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A REMARK ON THE TRANSPORT EQUATION WITH b ∈ BV
AND divx b ∈ BMO

BY

PAWEŁ SUBKO (Warszawa)

Abstract. We investigate the transport equation ∂tu(t, x)+b(t, x)·Dxu(t, x) = 0. Our
result improves the classical criteria of uniqueness of weak solutions in the case of irregular
coefficients: b ∈ BV, divx b ∈ BMO. To obtain our result we use a procedure similar to
DiPerna and Lions’s one developed for Sobolev vector fields. We apply renormalization
theory for BV vector fields and logarithmic type inequalities to obtain energy estimates.

1. Introduction. In this paper we investigate the problem of existence
and uniqueness of solutions to the following transport equation:{

∂tu(t, x) + b(t, x) ·Dxu(t, x) = 0,

u(0, x) = ū(x),
(1.1)

where b : R+ × Rd → Rd is given and u : R+ × Rd → R is unknown. This
equation is a fundamental example in partial differential equations theory.
One can interpret it as describing the transport of a given quantity u which
is constant along streamlines. Indeed, for smooth data ū and b one can easily
solve (1.1) using the method of characteristics to see that u is transported
along the trajectories of the corresponding ODE. The straightforward out-
come of this method is the uniqueness result for smooth ū and b (it is also
provided by the Cauchy–Lipschitz theorem). DiPerna and Lions [16] showed
that this result is valid for b ∈W 1,1∩L∞ with divx b ∈ L∞ over space. What
is even more important, they introduced an innovative idea of dealing with
the Cauchy problem.

We can split DiPerna and Lions’s scheme into two independent parts.
The first is what we can now call renormalization theory. Its aim is to show
that solutions have the renormalization property (for (1.1) this means that
whenever u ∈ L∞ solves the problem with initial data ū, so does β(u) for
any β ∈ C1 with initial data β(ū)). We can also express the idea in terms of
properties of the vector field b. We say a given vector field b has the renormal-
ization property iff all bounded solutions to (1.1) have the renormalization
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property. In general there are vector fields without the renormalization prop-
erty, though Ambrosio [3] successfully dealt with the case when b ∈ BV. This
assumption is sharp in view of counterexamples presented in [1, 11]. On the
other hand, W 1,1 ⊂ BV, so this naturally extends DiPerna and Lions’s clas-
sical result. Hence, it is not unexpected that even though there are many
recent papers on the transport equation like [15, 6, 5, 4] to name but a few,
they all work in the BV setting (with an interesting exception: Valkonen’s
paper [22] where velocity is a special function of bounded deformation).

The second part of DiPerna and Lions’s scheme is to show how (and under
which assumptions) the renormalization property implies uniqueness; in this
part of the scheme Ambrosio [3] assumed divx b ∈ L∞. Recently in [9, 6, 5, 15]
authors working in the renormalization framework dealing with the Cauchy
problem for the transport and continuity equations redirect the assumptions
from the divergence—they assume that b is nearly incompressible (that is
the case iff any solution is bounded away from zero and infinity). However,
their considerations require b ∈ L∞ over time against the usual L1 regularity.
Bouchut et al. [10] worked with one-sided Lipschitz coefficient but once more
with the assumption of L∞ regularity over time. Mucha [19] proved a parallel
result: he showed that divx b ∈ BMO is enough to derive uniqueness from
renormalization. It is a natural extension since L∞ ⊂ BMO. On the other
hand, the BMO space is on the boundary of known counterexamples [16].

The cost of obtaining better regularity (BMO instead of L∞) is the as-
sumption on the boundedness of the support of divx b (see Theorem 1.6).

Remark 1.1. We recall that a measure µ is absolutely continuous (a.c.)
with respect to a measure ν and we write µ� ν iff ν(A) = 0 implies µ(A) for
every Borel A ⊂ Rd. It is well known that every f ∈ L1

loc is the density of an
absolutely continuous measure, that is, µf (A) :=

	
A f dx is a.c. Conversely,

every a.c. measure is represented by a density function in L1
loc. Hence, we

will often identify these two objects. In particular, writing f � Ld we mean
µf � Ld. For details we refer to [7] and [17].

We consider weak solutions to (1.1) in the following sense:

Definition 1.2. Let ū∈L∞((0, T )×Rd), b,divx b∈ L1
loc(0, T ;L1

loc(Rd)).
We say that u ∈L∞((0, T )× Rd) is a weak solution to (1.1) if the following
integral identity holds:

(1.2)

T�

0

�

Rd

u(t, x){∂tϕ(t, x) + b(t, x) ·Dxϕ(t, x) + ϕ(t, x) divx b(t, x)} dt dx

= −
�

Rd

ū(x)ϕ(0, x) dx

for each ϕ ∈ C∞([0, T ];C∞0 (Rd)) such that ϕ|t=T = 0.
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Renormalization is the key concept in DiPerna–Lions’s and Ambrosio’s
works:

Definition 1.3. We say that a vector field b ∈ L1
loc(0, T ;L1

loc(Rd)) has
the renormalization property if for every solution u to (1.1) in the sense of
Definition 1.2 the following integral identity holds:

(1.3)

T�

0

�

Rd

β(u(t, x)){∂tϕ(t, x)+b(t, x)·Dxϕ(t, x)+ϕ(t, x) divx b(t, x)} dt dx

= −
�

Rd

β(ū(x))ϕ(0, x) dx

for each β ∈ C1(R) and all ϕ ∈ C∞([0, T ];C∞0 (Rd)) such that ϕ|t=T = 0.

Both results mentioned above (Mucha’s and Ambrosio’s) extend DiPerna
and Lions’s classical result. In this paper we highlight the proofs of these
extensions and show that they are independent. We show that we can weaken
the assumptions in both theorems (that is, divx b ∈ BMO and b ∈ BV) and
still derive existence and uniqueness for (1.1). The following is the main
result of this paper:

Theorem 1.4. Let T > 0, b ∈ L1(0, T ; BVloc(Rd)), ū ∈ L∞(Rd), and
suppose that

divx b ∈ L1(0, T ; BMO(Rd)),
b

1 + |x|
∈ L1(0, T ;L1(Rd)),

supp divx b(t, ·) ⊂ BR(0) for a fixed R > 0,

where BR(0) is the ball centered at the origin with radius R. Then there exists
a unique weak solution to (1.1).

We follow a procedure similar to DiPerna–Lions’s and we split the proof
of Theorem 1.4 into two parts. The first one is the renormalization theorem
for BV vector fields proved by Ambrosio [3]:

Theorem 1.5 (Ambrosio). Let b ∈ L1
loc(0, T ; BVloc(Rd)) with divx b

� Ld (see Remark 1.1). Then b has the renormalization property in the
sense of Definition 1.3.

The second part is derived from what Mucha proved in [19]. The key role
here is played by the logarithmic type estimate for BMO functions given
in [20].

Theorem 1.6 (Mucha). Let f ∈ BMO(Rd) with bounded support and let
g ∈ L1(Rd) ∩ L∞(Rd). Then

(1.4)
∣∣∣ �
Rd

fg dx
∣∣∣≤C0‖f‖BMO(Rd)‖g‖L1(Rd)

[
|ln ‖g‖L1(Rd)|+ln(e+‖g‖L∞(Rn))

]
.
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Mucha views this result as belonging to logarithmic Sobolev inequalities
[13, 14, 18]; however, we require no additional information on the derivatives,
hence we can apply it to a BV vector field. The weakness of the result lies
in the assumption on the boundedness of the support of f ∈ BMO, which
seems to be inevitable since the proof relies on the classical Zygmund result
for f ∈ BMO (see Appendix (3.2)).

By a measure we always mean a Borel signed measure (µ is a Borel mea-
sure iff any Borel set A ⊂ Rd is µ-measurable). We say that f ∈ L1(Rd) is a
function with bounded variation, f ∈ BV(Rd), if its distributional derivative
Df is representable by a measure with finite total variation (we often sim-
ply say that the measure is finite). The total variation of a measure Df is
defined by

(1.5) |Df |(C) := sup
{ ∞∑
i=1

|Df(Ci)| : Ci Borel, pairwise disjoint, Ci⊂C
}
.

We say that u ∈ L1
loc(Rd) has locally bounded variation, u ∈ BVloc(Rd),

if its distributional derivative Du is representable by a measure with locally
finite variation (finite on any compact set). We say that f ∈ L1

loc(Rd) has
bounded mean oscillation, f ∈ BMO(Rd), if the seminorm

(1.6) ‖f‖BMO(Rd) = sup
x∈Rd, r>0

�

Br(x)

[
f(y)−

�

Br(x)

f(x) dx
]
dy

is finite, where
�
Br(x)

f(y) dy = |Br(x)|−1
	
f(y) dy and Br(x) is the ball of

radius r centered at x. In general the norm in BMO(Rd) may be defined as
the sum of (1.6) and the standard L1 norm, but we are interested in the case
when divx b ∈ BMO(Rd) has compact support, which implies that

‖divx b‖L1(Rd) ≤ |diam supp divx b|d‖divx b‖BMO(Rd).

This paper is organized as follows: first under the assumption that the
vector field b has the renormalization property we prove uniqueness for (1.1)
(see Theorem 1.4); next we sketch the proof that in our case the vector field b
has the renormalization property (see Theorem 1.5); and in the Appendix
we prove existence of distributional solutions to (1.1) and recall some basic
facts used in Ambrosio’s and Mucha’s results.

2. Proof of Theorem 1.4. In this section we give a reasonably detailed
proof of Theorem 1.4. We follow Mucha’s proof in [19]. The difference is that
in our case b ∈ BVloc(Rd) instead of b ∈W 1,1

loc (Rd) over the spatial variable.
We find that this does not cause any trouble and Mucha’s proof remains
valid. There is no need to use any special properties of W 1,1

loc (Rd) functions
in this part of the proof.
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Proof of Theorem 1.4. We claim there exists a unique weak solution to
(1.1) in the sense of Definition 1.2. The proof of existence in our case is
standard and we omit it.

Theorem 1.5 states that b has the renormalization property (1.3). In The-
orem 1.5 we set β(u) = u2 and we take πr(x)ϕ(t) as a test function, where
ϕ ∈ C∞(R) is such that ϕ|t=T = 0, and πr ∈ C∞c (Rd) is a non-negative
cut-off function such that πr(x) = π1(x/r), π1(x) = 1 in B1(0) and addi-
tionally

|∇πr| ≤ C/r.
Then we obtain

(2.1)
T�

0

�

Rd

u2πr∂tϕdx dt+

T�

0

�

Rd

u2ϕb · ∇πr dx dt

+

T�

0

�

Rd

u2πrϕdivx b dx dt = 0.

The second term in (2.1) can be estimated as follows:

(2.2)
∣∣∣ T�
0

�

Rd

u2ϕb · ∇πr dx dt
∣∣∣ ≤ ‖u2‖L∞

T�

0

�

Rd

(1 + |x|)|∇πr|
b

1 + |x|
dxϕdt.

By definition (1+ |x|)|∇πr| ≤ C, supp∇πr ⊂ B2r(0)\Br(0) and by assump-
tion b/(1 + |x|) ∈ L1, hence the r.h.s. of (2.2) converges to 0 as r →∞.

Also by assumption the support of divx b is bounded, so for every r > r0
with sufficiently large r0 we have

(2.3) divx bπr = divx bπr0 = divx b.

From (2.1) and (2.2), fixing r0 as demanded in (2.3) we obtain

(2.4) −
T�

0

�

Rd

u2πr0∂tϕdx dt =

T�

0

�

Rd

u2πr0ϕ divx b dx dt.

Denoting α(t) := ‖u2(x, t)πr0‖L1(Rd) we have the pointwise representation

(2.5) α(t) =

t�

0

�

Rd

u2πr0 divx b dx dt.

By Theorem 1.6, from (2.5) we obtain

α(t) ≤
t�

0

C0γ(s)α(s)[|lnα(s)|+ ln(m2 + e)] ds

where m := ‖u‖L∞ and γ(t) := ‖divx b(t)‖BMO(Rd). For a fixed ε > 0 let us
define an auxiliary function α∗(t) (that bounds α(t) and is easier to work
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with) by

(2.6) α∗(t) = ε+

t�

0

C0γ(s)α∗(s)[|lnα∗(s)|+ ln(m2 + e)] ds.

From (2.5) we deduce that there exists T1 ∈ (0, T ) such that

(2.7) α(t) ≤ e−1 for t ∈ [0, T1].

On the interval [0, e−1] the function w 7→ w|lnw| is increasing and the defini-
tion (2.6) guarantees that α∗(t) is a continuous and positive function, hence
we can deduce

(2.8) 0 ≤ α(t) < α∗(t) for t ∈ [0, T1].

By an argument used in the proof of the Gronwall inequality, (2.6) leads to
the implicit formula

α∗(t) = ε exp
{ t�

0

C0γ(s)[|lnα∗(s)|+ ln(m2 + e)] ds
}
.

From this representation, there exists T2 ∈ (0, T1] such that

(2.9) α∗(t) ≤ Cε for every t ∈ [0, T2].

Then (2.9) and (2.8) immediately imply

0 ≤ α(t) ≤ α∗(t) ≤ ε for all t ∈ [0, T2],

and taking ε→ 0 we obtain

u2πr0 = 0 for each t ∈ [0, T2].

Since r0 is arbitrarily large, we deduce that u ≡ 0 in [0, T2], and hence we
obtain uniqueness for (1.1) in the whole [0, T ).

As mentioned at the beginning of this section, the proof of Theorem 1.4
will be complete if we deduce that b has the renormalization property. We
only sketch this part of the proof because the assumption on divergence
(that divx b � Ld) is used only at the beginning and in the final step of
the argument. We also point out that the assumptions of Theorem 1.4 imply
those of Theorem 1.5. In particular divx b ∈ BMO(Rd) implies divx b ∈
L1(Rd), and hence the distribution divx b may be represented as a locally
finite measure which is absolutely continuous (see Remark 1.1).

Before proving Theorem 1.5 we introduce some notation and terminol-
ogy. (For the basic terminology and facts about BV functions and measure
theory we refer to [7] and [17].) The spatial distributional derivative of b(t, ·)
is a matrix-valued measure, and hence for every t ∈ (0, T ) it has a decompo-
sition Db(t, ·) = Dab(t, ·)+Dsb(t, ·), where Dab(t, ·) is absolutely continuous
and Dsb(t, ·) is singular. Integrating the measures |Db(t, ·)|, |Dab(t, ·)| and
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|Dsb(t, ·)| over time, we obtain measures |Db|, |Dab| and |Dsb| respectively,
i.e. �

I×Rd

ϕ(t, x) d|Db|(t, x) =
�

I

�

Rd

ϕ(t, x) d|Db(t, ·)|(x) dt,(2.10)

�

I×Rd

ϕ(t, x) d|Dσb|(t, x) =
�

I

�

Rd

ϕ(t, x) d|Dσb(t, ·)|(x) dt.(2.11)

Throughout this section, I ⊂ R denotes any subinterval and K ⊂ Rd any
compact subset.

To prove Theorem 1.5 we need two technical lemmas. The first one allows
us to estimate difference quotients of BV functions. We split a BV quotient
into two parts, B1,ε and B2,ε, to deal with the absolutely continuous part
and the singular part (in the limit).

Lemma 2.1. Let B ∈ BVloc(Rd,Rm) and z ∈ Rd. Then there exists a
decomposition

B(x+ εz)−B(x)

ε
= B1,ε

z (x) +B2,ε
z (x)

such that

(2.12) B1,ε
z (x) −→

ε→0
∇B(x) · z strongly in L1

loc(Rd,Rm)

where ∇B ∈ L1
loc(Rd,Rm × Rd) satisfies DaB = ∇BLd, and

(2.13) lim sup
ε→0

�

K

|B2,ε
z (x)| dx ≤ |DsB · z|(K)

for each compact K ⊂ Rd. Moreover (2.12) and (2.13) yield

sup
ε∈(0,δ)

�

K

(|B1,ε
z (x)|+ |B2,ε

z (x)|) dx ≤ |z| |DsB|(Kδ)

where Kδ is the open δ-neighbourhood of K.

For a detailed proof of Lemma 2.1 we refer to [15, Proposition 4.3].
To optimize our estimates with respect to the chosen convolution kernel

we use the following lemma

Lemma 2.2 (Alberti). Set

K :=
{
η ∈ C∞c (B1(0)) : η ≥ 0 even and

�

B1(0)

η = 1
}
.(2.14)

For any matrix M ∈ Rd × Rd we have

inf
η∈K

Λ(M,η) = |trM |



120 P. SUBKO

where

(2.15) Λ(M,η) :=
�

Rd

|∇η(z) ·M · z| dz.

For a detailed proof of Lemma 2.2 we refer to [12, Lemma 2.6.2].

Proof of Theorem 1.5. Let ηε ∈ C∞c (Rd) be the family of mollifiers
ηε(x) := ε−dη(x/ε) with an even convolution kernel. We often use the nota-
tion fε := f ∗ ηε. We begin with a standard procedure of mollifying (1.1).
Direct computation (see for instance [3, (3.12)]) gives

(2.16) ∂tβ(uε) + b ·Dxβ(uε) = Rεβ′(uε)

where
Rε = b ·Dx(u ∗ ηε)− (b ·Dxu) ∗ ηε.

Again, a direct but tedious computation (where we use the fact that η is
even; see [3, (3.8)]) gives another formula for Rε:

Rε(x) =
�

Rd

u(x− εz)
(
b(t, x− εz)− b(t, x)

ε
· ∇η(z)

)
dz(2.17)

− (udivx b) ∗ ηε.

Using Lemma 1 (with respect to the spatial variable) we decompose (2.17)
into

(2.18)
�

Rd

u(x− εz)b1,εz (t, x) · ∇η(z) dz − (udivx b) ∗ ηε

+
�

Rd

u(x− εz)b2,εz (t, x) · ∇η(z) dz.

We apply (2.12) to the first term of (2.18). Since divx b� Ld, the absolutely
continuous part of the divergence coincides with the whole divergence. Thus
the same phenomenon occurs as in DiPerna and Lions’s classical result—the
first two terms in (2.18) vanish. Therefore following the computations in [15]
we have�

I

�

K

|Rε(x)| dx dt ≤ ‖u‖L∞

�

I

�

K

�

Rd

|b2,εz (t, x) · ∇η(z)| dz dx dt

≤ ‖u‖L∞

�

I

�

supp(η)

�

K

|b2,εz (t, x) · ∇η(z)| dx dz dt.

Next, the Fatou lemma yields

lim sup
ε→0

�

I

�

K

|Rε(x)| dx dt ≤ ‖u‖L∞

�

I

�

Rd

lim sup
ε→0

�

K

|b2,εz (t, x) · ∇η(z)| dx dz dt.

For any fixed z we have b2,εz (x) · ∇η(z) = [b · ∇η(z)]2,εz (x), so Lemma 2.1
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implies

(2.19) lim sup
ε→0

�

I

�

K

|Rε(x)| dx dt

≤ ‖u‖L∞

�

I

�

Rd

lim sup
ε→0

�

K

|b2,εz (t, x) · ∇η(z)| dx dz dt

≤ ‖u‖L∞

�

I

�

Rd

lim sup
ε→0

�

K

|[b · ∇η(z)]2,εz (t, x)| dx dz dt

≤ ‖u‖L∞

�

I

�

Rd

|Ds(b · ∇η(z))(t, ·) · z|(K) dz dt.

Additionally using the identity Dsb(t, ·) = M(t, x)|Dsb(t, ·)| (where M :
I×Rd → Rd×Rd is the Radon–Nikodym derivative of Dsb(t, ·) with respect
to |Dsb(t, ·)|) we have

(2.20) |Ds(b · ∇η(z))(t, ·) · z|(K) =
�

K

|∇η(z) ·M(t, x) · z| d|Dsb(t, ·)|(x).

From (2.20) applied to (2.19) we have

(2.21) lim sup
ε→0

�

I

�

K

|Rε(x)| dx dt

≤ ‖u‖L∞

�

Rd

|∇η(z) ·M(t, x) · z| dz |Dsb|(I ×K).

The left-hand side of (2.16) converges distributionally to (1.1). Notice that
{β′(uε)} is uniformly bounded in L∞([0, T ]×Rd) (see (3.2) in Appendix with
C = ‖ū‖L∞). Therefore from the estimate (2.21) we deduce that the sequence
{Rεβ′(uε)} has limit points in the sense of measures. Up to a subsequence
the right-hand side of (2.16) converges to a locally finite measure (we call it
a defect measure), i.e. taking ε→ 0 in (2.16) we have

(2.22) ∂tβ(u) + b ·Dxβ(u) = σ.

Hence, we can rewrite (2.21) as

|σ| ≤ ‖β′‖L∞‖u‖L∞

�

Rd

|∇η(z) ·M(t, x) · z| dz |Dsb|(2.23)

in the sense of measures on I × Rd. Using the definition (2.15) we obtain

|σ| ≤ ‖β′‖L∞‖u‖L∞Λ(M,η)|Dsb|(2.24)

in the sense of measures on I × Rd. Since the measure σ does not depend
on the convolution kernel η, to finish the estimates and show that σ = 0 we
may optimize (2.24) with respect to the convolution kernels. Estimate (2.21)
yields σ � |Dsb|. Hence we can use the Radon–Nikodym decomposition
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σ = f(t, x)|Dsb| (where f(t, x) is a real, Borel function) and (2.24) yields

(2.25) |f(t, x)| ≤ ‖β′‖L∞‖u‖L∞Λ(M,η) |Dsb|-a.e.
Here one can follow Bouchut [8] and then use Alberti’s rank-one theorem
for derivatives of BV functions (see [2]). We apply though the relatively
easier Lemma 2.2 (also due to Alberti). However, arbitrarily optimizing with
respect to the convolution kernel η we do not control the set on which the
estimate (2.25) may fail to hold. Hence we choose a dense, countable subsetD
of K defined in (2.14). From (2.25) we get

(2.26) |f(t, x)| ≤ ‖β′‖L∞‖u‖L∞ inf
η∈D

Λ(M,η) |Dsb|-a.e.

Since the map θ 7→ Λ(M, θ) is continuous in the W 1,1 topology, the infima
over K and D coincide. Applying Lemma 2.2 to (2.26) we have

|f(t, x)| ≤ ‖β′‖L∞‖u‖L∞ |trM | |Dsb|-a.e.
Hence

|σ| � |Dsb|.
We conclude that the measure σ is absolutely continuous with respect to
the singular part of the divergence of b. Together with the assumption
divx b� Ld (see Remark 1.1) this gives us σ ≡ 0. Thus if u is a solution to
(1.1), from (2.22) we have

∂tβ(u) + b ·Dxβ(u) = 0.

Hence b has the renormalization property.

3. Appendix

3.1. Stability. As a by-product of the renormalization procedure we
obtain the structural stability property.

Theorem 3.1. Let b and ū satisfy the assumptions of Theorem 1.4, and
suppose that

bε → b strongly in L1
loc(0, T ; BVloc(Rd)),

ūε → ū strongly in L1
loc(Rd)

and the sequence ‖ūε‖∞ is uniformly bounded. Then

uε → u strongly in L1
loc([0, T ]× Rd)

where uε are solutions to the corresponding transport equations and u is a
solution to (1.1).

Proof. Consider the problem{
∂tuε + bε ·Dxuε = 0,

uε(0, x) = ūε(x).
(3.1)
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The method of characteristics implies the existence of smooth solutions to
(3.1) for t ∈ (0, T ) together with the bound

(3.2) ‖uε‖L∞([0,T ]×Rd) ≤ ‖ūε‖L∞(Rd) ≤ C.

Note that we do not need any uniform bound on divx bε. The solutions to
(1.1) are classical, in particular they satisfy the integral identity

(3.3)
T�

0

�

Rd

uε(t, x)
{
∂tϕ(t, x) + bε(t, x) ·Dxϕ(t, x)

+ ϕ(t, x) divx bε(t, x)
}
dt dx = −

�

Rd

ūε(x)ϕ(0, x) dx

for any ϕ ∈ C∞([0, T ];C∞0 (Rd)) such that ϕ|t=T = 0. The estimate (3.2)
implies that ‖uε‖L∞([0,T ]×Rd) is equibounded, so we can choose a subsequence
such that for a subsequence εk → 0 we have

(3.4) uεk ⇀
∗ u in L∞([0, T ]× Rd).

Then taking the limit in (3.3), by the properties of the sequences bε and ūε
we find that u is a solution to (1.1). Hence by the uniqueness part of The-
orem 1.4, the whole sequence uεk converges to u. By the renormalization
property (Theorem 1.5), u2ε is also a solution to the transport equation with
initial data ū2ε , and arguing as before shows that

(3.5) u2ε ⇀
∗ u2 in L∞([0, T ]× Rd)

where u2 is again the unique solution to the transport equation with initial
data ū2. The convergence property (3.5) implies ‖uε‖L2 → ‖u‖L2 on any
compact subset of [0, T ]×Rd, and since we have the weak convergence (3.4),
we conclude

uε → u strongly in L2
loc([0, T ]× Rd),

and hence
uε → u strongly in L1

loc([0, T ]× Rd).

3.2. BMO logarithmic estimate. Following the reasonings in [19] we
will now prove Theorem 1.4.

Proof of Theorem 1.4. Since we have assumed that supp f is bounded,
we can restrict our considerations to a d-dimensional torus Td = [0,m)d. Let
us consider the (real) Hardy space H1 on Td with the norm

(3.6) ‖g‖H1(Td) = ‖g‖L1(Td) +
d∑

k=1

‖Rkg‖L1(Td),
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where Rk are the Riesz operators (see [21]). Since the dual space to H1(Td)
is BMO(Td), we get

(3.7)
∣∣∣ �
Td

fg dx
∣∣∣ ≤ ‖f‖BMO(Td)‖g‖H1(Td).

Hence to control the norm (3.6) an estimate of ‖Rkg‖L1(Td) is required.
Zygmund’s classical result (see [21], [23]) says that

(3.8) ‖Rkh‖L1(Td) ≤ C + C
�

Td

|h| ln+ |h| dx

where ln+ a = max{ln a, 0} and the constants C depend on m, and thus on
the diameter of supp f . Observe that∣∣∣∣ln+ g

‖g‖L1(Td)

∣∣∣∣ ≤ ln(1 + ‖g‖L∞(Td)) +

∣∣∣∣ln g

1 + ‖g‖L∞(Td)

∣∣∣∣(3.9)

≤ 2 ln(1 + ‖g‖L∞(Td)) + |ln ‖g‖L1(Td)|.

Applying (3.9) to (3.8) (for h := g/‖g‖L1(Td)) and (3.7) with norm (3.6) we
obtain the desired result.
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