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Abstract. We describe all those indecomposable primarily comultiplication modules
with finite-dimensional top over pullback of two Dedekind domains. We extend the defi-
nition and results given by R. Ebrahimi Atani and S. Ebrahimi Atani [Algebra Discrete
Math. 2009] to a more general primarily comultiplication modules case.

1. Introduction. The idea of investigating a mathematical structure
via its representations in simpler structures is commonly used and often
successful. The representation theory of finite-dimensional algebras has de-
veloped greatly in the recent years. It is an area which is very firmly based
on the detailed understanding of examples, and there are many powerful
techniques for investigating representations of particular algebras and for re-
lating representations of different algebras to one another. Its basic problem
is that of classification: given an algebra which is finite-dimensional over a
field describe its representations (modules) and the relations between them.
However, apart from some nicest classes of algebras, this is impossible, and
so the aim in practice is to classify the finite-dimensional representations and
the relations between them. Thus arises the project of classifying all repre-
sentations or, more realistically, all representations of a certain significant
type. A commonly adopted strategy is to prove a decomposition theorem
which says that every representation of the sort we are considering may be
built up from certain simpler ones, and then to develop a classification and
structure theory for those simpler building blocks. An optimal structure the-
ory for the blocks is one which provides us with a complete list and with
presentations of the members of the list, which are explicit enough to allow
answering many questions about the blocks with relatively little effort. The
reader is referred to [2], [29, Chapters 1 and 14] and [31] for a detailed dis-
cussion of classification problems, their representation types (finite, tame, or
wild), and useful computational reduction procedures.
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We know that every module is an elementary substructure of a pure-
injective module. In fact, there is a minimal pure-injective elementary exten-
sion of each moduleM , denoted by h(M), called the pure-injective hull ofM ,
and it is unique up to isomorphism fixing M . The class of pure-injectives is
closed under direct summands and finite direct sums, but an infinite direct
sum of pure-injectives need not be pure-injective. Observe that any finite
module is pure-injective. In a sense, then, pure-injective modules are model-
theoretically typical: for example, classification of the complete theories of
R-modules reduces to classifying the (complete theories of) pure-injectives.
Also, for some rings, “small” (finite-dimensional, finitely generated, . . . ) mod-
ules are classified and in many cases this classification can be extended to give
a classification of (indecomposable) pure-injective modules. Indeed, there is
sometimes a strong connection between infinitely generated pure-injective
modules and families of finitely generated modules. Therefore, pure-injective
modules are very important (see [32], [28] and [16]). One point of this paper
is to introduce a subclass of pure-injective modules.

Modules over pullback rings have been studied by several authors (see
for example, [25], [3], [17], [12], [18] and [33]). The important work of Levy
[20] provides a classification of all finitely generated indecomposable mod-
ules over Dedekind-like rings. L. Klingler [18] extended this classification
to lattices over certain non-commutative Dedekind-like rings, and Klingler
and J. Haefner ([13], [14]) classified lattices over certain non-commutative
pullback rings, which they called special quasi triads. Common to all these
classifications is the reduction to a “matrix problem” over a division ring (see
[4], [29, Section, 17.9], [27], and [30] for background on matrix problems and
their applications).

In the present paper we introduce a new class of R-modules, called pri-
marily comultiplication modules (see Definition 2.1), and we study it in detail
from the classification point of view. We are mainly interested in the case
where R is either a Dedekind domain or a pullback of two local Dedekind
domains. First, we give a complete description of the primarily comultiplica-
tion modules over a local Dedekind domain. Next, let R be a pullback of two
local Dedekind domains over a common factor field. The main purpose of
this paper is to give a complete description of the indecomposable primarily
comultiplication R-modules with finite-dimensional top over R/rad(R) (for
any moduleM we define its top asM/rad(R)M). In fact, we extend the defi-
nition and results given in [5] to a more general case, as the class of primarily
comultiplication modules contains the class of weak comultiplication mod-
ules defined in [5]. The classification is divided into two stages: we give a list
of all indecomposable separated primarily comultiplication R-modules and
then, using this list, we show that non-separated indecomposable primarily
comultiplication R-modules with finite-dimensional top are factor modules
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of finite direct sums of separated indecomposable primarily comultiplica-
tion R-modules. Then we use the classification of separated indecomposable
primarily comultiplication modules from Section 3, together with results
of Levy [20], [21] on the possibilities for amalgamating finitely generated
separated modules, to classify the non-separated indecomposable primarily
comultiplication modulesM with finite-dimensional top (see Theorem 4.11).
We will see that the non-separated modules may be represented by certain
amalgamation chains of separated indecomposable primarily comultiplica-
tion modules (where infinite length primarily comultiplication modules can
occur only at the ends) and where adjacency corresponds to amalgamation
in the socles of these modules.

For the sake of completeness, we state some definitions and notations
used throughout. In this paper all rings are commutative with identity and
all modules unitary. Let v1 : R1 → R̄ and v2 : R2 → R̄ be homomorphisms
of two local Dedekind domains Ri onto a common field R̄. Denote the pull-
back R = {(r1, r2) ∈ R1 ⊕ R2 : v1(r1) = v2(r2)} by (R1

v1−→ R̄
v2←− R2),

where R̄ = R1/J(R1) = R2/J(R2). Then R is a ring under coordinatewise
multiplication. Denote the kernel of vi, i = 1, 2, by Pi. Then Ker(R→ R̄) =
P = P1 × P2, R/P ∼= R̄ ∼= R1/P1

∼= R2/P2, and P1P2 = P2P1 = 0 (so R is
not a domain). Furthermore, for i 6= j, 0 → Pi → R → Rj → 0 is an exact
sequence of R-modules (see [19]).

Definition 1.1. An R-module S is defined to be separated if there exist
Ri-modules Si, i = 1, 2, such that S is a submodule of S1 ⊕ S2 (the latter is
made into an R-module by setting (r1, r2)(s1, s2) = (r1s1, r2s2)).

Equivalently, S is separated if it is a pullback of an R1-module and an
R2-module and then, using the same notation for pullbacks of modules as
for rings, S = (S/P2S → S/PS ← S/P1S) [19, Corollary 3.3] and S ⊆
(S/P2S) ⊕ (S/P1S). Also, S is separated if and only if P1S ∩ P2S = 0 [19,
Lemma 2.9].

If R is a pullback ring, then every R-module is an epimorphic image of
a separated R-module; indeed, every R-module has a “minimal” such repre-
sentation: a separated representation of an R-module M is an epimorphism
ϕ : S →M of R-modules with S separated such that if ϕ admits a factoriza-
tion ϕ : S

f→ S′ → M with S′ separated, then f is one-to-one. The module
K = Ker(ϕ) is then an R̄-module, since R̄ = R/P and PK = 0 [19, Propo-
sition 2.3]. An exact sequence 0 → K → S → M → 0 of R-modules with S
separated and K an R̄-module is a separated representation ofM if and only
if PiS∩K = 0 for each i and K ⊆ PS [19, Proposition 2.3]. Every moduleM
has a separated representation, which is unique up to isomorphism [19, The-
orem 2.8]. Moreover, R-homomorphisms lift to a separated representation,
preserving epimorphisms and monomorphisms [19, Theorem 2.6].
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Definition 1.2.

(a) If R is a ring and N is a submodule of an R-module M , the ideal
{r ∈ R : rM ⊆ N} is denoted by (N : M). Then (0 : M) is the
annihilator of M . A proper submodule N of a module M over a
ring R is said to be a primary submodule (resp. prime submodule)
if whenever rm ∈ N for some r ∈ R and m ∈ M , then m ∈ N
or rn ∈ (N : M) for some n (resp. m ∈ N or r ∈ (N : M)), so
rad(N : M) = P (resp. (N : M) = P ′) is a prime ideal of R, and N
is said to be a P -primary (resp. P ′-prime) submodule. The set of all
primary submodules (resp. prime submodules) in an R-module M is
denoted pSpec(M) (resp. Spec(M)).

(b) An R-moduleM is defined to be a comultiplication module if for each
submodule N of M , N = (0 :M I) for some ideal I of R. In this case
we can take I = Ann(N) (see [1]).

(c) An R-module M is defined to be a weak comultiplication module if
either Spec(M) = ∅ or for every prime submodule N of M , N =
(0 :M I) for some ideal I of R (see [5]).

(d) A submodule N of an R-module M is called a pure submodule if
any finite system of equations over N which is solvable in M is also
solvable in N . A submodule N of an R-module M is called relatively
divisible (or an RD-submodule) in M if rN = N ∩ rM for all r ∈ R
(see [16], [32]).

(e) A module M is pure-injective if it has the injective property relative
to all pure exact sequences (see [16], [32]).

(f) A non-zero R-moduleM is said to be coprimary if for each r∈R, the
homothety M r·−→ M is either injective or nilpotent. So rad(0 : M)
= J , the radical (0 : M) is a prime ideal of R, and M is said to be
J-coprimary (see [26]).

Remark 1.3.

(i) An R-module is pure-injective if and only if it is algebraically com-
pact (see [16] and [32]).

(ii) Let R be a Dedekind domain, M an R-module and N a submodule
of M . Then N is pure in M if and only if IN = N ∩ IM for each
ideal I of R. Moreover, N is pure in M if and only if N is an
RD-submodule of M (see [32]).

(iii) It is easy to see that an R-module M is coprimary if and only if
whenever rm = 0 (for some r ∈ R and m ∈ M), then either m = 0
or rnM = 0 for some n. Moreover, it is clear that if N is a J-primary
submodule of M , then M/N is a J-coprimary R-module.
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2. Properties of primarily comultiplication modules. In this sec-
tion we collect some basic properties concerning primarily comultiplication
modules. We begin with the key definition of this paper.

Definition 2.1. Let R be a commutative ring. An R-module M is de-
fined to be a primarily comultiplication module if either pSpec(M) = ∅, or
for every primary submodule N of M , N = (0 :M I) for some ideal I of R.

One can easily show that if M is a primarily comultiplication module,
then N = (0 :M ann(N)) for every primary submodule N of M . It is easy to
see that the class of primarily comultiplication modules contains the class of
weak comultiplication modules defined in [5]. We need the following lemma
proved in [26, p. 101, Corollary, and p. 99, Corollary 1].

Lemma 2.2.

(i) Let K ⊆ N be submodules of an R-module M . Then N is a primary
submodule ofM if and only if N/K is a primary submodule ofM/K.

(ii) Let N be a P -primary submodule of the R-module M and suppose
that I is an ideal of R and K a submodule of M . If IK ⊆ N , then
either I ⊆ P or K ⊆ N .

Proposition 2.3. If R is a domain (which is not a field) and M is
a primarily comultiplication R-module with torsion submodule T (M) 6= M ,
then pSpec(M) = {T (M)}.

Proof. Since T (M) is a prime submodule ofM with (T (M) : M) = 0 and
R is a domain, we must have rad(T (M) : M) = rad(0) = 0. IfN is a non-zero
primary submodule ofM , then N = (0 :M I) for some non-zero ideal I of R,
so N ⊆ T (M). Let x ∈ T (M). Then rx = 0 ∈ N for some 0 6= r ∈ R; hence
x ∈ N since rad(N : M) ⊆ rad(T (M) : M) = 0, and so T (M) = N . Note
that if we assume additionally that 0 is a primary submodule of M , then
since 0 ⊆ T (M), we have rad(0 : M) ⊆ rad(T (M) : M) = 0, which implies
0 ∈ pSpec(M) and so T (M) = 0, as needed.

Lemma 2.4. Let M be a primarily comultiplication module over a com-
mutative ring R. Then the following hold:

(i) If N is a pure submodule of M , then M/N is a primarily comulti-
plication R-module.

(ii) Every direct summand of M is a primarily comultiplication submod-
ule.

Proof. (i) Let K/N be a primary submodule of M/N . Then by Lem-
ma 2.2, K is a primary submodule of M , so L = (0 :M I) for some ideal I
of R. An inspection will show that L/N = (0 :M/N I). (ii) follows from (i)
since direct summands are pure.
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Lemma 2.5. Let M be an R-module, N a proper submodule of M , and
I ⊆ (0 : M). Then the following hold:

(i) N is a P -primary R-submodule M if and only if N is a P/I-primary
submodule of M as an R/I-module.

(ii) M is a primarily comultiplication R-module if and only if M is a
primarily comultiplication module as an R/I-module.

Proof. The proof of (i) is straightforward. To see (ii), apply Lemma 2.2
and the fact that (0 :M J) = (0 :M (J + I)/I) for every ideal J of R.

Proposition 2.6. Let M be a module over a local ring R with a unique
maximal ideal P . If (0 : M) = Pn for some positive integer n, then every
proper submodule of M is a P -primary submodule.

Proof. Let N be a proper submodule of M . Then rad(N : M) 6= R and
PnM = 0 ∈ N , so Pn ⊆ (N : M) ⊆ P by Lemma 2.2; hence rad(N : M)
= P . Let rm ∈ N for some r ∈ R and m ∈ M such that r /∈ P . Then R
local gives r−1rm = m ∈ N , as required.

Remark 2.7. (1) Let R be a local Dedekind domain with a unique max-
imal ideal P = Rp.

(a) Let M = R (as R-modules). For a primary submodule PnM (n ≥ 2)
of M we have (0 :M (0 :R PnM)) = R. So M = R is not a primarily
comultiplication R-module.

(b) We show that pSpec(E(R/P )) = ∅, where E = E(R/P ) is the in-
jective hull of R/P . By [8, Lemma 2.6], every non-zero proper submodule
L of E is of the form L = An = (0 :E Pn) (n ≥ 1), L = An = Ran

and rad(L : E) = 0 since E is divisible and R is an integral domain. If
L is a primary submodule of E, then for any positive integer m, we have
pm /∈ rad(L : E) = 0 and an+m /∈ L, but pman+m = an ∈ L (see [8,
Lemma 2.6]). Thus E is primarily comultiplication.

(2) Let R be an integral domain which is not a field, and Q(R) the field
of fractions of R. We show that pSpec(Q(R)) = {0}. By [23, Theorem 1], for
every proper submodule N of Q(R), we must have (N : Q(R)) = 0. Clearly,
0 is a 0-primary submodule of Q(R). To show that 0 is the only primary
submodule of Q(R), assume the contrary and let K be a non-zero primary
submodule of Q(R). Then rad(K : M) = rad(0) = 0 since R is a domain.
By an argument like that in [23, Theorem 1], we get a contradiction. As
0 = (0 :Q(R) R), Q(R) is primarily comultiplication.

Theorem 2.8. Let R be a discrete valuation domain with a unique max-
imal ideal P = Rp. Then the class of indecomposable primarily comultiplica-
tion modules over R consists of the following:

(1) R/Pn, n ≥ 1, the indecomposable torsion modules;
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(2) E(R/P ), the injective hull of R/P ;
(3) Q(R), the field of fractions of R.

Proof. First we note that each of the listed modules is indecomposable
(by [7, Proposition 1.3]) and primarily comultiplication. In the case of R/Pn

this follows because R/Pn is a comultiplication module (see [6]). Moreover,
Q(R) and E(R/P ) are primarily comultiplication by Remark 2.7.

Now letM be an indecomposable primarily comultiplication module and
choose any non-zero a ∈ M . Let h(a) = sup{n : a ∈ PnM}, so h(a) is a
non-negative integer or ∞. Also let (0 : a) = {r ∈ R : ra = 0}, which is an
ideal of the form Pm or 0. Because (0 : a) = Pm+1 implies pma 6= 0 and
p · pma = 0, we can choose a so that (0 : a) = P or 0. Now we consider the
various possibilities for h(a) and (0 : a).

Case 1: pSpec(M) = ∅. Since Spec(M) ⊆ pSpec(M), it follows from
[24, Lemma 1.3, Proposition 1.4] thatM is a torsion divisible R-module with
PM = M andM is not finitely generated. We may assume that (0 : a) = P .
By an argument like that in [8, Proposition 2.7], M ∼= E(R/P ). So we may
assume that pSpec(M) 6= ∅.

Case 2: h(a) = n. Then (0 : a) = P . Indeed, suppose not. Then (0 : a)
= 0. Say a = pnb. Then rb = 0 implies ra = 0 and so r = 0. Thus Rb ∼= R.
Moreover, Rb is pure in M (see [10, Theorem 2.12, Case 1]). As M is a
torsion-free R-module by [15, Theorem 10], Rb is a prime submodule of M
(see [22, Result 2]) (so a primary submodule); hence R ∼= Rb = (0 :M 0) =
M , which is a contradiction by Remark 2.7(1). So (0 : a) = P . Say a = pnb.
Then Rb ∼= R/Pn+1. Since Rb is a pure submodule of bounded order of M ,
it is a direct summand of M by [15, Theorem 5]; hence M = Rb ∼= R/Pn+1.

Case 3: h(a) = ∞, (0 : a) = P . By an argument like that in [6, Theo-
rem 2.5, Case 2], we getM ∼= E(R/P ); hence pSpec(M) = ∅ by Remark 2.7,
contrary to assumption.

Case 4: h(a) =∞, (0 : a) = 0. By an argument like that in [10, Theorem
2.12, Case 3], we obtain M ∼= Q(R).

Let M be a primarily comultiplication module over a local Dedekind
domain. Then every direct summand of M is primarily comultiplication.
Then by [15, Theorems 7–9], either M is indecomposable or M has all inde-
composable direct summands primarily comultiplication. Therefore, we have
the following consequence of Lemma 2.4(ii), Theorem 2.8 and [7, Proposi-
tion 1.3].

Theorem 2.9. Let M be a primarily comultiplication module over a dis-
crete valuation domain with maximal ideal P = Rp. Then M is of the form
M = N ⊕K, where N is a direct sum of copies of R/Pn (n ≥ 1) and K is
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a direct sum of copies of E(R/P ) and Q(R). In particular, every primarily
comultiplication R-module is pure-injective.

3. The separated case. Throughout this section we shall assume, un-
less otherwise stated, that

(3.1) R = (R1
v1−→ R̄

v2←− R2)

is the pullback of two local Dedekind domains R1, R2 with maximal ideals
P1, P2 generated respectively by p1, p2. Let P denote P1⊕P2. Then R1/P1

∼=
R2/P2

∼= R/P ∼= R̄ is a field. In particular, R is a commutative Noetherian
local ring with unique maximal ideal P . The other prime ideals of R are
easily seen to be P1 (that is, P1 ⊕ 0) and P2 (that is, 0⊕ P2).

Remark 3.1. Let R be the pullback ring as in (1), and let T be an
R-submodule of a separated module S = (S1

f1−→ S̄
f2←− S2), with projection

maps πi : S � Si. Set

T1 = {t1 ∈ S1 : (t1, t2) ∈ T for some t2 ∈ S2},
T2 = {t2 ∈ S2 : (t1, t2) ∈ T for some t1 ∈ S1}.

Then for each i = 1, 2, Ti is an Ri-submodule of Si and T ≤ T1 ⊕ T2.
Moreover, we can define a mapping π′1 = π1|T : T � T1 by sending (t1, t2) to
t1; hence T1

∼= T/(0⊕Ker(f2)∩T ) ∼= T/(T∩P2S) ∼= (T+P2S)/P2S ⊆ S/P2S.
So we may assume that T1 is a submodule of S1. Similarly, we may assume
that T2 is a submodule of S2 (note that Ker(f1) = P1S1 and Ker(f2) =
P2S2).

Lemma 3.2. Let R be the pullback ring as in (3.1), and let S = (S1 →
S̄ ← S2) be a separated R-module and let T be a proper submodule of S.
Then the following hold:

(i) T is a P1⊕0-prime submodule S if and only if T is a P1⊕0-primary
submodule of S.

(ii) T is a 0⊕P2-prime submodule S if and only if T is a 0⊕P2-primary
submodule of S.

Proof. (i) The necessity is clear. Conversely, suppose that T is a P1 ⊕ 0-
primary submodule. Since (0 ⊕ P2)(P1 ⊕ 0)S = 0 ∈ T , we must have
(P1 ⊕ 0)S ⊆ T by Lemma 2.2. It follows that P1 ⊕ 0 ⊆ (T : S) ⊆ rad(T : S)
= P1 ⊕ 0; hence (T : S) = P1 ⊕ 0. Now (T : S) = P1 ⊕ 0 and T primary
implies T is a prime submodule of S. The proof of (ii) is similar.

Proposition 3.3. Let R be the pullback ring as in (3.1), and let S =

(S/P2S = S1
f1−→ S̄ = S/PS

f2←− S2 = S/P1S) be any separated R-module.
Then the following hold:
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(i) If S has a P -primary R-submodule T = (T1→ T̄ ←T2), then T1 is
a P1-primary submodule of S1, and T2 is a P2-primary submodule
of S2.

(ii) If S has a P1 ⊕ 0-primary R-submodule T , then T1 is a P1-primary
submodule of S1, and T2 is a 0-primary submodule of S2.

(iii) If S has a 0 ⊕ P2-primary R-submodule T , then T1 is a 0-primary
submodule of S1, and T2 is a P2-primary submodule of S2.

Proof. (i) Let r1s1 ∈ T1 for some r1 ∈ R1 and s1 ∈ S1. Then v1(r1) =
v2(r2) and f1(s1) = f2(s2) for some r2 ∈ R2, s2 ∈ S2, so there is a positive
integer n such that (rn

1 , r
n
2 )(s1, s2) ∈ PnS ⊆ T (note that every ideal in

a commutative Noetherian ring contains a power of its radical). Therefore,
T primary gives either s1 ∈ T1 or r1 ∈ P1. Thus T1 is a P1-primary submodule
of S1. Similarly, T2 is a P2-primary submodule of S2.

(ii) Suppose that T is a P1 ⊕ 0-primary submodule of S. Since (0 ⊕
P2)(P1⊕ 0)S = 0 ∈ T and T is P1⊕ 0-primary, we must have (P1⊕ 0)S ⊆ T
(see Lemma 2.2(ii)); hence T/(P1 ⊕ 0)S is a P1 ⊕ 0-primary R-submodule
of S/(P1 ⊕ 0)S. So T2 is a 0-primary R2-submodule of S2 by Lemma 2.5.
Finally, there is a positive integer s such that (P1 ⊕ 0)sS ⊆ T since R is
Noetherian, so P1 ⊆ rad(T1 : S1) ⊆ P1; hence rad(T1 : S1) = P1. Therefore,
T1 is a P1-primary submodule of S1 by Proposition 2.6. The proof of (iii) is
similar.

Lemma 3.4. Let S = (S/P2S = S1
f1−→ S̄ = S/PS

f2←− S2 = S/P1S) be
any separated module over the pullback ring as in (3.1) and m,n be positive
integers. Then the following hold:

(i) If (0 : S) = Pn
1 ⊕ Pm

2 , then every proper submodule of S is a P -
primary submodule. In particular, if n,m > 1, then (0 :R (P1 ⊕ 0)S)
= Pn−1

1 ⊕ P2 and (0 :R (0⊕ P2)S) = P1 ⊕ Pm−1
2 .

(ii) If (0 : S) = Pn
1 ⊕ 0 and S̄ 6= 0, then (0 ⊕ P2)S is a P -primary

submodule of S. In particular, (0 : PS) = Pn−1
1 ⊕ 0.

(iii) If (0 : S) = 0 ⊕ Pm
2 and S̄ 6= 0, then (P1 ⊕ 0)S is a P -primary

submodule of S. In particular, (0 : PS) = 0⊕ Pm−1
2 .

Proof. (i) Let T be a proper submodule of S. Then (T : S) 6= R and
Pn

1 ⊕ Pm
2 ⊆ (T : S). Since (T : S) * P1 ⊕ 0 and (T : S) * 0 ⊕ P2,

and Spec(R) = {P1 ⊕ 0, 0 ⊕ P2, P}, we must have rad(T : S) = P . Now
the assertion follows from Proposition 2.6. Finally, by assumption, P1 ⊕ 0S
6= 0 and (0 ⊕ P2)S 6= 0. Since (Pn−1

1 ⊕ P2)(P1 ⊕ 0)S = 0, we must have
Pn−1

1 ⊕ P2 ⊆ (0 :R (P1 ⊕ 0)S). For the reverse inclusion, suppose that
(r1, r2) ∈ (0 :R (P1 ⊕ 0)S) ⊆ P . It follows that r2 ∈ P2 and (r1p1, 0)S ⊆
(r1, r2)(P1 ⊕ 0)S = 0. So r1p1 ∈ Pn

1 . Then r1 = w1p
n−1
1 ∈ Pn−1

1 for some
w1 ∈ R1; hence (r1, r2) ∈ Pn−1

1 ⊕P2. Similarly, (0 :R (0⊕P2)S) = P1⊕Pm−1
2 .
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(ii) By assumption, 0 ( (0⊕P2)S ( S. Since (Pn
1 ⊕0)S = 0 ⊆ (0⊕P2)S,

we have Pn
1 ⊕ 0 ⊆ ((0 ⊕ P2)S : S). Since (0 ⊕ P2)S : S) * P1 ⊕ 0 and

((0 ⊕ P2)S : S) * 0 ⊕ P2, and Spec(R) = {P1 ⊕ 0, 0 ⊕ P2, P}, we must
have rad(T : S) = P . Now the assertion follows from Proposition 2.6. Finally,
since PS 6= S, PS is a P -primary submodule of S. Moreover, (Pn−1

1 ⊕
0)PS = 0 gives Pn−1

1 ⊕ 0 ⊆ (0 : PS). For the reverse inclusion, assume that
(r1, r2) ∈ (0 : PS). Then (r1p1, r2p2)S = 0, so r1p1 ∈ Pn

1 and r2p2 = 0.
Then there exists u1 ∈ R1 such that r1 = u1p

n−1
1 and r2 = 0 since R2

is a domain. Hence (r1, r2) ∈ Pn−1
1 ⊕ 0, as needed. The proof of (iii) is

similar.

Proposition 3.5. Let S be any primarily comultiplication separated
module over the pullback ring as in (3.1). If (0 :R S) = 0, then S̄ = 0.

Proof. Suppose S̄ 6= 0. Then PS is a P -primary submodule of S. Let
(r1, r2) ∈ (0 :R PS). Then (r1, r2)(p1, p2)S ⊆ (r1, r2)PS = 0, so r1p1 = 0
and r2p2 = 0; hence r1 = 0 and r2 = 0. Therefore, (0 :R PS) = 0. Then
S primarily comultiplication gives PS = (0 :S (0 :R PS)) = (0 :S 0) = S,
which is a contradiction.

Proposition 3.6. Let S be any separated module over the pullback ring
as in (3.1). Then the following hold:

(i) (0 :R S) = I ⊕ J if and only if (0 :R1 S1) = I and (0 :R2 S2) = J ,
where I 6= 0 and J 6= 0.

(ii) If (0 :R S) = Pn
1 ⊕0 for some positive integer n, then (0 :R1 S1) = Pn

1

and (0 :R2 S2) = 0.
(iii) If (0 :R S) = 0⊕Pn

2 for some positive integer n, then (0 :R1 S1) = 0
and (0 :R2 S2) = Pn

2 .

Proof. (i) Assume that (0 :R S) = I ⊕ J and let s1 ∈ S1. Then there
exists s2 ∈ S2 such that (s1, s2) ∈ S, so Is1 = 0 and hence I ⊆ (0 :R1 S1).
For the other containment, assume that r1 ∈ (0 :R1 S1) ⊆ P1. So r1S1 = 0.
Let (s1, s2) ∈ S. Then (r1, 0)(s1, s2) = 0, so (r1, 0)S = 0. Hence r1 ∈ I,
and we have equality. Similarly, (0 :R2 S2) = J . Conversely, assume that
(s1, s2) ∈ S. Then Is1 = 0 and Js2 = 0, so (I ⊕ J)(s1, s2) = 0; hence
I ⊕ J ⊆ (0 :R S). For the reverse containment, suppose (r1, r2) ∈ (0 :R S).
Let t1 ∈ S1. Then there is an element t2 ∈ S2 such that (t1, t2) ∈ S, so
(r1, r2)(t1, t2) = 0; hence r1S1 = 0. Thus r1 ∈ I. Similarly, r2 ∈ J , and the
proof is complete.

(ii) By (i), it suffices to show that (0 :R2 S2) = 0. Suppose not. Let
0 6= r2 ∈ (0 :R2 S2). Then there exist u ∈ R2 and a positive integer t
such that r2 = upt

2. Let (s1, s2) ∈ S. Then (Pn
1 ⊕ uP t

2)(s1, s2) = 0, so
(Pn

1 ⊕ uP t
2)S = 0, which is a contradiction. The proof of (iii) is similar.
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Proposition 3.7. Let S be any primarily comultiplication separated
module over the pullback ring as in (3.1) with S̄ 6= 0.

(i) If (0 :R S) = Pn
1 ⊕ Pm

2 for some positive integers n,m, then either
m = 1 or n = 1.

(ii) If (0 :R S) = P1 ⊕ Pm
2 for some positive integer m > 1, then

(0 :R PS) = P1 ⊕ Pm−1
2 .

(iii) If (0 :R S) = Pm
1 ⊕ P2 for some positive integer m > 1, then

(0 :R PS) = Pm−1
1 ⊕ P2.

Proof. (i) Suppose not. We may assume that n > 1 and m > 1. Clearly,
0 6= (P1 ⊕ 0)S ⊆ PS 6= S, 0 6= (0 ⊕ P2)S ⊆ PS 6= S, and the submodules
(P1 ⊕ 0)S and (0 ⊕ P2)S are P -primary submodules of S by Lemma 3.4.
Since S is a primarily comultiplication R-module, we must have (P1⊕0)S =
(0 :S (0 :R P1 ⊕ 0)) = (0 :S Pn−1

1 ⊕ P2) and (0 ⊕ P2)S = (0 :S P1 ⊕ Pm−1
2 )

by Lemma 3.4. Let s1 ∈ S1. There exists s2 ∈ S2 such that (s1, s2) ∈ S.
It follows from Proposition 3.6 that pn

1s1 = 0 and pm
2 s2 = 0. Therefore,

(p1, p
m−1
2 )(pn−1

1 s1, p2s2) = 0, so (pn−1
1 s1, p2s2) ∈ (0 :S P1 ⊕ Pm−1

2 ) = (0 ⊕
P2)S; hence pn−1

1 s1 = 0. In a similar way, we get p1s1 = 0. Therefore,
P1S1

∼= (P1 ⊕ 0)S = 0, which is a contradiction.
(ii) By Proposition 3.6, (0 :R1 S1) = P1 and (0 :R2 S2) = Pm

2 . Since
(P1⊕Pm−1

2 )PS = 0, we have P1⊕Pm−1
2 ⊆ (0 :R PS). For the reverse inclu-

sion, assume that (r1, r2) ∈ (0 :R PS). Then (r1p2
1, r2p2)S ⊆ (r1, r2)PS = 0,

so r1p2
1 ∈ P1 and r2p2 ∈ Pm

2 ; hence r1p1 = up2
1 and r2p2 ∈ wpm

2 for some
u ∈ R1 and w ∈ R2. It follows that r1 ∈ P1 and r2 ∈ Pm−1

2 since R1 and R2

are domains, and we have equality. The proof of (iii) is similar.

Proposition 3.8. Let S be any primarily comultiplication separated
module over the pullback ring as in (3.1) with S̄ 6= 0. Then (0 :R S) 6= Pn

1 ⊕0
and (0 :R S) 6= 0⊕ Pn

2 for every positive integer n.

Proof. Suppose (0 :R S) = Pn
1 ⊕0. If (0⊕P2)S = 0, then 0⊕P2 ⊆ Pn

1 ⊕0,
which is a contradiction. So (0 ⊕ P2)S 6= 0 and (0 :R (0 ⊕ P2)S) 6= R. Now
we show that (0 :R (0 ⊕ P2)S) = P1 ⊕ 0. Since (P1 ⊕ 0)(0 ⊕ P2)S = 0,
we have P1 ⊕ 0 ⊆ (0 :R (0 ⊕ P2)S). For the reverse inclusion, assume that
(r1, r2) ∈ (0 :R (0 ⊕ P2)S). We may suppose that (r1, r2) ∈ P since R
is local. Then r1 ∈ P1 and (0, r2p2)S = 0, so r2p2 = 0; hence r2 = 0
and (r1, r2) ∈ P1 ⊕ 0, and so we have equality. Moreover, by Lemma 3.4,
(0 ⊕ P2)S is a P -primary submodule of S, so (0 ⊕ P2)S = (0 :S P1 ⊕ 0)
since S is primarily comultiplication. We may assume that n > 1. Since
(P1 ⊕ 0)(Pn−1

1 ⊕ P2)S = 0, we must have (Pn−1
1 ⊕ P2)S ⊆ (0 :S P1 ⊕ 0) =

(0 ⊕ P2)S. Let s1 ∈ S1. Then there is an element s2 ∈ S2 such that
(s1, s2) ∈ S. Hence (pn−1

1 , p2)(s1, s2) ∈ (0 ⊕ P2)S; hence Pn−1
1 S1 = 0.
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Therefore, Pn−1
1 ⊆ (0 :R1 S1) = Pn

1 by Proposition 3.6, which is a con-
tradiction. Thus (0 :R S) 6= Pn

1 ⊕ 0 for every positive integer n. Similarly,
(0 :R S) 6= 0⊕ Pn

2 for every positive integer n.

Remark 3.9. Let R be the pullback ring as in (3.1), and let S = (S1 →
S̄ ← S2) be a separated R-module. Then pSpec(S) = ∅ if and only if
pSpec(Si) = ∅ for i = 1, 2.

Proof. For the necessity, assume that pSpec(S) = ∅ and let π be the
projection map of R onto Ri. Suppose pSpec(S1) 6= ∅ and let T1 be a primary
submodule of S1, so T1 is a primary R-submodule of S1 = S/(0 ⊕ P2)S;
hence pSpec(S) 6= ∅, by Lemma 2.2, which is a contradiction. Similarly,
pSpec(S2) = ∅. The sufficiency is clear by Proposition 3.3.

Theorem 3.10. Let R be a pullback ring as in (3.1), and let S = (S1 →
S̄ ← S2) be a separated R-module. Then S is a primarily comultiplication
R-module if and only if each Si is a primarily comultiplication Ri-module,
i = 1, 2.

Proof. Note that by Remark 3.9, Spec(S) = ∅ if and only if Spec(Si) = ∅
for i = 1, 2. So we may assume that Spec(S) 6= ∅. Assume that S is a sepa-
rated primarily comultiplication R-module. If S̄ = 0, then by [7, Lemma 2.7],
S = S1⊕S2; hence for each i, Si is primarily comultiplication by Lemma 2.4.
So we may assume that S̄ 6= 0.

Let L (resp. L′) be a primary submodule of S1 (resp S2). Then there exists
a separated submodule T = (T/P2S = T1

g1−→ T̄ = T/PT
g2←− T2 = T/P1T )

(resp. T ′ = (T ′/P2T
′ = T ′1

g′
1−→ T̄ ′ = T ′/PT ′

g′
2←− T ′2 = T ′/P1S)) of S, where

gi (resp. g′i) is the restriction of fi over Ti (resp. T ′i ), i = 1, 2, such that
L = T1 (resp. L′ = T ′2). Since T1 (resp. T ′2) is a primary submodule of S1

(resp. S2), it follows that T/(0 ⊕ P2)S (resp. T ′/(P1 ⊕ 0)S) is a primary
R-submodule of S/(0 ⊕ P2)S (resp. S/(P1 ⊕ 0)S); hence T (resp. T ′) is a
primary R-submodule of S by Lemma 2.2. We split the proof into two cases
for (0 : S) by Propositions 3.7 and 3.8.

Case 1: (0 : S) = P1 ⊕ Pm
2 for some positive integer m. If m = 1,

then by assumption, T = (0 :S P k
1 ⊕ P s

2 ) for some integers k, s; we show
that T1 = (0 :S1 P

k
1 ). Let s1 ∈ (0 :S1 P

k
1 ). Then P k

1 s1 = 0 and there exists
s2 ∈ S2 such that (s1, s2) ∈ S, so (P k

1 ⊕ P s
2 )(s1, s2) = 0; hence (s1, s2) ∈ T .

Therefore, (0 :S1 Pn
1 ) ⊆ T1. Now suppose that x ∈ T1. Then there is an

element y ∈ T2 such that g1(x) = g2(y), so (x, y) ∈ T ; hence P k
1 x = 0, and

so we have equality. Similarly, S2 is a primarily comultiplication R2-module.
So we may assume that m > 1. By Proposition 3.6, (0 :R1 S1) = P1 and
(0 :R2 S2) = Pm

2 . Since (P1 ⊕ 0)S ∼= P1S1 = 0 and (0 ⊕ P2)S ⊆ T , we get
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PS ⊆ T ⊆ S, so (0 :R S) ⊆ (0 :R T ) ⊆ (0 :R PS); thus P1 ⊕ Pm
2 ⊆ (0 :R

T ) ⊆ P1⊕Pm−1
2 by Proposition 3.7. Therefore, either (0 :R T ) = P1⊕Pm

2 or
(0 :R T ) = P1 ⊕ Pm−1

2 . Since S is primarily comultiplication, we have either
T = (0 :S P1⊕Pm

2 ) = S or T = (0 :S P1⊕Pm−1
2 ) = PS; hence T = PS and

T1 = (PS)/PS = 0. Then L = T1 = (0 :S1 R1) implies that S1 is primarily
comultiplication. Now we will prove S2 is primarily comultiplication. By
hypothesis, T ′ = (0 :S P s

1 ⊕P t
2) for some positive integers s, t. We show that

T ′2 = (0 :S2 P
m
2 ). Since the inclusion T ′2 ⊆ (0 :S2 P

m
2 ) is clear, we will prove

the reverse inclusion. Let s2 ∈ (0 :S2 P
m
2 ). Then Pm

2 s2 = 0 and there exists
s1 ∈ S1 such that (s1, s2) ∈ S, so (P s

1 ⊕ P t
2)(s1, s2) = 0; hence (s1, s2) ∈ T ′.

Therefore, s2 ∈ T ′2, and so we have equality.

Case 2: (0 : S) = Pm
1 ⊕ P2 for some positive integer m. The proof is

similar to that in Case 1.

Conversely, assume that S1, S2 are primarily comultiplication Ri-modules
and let T be a non-zero primary submodule of S. If (0 : S) = P1 ⊕ Pm

2 for
some positive integer m, then (0 :R1 S1) = P1 and (0 :R2 S2) = Pm

2 ), so
there exist positive integers k, s such that T1 = (0 :S1 P

k
1 ), T2 = (0 :S2 P

s
2 ),

and so T = (0 :S P k
1 ⊕P s

2 ). Similarly we argue when (0 :R S) = Pm
1 ⊕P2 for

some positive integer m.

Lemma 3.11. Let R be the pullback ring as in (3.1). The following sep-
arated R-modules are indecomposable and primarily comultiplication:

(I) S = (E(R1/P1)→ 0← 0), (0→ 0← E(R2/P2)), where E(Ri/Pi)
is the Ri-injective hull of Ri/Pi for i = 1, 2;

(II) S = (Q(R1)→ 0← 0), (0→ 0← Q(R2)), where Q(Ri) is the field
of fractions of Ri for i = 1, 2;

(III) S = (R1/P
n
1 → R̄← R2/P

m
2 ) for all positive integers n,m.

Proof. By [7, Lemma 2.8], these modules are indecomposable. Being pri-
marily comultiplication follows from Theorems 2.8 and 3.10.

We refer to modules of type (3.1) in Lemma 3.2 as P1-Prüfer and P2-
Prüfer respectively.

Theorem 3.12. Let R be the pullback ring as in (3.1), and let S =

(S1
f1−→ S̄

f2←− S2) be an indecomposable separated primarily comultiplication
R-module. Then S is isomorphic to one of the modules listed in Lemma 3.11.

Proof. First suppose that pSpec(S) = ∅. Then pSpec(Si) = ∅ by Re-
mark 3.9, so Si = PiSi for each i = 1, 2 by Theorem 2.8; hence S = PS =
P1S1⊕P2S2 = S1⊕S2. Therefore, S = S1 or S2 and so S is of type (I) in the
list of Lemma 3.11 by Theorem 2.8. So we may assume that pSpec(S) 6= ∅.
Next suppose that PS = S. Then by [7, Lemma 2.7(i)], S = S1 or S2 and
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so S is an indecomposable primarily comultiplication Ri-module for some i,
and since PS = S, it is type (II) by Theorem 2.8. So we may assume that
S/PS 6= 0.

By Theorem 3.10, Si is a primarily comultiplication Ri-module for each
i = 1, 2 (note that for each i, Si is torsion and it is not a divisible Ri-module
by Theorem 2.8). Hence, by the structure of primarily comultiplication mod-
ules over a discrete valuation domain (see Theorem 2.9), Si = Mi⊕Ni where
Ni is a direct sum of copies of Ri/P

n
i (n ≥ 1) and Mi is a direct sum of

copies of E(Ri/Pi) and Q(Ri). Then S = (N1 → S̄ ← N2)⊕ (M1 → 0← 0)
⊕ (0 → 0 ← M2). Since S is indecomposable and S/PS 6= 0 it follows that
S = (N1 → S̄ ← N2). We will see that each Si (= Ni) is indecomposable.
Then there are positive integers m,n and k such that Pm

1 S1 = 0, P k
2 S2 = 0

and PnS = 0. For s ∈ S, let o(s) denote the least positive integer m such
that Pms = 0. Now choose s ∈ S1 ∪ S2 with s̄ 6= 0 and such that o(t)
is maximal. There exists an s = (s1, s2) such that o(s) = n, o(s1) = m
and o(s2) = k. Then Risi is pure in Si for i = 1, 2 (see [7, Theorem 2.9]).
Therefore, R1s1 ∼= R1/P

m
1 (resp. R2s2 ∼= R2/P

k
2 ) is a direct summand of S1

(resp. S2) since for each i, Risi is pure-injective. Let M̄ be the R̄-subspace of
S̄ generated by s̄. Then M̄ ∼= R̄. LetM = (R1s1 = M1 → M̄ ←M2 = R2s2).
Then M is an R-submodule of S which is primarily comultiplication by
Lemma 3.11 and is a direct summand of S; this implies that S = M , and S
is as in (III) (see [7, Theorem 2.9].

Corollary 3.13. Let R be the pullback ring as in (3.1), and let S be a
separated primarily comultiplication R-module. Then S is of the formM⊕N ,
where M is a direct sum of copies of modules as in (I)–(II) and N is a direct
sum of copies of modules as in (III) of Lemma 3.11. In particular, every
separated primarily comultiplication R-module is pure-injective.

Proof. Apply Theorem 3.12 and [7, Theorem 2.9].

4. The non-separated case. We continue to use the notation already
established, so R is the pullback ring as in (3.1). In this section we find all
indecomposable non-separated primarily comultiplication R-modules with
finite-dimensional top. It turns out that each can be obtained by amalga-
mating finitely many separated indecomposable primarily comultiplication
modules.

Proposition 4.1. Let R be a pullback ring as in (3.1). Then E(R/P )
is a non-separated primarily comultiplication R-module.

Proof. It suffices to show that pSpec(E(R/P )) = ∅. Let L be any sub-
module of E(R/P ) described in [8, Proposition 3.1]. Since E(R/P ) is divis-
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ible, we must have (L : E(R/P )) = 0; hence rad(L : E(R/P )) = rad(0) =
(P1 ⊕ 0) ∩ (0 ⊕ P2) ∩ P = 0. Set P = R(p1, p2) = Rp. Then no L, say
E1 +An, is a primary submodule of E(R/P ), for if m is any positive integer,
then pm /∈ rad(L : E(R/P )) = 0 and x1 + an+m /∈ E1 + An (x1 ∈ E1), but
pm(x1+an+m) = pm

1 x1+an ∈ E1+An. Therefore, E(R/P ) is a non-separated
primarily comultiplication R-module (see [7, p. 4053]).

Proposition 4.2. Let R be the pullback ring as in (3.1), and let M be
any primarily comultiplication R-module. Then the following hold:

(i) If M has a P1 ⊕ 0-primary submodule N , then M/N and M are
separated.

(ii) If M has a 0 ⊕ P2-primary submodule N , then M/N and M are
separated.

Proof. (i) First, we show that the P1 ⊕ 0-coprimary R-module M/N is
separated. It is enough to show (P1⊕0)(M/N) = 0. As (0, p2)(p1, 0)(m+N)
= 0 (m ∈ M), we must have (p1, 0)m = 0. Thus M/N is a separated R-
module. SinceM is primarily comultiplication, there are ideals I of R1 and J
of R2 such thatN = (0 :M I⊕J), so I⊕J ⊆ (0 :R N) ⊆ rad(N : M) = P1⊕0;
hence J = 0 and I = Pn

1 for some n. It suffices to show that (0⊕P2)M = 0.
Suppose not. Clearly, (0 ⊕ P2)M ⊆ N . So by Lemma 2.2, N primary gives
either M ⊆ N or 0⊕ P2 ⊆ P1 ⊕ 0, which is a contradiction. Therefore, M is
separated. The proof of (ii) is similar.

Lemma 4.3. Let R be the pullback ring as in (3.1) and let M be any
R-module. Let 0 → K

i−→ S
ϕ−→ M → 0 be a separated representation

of M . Then the following hold:

(i) For each positive integer n, 0 → K → PnS → PnM → 0 is a
separated representation of PnM . In particular, K ⊆ PnS.

(ii) If T is a primary submodule of S, then K ⊆ T .

Proof. (i) Since ϕ−1(PnM) = PnS, the results follows from [9, Lem-
ma 3.1].

(ii) If rad(T : S) = P , then (i) givesK ⊆ PnS ⊆ T since R is Noetherian.
So suppose that rad(T : S) = P1⊕ 0 and K * T ; we show that rad(T : S) =
rad(T : K). Since the inclusion rad(T : S) ⊆ rad(T : K) is clear, we will
prove the reverse inclusion. Let a ∈ rad(T : K) and x ∈ K − T . Then
anx ∈ T for some n, so T primary gives a ∈ rad(T : S), and so we have
equality. Since for each s, P sK = 0 by [19, Proposition 2.4], we must have
P ⊆ rad(T : K) = rad(T : S) = P1 ⊕ 0, which is a contradiction. Likewise,
if rad(T : S) = 0⊕ P2, then K ⊆ T .



38 S. EBRAHIMI ATANI AND F. ESMAEILI KHALIL SARAEI

Proposition 4.4. Let R be the pullback ring as in (3.1) and let M be
any R-module. Let 0 → K → S → M → 0 be a separated representation
of M . Then pSpecR(S) = ∅ if and only if pSpecR(M) = ∅.

Proof. First suppose that pSpecR(S) = ∅ and pSpecR(M) 6= ∅. So
M ∼= S/K has a primary submodule, say T/K where T is a primary sub-
module of S by Lemma 2.2, which is a contradiction. Next suppose that
pSpecR(M) = ∅ and pSpecR(S) 6= ∅. Let T be a primary submodule of S.
Then by Lemma 4.3, K ⊆ T ; hence T/K is a primary submodule of M ,
which is a contradiction.

Lemma 4.5. Let A be any ring, M and M ′ R-modules, and f : M →
M ′ an A-homomorphism. Let N be a primary submodule of M ′ such that
f(M) * N . Then f−1(N) is a primary submodule of M .

Proof. The proof is straightforward.

Theorem 4.6. Let R be a pullback ring as in (3.1) and let M be any
non-separated R-module. Let 0 → K → S → M → 0 be a separated rep-
resentation of M . Then S is primarily comultiplication if and only if M is
primarily comultiplication.

Proof. By Proposition 4.4, we may assume that Spec(S) 6= ∅. Suppose
that M is a primarily comultiplication R-module and let T be a non-zero
primary submodule of S. Then by Lemma 4.3, K ⊆ T , and so T/K is a
primary submodule of S/K. By an argument like that in [6, Theorem 4.4],
S is primarily comultiplication. Conversely, assume that S is a primarily
comultiplication R-module and let N be a non-separated primary submodule
of M . Then ϕ−1(N) = U is a primary submodule of S by Lemma 4.5, so
U = (0 :S Pn

1 ⊕ Pm
2 ) for some integers m,n. By [9, Lemma 3.1], U/K ∼= N

is a primary submodule of S/K ∼= M , so an inspection will show that N =
U/K = (0 :S/K Pn

1 ⊕ Pm
2 ), as required.

Proposition 4.7. Let R be a pullback ring as in (3.1) and let M be
an indecomposable primarily comultiplication non-separated R-module with
finite-dimensional top over R̄. Let 0 → K → S → M → 0 be a separated
representation of M . Then S is pure-injective.

Proof. By [7, Proposition 2.6(i)], S/PS ∼= M/PM , so S has finite-dimen-
sional top. Now the assertion follows from Theorem 4.6 and Corollary 3.13.

Let R be a pullback ring as in (3.1) and letM be an indecomposable pri-
marily comultiplication non-separated R-module with M/PM finite-dimen-
sional over R̄. Consider the separated representation 0→ K → S →M → 0.
By Proposition 4.7, S is pure-injective. So in the proofs of [7, Lemma 3.1,
Propositions 3.2 and 3.4] (here the pure-injectivity of M implies the pure-
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injectivity of S by [7, Proposition 2.6(ii)]) we can replace the statement
“M is an indecomposable pure-injective non-separated R-module” by “M is
an indecomposable primarily comultiplication non-separated R-module”, be-
cause the main keys to those results are the pure-injectivity of S, and
the indecomposability and non-separability of M . So we have the follow-
ing results:

Corollary 4.8. Let R be a pullback ring as in (3.1) and let M be
an indecomposable primarily comultiplication non-separated R-module with
M/PM finite-dimensional over R̄, and let 0 → K → S → M → 0 be a
separated representation of M . Then the quotient fields Q(R1) and Q(R2) of
R1 and R2 do not occur among the direct summands of S.

Corollary 4.9. Let R be the pullback ring as in (3.1) and let M be
an indecomposable primarily comultiplication non-separated R-module with
M/PM finite-dimensional over R̄, and let 0 → K → S → M → 0 be
a separated representation of M . Then S is a direct sum of finitely many
indecomposable primarily comultiplication modules.

Corollary 4.10. Let R be the pullback ring as in (3.1) and let M be
an indecomposable primarily comultiplication non-separated R-module with
M/PM finite-dimensional over R̄, and let 0 → K → S → M → 0 be
a separated representation of M . Then at most two copies of modules of
infinite length can occur among the indecomposable summands of S.

Recall that every indecomposable R-module of finite length is primarily
comultiplication (see Theorem 3.10 and Lemma 4.3). So by Corollary 4.10,
the infinite length non-separated indecomposable primarily comultiplication
modules are obtained in just the same way as the deleted cycle type in-
decomposable ones are, except that at least one of the two “end” mod-
ules must be a separated indecomposable primarily comultiplication of infi-
nite length (that is, P1-Prüfer and P2-Prüfer). Note that one cannot have,
for instance, a P1-Prüfer module at each end (consider the alternation of
primes P1, P2 along the amalgamation chain). So, apart from any finite
length modules: we have amalgamations involving two Prüfer modules as
well as modules of finite length (the injective hull E(R/P ) is the simplest
module of this type), a P1-Prüfer module and a P2-Prüfer module. If the
P1-Prüfer and the P2-Prüfer are direct summands of S then we will de-
scribe these modules as doubly infinite. Those where S has just one infinite
length summand we will call singly infinite (the reader is referred to [7], [9]
and [11] for more details). It remains to show that the modules obtained by
these amalgamations are, indeed, indecomposable primarily comultiplication
modules.
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Theorem 4.11. Let R = (R1 → R̄← R2) be the pullback of two discrete
valuation domains R1, R2 with common factor field R̄. Then the class of
indecomposable non-separated primarily comultiplication modules with finite-
dimensional top consists of the following:

(i) the indecomposable modules of finite length (except R/P which is
separated),

(ii) the doubly infinite primarily comultiplication modules as described
above,

(iii) the singly infinite primarily comultiplication modules as described
above, except the two Prüfer modules (I) in Lemma 3.11.

Proof. Let M be an indecomposable non-separated primarily comulti-
plication R-module with finite-dimensional top and let 0 → K

i−→ S
ϕ−→

M → 0 be a separated representation of M .
(i) Clearly, M is a primarily comultiplication R-module. The indecom-

posability follows from [21, 1.9].
(ii) and (iii) (involving one or two Prüfer modules) M is primarily co-

multiplication (see Corollary 3.12 and Proposition 4.1). Finally, the inde-
composability follows from [7, Theorem 3.5].

Corollary 4.12. Let R be the pullback ring as described in Theo-
rem 4.11. Then every indecomposable primarily comultiplication R-module
with finite-dimensional top is pure-injective.

Proof. Apply [7, Theorem 3.5] and Theorem 4.11.
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