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INVERSE ZERO-SUM PROBLEMS
IN FINITE ABELIAN p-GROUPS

BY

BENJAMIN GIRARD (Palaiseau)

Abstract. We study the minimal number of elements of maximal order occurring in
a zero-sumfree sequence over a finite Abelian p-group. For this purpose, and in the general
context of finite Abelian groups, we introduce a new number, for which lower and upper
bounds are proved in the case of finite Abelian p-groups. Among other consequences, our
method implies that, if we denote by exp(G) the exponent of the finite Abelian p-group G
considered, every zero-sumfree sequence S with maximal possible length over G contains
at least exp(G)− 1 elements of order exp(G), which improves a previous result of W. Gao
and A. Geroldinger.

1. Introduction. Let P be the set of prime numbers and let G be a
finite Abelian group, written additively. We denote by exp(G) the exponent
of G. If G is cyclic of order n, it will be denoted by Cn. In the general case,
we can decompose G (see for instance [18]) as a direct product of cyclic
groups Cn1 ⊕ · · · ⊕ Cnr where 1 < n1 | . . . |nr ∈ N.

By a sequence over G with length `, we mean a finite sequence of `
elements from G, where repetitions are allowed and the order of elements is
disregarded. We use multiplicative notation for sequences.

Let
S = g1 · . . . · g` =

∏
g∈G

gvg(S)

be a sequence overG, where, for all g ∈ G, vg(S) ∈ N is called the multiplicity
of g in S. We say that s ∈ G is a subsum of S when

s =
∑
i∈I

gi for some ∅  I ⊆ {1, . . . , `}.

If 0 is not a subsum of S, we say that S is a zero-sumfree sequence. If∑`
i=1 gi = 0, then S is said to be a zero-sum sequence. If moreover

∑
i∈I gi 6= 0

for all proper subsets ∅ ( I ( {1, . . . , `}, then S is called a minimal zero-sum
sequence.
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In a finite Abelian group G, the order of an element g will be written
ordG(g). Moreover, we denote by 〈g〉 the subgroup generated by g, and for
every divisor d of exp(G), we denote by Gd the subgroup of G consisting of
all elements of order dividing d:

Gd = {x ∈ G | dx = 0}.
For every sequence S over G, we denote by Sd the subsequence of S consist-
ing of all elements of order d contained in S.

Let G ' Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | . . . |nr ∈ N be a finite Abelian
group. We set

D∗(G) =
r∑
i=1

(ni − 1) + 1 and d∗(G) = D∗(G)− 1.

Let D(G) denote the smallest integer t ∈ N∗ such that every sequence S
over G with length |S| ≥ t contains a non-empty zero-sum subsequence.
The number D(G) is called the Davenport constant of the group G.

We denote by d(G) the greatest length of a zero-sumfree sequence over G.
It can be readily seen that

d(G) = D(G)− 1.

If G ' Cν1 ⊕· · ·⊕Cνs with νi > 1 for all i ∈ [[1, s]] is the longest possible
decomposition of G into a direct product of cyclic groups, then we set

k∗(G) =
s∑
i=1

νi − 1
νi

.

The cross number of a sequence S = g1 · . . . · g`, denoted by k(S), is then
defined by

k(S) =
∑̀
i=1

1
ordG(gi)

.

The notion of cross number was introduced by U. Krause in [13] (see
also [14]). Finally, we define the so-called little cross number k(G) of G:

k(G) = max{k(S) | S a zero-sumfree sequence over G}.
Given a finite Abelian groupG, two elementary constructions (see Propo-

sition 5.1.8 in [7]) give the following lower bounds:

d∗(G) ≤ d(G) and k∗(G) ≤ k(G).

The invariants d(G) and k(G) play a key role in the theory of non-unique
factorization (see for instance Chapter 9 in [15], the book [7] which presents
various aspects of the theory, and also the survey [8]). They have been
extensively studied during the last decades and even if numerous results
were proved (see Chapter 5 of the book [7], [3] and [5] for surveys with many
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references on the subject, and [12] for recent results on the cross number of
finite Abelian groups), their exact values are known for very special types
of groups only. We will need these values for finite Abelian p-groups, so we
gather them in the following theorem (see [17] and [4]).

Theorem 1.1. Let p ∈ P and G ' Cpa1 ⊕ · · · ⊕ Cpar with 1 ≤ a1 ≤
· · · ≤ ar ∈ N. Then

d(G) =
r∑
i=1

(pai − 1) = d∗(G),(i)

k(G) =
r∑
i=1

pai − 1
pai

= k∗(G).(ii)

In [17], J. Olson actually proved a more general result than The-
orem 1.1(i), which will be useful in this article. To state this theorem, we
need to introduce the following notation. For every element g in a finite
Abelian p-group G, the height of g, denoted by α(g), is defined by

α(g) = max{pn | ∃h ∈ G with g = pnh}.
We can now state Olson’s result.

Theorem 1.2. Let G be a finite Abelian p-group and S = g1 · . . . · g` be
a sequence over G. Then S is not a zero-sumfree sequence whenever∑̀

i=1

α(gi) > d(G).

2. Inverse problems in zero-sum theory. What can be said about
the structure of a “large” zero-sumfree sequence over a finite Abelian group?
This type of problems has a long tradition in additive combinatorics (see
for instance [16] and [20]), and an answer would provide a new insight into
open problems in non-unique factorization theory (see Chapter 5 in [5]).

Yet, the already known results show that the exact structure of such se-
quences highly relies on the structure of the group itself, so that it seems dif-
ficult to obtain a complete characterization in general (see for instance [1]).
Therefore, instead of an exhaustive description, research focused on the
properties which have to be satisfied by such sequences, whatever the group
is. The following inverse problems give an illustration of this idea.

Problem 1. What is the maximal cross number of a long zero-sumfree
sequence?

In [11], the author addressed the following general conjecture, which
bears upon the distribution of orders occurring in a long zero-sumfree se-
quence over a finite Abelian group.
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Conjecture 1. Let G ' Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | . . . |nr ∈ N
be a finite Abelian group. Let also S be a zero-sumfree sequence over G.
Then

|S| ≥ d∗(G) =
r∑
i=1

(ni − 1) implies k(S) ≤
r∑
i=1

ni − 1
ni

.

Conjecture 1 would imply two classical and long-standing conjectures
related to the Davenport constant of finite Abelian groups of the form Crn
(see Proposition 2.1 in [11]), and would also provide the general upper bound
D(G) ≤ rn for every finite Abelian group G of rank r and exponent n (see
Proposition 2.2 in [11]).

The following theorem gathers what is currently known concerning this
conjecture. Statements (i)–(iii) were proved by the author (see Proposi-
tion 2.3 and Theorem 2.4 in [11]), and statement (iv) was obtained by
W. Schmid (see Corollary 4.5 in [19]).

Theorem 2.1. Conjecture 1 holds whenever:

(i) G is a finite Abelian p-group.
(ii) G is a finite cyclic group.

(iii) G is a finite Abelian group of rank two.
(iv) G ' C2 ⊕ C2 ⊕ C2n, where n ∈ N∗.
Problem 2. What is the maximal length of a zero-sumfree sequence with

large cross number?

One can notice that Problem 2 is a somewhat dual version of Problem 1.
Concerning this question, the author proposed the following conjecture (see
Section 7 in [11]). The reader is also referred to [6] for a recent investi-
gation on the order of elements in sequences with large cross number (see
also [10]).

Conjecture 2. Let G be a finite Abelian group, and G ' Cν1⊕· · ·⊕Cνs

with νi > 1 for all i ∈ [[1, s]] be its longest possible decomposition into a di-
rect product of cyclic groups. Let also S be a zero-sumfree sequence over G.
Then

k(S) ≥ k∗(G) =
s∑
i=1

νi − 1
νi

implies |S| ≤
s∑
i=1

(νi − 1).

It can readily be seen, using Theorem 1.1(i), that Conjecture 2 holds for
finite Abelian p-groups, yet this conjecture remains widely open, even in the
case of finite cyclic groups (see Theorem 7.2 in [11]).

Problem 3. What is the order of elements in a zero-sumfree sequence?

In this article, we study Problem 3 in two directions. First, we investigate
the minimal number of elements of order exp(G) occurring in a zero-sumfree
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sequence over a finite Abelian p-group G. This question was raised and
investigated, in the general context of finite Abelian groups, by W. Gao
and A. Geroldinger (see Section 6 in [1], and Theorem 2.5 in [11] for recent
progress).

In order to study this kind of inverse zero-sum problems, we introduce
the following number. Given a finite Abelian group G and an integer δ ∈
[[0, d(G)− 1]], we denote by Γδ(G) the minimal number of elements of order
exp(G) contained in a zero-sumfree sequence S over G with |S| ≥ d(G)− δ.

In Section 3, we present a general method which was introduced in [12]
for the study of the cross number of finite Abelian groups. Then, using this
method, we prove in Section 4 the following theorem, which gives a lower
bound on Γδ(G) for finite Abelian p-groups.

Theorem 2.2. Let p ∈ P and G ' Cpa1 ⊕ · · · ⊕ Cpar with 1 ≤ a1 ≤
· · · ≤ ar ∈ N. Let also δ ∈ [[0, d(G) − 1]] and j0 = min{i ∈ [[1, r]] | ai = ar}.
Then

Γδ(G) ≥ (par − 1) + (r − j0)(p− 1)par−1 − δ −
⌊

δ

(r − j0 + 1)(p− 1)

⌋
.

This lower bound improves significantly a previous result of W. Gao
and A. Geroldinger (see Corollary 5.1.13 in [7]), stating that every zero-
sumfree sequence with maximal possible length over a finite Abelian p-group
contains at least one element of maximal order. Indeed, by specifying δ = 0
in Theorem 2.2, one obtains the following corollary.

Corollary 2.3. Let G be a finite Abelian p-group. Then every zero-
sumfree sequence S over G with |S| = d(G) contains at least exp(G) − 1
elements of order exp(G).

It may be underlined that, as it stands, Corollary 2.3 cannot be gener-
alized to a wider framework of finite Abelian groups. Indeed, as shown by
W. Schmid (see Corollary 4.6 in [19]), there exist a finite Abelian group G
and a zero-sumfree sequence S over G with |S| = d(G) such that S contains
strictly less than exp(G)−1 elements of order exp(G). In other words, there
exist finite Abelian groups such that Γ0(G) < exp(G)− 1.

In Section 4 we also obtain, using some explicit constructions of zero-
sumfree sequences, an upper bound of Γδ(G) for finite Abelian p-groups (see
Proposition 4.1), which, combined with the lower bound of Theorem 2.2,
implies the following result.

Theorem 2.4. Let p ∈ P and let G ' Cpa1 ⊕ · · · ⊕ Cpar with 1 ≤ a1

≤ · · · ≤ ar ∈ N be such that j0 = min{i ∈ [[1, r]] | ai = ar} = r. Then

Γδ(G) = max
(

0, (par − 1)− δ −
⌊

δ

p− 1

⌋)
for all δ ∈ [[0, d(G)− 1]].
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In Section 5, we study another conjecture related to Problem 3, bearing
upon the greatest common divisor of the orders of the elements occurring in
a long zero-sumfree sequence over a finite Abelian group, and which is the
following.

Conjecture 3. Let G ' Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | . . . |nr ∈ N be
a finite Abelian group. Then, given a zero-sumfree sequence S over G such
that |S| = d(G),

n1 | ordG(g) for all g ∈ S.
At the beginning of Section 5, we state a result which shows that in

Conjecture 3, the condition |S| = d(G) cannot be replaced by the weaker
condition |S| ≥ d∗(G) (see Lemma 5.1).

Conjecture 3 is known to be true in the trivial case of finite cyclic groups.
This conjecture also holds for finite Abelian groups of rank two (see Propo-
sition 6.3.1 in [1]), and we prove in Section 5 that it holds for finite Abelian
p-groups as well, which is statement (i) in the following theorem. State-
ment (iv) can be easily deduced from Theorem 3.13 in [19].

Theorem 2.5. Conjecture 3 holds whenever:

(i) G is a finite Abelian p-group.
(ii) G is a finite cyclic group.

(iii) G is a finite Abelian group of rank two.
(iv) G ' C2 ⊕ C2 ⊕ C2n, where n ∈ N∗.
Finally, in Section 6, we propose and discuss a general conjecture con-

cerning the behaviour of Γδ(G) when G is a finite Abelian p-group.

3. Outline of the method. Let G be a finite Abelian group, and let
S be a sequence over G. The general method that we will use in this paper
(see also [11] and [12] for applications in two other contexts) consists in
considering, for every d′, d ∈ N such that 1 ≤ d′ | d | exp(G), the following
exact sequence:

0→ Gd/d′ ↪→ Gd
π(d′,d)−−−−→ Gd/Gd/d′ → 0.

Now, let U be the subsequence of S consisting of all elements whose order
divides d. If, for some 1 ≤ d′ | d | exp(G), it is possible to find sufficiently
many disjoint non-empty zero-sum subsequences in π(d′,d)(U), that is, suffi-
ciently many disjoint subsequences in U , the sum of each being an element
of order dividing d/d′, then S cannot be a zero-sumfree sequence over G.

To make this idea more precise, we introduced in [12] the following num-
ber, which can be seen as an extension of the classical Davenport constant.

Let G ' Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | . . . |nr ∈ N and d′, d ∈ N be
such that 1 ≤ d′ | d | exp(G). We denote by D(d′,d)(G) the smallest t ∈ N∗
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such that every sequence S over Gd with |S| ≥ t contains a non-empty
subsequence with sum in Gd/d′ .

Using this definition, we can prove the following simple lemma, which is
an illustration of our idea. This result will be useful in Section 4 and states
that given a finite Abelian group, there exist strong constraints on the way
the orders of elements are distributed within a zero-sumfree sequence.

Lemma 3.1. Let G be a finite Abelian group and let d′, d ∈ N be such that
1 ≤ d′ | d | exp(G). Given a sequence S over G, write T for the subsequence
of S consisting of all elements whose order divides d/d′, and write U for
the subsequence of S consisting of all elements whose order divides d (in
particular, T |U). Then S is not a zero-sumfree sequence whenever

|T |+
⌊
|U | − |T |
D(d′,d)(G)

⌋
≥ D(d/d′,d/d′)(G).

Proof. Set ∆ = D(d/d′,d/d′)(G). The above inequality implies that there
are ∆ disjoint subsequences S1, . . . , S∆ of S, the sum of each being an ele-
ment of order dividing d/d′. Now, by the very definition of D(d/d′,d/d′)(G),
S has to contain a non-empty zero-sum subsequence.

Now, in order to obtain effective inequalities from the symbolic con-
straints of Lemma 3.1, one can use a result proved in [12], which states that
for any finite Abelian group G and every 1 ≤ d′ | d | exp(G), the invariant
D(d′,d)(G) is linked with the classical Davenport constant of a particular
subgroup of G, which can be characterized explicitly. In order to define this
subgroup properly, we introduce the following notation.

For all i ∈ [[1, r]], we set

Ai = gcd(d′, ni), Bi =
lcm(d, ni)
lcm(d′, ni)

, υi(d′, d) =
Ai

gcd(Ai, Bi)
.

For instance, whenever d divides ni, we have υi(d′, d) = gcd(d′, ni) = d′,
and in particular υr(d′, d) = d′. We can now state our result on D(d′,d)(G)
(see Proposition 3.1 in [12]).

Proposition 3.2. Let G ' Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | . . . |nr ∈ N
be a finite Abelian group, and let d′, d ∈ N be such that 1 ≤ d′ | d | exp(G).
Then

D(d′,d)(G) = D(Cυ1(d′,d) ⊕ · · · ⊕ Cυr(d′,d)).

4. On the quantity Γδ(G) for finite Abelian p-groups. Let G be a
finite Abelian p-group. In this section, we show how the method presented
in Section 3 can be used to study the number of elements of order exp(G)
occurring in a zero-sumfree sequence over G. First, we prove Theorem 2.2,
which gives a lower bound of Γδ(G) for all δ ∈ [[0, d(G)− 1]].
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Proof of Theorem 2.2. Let S be a zero-sumfree sequence over G ' Cpa1⊕
· · · ⊕ Cpar with |S| ≥ d(G) − δ. We set d′ = p and d = par , which leads to
d/d′ = par−1. Let also T and U be the two subsequences of S defined in
Lemma 3.1. In particular, T |U = S.

To start with, we determine the exact value of D(d′,d)(G). One has, for
every i ∈ [[1, r]],

υi(d′, d) =
p

gcd(p, par/pai)
=
{

1 if i < j0,

p if i ≥ j0.

Therefore, using Proposition 3.2 and Theorem 1.1(i), we obtain

D(d′,d)(G) = D(Cυ1(d′,d) ⊕ · · · ⊕ Cυr(d′,d)) = D(Cr−j0+1
p )

= (r − j0 + 1)(p− 1) + 1.

Now, for all i ∈ [[1, r]], set

βi =
{
ai if i < j0,

ar − 1 if i ≥ j0.

If we had the inequality

|T | >
r−1∑
i=1

(pβi − 1) +
δ

(r − j0 + 1)(p− 1)
,

then it would imply that

|T |+ |U | − |T |
D(d′,d)(G)

≥ |T |+
∑r

i=1(pai − 1)− δ − |T |
(r − j0 + 1)(p− 1) + 1

>

r−1∑
i=1

(pβi − 1) +
∑r

i=1(pai − 1)−
∑r−1

i=1 (pβi − 1)
(r − j0 + 1)(p− 1) + 1

=
r−1∑
i=1

(pβi − 1) +
(par − 1) + (r − j0)(par − par−1)

(r − j0 + 1)(p− 1) + 1

=
r−1∑
i=1

(pβi − 1) +
((r − j0 + 1)(p− 1) + 1)par−1 − 1

(r − j0 + 1)(p− 1) + 1

=
r∑
i=1

(pβi − 1) + 1− 1
(r − j0 + 1)(p− 1) + 1

= D(d/d′,d/d′)(G)− 1
D(d′,d)(G)

,

and, according to Lemma 3.1, S would contain a non-empty zero-sum sub-



INVERSE ZERO-SUM PROBLEMS 15

sequence, which is a contradiction. Thus, one obtains

|T | ≤
r−1∑
i=1

(pβi − 1) +
⌊

δ

(r − j0 + 1)(p− 1)

⌋
,

which gives the following lower bound for the number of elements of order
par = exp(G) occurring in S:

|Spar | = |S| − |T |

≥
r∑
i=1

(pai − 1)− δ −
r−1∑
i=1

(pβi − 1)−
⌊

δ

(r − j0 + 1)(p− 1)

⌋
= (r − j0 + 1)(par − 1)− (r − j0)(par−1 − 1)− δ −

⌊
δ

(r − j0 + 1)(p− 1)

⌋
= (par − 1) + (r − j0)(p− 1)par−1 − δ −

⌊
δ

(r − j0 + 1)(p− 1)

⌋
,

and the proof is complete.

As announced in Section 2, we can also obtain, using some explicit con-
structions of zero-sumfree sequences, the following upper bound of Γδ(G)
for finite Abelian p-groups.

Proposition 4.1. Let p ∈ P and G ' Cpa1 ⊕ · · · ⊕ Cpar with 1 ≤ a1 ≤
· · · ≤ ar ∈ N. Let also δ ∈ [[0, d(G) − 1]] and j0 = min{i ∈ [[1, r]] | ai = ar}.
Then

Γδ(G) ≤ max(0, (r − j0 + 1)(par − 1)− δ − f(δ)),

where

f(δ) = min
(⌊

δ

p− 1

⌋
, (r − j0 + 1)(par−1 − 1)

)
.

Proof. Let (e1, . . . , er) be a basis of G with ordG(ei) = pai for every
i ∈ [[1, r]]. One can distinguish the following three cases.

Case 1. If 0 ≤ δ < (r − j0 + 1)(p− 1)(par−1 − 1), then write

δ = δ1(p− 1)(par−1 − 1) + δ2

with δ1 ∈ [[0, r− j0]] and δ2 ∈ [[0, (p− 1)(par−1− 1)− 1]]. Thus, the sequence

S =
( r−δ1−1∏

i=1

ep
ai−1
i

)( r−1∏
i=r−δ1

(ei)p−1(pei)p
ai−1−1

)
· (er)p

ar−1−δ2−bδ2/(p−1)c(per)bδ2/(p−1)c

is a zero-sumfree sequence over G. On the one hand, since δ1 ≤ r − j0, one
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obtains

|S| =
r−δ1−1∑
i=1

(pai − 1) +
r−1∑

i=r−δ1

[(p− 1) + (par−1 − 1)]

+ (par − 1)− δ2 −
⌊

δ2
p− 1

⌋
+
⌊

δ2
p− 1

⌋
=

r∑
i=1

(pai − 1) +
r−1∑

i=r−δ1

[(p− 1) + (par−1 − 1)− (par − 1)]− δ2

=
r∑
i=1

(pai − 1)− δ1(p− 1)(par−1 − 1)− δ2 = d(G)− δ.

On the other hand, S contains the following number of elements of order
par = exp(G):

|Spar | =
r−δ1−1∑
i=j0

(par − 1) +
r−1∑

i=r−δ1

(p− 1) + (par − 1)− δ2 −
⌊

δ2
p− 1

⌋

= (r − δ1 − j0 + 1)(par − 1) + δ1(p− 1)− δ2 −
⌊

δ2
p− 1

⌋
= (r − j0 + 1)(par − 1)− δ − δ1(par−1 − 1)−

⌊
δ2

p− 1

⌋
= (r − j0 + 1)(par − 1)− δ −

⌊
δ

p− 1

⌋
,

and we are done.

Case 2. If (r− j0 + 1)(p− 1)(par−1 − 1) ≤ δ < (r− j0 + 1)(p− 1)par−1,
then write

δ′ = δ − (r − j0 + 1)(p− 1)(par−1 − 1),

and

δ′ = δ′1(p− 1) + δ′2, with δ′1 ∈ [[0, r − j0]] and δ′2 ∈ [[0, p− 2]].

Thus, the sequence

S =
( j0−1∏
i=1

ep
ai−1
i

)( r−δ′1−1∏
i=j0

(ei)p−1(pei)p
ar−1−1

)( r−1∏
i=r−δ′1

(pei)p
ar−1−1

)
· (er)p−1−δ′2(per)p

ar−1−1

is a zero-sumfree sequence over G. On the one hand, since δ′1 ≤ r − j0, one
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obtains

|S| =
j0−1∑
i=1

(pai − 1) + (r − δ′1 − j0)(p− 1)

+ (r − j0 + 1)(par−1 − 1) + (p− 1)− δ′2

=
j0−1∑
i=1

(pai − 1) + (r − j0 + 1)(p− 1) + (r − j0 + 1)(par−1 − 1)− δ′

=
j0−1∑
i=1

(pai − 1)

+ (r − j0 + 1)[(p− 1) + (par−1 − 1) + (p− 1)(par−1 − 1)]− δ

=
j0−1∑
i=1

(pai − 1) + (r − j0 + 1)(par − 1)− δ = d(G)− δ.

On the other hand, S contains the following number of elements of order
par = exp(G):

|Spar | = (r − δ′1 − j0)(p− 1) + (p− 1)− δ′2
= (r − j0 + 1)(p− 1)− δ′

= (r − j0 + 1)(par − 1)− δ − (r − j0 + 1)(par−1 − 1),

and we are done.

Case 3. If (r − j0 + 1)(p− 1)par−1 ≤ δ ≤ d(G)− 1, then

(r − j0 + 1)(par − 1)− δ − f(δ)

≤ (r − j0 + 1)[(par − 1)− (p− 1)par−1 − (par−1 − 1)] ≤ 0,

as well as

d(G)− δ ≤
r∑
i=1

(pai − 1)− (r − j0 + 1)(p− 1)par−1

=
j0−1∑
i=1

(pai − 1) + (r − j0 + 1)[(par − 1)− (p− 1)par−1]

=
j0−1∑
i=1

(pai − 1) + (r − j0 + 1)(par−1 − 1).

Now, consider the zero-sumfree sequence

S =
( j0−1∏
i=1

ep
ai−1
i

)( r∏
i=j0

(pei)p
ar−1−1

)
,
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which does not contain any element of order par = exp(G). Thus, choosing
any subsequence of S with length d(G) − δ, we conclude that Γδ(G) = 0,
which is the desired result.

It is now easy, using Theorem 2.2 and Proposition 4.1, to derive The-
orem 2.4, which gives, when j0 = r, the exact value of Γδ(G) for all δ ∈
[[0, d(G)− 1]].

Proof of Theorem 2.4. Specifying j0 = r in Theorem 2.2, one readily
obtains

Γδ(G) ≥ (par − 1)− δ −
⌊

δ

p− 1

⌋
.

Now, one can distinguish the following three cases.

Case 1. If 0 ≤ δ < (p− 1)(par−1 − 1), then the upper bound of Propo-
sition 4.1 gives

Γδ(G) = (par − 1)− δ −
⌊

δ

p− 1

⌋
.

Case 2. If (p − 1)(par−1 − 1) ≤ δ < (p − 1)par−1, then Proposition 4.1
implies that

Γδ(G) ≤ (par − 1)− δ − (par−1 − 1),

and since

par−1 − 1 =
⌊

δ

p− 1

⌋
,

one obtains the desired equality

Γδ(G) = (par − 1)− δ −
⌊

δ

p− 1

⌋
.

Case 3. If (p − 1)par−1 ≤ δ ≤ d(G) − 1, then Proposition 4.1 implies
that Γδ(G) = 0, and the proof is complete.

5. On Conjecture 3. First, we show that the condition |S| = d(G) in
Conjecture 3 is essential, and cannot be replaced by the weaker condition
|S| ≥ d∗(G).

Lemma 5.1. There exist G ' Cn1 ⊕ · · · ⊕Cnr with 1 < n1 | . . . |nr ∈ N,
a zero-sumfree sequence S over G with |S| ≥ d∗(G) and an element g in S
such that ordG(g) < n1.

Proof. By Theorem 3 in [9], there exists a finite Abelian group H '
Cn1 ⊕ · · ·⊕Cnr , where 1 < n1 | . . . |nr ∈ N and n1 is not a prime, such that
d(H) ≥ d∗(H) + 1. Now, let p be a prime divisor of n1. We set

G = Cn1 ⊕Hp,
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and pick an element e0 in G with ordG(e0) = n1 and G = 〈e0〉 ⊕ Hp. By
Proposition 5.1.11.1 in [7], we have d(Hp) ≥ pd(H) ≥ p(d∗(H) + 1). We
now pick a zero-sumfree sequence U over Hp with |U | = d(Hp). Clearly, the
sequence

S = (pe0)en1−p−1
0 U

is a zero-sumfree sequence such that ordG(pe0) = n1/p < n1 and

|S| = n1 − p+ |U | ≥ n1 − p+ pd∗(H) + p = d∗(G) + 1.

We now prove the following lemma, which can be seen as a slightly more
general version of Proposition 4.3 in [2].

Lemma 5.2. Let G be a finite Abelian p-group and let S be a zero-sumfree
sequence over G with |S| ≥ d(G)−p+2. Then every element of S has height 1.

Proof. Let S = g1 · . . . · g`. Assume that there exists an element in S,
say g1, such that α(g1) > 1. Then α(g1) ≥ p, and setting T = g−1

1 S, we
deduce that ∑̀

i=1

α(gi) ≥ p+ |T | ≥ p+ (d(G)− p+ 1)

= d(G) + 1 > d(G).

Thus, by Theorem 1.2, S cannot be a zero-sumfree sequence, which is a
contradiction.

Now, using Lemma 5.2, we can prove Theorem 2.5(i) as a simple corollary
of the following stronger theorem.

Theorem 5.3. Let G ' Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | . . . |nr ∈ N be a
finite Abelian p-group. Then, given a zero-sumfree sequence S over G such
that |S| ≥ d(G)− p+ 2,

n1 | ordG(g) for all g ∈ S.

Proof. By Lemma 5.2, every element of S has height 1. Now, let
(e1, . . . , er) be a basis of G with ordG(ei) = ni for all i ∈ [[1, r]], and let
g = a1e1 + · · · + arer be an element of S with ai ∈ [[0, ni − 1]] for all
i ∈ [[1, r]]. The equality α(g) = 1 implies that there exists i0 ∈ [[1, r]] such
that p does not divide ai0 . Therefore, ordCni0

(ai0) = ni0 , and we obtain

ordG(g) = max
i∈[[1,r]]

ordCni
(ai) ≥ ordCni0

(ai0)

= ni0 ≥ n1,

which completes the proof.
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6. A concluding remark. In this section, we propose a conjecture
supported by Theorem 2.2, which states that the upper bound of Proposi-
tion 4.1 is actually the right value of Γδ(G) for finite Abelian p-groups.

Conjecture 4. Let p ∈ P and G ' Cpa1 ⊕ · · · ⊕ Cpar with 1 ≤ a1

≤ · · · ≤ ar ∈ N. Let also δ ∈ [[0, d(G)− 1]] and j0 = min{i ∈ [[1, r]] | ai = ar}.
Then

Γδ(G) = max(0, (r − j0 + 1)(par − 1)− δ − f(δ)),

where

f(δ) = min
(⌊

δ

p− 1

⌋
, (r − j0 + 1)(par−1 − 1)

)
.

By our Theorem 2.4, this conjecture holds true in the case where j0 = r.
One can also notice that, when j0 = 1, Theorem 5.3 implies that Conjec-
ture 4 holds for every δ ∈ [[0, p− 2]].
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