COLLOQUIUM MATHEMATICUM
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">VOL. 120</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2010</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">NO. 1</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| VOL. 120 | 2010 | NO. 1 |
| :--- | :--- | :--- |</table-markdown></div>

INDECOMPOSABLE PRIMARILY COMULTIPLICATION MODULES OVER A PULLBACK OF TWO DEDEKIND DOMAINS

BY
S. EBRAHIMI ATANI and F. ESMAEILI KHALIL SARAEI (Rasht)

Abstract

We describe all those indecomposable primarily comultiplication modules with finite-dimensional top over pullback of two Dedekind domains. We extend the definition and results given by R. Ebrahimi Atani and S. Ebrahimi Atani [Algebra Discrete Math. 2009] to a more general primarily comultiplication modules case.

1. Introduction. The idea of investigating a mathematical structure via its representations in simpler structures is commonly used and often successful. The representation theory of finite-dimensional algebras has developed greatly in the recent years. It is an area which is very firmly based on the detailed understanding of examples, and there are many powerful techniques for investigating representations of particular algebras and for relating representations of different algebras to one another. Its basic problem is that of classification: given an algebra which is finite-dimensional over a field describe its representations (modules) and the relations between them. However, apart from some nicest classes of algebras, this is impossible, and so the aim in practice is to classify the finite-dimensional representations and the relations between them. Thus arises the project of classifying all representations or, more realistically, all representations of a certain significant type. A commonly adopted strategy is to prove a decomposition theorem which says that every representation of the sort we are considering may be built up from certain simpler ones, and then to develop a classification and structure theory for those simpler building blocks. An optimal structure theory for the blocks is one which provides us with a complete list and with presentations of the members of the list, which are explicit enough to allow answering many questions about the blocks with relatively little effort. The reader is referred to [2], [29, Chapters 1 and 14] and [31] for a detailed discussion of classification problems, their representation types (finite, tame, or wild), and useful computational reduction procedures.
[^0]We know that every module is an elementary substructure of a pureinjective module. In fact, there is a minimal pure-injective elementary extension of each module M, denoted by $h(M)$, called the pure-injective hull of M, and it is unique up to isomorphism fixing M. The class of pure-injectives is closed under direct summands and finite direct sums, but an infinite direct sum of pure-injectives need not be pure-injective. Observe that any finite module is pure-injective. In a sense, then, pure-injective modules are modeltheoretically typical: for example, classification of the complete theories of R-modules reduces to classifying the (complete theories of) pure-injectives. Also, for some rings, "small" (finite-dimensional, finitely generated, ...) modules are classified and in many cases this classification can be extended to give a classification of (indecomposable) pure-injective modules. Indeed, there is sometimes a strong connection between infinitely generated pure-injective modules and families of finitely generated modules. Therefore, pure-injective modules are very important (see [32], [28] and [16]). One point of this paper is to introduce a subclass of pure-injective modules.

Modules over pullback rings have been studied by several authors (see for example, [25], [3], [17], [12, [18] and [33]). The important work of Levy [20] provides a classification of all finitely generated indecomposable modules over Dedekind-like rings. L. Klingler [18] extended this classification to lattices over certain non-commutative Dedekind-like rings, and Klingler and J. Haefner ($[13],[14)$) classified lattices over certain non-commutative pullback rings, which they called special quasi triads. Common to all these classifications is the reduction to a "matrix problem" over a division ring (see [4], [29, Section, 17.9], [27], and [30] for background on matrix problems and their applications).

In the present paper we introduce a new class of R-modules, called primarily comultiplication modules (see Definition 2.1), and we study it in detail from the classification point of view. We are mainly interested in the case where R is either a Dedekind domain or a pullback of two local Dedekind domains. First, we give a complete description of the primarily comultiplication modules over a local Dedekind domain. Next, let R be a pullback of two local Dedekind domains over a common factor field. The main purpose of this paper is to give a complete description of the indecomposable primarily comultiplication R-modules with finite-dimensional top over $R / \operatorname{rad}(R)$ (for any module M we define its top as $M / \operatorname{rad}(R) M)$. In fact, we extend the definition and results given in [5] to a more general case, as the class of primarily comultiplication modules contains the class of weak comultiplication modules defined in [5]. The classification is divided into two stages: we give a list of all indecomposable separated primarily comultiplication R-modules and then, using this list, we show that non-separated indecomposable primarily comultiplication R-modules with finite-dimensional top are factor modules
of finite direct sums of separated indecomposable primarily comultiplication R-modules. Then we use the classification of separated indecomposable primarily comultiplication modules from Section 3, together with results of Levy [20], 21] on the possibilities for amalgamating finitely generated separated modules, to classify the non-separated indecomposable primarily comultiplication modules M with finite-dimensional top (see Theorem 4.11). We will see that the non-separated modules may be represented by certain amalgamation chains of separated indecomposable primarily comultiplication modules (where infinite length primarily comultiplication modules can occur only at the ends) and where adjacency corresponds to amalgamation in the socles of these modules.

For the sake of completeness, we state some definitions and notations used throughout. In this paper all rings are commutative with identity and all modules unitary. Let $v_{1}: R_{1} \rightarrow \bar{R}$ and $v_{2}: R_{2} \rightarrow \bar{R}$ be homomorphisms of two local Dedekind domains R_{i} onto a common field \bar{R}. Denote the pullback $R=\left\{\left(r_{1}, r_{2}\right) \in R_{1} \oplus R_{2}: v_{1}\left(r_{1}\right)=v_{2}\left(r_{2}\right)\right\}$ by $\left(R_{1} \xrightarrow{v_{1}} \bar{R} \stackrel{v_{2}}{\longleftrightarrow} R_{2}\right)$, where $\bar{R}=R_{1} / J\left(R_{1}\right)=R_{2} / J\left(R_{2}\right)$. Then R is a ring under coordinatewise multiplication. Denote the kernel of $v_{i}, i=1,2$, by P_{i}. Then $\operatorname{Ker}(R \rightarrow \bar{R})=$ $P=P_{1} \times P_{2}, R / P \cong \bar{R} \cong R_{1} / P_{1} \cong R_{2} / P_{2}$, and $P_{1} P_{2}=P_{2} P_{1}=0$ (so R is not a domain). Furthermore, for $i \neq j, 0 \rightarrow P_{i} \rightarrow R \rightarrow R_{j} \rightarrow 0$ is an exact sequence of R-modules (see [19]).

Definition 1.1. An R-module S is defined to be separated if there exist R_{i}-modules $S_{i}, i=1,2$, such that S is a submodule of $S_{1} \oplus S_{2}$ (the latter is made into an R-module by setting $\left(r_{1}, r_{2}\right)\left(s_{1}, s_{2}\right)=\left(r_{1} s_{1}, r_{2} s_{2}\right)$).

Equivalently, S is separated if it is a pullback of an R_{1}-module and an R_{2}-module and then, using the same notation for pullbacks of modules as for rings, $S=\left(S / P_{2} S \rightarrow S / P S \leftarrow S / P_{1} S\right)$ [19, Corollary 3.3] and $S \subseteq$ $\left(S / P_{2} S\right) \oplus\left(S / P_{1} S\right)$. Also, S is separated if and only if $P_{1} S \cap P_{2} S=0$ 19, Lemma 2.9].

If R is a pullback ring, then every R-module is an epimorphic image of a separated R-module; indeed, every R-module has a "minimal" such representation: a separated representation of an R-module M is an epimorphism $\varphi: S \rightarrow M$ of R-modules with S separated such that if φ admits a factorization $\varphi: S \xrightarrow{f} S^{\prime} \rightarrow M$ with S^{\prime} separated, then f is one-to-one. The module $K=\operatorname{Ker}(\varphi)$ is then an \bar{R}-module, since $\bar{R}=R / P$ and $P K=0[19$, Proposition 2.3]. An exact sequence $0 \rightarrow K \rightarrow S \rightarrow M \rightarrow 0$ of R-modules with S separated and K an \bar{R}-module is a separated representation of M if and only if $P_{i} S \cap K=0$ for each i and $K \subseteq P S$ [19, Proposition 2.3]. Every module M has a separated representation, which is unique up to isomorphism [19, Theorem 2.8]. Moreover, R-homomorphisms lift to a separated representation, preserving epimorphisms and monomorphisms [19, Theorem 2.6].

Definition 1.2.

(a) If R is a ring and N is a submodule of an R-module M, the ideal $\{r \in R: r M \subseteq N\}$ is denoted by $(N: M)$. Then $(0: M)$ is the annihilator of M. A proper submodule N of a module M over a ring R is said to be a primary submodule (resp. prime submodule) if whenever $r m \in N$ for some $r \in R$ and $m \in M$, then $m \in N$ or $r^{n} \in(N: M)$ for some n (resp. $m \in N$ or $r \in(N: M)$), so $\operatorname{rad}(N: M)=P\left(\right.$ resp. $\left.(N: M)=P^{\prime}\right)$ is a prime ideal of R, and N is said to be a P-primary (resp. P^{\prime}-prime) submodule. The set of all primary submodules (resp. prime submodules) in an R-module M is denoted $\operatorname{pSpec}(M)$ (resp. $\operatorname{Spec}(M)$).
(b) An R-module M is defined to be a comultiplication module if for each submodule N of $M, N=\left(0:_{M} I\right)$ for some ideal I of R. In this case we can take $I=\operatorname{Ann}(N)$ (see [1]).
(c) An R-module M is defined to be a weak comultiplication module if either $\operatorname{Spec}(M)=\emptyset$ or for every prime submodule N of $M, N=$ ($0:_{M} I$) for some ideal I of R (see [5]).
(d) A submodule N of an R-module M is called a pure submodule if any finite system of equations over N which is solvable in M is also solvable in N. A submodule N of an R-module M is called relatively divisible (or an $R D$-submodule) in M if $r N=N \cap r M$ for all $r \in R$ (see [16], 32]).
(e) A module M is pure-injective if it has the injective property relative to all pure exact sequences (see [16], [32]).
(f) A non-zero R-module M is said to be coprimary if for each $r \in R$, the homothety $M \xrightarrow{r .} M$ is either injective or nilpotent. So $\operatorname{rad}(0: M)$ $=J$, the radical $(0: M)$ is a prime ideal of R, and M is said to be J-coprimary (see [26]).

Remark 1.3.
(i) An R-module is pure-injective if and only if it is algebraically compact (see [16] and 32]).
(ii) Let R be a Dedekind domain, M an R-module and N a submodule of M. Then N is pure in M if and only if $I N=N \cap I M$ for each ideal I of R. Moreover, N is pure in M if and only if N is an $R D$-submodule of M (see [32]).
(iii) It is easy to see that an R-module M is coprimary if and only if whenever $r m=0$ (for some $r \in R$ and $m \in M$), then either $m=0$ or $r^{n} M=0$ for some n. Moreover, it is clear that if N is a J-primary submodule of M, then M / N is a J-coprimary R-module.
2. Properties of primarily comultiplication modules. In this section we collect some basic properties concerning primarily comultiplication modules. We begin with the key definition of this paper.

Definition 2.1. Let R be a commutative ring. An R-module M is defined to be a primarily comultiplication module if either $\operatorname{pspec}(M)=\emptyset$, or for every primary submodule N of $M, N=\left(0:_{M} I\right)$ for some ideal I of R.

One can easily show that if M is a primarily comultiplication module, then $N=\left(0:_{M} \operatorname{ann}(N)\right)$ for every primary submodule N of M. It is easy to see that the class of primarily comultiplication modules contains the class of weak comultiplication modules defined in [5]. We need the following lemma proved in [26, p. 101, Corollary, and p. 99, Corollary 1].

Lemma 2.2.
(i) Let $K \subseteq N$ be submodules of an R-module M. Then N is a primary submodule of M if and only if N / K is a primary submodule of M / K.
(ii) Let N be a P-primary submodule of the R-module M and suppose that I is an ideal of R and K a submodule of M. If $I K \subseteq N$, then either $I \subseteq P$ or $K \subseteq N$.

Proposition 2.3. If R is a domain (which is not a field) and M is a primarily comultiplication R-module with torsion submodule $T(M) \neq M$, then $\operatorname{pSpec}(M)=\{T(M)\}$.

Proof. Since $T(M)$ is a prime submodule of M with $(T(M): M)=0$ and R is a domain, we must have $\operatorname{rad}(T(M): M)=\operatorname{rad}(0)=0$. If N is a non-zero primary submodule of M, then $N=\left(0:_{M} I\right)$ for some non-zero ideal I of R, so $N \subseteq T(M)$. Let $x \in T(M)$. Then $r x=0 \in N$ for some $0 \neq r \in R$; hence $x \in N$ since $\operatorname{rad}(N: M) \subseteq \operatorname{rad}(T(M): M)=0$, and so $T(M)=N$. Note that if we assume additionally that 0 is a primary submodule of M, then since $0 \subseteq T(M)$, we have $\operatorname{rad}(0: M) \subseteq \operatorname{rad}(T(M): M)=0$, which implies $0 \in \operatorname{pSpec}(M)$ and so $T(M)=0$, as needed.

LEMMA 2.4. Let M be a primarily comultiplication module over a commutative ring R. Then the following hold:
(i) If N is a pure submodule of M, then M / N is a primarily comultiplication R-module.
(ii) Every direct summand of M is a primarily comultiplication submodule.

Proof. (i) Let K / N be a primary submodule of M / N. Then by Lemma 2.2. K is a primary submodule of M, so $L=\left(0:_{M} I\right)$ for some ideal I of R. An inspection will show that $L / N=\left(0:_{M / N} I\right)$. (ii) follows from (i) since direct summands are pure.

Lemma 2.5. Let M be an R-module, N a proper submodule of M, and $I \subseteq(0: M)$. Then the following hold:
(i) N is a P-primary R-submodule M if and only if N is a P / I-primary submodule of M as an R / I-module.
(ii) M is a primarily comultiplication R-module if and only if M is a primarily comultiplication module as an R / I-module.
Proof. The proof of (i) is straightforward. To see (ii), apply Lemma 2.2 and the fact that $\left(0:_{M} J\right)=\left(0:_{M}(J+I) / I\right)$ for every ideal J of R.

Proposition 2.6. Let M be a module over a local ring R with a unique maximal ideal P. If $(0: M)=P^{n}$ for some positive integer n, then every proper submodule of M is a P-primary submodule.

Proof. Let N be a proper submodule of M. Then $\operatorname{rad}(N: M) \neq R$ and $P^{n} M=0 \in N$, so $P^{n} \subseteq(N: M) \subseteq P$ by Lemma 2.2 ; hence $\operatorname{rad}(N: M)$ $=P$. Let $r m \in N$ for some $r \in R$ and $m \in M$ such that $r \notin P$. Then R local gives $r^{-1} r m=m \in N$, as required.

Remark 2.7. (1) Let R be a local Dedekind domain with a unique maximal ideal $P=R p$.
(a) Let $M=R$ (as R-modules). For a primary submodule $P^{n} M(n \geq 2)$ of M we have $\left(0:_{M}\left(0:_{R} P^{n} M\right)\right)=R$. So $M=R$ is not a primarily comultiplication R-module.
(b) We show that $\operatorname{pSpec}(E(R / P))=\emptyset$, where $E=E(R / P)$ is the injective hull of R / P. By [8, Lemma 2.6], every non-zero proper submodule L of E is of the form $L=A_{n}=\left(0:_{E} P^{n}\right)(n \geq 1), L=A_{n}=R a_{n}$ and $\operatorname{rad}(L: E)=0$ since E is divisible and R is an integral domain. If L is a primary submodule of E, then for any positive integer m, we have $p^{m} \notin \operatorname{rad}(L: E)=0$ and $a_{n+m} \notin L$, but $p^{m} a_{n+m}=a n \in L$ (see [8, Lemma 2.6]). Thus E is primarily comultiplication.
(2) Let R be an integral domain which is not a field, and $Q(R)$ the field of fractions of R. We show that $\operatorname{pSpec}(Q(R))=\{0\}$. By [23, Theorem 1], for every proper submodule N of $Q(R)$, we must have $(N: Q(R))=0$. Clearly, 0 is a 0 -primary submodule of $Q(R)$. To show that 0 is the only primary submodule of $Q(R)$, assume the contrary and let K be a non-zero primary submodule of $Q(R)$. Then $\operatorname{rad}(K: M)=\operatorname{rad}(0)=0$ since R is a domain. By an argument like that in [23, Theorem 1], we get a contradiction. As $0=\left(0:_{Q(R)} R\right), Q(R)$ is primarily comultiplication.

Theorem 2.8. Let R be a discrete valuation domain with a unique maximal ideal $P=R p$. Then the class of indecomposable primarily comultiplication modules over R consists of the following:
(1) $R / P^{n}, n \geq 1$, the indecomposable torsion modules;
(2) $E(R / P)$, the injective hull of R / P;
(3) $Q(R)$, the field of fractions of R.

Proof. First we note that each of the listed modules is indecomposable (by [7, Proposition 1.3]) and primarily comultiplication. In the case of R / P^{n} this follows because R / P^{n} is a comultiplication module (see [6]). Moreover, $Q(R)$ and $E(R / P)$ are primarily comultiplication by Remark 2.7 .

Now let M be an indecomposable primarily comultiplication module and choose any non-zero $a \in M$. Let $h(a)=\sup \left\{n: a \in P^{n} M\right\}$, so $h(a)$ is a non-negative integer or ∞. Also let $(0: a)=\{r \in R: r a=0\}$, which is an ideal of the form P^{m} or 0 . Because $(0: a)=P^{m+1}$ implies $p^{m} a \neq 0$ and $p \cdot p^{m} a=0$, we can choose a so that $(0: a)=P$ or 0 . Now we consider the various possibilities for $h(a)$ and $(0: a)$.
CASE 1: $\operatorname{pSpec}(M)=\emptyset$. Since $\operatorname{Spec}(M) \subseteq \operatorname{pSpec}(M)$, it follows from [24, Lemma 1.3, Proposition 1.4] that M is a torsion divisible R-module with $P M=M$ and M is not finitely generated. We may assume that $(0: a)=P$. By an argument like that in [8, Proposition 2.7], $M \cong E(R / P)$. So we may assume that $\operatorname{pSpec}(M) \neq \emptyset$.

CASE 2: $h(a)=n$. Then $(0: a)=P$. Indeed, suppose not. Then $(0: a)$ $=0$. Say $a=p^{n} b$. Then $r b=0$ implies $r a=0$ and so $r=0$. Thus $R b \cong R$. Moreover, $R b$ is pure in M (see [10, Theorem 2.12, Case 1]). As M is a torsion-free R-module by [15, Theorem 10], $R b$ is a prime submodule of M (see [22, Result 2]) (so a primary submodule); hence $R \cong R b=\left(0:_{M} 0\right)=$ M, which is a contradiction by Remark $2.7(1)$. So $(0: a)=P$. Say $a=p^{n} b$. Then $R b \cong R / P^{n+1}$. Since $R b$ is a pure submodule of bounded order of M, it is a direct summand of M by [15, Theorem 5]; hence $M=R b \cong R / P^{n+1}$.

CASE 3: $h(a)=\infty,(0: a)=P$. By an argument like that in 6, Theorem 2.5, Case 2], we get $M \cong E(R / P)$; hence $\operatorname{pSpec}(M)=\emptyset$ by Remark 2.7 , contrary to assumption.

CASE 4: $h(a)=\infty,(0: a)=0$. By an argument like that in 10, Theorem 2.12, Case 3], we obtain $M \cong Q(R)$.

Let M be a primarily comultiplication module over a local Dedekind domain. Then every direct summand of M is primarily comultiplication. Then by [15, Theorems 7-9], either M is indecomposable or M has all indecomposable direct summands primarily comultiplication. Therefore, we have the following consequence of Lemma 2.4(ii), Theorem 2.8 and [7. Proposition 1.3].

Theorem 2.9. Let M be a primarily comultiplication module over a discrete valuation domain with maximal ideal $P=R p$. Then M is of the form $M=N \oplus K$, where N is a direct sum of copies of $R / P^{n}(n \geq 1)$ and K is
a direct sum of copies of $E(R / P)$ and $Q(R)$. In particular, every primarily comultiplication R-module is pure-injective.
3. The separated case. Throughout this section we shall assume, unless otherwise stated, that

$$
\begin{equation*}
R=\left(R_{1} \xrightarrow{v_{1}} \bar{R} \stackrel{v_{2}}{\longleftrightarrow} R_{2}\right) \tag{3.1}
\end{equation*}
$$

is the pullback of two local Dedekind domains R_{1}, R_{2} with maximal ideals P_{1}, P_{2} generated respectively by p_{1}, p_{2}. Let P denote $P_{1} \oplus P_{2}$. Then $R_{1} / P_{1} \cong$ $R_{2} / P_{2} \cong R / P \cong \bar{R}$ is a field. In particular, R is a commutative Noetherian local ring with unique maximal ideal P. The other prime ideals of R are easily seen to be P_{1} (that is, $P_{1} \oplus 0$) and P_{2} (that is, $0 \oplus P_{2}$).

REmARK 3.1. Let R be the pullback ring as in (1), and let T be an R-submodule of a separated module $S=\left(S_{1} \xrightarrow{f_{1}} \bar{S} \stackrel{f_{2}}{\rightleftarrows} S_{2}\right)$, with projection maps $\pi_{i}: S \rightarrow S_{i}$. Set

$$
\begin{aligned}
& T_{1}=\left\{t_{1} \in S_{1}:\left(t_{1}, t_{2}\right) \in T \text { for some } t_{2} \in S_{2}\right\} \\
& T_{2}=\left\{t_{2} \in S_{2}:\left(t_{1}, t_{2}\right) \in T \text { for some } t_{1} \in S_{1}\right\}
\end{aligned}
$$

Then for each $i=1,2, T_{i}$ is an R_{i}-submodule of S_{i} and $T \leq T_{1} \oplus T_{2}$. Moreover, we can define a mapping $\pi_{1}^{\prime}=\pi_{1} \mid T: T \rightarrow T_{1}$ by sending $\left(t_{1}, t_{2}\right)$ to t_{1}; hence $T_{1} \cong T /\left(0 \oplus \operatorname{Ker}\left(f_{2}\right) \cap T\right) \cong T /\left(T \cap P_{2} S\right) \cong\left(T+P_{2} S\right) / P_{2} S \subseteq S / P_{2} S$. So we may assume that T_{1} is a submodule of S_{1}. Similarly, we may assume that T_{2} is a submodule of S_{2} (note that $\operatorname{Ker}\left(f_{1}\right)=P_{1} S_{1}$ and $\operatorname{Ker}\left(f_{2}\right)=$ $P_{2} S_{2}$).

Lemma 3.2. Let R be the pullback ring as in (3.1), and let $S=\left(S_{1} \rightarrow\right.$ $\bar{S} \leftarrow S_{2}$) be a separated R-module and let T be a proper submodule of S. Then the following hold:
(i) T is a $P_{1} \oplus 0$-prime submodule S if and only if T is a $P_{1} \oplus 0$-primary submodule of S.
(ii) T is a $0 \oplus P_{2}$-prime submodule S if and only if T is $a 0 \oplus P_{2}$-primary submodule of S.

Proof. (i) The necessity is clear. Conversely, suppose that T is a $P_{1} \oplus 0$ primary submodule. Since $\left(0 \oplus P_{2}\right)\left(P_{1} \oplus 0\right) S=0 \in T$, we must have $\left(P_{1} \oplus 0\right) S \subseteq T$ by Lemma 2.2. It follows that $P_{1} \oplus 0 \subseteq(T: S) \subseteq \operatorname{rad}(T: S)$ $=P_{1} \oplus 0$; hence $(T: S)=P_{1} \oplus 0$. Now $(T: S)=P_{1} \oplus 0$ and T primary implies T is a prime submodule of S. The proof of (ii) is similar.

Proposition 3.3. Let R be the pullback ring as in (3.1), and let $S=$ $\left(S / P_{2} S=S_{1} \xrightarrow{f_{1}} \bar{S}=S / P S \stackrel{f_{2}}{\rightleftarrows} S_{2}=S / P_{1} S\right)$ be any separated R-module . Then the following hold:
(i) If S has a P-primary R-submodule $T=\left(T_{1} \rightarrow \bar{T} \leftarrow T_{2}\right)$, then T_{1} is a P_{1}-primary submodule of S_{1}, and T_{2} is a P_{2}-primary submodule of S_{2}.
(ii) If S has a $P_{1} \oplus 0$-primary R-submodule T, then T_{1} is a P_{1}-primary submodule of S_{1}, and T_{2} is a 0-primary submodule of S_{2}.
(iii) If S has a $0 \oplus P_{2}$-primary R-submodule T, then T_{1} is a 0-primary submodule of S_{1}, and T_{2} is a P_{2}-primary submodule of S_{2}.

Proof. (i) Let $r_{1} s_{1} \in T_{1}$ for some $r_{1} \in R_{1}$ and $s_{1} \in S_{1}$. Then $v_{1}\left(r_{1}\right)=$ $v_{2}\left(r_{2}\right)$ and $f_{1}\left(s_{1}\right)=f_{2}\left(s_{2}\right)$ for some $r_{2} \in R_{2}, s_{2} \in S_{2}$, so there is a positive integer n such that $\left(r_{1}^{n}, r_{2}^{n}\right)\left(s_{1}, s_{2}\right) \in P^{n} S \subseteq T$ (note that every ideal in a commutative Noetherian ring contains a power of its radical). Therefore, T primary gives either $s_{1} \in T_{1}$ or $r_{1} \in P_{1}$. Thus T_{1} is a P_{1}-primary submodule of S_{1}. Similarly, T_{2} is a P_{2}-primary submodule of S_{2}.
(ii) Suppose that T is a $P_{1} \oplus 0$-primary submodule of S. Since $(0 \oplus$ $\left.P_{2}\right)\left(P_{1} \oplus 0\right) S=0 \in T$ and T is $P_{1} \oplus 0$-primary, we must have $\left(P_{1} \oplus 0\right) S \subseteq T$ (see Lemma 2.2 (ii)); hence $T /\left(P_{1} \oplus 0\right) S$ is a $P_{1} \oplus 0$-primary R-submodule of $S /\left(P_{1} \oplus 0\right) S$. So T_{2} is a 0 -primary R_{2}-submodule of S_{2} by Lemma 2.5. Finally, there is a positive integer s such that $\left(P_{1} \oplus 0\right)^{s} S \subseteq T$ since R is Noetherian, so $P_{1} \subseteq \operatorname{rad}\left(T_{1}: S_{1}\right) \subseteq P_{1}$; hence $\operatorname{rad}\left(T_{1}: S_{1}\right)=P_{1}$. Therefore, T_{1} is a P_{1}-primary submodule of S_{1} by Proposition 2.6. The proof of (iii) is similar.

LEMMA 3.4. Let $S=\left(S / P_{2} S=S_{1} \xrightarrow{f_{1}} \bar{S}=S / P S \stackrel{f_{2}}{\leftrightarrows} S_{2}=S / P_{1} S\right)$ be any separated module over the pullback ring as in (3.1) and m, n be positive integers. Then the following hold:
(i) If $(0: S)=P_{1}^{n} \oplus P_{2}^{m}$, then every proper submodule of S is a P primary submodule. In particular, if $n, m>1$, then $\left(0:_{R}\left(P_{1} \oplus 0\right) S\right)$ $=P_{1}^{n-1} \oplus P_{2}$ and $\left(0:_{R}\left(0 \oplus P_{2}\right) S\right)=P_{1} \oplus P_{2}^{m-1}$.
(ii) If $(0: S)=P_{1}^{n} \oplus 0$ and $\bar{S} \neq 0$, then $\left(0 \oplus P_{2}\right) S$ is a P-primary submodule of S. In particular, $(0: P S)=P_{1}^{n-1} \oplus 0$.
(iii) If $(0: S)=0 \oplus P_{2}^{m}$ and $\bar{S} \neq 0$, then $\left(P_{1} \oplus 0\right) S$ is a P-primary submodule of S. In particular, $(0: P S)=0 \oplus P_{2}^{m-1}$.
Proof. (i) Let T be a proper submodule of S. Then $(T: S) \neq R$ and $P_{1}^{n} \oplus P_{2}^{m} \subseteq(T: S)$. Since $(T: S) \nsubseteq P_{1} \oplus 0$ and $(T: S) \nsubseteq 0 \oplus P_{2}$, and $\operatorname{Spec}(R)=\left\{P_{1} \oplus 0,0 \oplus P_{2}, P\right\}$, we must have $\operatorname{rad}(T: S)=P$. Now the assertion follows from Proposition 2.6. Finally, by assumption, $P_{1} \oplus 0 S$ $\neq 0$ and $\left(0 \oplus P_{2}\right) S \neq 0$. Since $\left(P_{1}^{n-1} \oplus P_{2}\right)\left(P_{1} \oplus 0\right) S=0$, we must have $P_{1}^{n-1} \oplus P_{2} \subseteq\left(0:_{R}\left(P_{1} \oplus 0\right) S\right)$. For the reverse inclusion, suppose that $\left(r_{1}, r_{2}\right) \in\left(0:_{R}\left(P_{1} \oplus 0\right) S\right) \subseteq P$. It follows that $r_{2} \in P_{2}$ and $\left(r_{1} p_{1}, 0\right) S \subseteq$ $\left(r_{1}, r_{2}\right)\left(P_{1} \oplus 0\right) S=0$. So $r_{1} p_{1} \in P_{1}^{n}$. Then $r_{1}=w_{1} p_{1}^{n-1} \in P_{1}^{n-1}$ for some $w_{1} \in R_{1}$; hence $\left(r_{1}, r_{2}\right) \in P_{1}^{n-1} \oplus P_{2}$. Similarly, $\left(0:_{R}\left(0 \oplus P_{2}\right) S\right)=P_{1} \oplus P_{2}^{m-1}$.
(ii) By assumption, $0 \subsetneq\left(0 \oplus P_{2}\right) S \subsetneq S$. Since $\left(P_{1}^{n} \oplus 0\right) S=0 \subseteq\left(0 \oplus P_{2}\right) S$, we have $P_{1}^{n} \oplus 0 \subseteq\left(\left(0 \oplus P_{2}\right) S: S\right)$. Since $\left.\left(0 \oplus P_{2}\right) S: S\right) \nsubseteq P_{1} \oplus 0$ and $\left(\left(0 \oplus P_{2}\right) S: S\right) \nsubseteq 0 \oplus P_{2}$, and $\operatorname{Spec}(R)=\left\{P_{1} \oplus 0,0 \oplus P_{2}, P\right\}$, we must have $\operatorname{rad}(T: S)=P$. Now the assertion follows from Proposition 2.6. Finally, since $P S \neq S, P S$ is a P-primary submodule of S. Moreover, $\left(P_{1}^{n-1} \oplus\right.$ 0) $P S=0$ gives $P_{1}^{n-1} \oplus 0 \subseteq(0: P S)$. For the reverse inclusion, assume that $\left(r_{1}, r_{2}\right) \in(0: P S)$. Then $\left(r_{1} p_{1}, r_{2} p_{2}\right) S=0$, so $r_{1} p_{1} \in P_{1}^{n}$ and $r_{2} p_{2}=0$. Then there exists $u_{1} \in R_{1}$ such that $r_{1}=u_{1} p_{1}^{n-1}$ and $r_{2}=0$ since R_{2} is a domain. Hence $\left(r_{1}, r_{2}\right) \in P_{1}^{n-1} \oplus 0$, as needed. The proof of (iii) is similar.

Proposition 3.5. Let S be any primarily comultiplication separated module over the pullback ring as in (3.1). If $\left(0:_{R} S\right)=0$, then $\bar{S}=0$.

Proof. Suppose $\bar{S} \neq 0$. Then $P S$ is a P-primary submodule of S. Let $\left(r_{1}, r_{2}\right) \in\left(0:_{R} P S\right)$. Then $\left(r_{1}, r_{2}\right)\left(p_{1}, p_{2}\right) S \subseteq\left(r_{1}, r_{2}\right) P S=0$, so $r_{1} p_{1}=0$ and $r_{2} p_{2}=0$; hence $r_{1}=0$ and $r_{2}=0$. Therefore, $\left(0:_{R} P S\right)=0$. Then S primarily comultiplication gives $P S=\left(0:_{S}\left(0:_{R} P S\right)\right)=\left(0:_{S} 0\right)=S$, which is a contradiction.

Proposition 3.6. Let S be any separated module over the pullback ring as in (3.1). Then the following hold:
(i) $\left(0:_{R} S\right)=I \oplus J$ if and only if $\left(0:_{R_{1}} S_{1}\right)=I$ and $\left(0:_{R_{2}} S_{2}\right)=J$, where $I \neq 0$ and $J \neq 0$.
(ii) If $\left(0:_{R} S\right)=P_{1}^{n} \oplus 0$ for some positive integer n, then $\left(0:_{R_{1}} S_{1}\right)=P_{1}^{n}$ and $\left(0:_{R_{2}} S_{2}\right)=0$.
(iii) If $\left(0:_{R} S\right)=0 \oplus P_{2}^{n}$ for some positive integer n, then $\left(0:_{R_{1}} S_{1}\right)=0$ and $\left(0:_{R_{2}} S_{2}\right)=P_{2}^{n}$.
Proof. (i) Assume that $\left(0:_{R} S\right)=I \oplus J$ and let $s_{1} \in S_{1}$. Then there exists $s_{2} \in S_{2}$ such that $\left(s_{1}, s_{2}\right) \in S$, so $I s_{1}=0$ and hence $I \subseteq\left(0:_{R_{1}} S_{1}\right)$. For the other containment, assume that $r_{1} \in\left(0:_{R_{1}} S_{1}\right) \subseteq P_{1}$. So $r_{1} S_{1}=0$. Let $\left(s_{1}, s_{2}\right) \in S$. Then $\left(r_{1}, 0\right)\left(s_{1}, s_{2}\right)=0$, so $\left(r_{1}, 0\right) S=0$. Hence $r_{1} \in I$, and we have equality. Similarly, $\left(0:_{R_{2}} S_{2}\right)=J$. Conversely, assume that $\left(s_{1}, s_{2}\right) \in S$. Then $I s_{1}=0$ and $J s_{2}=0$, so $(I \oplus J)\left(s_{1}, s_{2}\right)=0$; hence $I \oplus J \subseteq\left(0:_{R} S\right)$. For the reverse containment, suppose $\left(r_{1}, r_{2}\right) \in\left(0:_{R} S\right)$. Let $t_{1} \in S_{1}$. Then there is an element $t_{2} \in S_{2}$ such that $\left(t_{1}, t_{2}\right) \in S$, so $\left(r_{1}, r_{2}\right)\left(t_{1}, t_{2}\right)=0$; hence $r_{1} S_{1}=0$. Thus $r_{1} \in I$. Similarly, $r_{2} \in J$, and the proof is complete.
(ii) By (i), it suffices to show that $\left(0:_{R_{2}} S_{2}\right)=0$. Suppose not. Let $0 \neq r_{2} \in\left(0:_{R_{2}} S_{2}\right)$. Then there exist $u \in R_{2}$ and a positive integer t such that $r_{2}=u p_{2}^{t}$. Let $\left(s_{1}, s_{2}\right) \in S$. Then $\left(P_{1}^{n} \oplus u P_{2}^{t}\right)\left(s_{1}, s_{2}\right)=0$, so $\left(P_{1}^{n} \oplus u P_{2}^{t}\right) S=0$, which is a contradiction. The proof of (iii) is similar.

Proposition 3.7. Let S be any primarily comultiplication separated module over the pullback ring as in (3.1) with $\bar{S} \neq 0$.
(i) If $\left(0:_{R} S\right)=P_{1}^{n} \oplus P_{2}^{m}$ for some positive integers n, m, then either $m=1$ or $n=1$.
(ii) If $\left(0:_{R} S\right)=P_{1} \oplus P_{2}^{m}$ for some positive integer $m>1$, then $\left(0:_{R} P S\right)=P_{1} \oplus P_{2}^{m-1}$.
(iii) If $\left(0:_{R} S\right)=P_{1}^{m} \oplus P_{2}$ for some positive integer $m>1$, then $\left(0:_{R} P S\right)=P_{1}^{m-1} \oplus P_{2}$.

Proof. (i) Suppose not. We may assume that $n>1$ and $m>1$. Clearly, $0 \neq\left(P_{1} \oplus 0\right) S \subseteq P S \neq S, 0 \neq\left(0 \oplus P_{2}\right) S \subseteq P S \neq S$, and the submodules $\left(P_{1} \oplus 0\right) S$ and $\left(0 \oplus P_{2}\right) S$ are P-primary submodules of S by Lemma 3.4. Since S is a primarily comultiplication R-module, we must have $\left(P_{1} \oplus 0\right) S=$ $\left(0:_{S}\left(0:_{R} P_{1} \oplus 0\right)\right)=\left(0:_{S} P_{1}^{n-1} \oplus P_{2}\right)$ and $\left(0 \oplus P_{2}\right) S=\left(0:_{S} P_{1} \oplus P_{2}^{m-1}\right)$ by Lemma 3.4. Let $s_{1} \in S_{1}$. There exists $s_{2} \in S_{2}$ such that $\left(s_{1}, s_{2}\right) \in S$. It follows from Proposition 3.6 that $p_{1}^{n} s_{1}=0$ and $p_{2}^{m} s_{2}=0$. Therefore, $\left(p_{1}, p_{2}^{m-1}\right)\left(p_{1}^{n-1} s_{1}, p_{2} s_{2}\right)=0$, so $\left(p_{1}^{n-1} s_{1}, p_{2} s_{2}\right) \in\left(0:_{S} P_{1} \oplus P_{2}^{m-1}\right)=(0 \oplus$ $\left.P_{2}\right) S$; hence $p_{1}^{n-1} s_{1}=0$. In a similar way, we get $p_{1} s_{1}=0$. Therefore, $P_{1} S_{1} \cong\left(P_{1} \oplus 0\right) S=0$, which is a contradiction.
(ii) By Proposition 3.6, $\left(0:_{R_{1}} S_{1}\right)=P_{1}$ and $\left(0:_{R_{2}} S_{2}\right)=P_{2}^{m}$. Since $\left(P_{1} \oplus P_{2}^{m-1}\right) P S=0$, we have $P_{1} \oplus P_{2}^{m-1} \subseteq\left(0:_{R} P S\right)$. For the reverse inclusion, assume that $\left(r_{1}, r_{2}\right) \in\left(0:_{R} P S\right)$. Then $\left(r_{1} p_{1}^{2}, r_{2} p_{2}\right) S \subseteq\left(r_{1}, r_{2}\right) P S=0$, so $r_{1} p_{1}^{2} \in P_{1}$ and $r_{2} p_{2} \in P_{2}^{m}$; hence $r_{1} p_{1}=u p_{1}^{2}$ and $r_{2} p_{2} \in w p_{2}^{m}$ for some $u \in R_{1}$ and $w \in R_{2}$. It follows that $r_{1} \in P_{1}$ and $r_{2} \in P_{2}^{m-1}$ since R_{1} and R_{2} are domains, and we have equality. The proof of (iii) is similar.

Proposition 3.8. Let S be any primarily comultiplication separated module over the pullback ring as in (3.1) with $\bar{S} \neq 0$. Then $\left(0:_{R} S\right) \neq P_{1}^{n} \oplus 0$ and $\left(0:_{R} S\right) \neq 0 \oplus P_{2}^{n}$ for every positive integer n.

Proof. Suppose $(0: R S)=P_{1}^{n} \oplus 0$. If $\left(0 \oplus P_{2}\right) S=0$, then $0 \oplus P_{2} \subseteq P_{1}^{n} \oplus 0$, which is a contradiction. So $\left(0 \oplus P_{2}\right) S \neq 0$ and $\left(0:_{R}\left(0 \oplus P_{2}\right) S\right) \neq R$. Now we show that $\left(0:_{R}\left(0 \oplus P_{2}\right) S\right)=P_{1} \oplus 0$. Since $\left(P_{1} \oplus 0\right)\left(0 \oplus P_{2}\right) S=0$, we have $P_{1} \oplus 0 \subseteq\left(0:_{R}\left(0 \oplus P_{2}\right) S\right)$. For the reverse inclusion, assume that $\left(r_{1}, r_{2}\right) \in\left(0:_{R}\left(0 \oplus P_{2}\right) S\right)$. We may suppose that $\left(r_{1}, r_{2}\right) \in P$ since R is local. Then $r_{1} \in P_{1}$ and $\left(0, r_{2} p_{2}\right) S=0$, so $r_{2} p_{2}=0$; hence $r_{2}=0$ and $\left(r_{1}, r_{2}\right) \in P_{1} \oplus 0$, and so we have equality. Moreover, by Lemma 3.4, $\left(0 \oplus P_{2}\right) S$ is a P-primary submodule of S, so $\left(0 \oplus P_{2}\right) S=\left(0:_{S} P_{1} \oplus 0\right)$ since S is primarily comultiplication. We may assume that $n>1$. Since $\left(P_{1} \oplus 0\right)\left(P_{1}^{n-1} \oplus P_{2}\right) S=0$, we must have $\left(P_{1}^{n-1} \oplus P_{2}\right) S \subseteq\left(0:_{S} P_{1} \oplus 0\right)=$ $\left(0 \oplus P_{2}\right) S$. Let $s_{1} \in S_{1}$. Then there is an element $s_{2} \in S_{2}$ such that $\left(s_{1}, s_{2}\right) \in S$. Hence $\left(p_{1}^{n-1}, p_{2}\right)\left(s_{1}, s_{2}\right) \in\left(0 \oplus P_{2}\right) S$; hence $P_{1}^{n-1} S_{1}=0$.

Therefore, $P_{1}^{n-1} \subseteq\left(0:_{R_{1}} S_{1}\right)=P_{1}^{n}$ by Proposition 3.6, which is a contradiction. Thus $\left(0:_{R} S\right) \neq P_{1}^{n} \oplus 0$ for every positive integer n. Similarly, $\left(0:_{R} S\right) \neq 0 \oplus P_{2}^{n}$ for every positive integer n.

REMARK 3.9. Let R be the pullback ring as in (3.1), and let $S=\left(S_{1} \rightarrow\right.$ $\bar{S} \leftarrow S_{2}$) be a separated R-module. Then $\operatorname{pSpec}(S)=\emptyset$ if and only if $\operatorname{pSpec}\left(S_{i}\right)=\emptyset$ for $i=1,2$.

Proof. For the necessity, assume that $\operatorname{pSpec}(S)=\emptyset$ and let π be the projection map of R onto R_{i}. Suppose $\operatorname{pSpec}\left(S_{1}\right) \neq \emptyset$ and let T_{1} be a primary submodule of S_{1}, so T_{1} is a primary R-submodule of $S_{1}=S /\left(0 \oplus P_{2}\right) S$; hence $\operatorname{pSpec}(S) \neq \emptyset$, by Lemma 2.2, which is a contradiction. Similarly, $\operatorname{pSpec}\left(S_{2}\right)=\emptyset$. The sufficiency is clear by Proposition 3.3.

Theorem 3.10. Let R be a pullback ring as in (3.1), and let $S=\left(S_{1} \rightarrow\right.$ $\bar{S} \leftarrow S_{2}$) be a separated R-module. Then S is a primarily comultiplication R-module if and only if each S_{i} is a primarily comultiplication R_{i}-module, $i=1,2$.

Proof. Note that by Remark 3.9, $\operatorname{Spec}(S)=\emptyset$ if and only if $\operatorname{Spec}\left(S_{i}\right)=\emptyset$ for $i=1,2$. So we may assume that $\operatorname{Spec}(S) \neq \emptyset$. Assume that S is a separated primarily comultiplication R-module. If $\bar{S}=0$, then by [7, Lemma 2.7], $S=S_{1} \oplus S_{2}$; hence for each i, S_{i} is primarily comultiplication by Lemma 2.4 . So we may assume that $\bar{S} \neq 0$.

Let L (resp. L^{\prime}) be a primary submodule of $S_{1}\left(\operatorname{resp} S_{2}\right)$. Then there exists a separated submodule $T=\left(T / P_{2} S=T_{1} \xrightarrow{g_{1}} \bar{T}=T / P T \stackrel{g_{2}}{\longleftrightarrow} T_{2}=T / P_{1} T\right)$ (resp. $T^{\prime}=\left(T^{\prime} / P_{2} T^{\prime}=T_{1}^{\prime} \xrightarrow{g_{1}^{\prime}} \bar{T}^{\prime}=T^{\prime} / P T^{\prime} \stackrel{g_{2}^{\prime}}{\leftrightarrows} T_{2}^{\prime}=T^{\prime} / P_{1} S\right)$) of S, where $g_{i}\left(\right.$ resp. $\left.g_{i}^{\prime}\right)$ is the restriction of f_{i} over $T_{i}\left(\right.$ resp. $\left.T_{i}^{\prime}\right), i=1,2$, such that $L=T_{1}$ (resp. $L^{\prime}=T_{2}^{\prime}$). Since T_{1} (resp. T_{2}^{\prime}) is a primary submodule of S_{1} (resp. S_{2}), it follows that $T /\left(0 \oplus P_{2}\right) S$ (resp. $T^{\prime} /\left(P_{1} \oplus 0\right) S$) is a primary R-submodule of $S /\left(0 \oplus P_{2}\right) S$ (resp. $\left.S /\left(P_{1} \oplus 0\right) S\right)$; hence T (resp. T^{\prime}) is a primary R-submodule of S by Lemma 2.2 . We split the proof into two cases for $(0: S)$ by Propositions 3.7 and 3.8 .

CASE 1: $(0: S)=P_{1} \oplus P_{2}^{m}$ for some positive integer m. If $m=1$, then by assumption, $T=\left(0:_{S} P_{1}^{k} \oplus P_{2}^{s}\right)$ for some integers k, s; we show that $T_{1}=\left(0:_{S_{1}} P_{1}^{k}\right)$. Let $s_{1} \in\left(0:_{S_{1}} P_{1}^{k}\right)$. Then $P_{1}^{k} s_{1}=0$ and there exists $s_{2} \in S_{2}$ such that $\left(s_{1}, s_{2}\right) \in S$, so $\left(P_{1}^{k} \oplus P_{2}^{s}\right)\left(s_{1}, s_{2}\right)=0$; hence $\left(s_{1}, s_{2}\right) \in T$. Therefore, $\left(0:_{S_{1}} P_{1}^{n}\right) \subseteq T_{1}$. Now suppose that $x \in T_{1}$. Then there is an element $y \in T_{2}$ such that $g_{1}(x)=g_{2}(y)$, so $(x, y) \in T$; hence $P_{1}^{k} x=0$, and so we have equality. Similarly, S_{2} is a primarily comultiplication R_{2}-module. So we may assume that $m>1$. By Proposition 3.6, $\left(0:_{R_{1}} S_{1}\right)=P_{1}$ and $\left(0:_{R_{2}} S_{2}\right)=P_{2}^{m}$. Since $\left(P_{1} \oplus 0\right) S \cong P_{1} S_{1}=0$ and $\left(0 \oplus P_{2}\right) S \subseteq T$, we get
$P S \subseteq T \subseteq S$, so $\left(0:_{R} S\right) \subseteq\left(0:_{R} T\right) \subseteq\left(0:_{R} P S\right) ;$ thus $P_{1} \oplus P_{2}^{m} \subseteq\left(0:_{R}\right.$ $T) \subseteq P_{1} \oplus P_{2}^{m-1}$ by Proposition 3.7. Therefore, either $\left(0:_{R} T\right)=P_{1} \oplus P_{2}^{m}$ or $\left(0:_{R} T\right)=P_{1} \oplus P_{2}^{m-1}$. Since S is primarily comultiplication, we have either $T=\left(0:_{S} P_{1} \oplus P_{2}^{m}\right)=S$ or $T=\left(0:_{S} P_{1} \oplus P_{2}^{m-1}\right)=P S$; hence $T=P S$ and $T_{1}=(P S) / P S=0$. Then $L=T_{1}=\left(0:_{S_{1}} R_{1}\right)$ implies that S_{1} is primarily comultiplication. Now we will prove S_{2} is primarily comultiplication. By hypothesis, $T^{\prime}=\left(0:_{S} P_{1}^{s} \oplus P_{2}^{t}\right)$ for some positive integers s, t. We show that $T_{2}^{\prime}=\left(0:_{S_{2}} P_{2}^{m}\right)$. Since the inclusion $T_{2}^{\prime} \subseteq\left(0: S_{2} P_{2}^{m}\right)$ is clear, we will prove the reverse inclusion. Let $s_{2} \in\left(0:_{S_{2}} P_{2}^{m}\right)$. Then $P_{2}^{m} s_{2}=0$ and there exists $s_{1} \in S_{1}$ such that $\left(s_{1}, s_{2}\right) \in S$, so $\left(P_{1}^{s} \oplus P_{2}^{t}\right)\left(s_{1}, s_{2}\right)=0$; hence $\left(s_{1}, s_{2}\right) \in T^{\prime}$. Therefore, $s_{2} \in T_{2}^{\prime}$, and so we have equality.

Case 2: $(0: S)=P_{1}^{m} \oplus P_{2}$ for some positive integer m. The proof is similar to that in Case 1.

Conversely, assume that S_{1}, S_{2} are primarily comultiplication R_{i}-modules and let T be a non-zero primary submodule of S. If $(0: S)=P_{1} \oplus P_{2}^{m}$ for some positive integer m, then $\left(0:_{R_{1}} S_{1}\right)=P_{1}$ and $\left(0:_{R_{2}} S_{2}\right)=P_{2}^{m}$), so there exist positive integers k, s such that $T_{1}=\left(0:_{S_{1}} P_{1}^{k}\right), T_{2}=\left(0: S_{2} P_{2}^{s}\right)$, and so $T=\left(0:_{S} P_{1}^{k} \oplus P_{2}^{s}\right)$. Similarly we argue when $\left(0:_{R} S\right)=P_{1}^{m} \oplus P_{2}$ for some positive integer m.

Lemma 3.11. Let R be the pullback ring as in 3.1. The following separated R-modules are indecomposable and primarily comultiplication:
(I) $S=\left(E\left(R_{1} / P_{1}\right) \rightarrow 0 \leftarrow 0\right),\left(0 \rightarrow 0 \leftarrow E\left(R_{2} / P_{2}\right)\right)$, where $E\left(R_{i} / P_{i}\right)$ is the R_{i}-injective hull of R_{i} / P_{i} for $i=1,2$;
(II) $S=\left(Q\left(R_{1}\right) \rightarrow 0 \leftarrow 0\right),\left(0 \rightarrow 0 \leftarrow Q\left(R_{2}\right)\right)$, where $Q\left(R_{i}\right)$ is the field of fractions of R_{i} for $i=1,2$;
(III) $S=\left(R_{1} / P_{1}^{n} \rightarrow \bar{R} \leftarrow R_{2} / P_{2}^{m}\right)$ for all positive integers n, m.

Proof. By [7, Lemma 2.8], these modules are indecomposable. Being primarily comultiplication follows from Theorems 2.8 and 3.10 .

We refer to modules of type (3.1) in Lemma 3.2 as P_{1}-Prüfer and $P_{2^{-}}$ Prüfer respectively.

Theorem 3.12. Let R be the pullback ring as in (3.1), and let $S=$ $\left(S_{1} \xrightarrow{f_{1}} \bar{S} \stackrel{f_{2}}{\rightleftarrows} S_{2}\right)$ be an indecomposable separated primarily comultiplication R-module. Then S is isomorphic to one of the modules listed in Lemma 3.11.

Proof. First suppose that $\operatorname{pSpec}(S)=\emptyset$. Then $\operatorname{pSpec}\left(S_{i}\right)=\emptyset$ by Remark 3.9, so $S_{i}=P_{i} S_{i}$ for each $i=1,2$ by Theorem 2.8, hence $S=P S=$ $P_{1} S_{1} \oplus P_{2} S_{2}=S_{1} \oplus S_{2}$. Therefore, $S=S_{1}$ or S_{2} and so S is of type (I) in the list of Lemma 3.11 by Theorem 2.8. So we may assume that $\operatorname{pSpec}(S) \neq \emptyset$. Next suppose that $P S=S$. Then by [7, Lemma 2.7(i)], $S=S_{1}$ or S_{2} and
so S is an indecomposable primarily comultiplication R_{i}-module for some i, and since $P S=S$, it is type (II) by Theorem 2.8. So we may assume that $S / P S \neq 0$.

By Theorem 3.10, S_{i} is a primarily comultiplication R_{i}-module for each $i=1,2$ (note that for each i, S_{i} is torsion and it is not a divisible R_{i}-module by Theorem 2.8). Hence, by the structure of primarily comultiplication modules over a discrete valuation domain (see Theorem 2.9), $S_{i}=M_{i} \oplus N_{i}$ where N_{i} is a direct sum of copies of $R_{i} / P_{i}^{n}(n \geq 1)$ and M_{i} is a direct sum of copies of $E\left(R_{i} / P_{i}\right)$ and $Q\left(R_{i}\right)$. Then $S=\left(N_{1} \rightarrow \bar{S} \leftarrow N_{2}\right) \oplus\left(M_{1} \rightarrow 0 \leftarrow 0\right)$ $\oplus\left(0 \rightarrow 0 \leftarrow M_{2}\right)$. Since S is indecomposable and $S / P S \neq 0$ it follows that $S=\left(N_{1} \rightarrow \bar{S} \leftarrow N_{2}\right)$. We will see that each $S_{i}\left(=N_{i}\right)$ is indecomposable. Then there are positive integers m, n and k such that $P_{1}^{m} S_{1}=0, P_{2}^{k} S_{2}=0$ and $P^{n} S=0$. For $s \in S$, let $o(s)$ denote the least positive integer m such that $P^{m} s=0$. Now choose $s \in S_{1} \cup S_{2}$ with $\bar{s} \neq 0$ and such that $o(t)$ is maximal. There exists an $s=\left(s_{1}, s_{2}\right)$ such that $o(s)=n, o\left(s_{1}\right)=m$ and $o\left(s_{2}\right)=k$. Then $R_{i} s_{i}$ is pure in S_{i} for $i=1,2$ (see [7, Theorem 2.9]). Therefore, $R_{1} s_{1} \cong R_{1} / P_{1}^{m}$ (resp. $R_{2} s_{2} \cong R_{2} / P_{2}^{k}$) is a direct summand of S_{1} (resp. S_{2}) since for each $i, R_{i} s_{i}$ is pure-injective. Let \bar{M} be the \bar{R}-subspace of \bar{S} generated by \bar{s}. Then $\bar{M} \cong \bar{R}$. Let $M=\left(R_{1} s_{1}=M_{1} \rightarrow \bar{M} \leftarrow M_{2}=R_{2} s_{2}\right)$. Then M is an R-submodule of S which is primarily comultiplication by Lemma 3.11 and is a direct summand of S; this implies that $S=M$, and S is as in (III) (see [7, Theorem 2.9].

Corollary 3.13. Let R be the pullback ring as in (3.1), and let S be a separated primarily comultiplication R-module. Then S is of the form $M \oplus N$, where M is a direct sum of copies of modules as in (I)-(II) and N is a direct sum of copies of modules as in (III) of Lemma 3.11. In particular, every separated primarily comultiplication R-module is pure-injective.

Proof. Apply Theorem 3.12 and [7, Theorem 2.9].
4. The non-separated case. We continue to use the notation already established, so R is the pullback ring as in (3.1). In this section we find all indecomposable non-separated primarily comultiplication R-modules with finite-dimensional top. It turns out that each can be obtained by amalgamating finitely many separated indecomposable primarily comultiplication modules.

Proposition 4.1. Let R be a pullback ring as in (3.1). Then $E(R / P)$ is a non-separated primarily comultiplication R-module.

Proof. It suffices to show that $\mathrm{pSpec}(E(R / P))=\emptyset$. Let L be any submodule of $E(R / P)$ described in [8, Proposition 3.1]. Since $E(R / P)$ is divis-
ible, we must have $(L: E(R / P))=0$; hence $\operatorname{rad}(L: E(R / P))=\operatorname{rad}(0)=$ $\left(P_{1} \oplus 0\right) \cap\left(0 \oplus P_{2}\right) \cap P=0$. Set $P=R\left(p_{1}, p_{2}\right)=R p$. Then no L, say $E_{1}+A_{n}$, is a primary submodule of $E(R / P)$, for if m is any positive integer, then $p^{m} \notin \operatorname{rad}(L: E(R / P))=0$ and $x_{1}+a_{n+m} \notin E_{1}+A_{n}\left(x_{1} \in E_{1}\right)$, but $p^{m}\left(x_{1}+a_{n+m}\right)=p_{1}^{m} x_{1}+a_{n} \in E_{1}+A_{n}$. Therefore, $E(R / P)$ is a non-separated primarily comultiplication R-module (see [7] p. 4053]).

Proposition 4.2. Let R be the pullback ring as in (3.1), and let M be any primarily comultiplication R-module. Then the following hold:
(i) If M has a $P_{1} \oplus 0$-primary submodule N, then M / N and M are separated.
(ii) If M has a $0 \oplus P_{2}$-primary submodule N, then M / N and M are separated.

Proof. (i) First, we show that the $P_{1} \oplus 0$-coprimary R-module M / N is separated. It is enough to show $\left(P_{1} \oplus 0\right)(M / N)=0$. As $\left(0, p_{2}\right)\left(p_{1}, 0\right)(m+N)$ $=0(m \in M)$, we must have $\left(p_{1}, 0\right) m=0$. Thus M / N is a separated R module. Since M is primarily comultiplication, there are ideals I of R_{1} and J of R_{2} such that $N=\left(0:_{M} I \oplus J\right)$, so $I \oplus J \subseteq\left(0:_{R} N\right) \subseteq \operatorname{rad}(N: M)=P_{1} \oplus 0$; hence $J=0$ and $I=P_{1}^{n}$ for some n. It suffices to show that $\left(0 \oplus P_{2}\right) M=0$. Suppose not. Clearly, $\left(0 \oplus P_{2}\right) M \subseteq N$. So by Lemma 2.2, N primary gives either $M \subseteq N$ or $0 \oplus P_{2} \subseteq P_{1} \oplus 0$, which is a contradiction. Therefore, M is separated. The proof of (ii) is similar.

Lemma 4.3. Let R be the pullback ring as in (3.1) and let M be any R-module. Let $0 \rightarrow K \xrightarrow{i} S \xrightarrow{\varphi} M \rightarrow 0$ be a separated representation of M. Then the following hold:
(i) For each positive integer $n, 0 \rightarrow K \rightarrow P^{n} S \rightarrow P^{n} M \rightarrow 0$ is a separated representation of $P^{n} M$. In particular, $K \subseteq P^{n} S$.
(ii) If T is a primary submodule of S, then $K \subseteq T$.

Proof. (i) Since $\varphi^{-1}\left(P^{n} M\right)=P^{n} S$, the results follows from [9, Lemma 3.1].
(ii) If $\operatorname{rad}(T: S)=P$, then (i) gives $K \subseteq P^{n} S \subseteq T$ since R is Noetherian. So suppose that $\operatorname{rad}(T: S)=P_{1} \oplus 0$ and $K \nsubseteq T$; we show that $\operatorname{rad}(T: S)=$ $\operatorname{rad}(T: K)$. Since the inclusion $\operatorname{rad}(T: S) \subseteq \operatorname{rad}(T: K)$ is clear, we will prove the reverse inclusion. Let $a \in \operatorname{rad}(T: K)$ and $x \in K-T$. Then $a^{n} x \in T$ for some n, so T primary gives $a \in \operatorname{rad}(T: S)$, and so we have equality. Since for each $s, P^{s} K=0$ by [19, Proposition 2.4], we must have $P \subseteq \operatorname{rad}(T: K)=\operatorname{rad}(T: S)=P_{1} \oplus 0$, which is a contradiction. Likewise, if $\operatorname{rad}(T: S)=0 \oplus P_{2}$, then $K \subseteq T$.

Proposition 4.4. Let R be the pullback ring as in (3.1) and let M be any R-module. Let $0 \rightarrow K \rightarrow S \rightarrow M \rightarrow 0$ be a separated representation of M. Then $\operatorname{pSpec}_{R}(S)=\emptyset$ if and only if $\operatorname{pSpec}_{R}(M)=\emptyset$.

Proof. First suppose that $\operatorname{pSpec}_{R}(S)=\emptyset$ and $\operatorname{pSpec}_{R}(M) \neq \emptyset$. So $M \cong S / K$ has a primary submodule, say T / K where T is a primary submodule of S by Lemma 2.2, which is a contradiction. Next suppose that $\operatorname{pSpec}_{R}(M)=\emptyset$ and $\operatorname{pSpec}_{R}(S) \neq \emptyset$. Let T be a primary submodule of S. Then by Lemma 4.3, $K \subseteq T$; hence T / K is a primary submodule of M, which is a contradiction.

Lemma 4.5. Let A be any ring, M and $M^{\prime} R$-modules, and $f: M \rightarrow$ M^{\prime} an A-homomorphism. Let N be a primary submodule of M^{\prime} such that $f(M) \nsubseteq N$. Then $f^{-1}(N)$ is a primary submodule of M.

Proof. The proof is straightforward.
TheOrem 4.6. Let R be a pullback ring as in (3.1) and let M be any non-separated R-module. Let $0 \rightarrow K \rightarrow S \rightarrow M \rightarrow 0$ be a separated representation of M. Then S is primarily comultiplication if and only if M is primarily comultiplication.

Proof. By Proposition 4.4, we may assume that $\operatorname{Spec}(S) \neq \emptyset$. Suppose that M is a primarily comultiplication R-module and let T be a non-zero primary submodule of S. Then by Lemma 4.3, $K \subseteq T$, and so T / K is a primary submodule of S / K. By an argument like that in [6, Theorem 4.4], S is primarily comultiplication. Conversely, assume that S is a primarily comultiplication R-module and let N be a non-separated primary submodule of M. Then $\varphi^{-1}(N)=U$ is a primary submodule of S by Lemma 4.5, so $U=\left(0:_{S} P_{1}^{n} \oplus P_{2}^{m}\right)$ for some integers m, n. By [9, Lemma 3.1], $U / K \cong N$ is a primary submodule of $S / K \cong M$, so an inspection will show that $N=$ $U / K=\left(0:_{S / K} P_{1}^{n} \oplus P_{2}^{m}\right)$, as required.

Proposition 4.7. Let R be a pullback ring as in (3.1) and let M be an indecomposable primarily comultiplication non-separated R-module with finite-dimensional top over \bar{R}. Let $0 \rightarrow K \rightarrow S \rightarrow M \rightarrow 0$ be a separated representation of M. Then S is pure-injective.

Proof. By [7, Proposition 2.6(i)], $S / P S \cong M / P M$, so S has finite-dimensional top. Now the assertion follows from Theorem4.6 and Corollary 3.13.

Let R be a pullback ring as in (3.1) and let M be an indecomposable primarily comultiplication non-separated R-module with $M / P M$ finite-dimensional over \bar{R}. Consider the separated representation $0 \rightarrow K \rightarrow S \rightarrow M \rightarrow 0$. By Proposition 4.7, S is pure-injective. So in the proofs of [7, Lemma 3.1, Propositions 3.2 and 3.4] (here the pure-injectivity of M implies the pure-
injectivity of S by [7, Proposition 2.6(ii)]) we can replace the statement " M is an indecomposable pure-injective non-separated R-module" by " M is an indecomposable primarily comultiplication non-separated R-module", because the main keys to those results are the pure-injectivity of S, and the indecomposability and non-separability of M. So we have the following results:

Corollary 4.8. Let R be a pullback ring as in (3.1) and let M be an indecomposable primarily comultiplication non-separated R-module with $M / P M$ finite-dimensional over \bar{R}, and let $0 \rightarrow K \rightarrow S \rightarrow M \rightarrow 0$ be a separated representation of M. Then the quotient fields $Q\left(R_{1}\right)$ and $Q\left(R_{2}\right)$ of R_{1} and R_{2} do not occur among the direct summands of S.

Corollary 4.9. Let R be the pullback ring as in (3.1) and let M be an indecomposable primarily comultiplication non-separated R-module with $M / P M$ finite-dimensional over \bar{R}, and let $0 \rightarrow K \rightarrow S \rightarrow M \rightarrow 0$ be a separated representation of M. Then S is a direct sum of finitely many indecomposable primarily comultiplication modules.

Corollary 4.10. Let R be the pullback ring as in (3.1) and let M be an indecomposable primarily comultiplication non-separated R-module with $M / P M$ finite-dimensional over \bar{R}, and let $0 \rightarrow K \rightarrow S \rightarrow M \rightarrow 0$ be a separated representation of M. Then at most two copies of modules of infinite length can occur among the indecomposable summands of S.

Recall that every indecomposable R-module of finite length is primarily comultiplication (see Theorem 3.10 and Lemma 4.3). So by Corollary 4.10 , the infinite length non-separated indecomposable primarily comultiplication modules are obtained in just the same way as the deleted cycle type indecomposable ones are, except that at least one of the two "end" modules must be a separated indecomposable primarily comultiplication of infinite length (that is, P_{1}-Prüfer and P_{2}-Prüfer). Note that one cannot have, for instance, a P_{1}-Prüfer module at each end (consider the alternation of primes P_{1}, P_{2} along the amalgamation chain). So, apart from any finite length modules: we have amalgamations involving two Prüfer modules as well as modules of finite length (the injective hull $E(R / P)$ is the simplest module of this type), a P_{1}-Prüfer module and a P_{2}-Prüfer module. If the P_{1}-Prüfer and the P_{2}-Prüfer are direct summands of S then we will describe these modules as doubly infinite. Those where S has just one infinite length summand we will call singly infinite (the reader is referred to [7], [9] and [11] for more details). It remains to show that the modules obtained by these amalgamations are, indeed, indecomposable primarily comultiplication modules.

Theorem 4.11. Let $R=\left(R_{1} \rightarrow \bar{R} \leftarrow R_{2}\right)$ be the pullback of two discrete valuation domains R_{1}, R_{2} with common factor field \bar{R}. Then the class of indecomposable non-separated primarily comultiplication modules with finitedimensional top consists of the following:
(i) the indecomposable modules of finite length (except R / P which is separated),
(ii) the doubly infinite primarily comultiplication modules as described above,
(iii) the singly infinite primarily comultiplication modules as described above, except the two Prüfer modules (I) in Lemma 3.11.
Proof. Let M be an indecomposable non-separated primarily comultiplication R-module with finite-dimensional top and let $0 \rightarrow K \xrightarrow{i} S \xrightarrow{\varphi}$ $M \rightarrow 0$ be a separated representation of M.
(i) Clearly, M is a primarily comultiplication R-module. The indecomposability follows from [21, 1.9].
(ii) and (iii) (involving one or two Prüfer modules) M is primarily comultiplication (see Corollary 3.12 and Proposition 4.1). Finally, the indecomposability follows from [7, Theorem 3.5].

Corollary 4.12. Let R be the pullback ring as described in Theorem 4.11. Then every indecomposable primarily comultiplication R-module with finite-dimensional top is pure-injective.

Proof. Apply [7, Theorem 3.5] and Theorem 4.11.
Acknowledgments. The first author would like to thank Professor Daniel Simson for his comments and valuable suggestions that led to the present form of the paper. The authors are also grateful to the referee for his useful suggestions.

REFERENCES

[1] H. Ansari-Toroghy and F. Farshadifar, On endomorphisms of multiplication and comultiplication modules, Arch. Math. (Brno) 44 (2008), 9-15.
[2] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Vol. 1, Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge, 2007.
[3] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-29.
[4] Yu. A. Drozd, Matrix problems and categories of matrices, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 28 (1972), 144-153 (in Russian).
[5] R. Ebrahimi Atani and S. Ebrahimi Atani, Weak comultiplication modules over a pullback of commutative local Dedekind domains, Algebra Discrete Math. 2009, no. 1, 1-13.
[6] —, 一, Comultiplication modules over a pullback of Dedekind domains, Czechoslovak Math. J. 59 (2009), 1103-1114.
[7] S. Ebrahimi Atani, On pure-injective modules over pullback rings, Comm. Algebra 28 (2000), 4037-4069.
[8] -, On secondary modules over Dedekind domains, Southeast Asian Bull. Math. 25 (2001), 1-6.
[9] -, On secondary modules over pullback rings, Comm. Algebra 30 (2002), 2675-2685.
[10] -, Indecomposable weak multiplication modules over Dedekind domains, Demonstratio Math. 41 (2008), 33-43.
[11] S. Ebrahimi Atani and F. Farzalipour, Weak multiplication modules over a pullback of Dedekind domains, Colloq. Math. 114 (2009), 99-112.
[12] A. Facchini and P. Vamos, Injective modules over pullback rings, J. London Math. Soc. 31 (1985), 125-138.
[13] J. Haefner and L. Klingler, Special quasi-triads and integral group rings of finite representation type I, J. Algebra 158 (1993), 279-322.
[14] -, 一, Special quasi-triads and integral group rings of finite representation type II, ibid. 158 (1993), 323-374.
[15] I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. 72 (1952), 327-340.
[16] R. Kiełpiński, On Γ-pure injective modules, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 127-131.
[17] V. V. Kirichenko, Classification of the pairs of mutually annihilating operators in a graded space and representations of a dyad of generalized uniserial algebra, in: Rings and Linear Groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 75 (1978), 91-109 and 196-197 (in Russian).
[18] L. Klingler, Integral representations of groups of square-free order, J. Algebra 129 (1990), 26-74.
[19] L. Levy, Modules over pullbacks and subdirect sums, J. Algebra 71 (1981), 50-61.
[20] —, Modules over Dedekind-like rings, ibid. 93 (1985), 1-116.
[21] -, Mixed modules over $Z G, G$ cyclic of prime order, and over related Dedekind pullbacks, ibid. 71 (1981), 62-114.
[22] C. P. Lu, Prime submodules of modules, Comment. Univ. St. Pauli 33 (1984), 61-69.
[23] -, Spectra of modules, Comm. Algebra 23 (1995), 3741-3752.
[24] R. L. MacCasland, M. E. Moore and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra 25 (1997), 79-103.
[25] L. A. Nazarova and A. V. Roĭter, Finitely generated modules over a dyad of local Dedekind rings and finite groups having an abelian normal subgroup of index p, Izv. Akad. Nauk SSSR 33 (1969), 65-69 (in Russian).
[26] D. G. Northcott, Lessons on Rings, Modules, and Multiplicities, Cambridge Univ. Press, London, 1969.
[27] J. A. de la Peña and D. Simson, Projective modules, reflection functors, quadratic forms and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733753.
[28] M. Prest, Model Theory and Modules, London Math. Soc. Lecture Note Ser. 130, Cambridge Univ. Press, Cambridge, 1988.
[29] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, 1992.
[30] -, Prinjective modules, propartite modules, representations of bocses and lattices over orders, J. Math. Soc. Japan 49 (1997), 31-68.
[31] D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Volume 3, Representation-Infinite Tilted Algebras, London Math. Soc. Student Texts 72, Cambridge Univ. Press, Cambridge, 2007.
[32] R. B. Warfield, Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699-719.
[33] A. N. Wiseman, Projective modules over pullback rings, Math. Proc. Cambridge Philos. Soc. 97 (1985), 399-406.
S. Ebrahimi Atani, F. Esmaeili Khalil Saraei

Department of Mathematics
University of Guilan
P.O. Box 1914

Rasht, Iran
E-mail: ebrahimi@guilan.ac.ir esmaiely@guilan.ac.ir

[^0]: 2010 Mathematics Subject Classification: 13C60, 16G60.
 Key words and phrases: pullback, separated modules, non-separated modules, primarily comultiplication modules, Dedekind domains, pure-injective modules, Prüfer modules.

