→ S# such that [α] ∈M2
ε̂ (G,S), where

α(σ, τ) = α(σ, τ) mod πS, there exists a cocycle β : G × G → S#

such that β is cohomologous to α and β(σ, τ) ∈ 1 +πS if σ ∈ G1 or
τ ∈ G1.

(iii) The first ramification group G1 is a subgroup of the inertial group
H of the cocycle α.

Proof. (i) We consider the inflation map

M2
ε (G/G1, S)

Inf−−→M2
ε̂ (G,S).

If α : G × G → S is a cocycle such that [α] ∈ M2
ε̂ (G,S) then, by Proposi-

tion 3.4, there exists [β] ∈M2
ε (G/G1, S) such that Inf[β] = [β̂] = [α]. Then

β̂ : G×G→ S is a cocycle having the required properties.
(ii) Let α : G×G→ S# be a cocycle. Then from (i) there exists a cocycle

γ such that [γ] = [ᾱ] and γ(σ, τ) = 1 whenever σ ∈ G1 or τ ∈ G1. Therefore
there exist elements µσ ∈ S

∗
for σ ∈ G such that ᾱ(σ, τ) = µσ

σµτµ
−1
στ for

σ ∈ G1 or τ ∈ G1. Let µ(σ) = s̄σ ∈ S for some sσ ∈ S. Then ᾱ(σ, τ) =

s̄σ
σs̄τ s̄

−1
στ , and hence α(σ, τ) = sσ σsτs

−1
στ . So α(σ, τ) − sσ

σsτs
−1
στ ∈ πS

whenever σ ∈ G1 or τ ∈ G1. We remark that the cocycle β : G×G→ S#,
β(σ, τ) = s−1σ

σs−1τ sστα(σ, τ), has the required properties, and the result
follows.

(iii) From (ii) we see that β(σ, τ) ∈ 1 + πS if σ ∈ G1 or τ ∈ G1. Hence if
σ ∈ G1 or τ ∈ G1, then β(σ, τ) ∈ S∗. Now from the definition of the inertial
group H and the fact that the cocycle α is cohomologous to β, we conclude
that G1 is a subgroup of H.

We remark that if α : G × G → S∗ is a factor set, then there exists a
factor set β : G × G → S∗ cohomologous to α such that β(σ, τ) ∈ 1 + πS
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whenever σ or τ belongs to G1 (see [7, Lemma 1.3]). Theorem 3.5 gives a
condition for an analogous result to hold in the case of a cocycle, and hence
a condition for G1 ≤ H.

4. The Jacobson radical of Λ. Throughout this section we assume
that Λ is a weak crossed product order (2.2) in the algebra (2.3) for a
cocycle α : G×G→ S#. In this section we study the Jacobson radical of Λ
for any finite field extension L/K and a local field K. We denote by rad the
Jacobson radical and follow the notation of the previous sections. We need
the following result of Wilson (see [32, Lemmas 2.3 and 2.5]).

Lemma 4.1. Let α : G×G→ S# be a weak cocycle. Then:

(i) For σ ∈ G and h ∈ H, the elements α(σ, h) and α(h, σ) are both
units of S.

(ii) If σ, τ ∈ G \H and στ ∈ H, then α(σ, τ) is not a unit of S.

Proposition 4.2. radΛ = radΛH ⊕ I, where I =
⊕

σ∈G−H Suσ.

Proof. Since Λ = ΛH ⊕ I, we consider the map

ϕ : ΛH ⊕ I → ΛH/radΛH , λH + x 7→ λH + radΛH ,

for x ∈ I. It is clear that ϕ is an epimorphism of additive groups with kernel
equal to radΛH ⊕ I. We prove that ϕ preserves ring multiplication. Let
λH , λ

′
H ∈ ΛH and x, x′ ∈ I. Then

(λH + x)(λ′H + x′) = λHλ
′
H + λHx

′ + xλ′H + xx′.

We remark that λHλ
′
H ∈ ΛH . Moreover λHx

′, xλ′H ∈ I. Indeed, for h ∈ H
and σ ∈ G−H we see that the elements

uhuσ = α(h, σ)uhσ and uσuh = α(σ, h)uσh

belong to I, and therefore λHx
′ and xλ′H belong to I. For the element xx′,

let

x =
∑

σ∈G−H
sσuσ and x′ =

∑
τ∈G−H

sτuτ .

Then xx′ =
∑
sσs

σ
τα(σ, τ)uστ . If στ /∈ H then uστ ∈ I, and so xx′ ∈ I.

If στ ∈ H, then from Lemma 4.1(ii) we deduce that α(σ, τ) ∈ πS and
sσs

σ
τα(σ, τ)uστ ∈ πΛH . But πΛH ⊂ radΛH , and so xx′ ∈ radΛH . Therefore

in any case xx′ ∈ radΛH ⊕ I. Hence

ϕ[(λH + x)(λ′H + x′)] = λHλ
′
H + radΛH = ϕ(λH + x)ϕ(λ′H + x′).

So we get

ΛH ⊕ I/(radΛH ⊕ I) ∼= ΛH/radΛH ,

and so radΛH ⊕ I ⊃ radΛ, ΛH being semisimple. It remains to prove that
radΛ ⊃ radΛH⊕I. For this we have to prove that there is a natural number
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k such that (radΛH⊕I)k ⊂ πΛ, in other words (radΛH⊕I)/πΛ is a nilpotent
ideal of the R-algebra Λ/πΛ, radΛH⊕I being an ideal of Λ containing πΛ. In
order to prove that (radΛH⊕I)/πΛ is a nilpotent ideal of Λ/πΛ it is enough
to show that it has an R-basis consisting of nilpotent elements, by a theorem
of Wedderburn (see [19, Ch. 11, Theorem 1.15]). Since, for x ∈ radΛH , the
element x+ πΛ ∈ Λ/πΛ is nilpotent, it is enough to prove that an element
suσ + πΛ, for s ∈ S and σ ∈ G − H, is nilpotent. For this let σ ∈ G − H
and k be the smallest natural number such that σk ∈ H. Then

(uσ)k =
(k−1∏
i=1

σk−i−1
α(σ, σk−1)

)
uσk

=
(k−2∏
i=1

σk−i−1
α(σ, σk−1)

)
σα(σ, σk−1)uσk .

Hence (uσ)k ∈ πΛ because α(σ, σk−1) ∈ πS, by Lemma 4.1(ii). Therefore
radΛ ⊃ radΛH ⊕ I, and we have proved that radΛ = radΛH ⊕ I.

For the next theorem we need some more notation. Let H1 be the first
ramification group of the field extension L/LH with corresponding field LH1 ,
and let α1 be the restriction of the factor set αH to H1 ×H1. Then

AH1 := (LH1/LH , α1) ∼= EndD1(V1) ∼= Mr1(D1)

for a division ring D1 centrally containing LH with index, say, m1. Moreover
let ∆1 be the unique maximal SH -order in D1 with maximal ideal ∆1πD1 .
We remark that ΛH1 := (SH1/SH , α1) is a hereditary SH -order in AH1 since
the extension LH1/LH is tamely ramified (see [31]).

Theorem 4.3. Let Λ = (S/R,α) be a weak crossed product order (2.2)
in the crossed product K-algebra A = (L/K,α) (2.3), and H be the inertial
group of the cocycle α. Let H1 be the first ramification group of the extension
L/LH , and X be a complete set of representatives of the left cosets of H1

in H. Then

(i)

radΛ =
⊕
σ∈X

πSuσ ⊕
( ⊕

σ∈X
ρ∈H1−{1}

Suσ(uρ − u1)
)
⊕
( ⊕
σ∈G−H

Suσ

)
.

(ii) Λ/radΛ ∼= ΛH/radΛH ∼= ΛH1/radΛH1
∼= MfH (∆1/∆1πD1)eH/m1 ,

where fH is the inertial degree of the extension L/LH , eH is the
tame ramification degree of the extension L/LH , and m1 is the index
of D1.

Proof. (i) This follows from Proposition 4.2 and [7, Proposition 1.4].
(ii) The result follows from Proposition 4.2 and [7, Theorem 1.9].
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The above result extends the relevant result of Haile [13] for unramified
extensions and that of Wilson [32] for tamely ramified extensions.

5.Maximal orders containingΛ. We follow the notation of Subsection
2.2. LetΓ0 be a maximalR-order in the crossed product algebraA ∼= EndD(V )
(2.3) containing the weak crossed product Λ (2.2). From the structure of
maximal orders (see [21, §17]), there exists a unique up to isomorphism inde-
composable Γ0-lattice M full in V , i.e. KM = V , which is a (Γ0, ∆)-lattice.
Let V = Lω1 ⊕ · · · ⊕ Lωm. Then we can choose M = Sω1 ⊕ · · · ⊕ Sωm, and
M is also an indecomposable left Λ-lattice and a (Λ,∆)-bimodule. Of course
M is a left Γ -lattice for the unique principal R-order Γ in A containing
Λ (see Theorem 2.6). From the structure of hereditary orders we deduce
that Γi = End∆(πiΓM), 0 ≤ i ≤ k − 1, are all the non-isomorphic maximal

R-orders in A containing Γ , where Γ =
⋂k−1
i=0 Γi and πiΓM , 0 ≤ i ≤ k−1, are

all the non-isomorphic indecomposableΓ -lattices. ThereforeΓi, 0 ≤ i ≤ k−1,
are all the non-isomorphic maximal R-orders containing Λ. Moreover πiΓM ,
0 ≤ i ≤ k− 1, are also non-isomorphic indecomposable left Λ-lattices, full in
V and (Λ,∆)-bimodules. If N is another such left Λ-lattice, then End∆(N)
will be a maximal R-order in A, and hence one of Γi, 0 ≤ i ≤ k − 1. This
means that N is isomorphic to one of πiΓM , 0 ≤ i ≤ k − 1. So we conclude
with the following:

Proposition 5.1. Let A be a crossed product algebra (2.3) and let V =
Lω1⊕· · ·⊕Lωm be the unique simple (A,D)-bimodule. Let M = Sω1⊕· · ·⊕
Sωm and Γ0 := End∆(M). Then:

(i) Γi := πiΓΓ0, 0 ≤ i ≤ k − 1, are all the maximal R-orders in A
containing the weak crossed product order Λ (2.2).

(ii) πiΓM , 0 ≤ i ≤ k − 1, are all the non-isomorphic indecomposable
Λ-lattices which are (Λ,∆)-bimodules.
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