VOL. 135

2014

NO. 1

MODIFICATIONS OF THE ERATOSTHENES SIEVE

BҮ

JERZY BROWKIN (Warszawa) and HUI-QIN CAO (Nanjing)

Abstract. We discuss some cancellation algorithms such that the first non-cancelled number is a prime number p or a number of some specific type. We investigate which numbers in the interval (p, 2p) are non-cancelled.

1. Introduction. In the present paper we discuss some analogs of the Eratosthenes sieve, which give many prime numbers.

The well known sieve of Eratosthenes $(^1)$ gives all prime numbers less than a given integer. It can be stated in the following form:

THE ALGORITHM. For a fixed integer $n \ge 2$ cancel in the set $\{2, 3, 4, \ldots\}$ all multiples of 2, of 3,..., and of n. In particular, the numbers 2, 3,..., n are cancelled.

THEOREM 1. After applying this algorithm:

- (i) The least non-cancelled number is the least prime number p greater than n.
- (ii) In the interval (p, p^2) , where p is defined in (i), all prime numbers are non-cancelled and all composite ones are cancelled. The least non-cancelled composite number is p^2 .

Proof. (i) Let p be the least prime greater than n. Then every number $t, 2 \le t < p$, has a prime factor q less than p, so $q \le n$, by the minimality of p. Consequently, t is cancelled.

On the other hand, p is not cancelled, since p does not have any factor in the interval [2, n].

(ii) Let m be the least non-cancelled composite number. Then m has at least two prime factors, and each of them is $\geq p$. Consequently, $m \geq p^2$. Thus in (p, p^2) all composite numbers are cancelled.

Every prime number in this interval is non-cancelled, since it does not have a factor in [2, n].

²⁰¹⁰ Mathematics Subject Classification: Primary 11A41; Secondary 11N32, 11N36. Key words and phrases: prime number algorithms.

^{(&}lt;sup>1</sup>) Eratos
thenes of Cyrene (c. 276 BC–c. 194 BC) became director of the great library in Alexandria.

Similarly, p^2 does not have any factor in this interval, so it is not cancelled. \blacksquare

In the following we discuss other cancellation algorithms, which give numbers of some kind, in particular, prime numbers.

2. The first generalization. Let $g : \mathbb{N} \to \mathbb{N}$ be an injective mapping. Then for $n \in \mathbb{N}$ we define b(n) as the least number in the set

 $B_n := \{m \in \mathbb{N} : g(1), \dots, g(n) \text{ are distinct modulo } m\}.$

This can be stated equivalently as the following cancellation algorithm. For $n\geq 2$ define the set

$$A_n := \{ g(s) - g(r) : 1 \le r < s \le n \},\$$

and the set of divisors of numbers in A_n :

 $D_n := \{ d \in \mathbb{N} : d \, | \, a \text{ for some } a \in A_n \}.$

Finally, let $D'_n := \mathbb{N} \setminus D_n$.

If we cancel in \mathbb{N} all divisors of all numbers in A_n , i.e. all numbers in D_n , then D'_n will be the set of non-cancelled numbers.

LEMMA 2. In the above notation we have $B_n = D'_n$ for $n \ge 2$.

Proof. The following equivalences hold: $d \notin B_n$ if and only if $g(r) \equiv g(s)$ (mod d) for some r, s with $1 \leq r < s \leq n$, if and only if $d \mid g(s) - g(r)$ for some r, s as above. This divisibility holds if and only if $d \in D_n$. Consequently, $d \notin B_n$ if and only if $d \in D_n$. Hence $B_n = D'_n$.

From Lemma 2 it follows that b(n) is the least number in D'_n , so it is the least non-cancelled number.

3. The case of g(n) = kn for some $k \in \mathbb{N}$. We apply the above algorithm to the linear function g(n) = kn + l, where $k \in \mathbb{N}$ and $l \in \mathbb{Z}$. From the definition of A_n it follows that we can assume that l = 0.

EXAMPLE 3. If k = 1, i.e. g(n) = n for $n \in \mathbb{N}$, then for $n \ge 2$ we have

$$A_n = \{s - r : 1 \le r < s \le n\} = \{1, \dots, n - 1\}.$$

Then $D_n = A_n$, hence m is not cancelled iff $m \ge n$, so b(n) = n for every $n \ge 2$.

The following theorem concerns the case $k \geq 2$.

THEOREM 4. For a fixed $k \ge 2$ let g(n) = kn, where $n \in \mathbb{N}$. Assume that $n \ge k$. Then:

- (i) All integers in the interval [1, n-1] are cancelled.
- (ii) The set of non-cancelled numbers in the interval [n, 2n) equals

$$S_n := \{ t \in \mathbb{N} : n \le t < 2n, \ (t,k) = 1 \}.$$

- (iii) The least non-cancelled number b(n) is the least number in S_n , i.e. the least integer $\geq n$ which is relatively prime to k.
- (iv) $\{b(n) : n \in \mathbb{N}, n \ge k\}$ is the set of all integers $\ge k$ relatively prime to k.

Proof. We cancel all divisors of all numbers g(s) - g(r) = k(s-r), where $1 \le r < s \le n$, so all divisors of the form d_1d_2 , where $d_1 \mid k$ and $d_2 \mid s - r$. Thus d_2 takes every value in [1, n-1] and no others. Hence taking $d_1 = 1$ we get all integers in the interval [1, n-1]. This proves (i).

Observe that the set S_n is not empty, because from $k \leq n$ it follows that the numbers $n, n+1, \ldots, n+k-1$ belong to [n, 2n). They give all residues modulo k, in particular those relatively prime to k.

Assume that $t \in S_n$ is cancelled. Then $t = d_1d_2$, where d_1, d_2 are as above. From (t, k) = 1 and $d_1 | k$ it follows that $d_1 = 1$. Hence $t = d_2 \ge n$, which is impossible. Therefore no number in S_n is cancelled.

It remains to prove that all numbers $t \in [n, 2n)$ such that d := (t, k) > 1are cancelled. We have t = dt', where $d \mid k$ and t' = t/d < 2n/d. Since $d \ge 2$, we get $t' \le n - 1$. Therefore t is cancelled. This proves (ii).

Now (iii) follows from (i), (ii) and the definition of b(n), and (iv) follows from (iii).

4. The case of $g(n) = n^2$. Above we have discussed all linear polynomials; now we shall consider quadratic ones, starting with the simplest quadratic polynomial $g(n) = n^2$.

This case was investigated in [ABM], where parts (i) and (iii) of the theorem below are proved.

Let us recall that now for a given $n \ge 2$ we cancel all divisors of all numbers $g(s) - g(r) = s^2 - r^2$, where $1 \le r < s \le n$.

Theorem 5.

- (i) For n > 2, all integers in the interval [1, 2n) are cancelled.
- (ii) For $n \ge 2$ all numbers in the set

 $T_n := \{t \in \mathbb{N} : 2n \le t < 4n, t = p \text{ or } 2p, where p \text{ is a prime}\}$

are non-cancelled. For $n \ge 15$ all numbers in $[2n, 4n] \setminus T_n$ are cancelled.

(iii) For n > 4 the least non-cancelled number b(n) is the least number in T_n .

(iv) b(2) = 2, b(4) = 9, and the set of other values of the function b(n) equals

$$\{b(n): n \in \mathbb{N}, n \neq 2, 4\} = \{2p : p \text{ is an odd prime}\} \\ \cup \{p : p = 2q + 1 \text{ is a prime and } q \text{ is composite}\}.$$

Thus b(n) is never equal to a Sophie Germain prime, i.e. to a prime p = 2q + 1 with q prime.

Proof. For the proof of (i) and (iii) see [ABM]. The proof of (ii) goes along the same lines as the proof of Lemma 4 in [ABM]. We proceed as follows.

Let $n \ge 2$. Assume that a prime p belongs to T_n and is cancelled. Then $p \mid s^2 - r^2$ for some $1 \le r < s \le n$. Hence $p \mid s \pm r < 2s \le 2n$. Thus p < 2n, which is impossible for $p \in T_n$.

Assume that $2p \in T_n$, where p is a prime, is cancelled. Then $2p | s^2 - r^2$ for some $1 \leq r < s \leq n$. It follows that s, r are of the same parity. Consequently, $n \geq 3$ and p is odd. Hence $2p | s \pm r < 2s \leq 2n$. This is impossible since $2p \in T_n$.

Thus we have proved that all numbers in T_n are non-cancelled. It remains to prove that for $n \ge 15$ all other numbers t in the interval [2n, 4n) are cancelled.

For n = 15, 16, 17 this can be verified directly. We assume in the following that $n \ge 18$.

Since $t \notin T_n$, t is not equal to p or 2p, where p is a prime. Therefore there are four possibilities for t, shown in Table 1 below. In each case we give r, s such that $1 \leq r < s \leq n$ and $t \mid s^2 - r^2$. This will prove that such a t is cancelled.

Table 1					
No.	t	r	s	$s^2 - r^2$	Conditions
1.	a^2	a	2a	$3a^2$	
2.	$2a^2$	a	3a	$8a^2$	
3.	ab	$\frac{a-b}{2}$	$\frac{a+b}{2}$	ab	2 a - b, a > b > 1
4.	2ab	a-b	a+b	4ab	ab odd, $a > b > 1$

From this table it is clear that in each case we have $1 \leq r < s$ and $t | s^2 - r^2$. It remains to prove that $s \leq n$ in each case. We proceed as follows.

By assumption, $2n \leq t < 4n$.

- 1. We have $s = 2a = 2\sqrt{t} < 2\sqrt{4n} \le n$ for $n \ge 16$.
- 2. We have $s = 3a = 3\sqrt{t/2} < 3\sqrt{2n} \le n$ for $n \ge 18$.

3. If a, b are odd, then $a > b \ge 3$. Hence

 $(a-3)(b-3) \ge 0$, which gives $ab+9 \ge 3(a+b)$.

Therefore

$$s = \frac{a+b}{2} \le \frac{ab+9}{6} = \frac{t+9}{6} < \frac{4n+9}{6} < n$$

for $n \geq 5$.

If a, b are even, then $a > b \ge 2$. Hence

$$(a-2)(b-2) \ge 0$$
, which gives $ab+4 \ge 2(a+b)$.

Therefore

$$s = \frac{a+b}{2} \le \frac{ab+4}{4} = \frac{t}{4} + 1 < n+1,$$

so $s \leq n$.

4. Since a, b are odd, we get, as above, $ab + 9 \ge 3(a + b)$. Hence

$$s = a + b \le \frac{ab + 9}{3} = \frac{t}{6} + 3 < \frac{4n}{6} + 3 \le n$$

for $n \geq 9$.

Thus we have proved that $s \leq n$ for $n \geq 18$, which gives (ii).

(iv) From (iii) it follows that $b(n+1) \ge b(n)$ for $n \ge 15$. The same holds for $2 \le n \le 14$ (see [ABM]).

For a prime p, by the definition of T_n , it follows that the least number in T_p is 2p. Then (iii) implies that b(p) = 2p for every odd prime p, including p = 3, since b(3) = 6.

If p = 2q + 1 where q is composite, then the least number in T_q is 2q + 1 = p.

If p = 2q + 1 where $q \ge 5$ is a prime, i.e. if p is a Sophie Germain prime, then b(q) = 2q and $b(q+1) \ge 2(q+1) > p$. Since b(n) is a non-decreasing function, it follows that $b(n) \ne p$ for every $n \ge 2$ and each Sophie Germain prime p.

5. The case of g(n) = 2n(n-1). For a fixed $n \ge 2$ we cancel all divisors of all numbers g(s) - g(r) = 2(s-r)(s+r-1), where $1 \le r < s \le n$. Equivalently, substituting k = s - r and m = r we get g(s) - g(r) = 2k(k+2m-1) =: f(m,k). Thus we cancel all divisors of all numbers f(m,k) where $k, m \in \mathbb{N}, k+m \le n$.

This case was investigated by Zhi-Wei Sun, who proved the following

THEOREM 6 ([Sun1, Theorem 1.1(i)]). For $n \ge 2$ the least non-cancelled number b(n) is the least prime $p \ge 2n-1$. Therefore the set of numbers b(n)is the set of all odd prime numbers. THEOREM 7. For $n \ge 9$ let p be the least prime $\ge 2n - 1$.

- (i) All prime numbers in the interval [p, 2p) are non-cancelled.
- (ii) All composite numbers in the interval [p, 2p) are cancelled with at most one exception: If $2^{s-1} < n \leq 2^s$, then 2^{s+2} is not cancelled. $2^{s+2} \in (p, 2p)$ iff there is no prime in $[2n-1, 2^{s+1}-1]$; equivalently, iff $p > 2^{s+1} - 1$.

Proof. For $9 \le n \le 19$ the theorem can be verified directly. In what follows we assume that $n \ge 20$.

(i) If a prime $q \in (p, 2p)$ is cancelled, then $q \mid 2k(k + 2m - 1)$ for some $k, m \in \mathbb{N}, k + m \leq n$.

If $q \mid k$, then $q \leq k < n < p$, contradicting $q \in (p, 2p)$.

If $q \mid k+2m-1$, then, from $k+2m-1 < 2(k+m)-1 \le 2n-1 \le p$, we get the same contradiction.

Therefore q is not cancelled, so (i) follows.

(ii) The proof will be divided in several steps.

Let $2^{s-1} < n \le 2^s$. By Chebyshev's theorem we get $2^s < 2n - 1 \le p < 2(2n-1) < 4n \le 2^{s+2}$. Thus $2p < 2^{s+3}$. It follows that if a power of 2 is in the interval (p, 2p) then it must be 2^{s+1} or 2^{s+2} .

(1) We claim that 2^{s+1} is cancelled, and 2^{s+2} is not. Indeed, we have $f(2^{s-1}, 1) = 2(1+2^s-1) = 2^{s+1}$ and $2^{s-1}+1 \le n$, so 2^{s+1} is cancelled. If 2^{s+2} were cancelled, then $2^{s+2} | 2k(k+2m-1)$ for some $k, m \in \mathbb{N}, k+m \le n$.

If k is even, then $2^{s+1} | k < n \le 2^s$, contradiction.

If k is odd, then $2^{s+1} | k + 2m - 1 < 2n - 1 \le 2^{s+1} - 1$, contradiction. Thus the claim is proved.

(2) Now we shall consider the exceptional case. It remains to investigate when $2^{s+2} < 2p$, or equivalently, when $2^{s+1} - 1 < p$, because p is odd. Since p is the least prime $\geq 2n - 1$, the inequality $2^{s+1} - 1 < p$ holds iff there is no prime in the interval $[2n - 1, 2^{s+1} - 1]$.

This proves the exceptional case.

(3) It remains to prove that every composite number $t \in (p, 2p)$ which is not a power of 2, is cancelled. Therefore it is sufficient to prove that $t \mid f(m, k)$ for some $m, k \in \mathbb{N}$ such that $m + k \leq n$.

We shall use the following strong effective version of Chebyshev's theorem.

LEMMA 8 ([Sun1, proof of Lemma 3.1]). For $n \ge 2$ there is a prime number $p \in [2n - 1, 2.4n]$.

From this lemma it follows that the least prime $p \ge 2n - 1$ satisfies $p \le 2.4n$. Consequently, $t < 2p \le 4.8n$. We shall use this inequality several times.

Since t is not a power of 2, it has an odd prime factor. Let q be the least odd prime factor of t. Then t = qv, where v > 1, since t is not a prime.

CASE 1: $q \leq 7$, that is, q = 3, 5 or 7.

1.1: v is even, $v = 2v_1$. We look for $m \in \mathbb{N}$ such that $t \mid f(m,q)$ and $m+q \leq n$. We have $f(m,q) = 2q(q+2m-1) = 4q\left(m+\frac{q-1}{2}\right)$. There is $m \in [1, v_1]$ such that $m + \frac{q-1}{2} \equiv 0 \pmod{v_1}$. Then $t \mid f(m,q)$ and

$$m+q \le v_1 + q = \frac{t}{2q} + q \le \frac{4.8}{2q}n + q$$

For q = 3, 5, 7 and $n \ge 15$ the last expression is $\le n$.

1.2: v is odd.

1.2.1: $v \leq 2q - 1$. We have as before $f(m,q) = 4q\left(m + \frac{q-1}{2}\right)$. There is $m \in [1, v]$ such that $v \mid m + \frac{q-1}{2}$. Then $t = qv \mid f(m,q)$, and

$$m+q \le v+q \le 3q-1 \le 20 \le n$$

for $q \leq 7$ and $n \geq 20$.

1.2.2: v > 2q - 1. Now consider f(m, 2q) = 4q(2q + 2m - 1). Take $m := \frac{v+1}{2} - q$. By assumption, $m \ge 1$, and f(m, 2q) = 4qv = 4t. Moreover,

$$m + 2q = \frac{v+1}{2} + q < \frac{t}{2q} + q + 1 \le \frac{2.4}{q}n + q + 1.$$

The last expression is $\leq n$ for q = 3, 5, 7 and $n \geq 20$.

CASE 2. $q \ge 11$.

2.1: v = 2 or 4. From t = qv we get $q = t/v \le t/2 < p$, where p is the least prime $\ge 2n - 1$. Hence $q \le 2n - 3$. We have

$$f\left(\frac{q-1}{2}, 2\right) = 4(2 + (q-1) - 1) = 4q \equiv 0 \pmod{t}$$

and $\frac{q-1}{2} + 2 \le (n-2) + 2 = n$.

2.2: v = 8. As above we have $f(m,q) = 4q\left(m + \frac{q-1}{2}\right)$. We choose $m \in \{1,2\}$ such that $m + \frac{q-1}{2} \equiv 0 \pmod{2}$. Then $t = 8q \mid f(m,q)$ and

$$m+q \le 2 + \frac{t}{8} \le 2 + \frac{4.8}{8}n \le n$$
 for $n \ge 5$.

2.3: $v \notin \{2,4,8\}$. Then $v \ge 11$, since v does not have an odd prime factor ≤ 7 . We have $f(m,q) = 4q\left(m + \frac{q-1}{2}\right)$. Take $m \in [1,v]$ such that $m + \frac{q-1}{2} \equiv 0 \pmod{v}$. Then $t = qv \mid f(m,q)$ and

$$m + q \le v + q \le t \left(\frac{1}{q} + \frac{1}{v}\right) \le \frac{2}{11}t \le \frac{2}{11} \cdot 4.8n \le n \quad \text{ for } n \ge 1.$$

6. The second generalization. Above we have considered functions $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by means of injective mappings $g : \mathbb{N} \to \mathbb{N}$ via f(m,k) = g(m+k) - g(m) for $k, m \in \mathbb{N}$.

More generally, we can consider an arbitrary function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and use it in the same cancellation algorithm.

We give the details for the function

(1)
$$f(m,k) = m^2 + k^2$$
.

It is easy to verify that it does not correspond to any injective mapping $g: \mathbb{N} \to \mathbb{N}$.

For a given $n \ge 2$, D_n is the set of all divisors of all numbers $f(m, k) = m^2 + k^2$, where $m, k \in \mathbb{N}$, $m + k \le n$. The numbers in D_n are cancelled, so the numbers in $D'_n = \mathbb{N} \setminus D_n$ remain non-cancelled.

Denote by Q the set of all squarefree positive integers which are products of prime numbers $\equiv 3 \pmod{4}$. Let $(q_s)_{s=0}^{\infty}$ be the increasing sequence of all elements of Q. In particular, $q_0 = 1$, which corresponds to the empty product. Thus

 $Q = \{1, 3, 7, 11, 19, 21, 23, 31, 33, 43, 47, 57, 59, 67, 69, 71, 77, 79, 83, 103, \ldots\}.$

The following lemma gives estimates on the growth rate of the sequence (q_s) .

$$\frac{q_1}{q_0} = 3$$
, $\frac{q_2}{q_1} = \frac{7}{3} = 2.33$, $\frac{q_3}{q_2} = \frac{11}{7} = 1.57$, $\frac{q_4}{q_3} = \frac{19}{11} = 1.72$,

and

$$\frac{q_s}{q_{s-1}} < 1.5 \quad for \ all \ s \ge 5.$$

It follows that

$$q_s \le 2q_{s-1} + 1 \quad for \ s \ge 1.$$

Proof. The sequence (r_n) of all prime numbers $\equiv 3 \pmod{4}$ is a subsequence of (q_s) , and $r_1 = q_1 = 3$. Therefore for every $s \geq 2$ there is $n \in \mathbb{N}$ such that

$$r_{n-1} < q_s \le r_n.$$

Then $r_{n-1} \leq q_{s-1}$, since (r_n) is a subsequence of (q_s) . Hence

(3)
$$1 < \frac{q_s}{q_{s-1}} \le \frac{r_n}{r_{n-1}}.$$

It is known that $r_n < 2r_{n-1}$ for $n \ge 3$ and $r_n < 1.5r_{n-1}$ for n > 118 (see [Mol] and [Mor]). Then from (3) the lemma follows, after the direct verification of the claim for small values of s.

LEMMA 10. If $q \in Q$ satisfies $q \mid a^2 + b^2$ for some $a, b \in \mathbb{N}$, then $a \equiv b \equiv 0 \pmod{q}$. Hence $a + b \geq 2q$.

Proof. For q = 1 the lemma holds, since $a + b \ge 2$ for $a, b \in \mathbb{N}$. Let q > 1. Since -1 is not a quadratic residue modulo any prime $p \equiv 3 \pmod{4}$, the divisibility $p \mid a^2 + b^2$ implies that $a \equiv b \equiv 0 \pmod{p}$. The lemma follows, since q is the product of distinct primes $\equiv 3 \pmod{4}$.

For $n \geq 2$ define $s \in \mathbb{N}$ by

$$(4) 2q_{s-1} \le n \le 2q_s - 1.$$

THEOREM 11. Assuming the above notation we have:

- (i) For $n \ge 2$ the least non-cancelled number b(n) is q_s .
- (ii) For $n \ge 3$ in the interval $I_s := (q_s, 2q_s)$ the numbers
 - 1) $q_j \in Q \cap I_s$,
 - 2) $4q_j$, where $q_j \in Q$ satisfies $4q_j > n$,

are non-cancelled. All other numbers in this interval are cancelled. (iii) The set $\{b(n) : n \ge 2\}$ is equal to $Q \setminus \{1\}$.

Proof. (i) We have to prove that q_s is non-cancelled, and every $t < q_s$ is cancelled.

Let $q_s | k^2 + m^2$ for some $k, m \in \mathbb{N}$. By Lemma 10 and (4), we have $k + m \ge 2q_s > n$. Therefore q_s is non-cancelled.

Let $t < q_s$. Then t satisfies one of the following conditions, where q_j is an element of Q:

(a) $t = q_j$,	where $j \leq s - 1$,
(b) $t = a^2 q_j$,	where $a \geq 2$,
(c) $t = (a^2 + b^2)q_j$,	where $a, b \in \mathbb{N}$.

We shall prove that in each case t is cancelled.

(a) Put $k = m = q_j$. Then $t = q_j | k^2 + m^2 = 2q_j^2$, and $k + m = 2q_j \le 2q_{s-1} \le n$, by (4).

(b) Put $k = m = aq_j$. Then $t = a^2q_j | k^2 + m^2 = 2a^2q_j^2$, and $k + m = 2aq_j \le a^2q_j = t \le q_s - 1 \le 2q_{s-1} \le n$, by (2) and (4).

(c) Put $k = aq_j$, $m = bq_j$. Then $t = (a^2 + b^2)q_j | k^2 + m^2 = (a^2 + b^2)q_j^2$, and $k+m = (a+b)q_j \le (a^2+b^2)q_j = t \le q_s - 1 \le 2q_{s-1} \le n$, by (2) and (4). In each account have prepared that $k+m \le n$, go t is expected.

In each case we have proved that $k + m \leq n$, so t is cancelled.

(ii) We have the following possibilities for numbers t in the interval $(q_s, 2q_s)$, where q_j is an element of Q:

1) q_j , 4) $2q_j$, 2) $4q_j$, 5) $5q_j$, 3) a^2q_j , $a \ge 3$, 6) $(a^2 + b^2)q_j$, $a, b \in \mathbb{N}$, $a^2 + b^2 > 5$.

We shall prove that the numbers q_j and $4q_j$, where $4q_j > n$, are not cancelled, and all other numbers in the interval $(q_s, 2q_s)$ are cancelled.

1) From the assumption we have $q_s < q_j < 2q_s$. If $q_j | k^2 + m^2$ for some $k, m \in \mathbb{N}$, then, by Lemma 10 and (4), $k + m \ge 2q_i > 2q_s > n$. Hence q_i is non-cancelled.

2) Assume that $4q_i | k^2 + m^2$ for some $k, m \in \mathbb{N}$. Let $4q_i > n$. Then k and m are even, and, by Lemma 10, $k \equiv m \equiv 0 \pmod{q_i}$. Hence $2q_i \mid k$, $2q_i \mid m$, which implies that $k + m \geq 4q_i > n$, by assumption. Consequently, $4q_i$ is not cancelled.

If $4q_i \leq n$, take $k = m = 2q_i$. Then $t = 4q_i | k^2 + m^2 = 4q_i^2$ and $k + m = 4q_j \leq n$, by assumption. Therefore the number $4q_j$ is cancelled.

3) Let $t = a^2 q_i$ belong to $(q_s, 2q_s)$, where $a \ge 3$. First we assume that $s \leq 4$. In $(q_1, 2q_1) = (3, 6)$ there is no number of the form a^2q_i , since $a \geq 3$. The cases s = 2, 3, 4 are described in the table below.

		Table	4	
s	$(q_s, 2q_s)$	$t = a^2 q_j$	k = m	$n \ge 2q_{s-1}$
2	(7, 14)	$9 = 3^2 \cdot 1$	3	6
3	(11, 22)	$16 = 4^2 \cdot 1$	4	14
4	(19, 38)	$25 = 5^2 \cdot 1$	5	22
4	(19, 38)	$27 = 3^2 \cdot 3$	5	22
4	(19, 38)	$36 = 6^2 \cdot 1$	5	22

Table 2

We see that in all cases $k + m = 2k \le n$, so $t = a^2q_j$ is cancelled.

Assume that $s \geq 5$. For $t = a^2 q_j$ take $k = m = a q_j$. Then t = $a^2q_j | k^2 + m^2 = 2a^2q_j^2$. From $a \ge 3$ it follows that $a \le a^2/3$. Therefore

$$k+m = 2aq_j \le \frac{2}{3}a^2q_j = \frac{2}{3}t \le \frac{4}{3}q_s \le \frac{4}{3} \cdot \frac{3}{2}q_{s-1} = 2q_{s-1} \le n,$$

by Lemma 9 and (4). Consequently, $t = a^2 q_i$ is cancelled.

4) Let $t = 2q_j$. From $q_s < t < 2q_s$ it follows that $q_j < q_s$, so $j \le s - 1$. Taking $k = m = q_j$ we get $t = 2q_j | k^2 + m^2 = 2q_j^2$ and $k + m = 2q_j \le 1$ $2q_{s-1} \leq n$, by (4). It follows that $t = 2q_j$ is cancelled.

5) Let $t = 5q_i$. First we assume that $s \leq 4$. There are the following cases:

		Ľ	able 3		
s	$(q_s, 2q_s)$	$t = 5q_j$	$k = q_j$	$m = 2q_j$	$n \ge 2q_{s-1}$
1	(3, 6)	$5 = 5 \cdot 1$	1	2	3
2	(7, 14)				
3	(11, 22)	$15 = 5 \cdot 3$	3	6	14
4	(19, 38)	$35 = 5 \cdot 7$	7	14	22

In the first line of the table we have $n \ge 3$, since in the theorem we have assumed that $n \ge 3$, so the case n = 2 is out of consideration.

In all cases in Table 3 we have $k + m \leq n$. Consequently, $t = 5q_j$ is cancelled.

Assume that $s \ge 5$. Take $k = q_j$ and $m = 2q_j$. Then $t = 5q_j | k^2 + m^2 = 5q_j^2$ and from $q_s < 5q_j < 2q_s$ we get

$$k+m = 3q_j < \frac{6}{5}q_s < \frac{6}{5} \cdot \frac{3}{2}q_{s-1} < 2q_{s-1} \le n,$$

by Lemma 9 and (4). Consequently, $t = 5q_i$ is cancelled.

6) Let $t = (a^2 + b^2)q_j$, where $a, b \in \mathbb{N}$, $a^2 + b^2 > 5$. From the last inequality it follows easily that $a^2 + b^2 \ge 2(a + b)$.

Take $k = aq_j$ and $m = bq_j$. Then $t = (a^2 + b^2)q_j | k^2 + m^2 = (a^2 + b^2)q_j^2$, and

$$k + m = (a + b)q_j \le \frac{1}{2}(a^2 + b^2)q_j = \frac{t}{2} < q_s \le 2q_{s-1} + 1,$$

by (2). Consequently, $k + m \le 2q_{s-1} \le n$, by (4). Therefore $t = (a^2 + b^2)q_i$ is cancelled.

(iii) The claim follows from (i).

REMARK. Zhi-Wei Sun (see [Sun1] and [Sun2]) has given many other cancellation algorithms such that the first non-cancelled number b(n) is a prime (or conjecturally a prime). One may try to determine which numbers in the interval (b(n), 2b(n)) are non-cancelled by applying arguments similar to those in this paper. It turns out that for some of these algorithms also

Table 4				
\overline{n}	Non-cancelled numbers in $[q_s, 2q_s]$			
2	3, 4, 5, 6			
3	3, 4, 6			
4 - 5	3, 6			
7 - 11	7, 11, 12 , 14			
12 - 13	7, 11, 14			
14—21	11, 19, 21, 22			
22 - 27	19, 21, 23, 28 , 31, 33, 38			
28 - 37	19, 21, 23, 31, 33, 38			
38—41	21, 23, 31, 33, 42			
42—43	23, 31, 33, 44, 46			
44 - 45	23, 31, 33, 46			
46—61	31, 33, 43, 47, 57, 59, 62			
62 - 65	33, 43, 47, 57, 59, 66			
66 - 75	43, 47, 57, 59, 67, 69, 71, 76 , 77, 79, 83, 84 , 86			

some composite numbers in this interval are not cancelled. It would be interesting to describe them.

Table 4 illustrates Theorem 11. It lists the non-cancelled numbers in the interval $[q_s, 2q_s]$ corresponding to $n \in [2, 75]$ and the function $f(m, k) = m^2 + k^2$. The numbers of the form $4q_j$ are printed in bold. They satisfy $4q_j > n$ (see Theorem 11(ii) 2)).

Acknowledgements. The research of the second author has been supported by the National Natural Science Foundation (grant 11201233) of China.

REFERENCES

- [ABM] L. K. Arnold, S. J. Benkoski and B. J. McCabe, The discriminator (a simple application of Bertrand's postulate), Amer. Math. Monthly 92 (1985), 275–277.
- [Mol] K. Molsen, Zur Verallgemeinerung des Bertrandschen Postulates, Deutsche Math. 6 (1941), 248–256.
- [Mor] P. Moree, Bertrand's postulate for primes in arithmetical progressions, Comput. Math. Appl. 26 (1993), 35–43.
- [Sun1] Z. W. Sun, On functions taking only prime values, J. Number Theory 133 (2013), 2794–2812.
- [Sun2] Z. W. Sun, On primes in arithmetic progressions, arXiv:1304.5988v4.

Jerzy Browkin Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-656 Warszawa, Poland E-mail: browkin@impan.pl Hui-Qin Cao Department of Applied Mathematics Nanjing Audit University 211815, Nanjing, P.R. China E-mail: caohq@nau.edu.cn

Received 20 February 2014

(6167)