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ON EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF
CAFFARELLI–KOHN–NIRENBERG TYPE EQUATIONS

BY

J. CHABROWSKI (Brisbane) and D. G. COSTA (Las Vegas, NV)

Abstract. We investigate the solvability of a singular equation of Caffarelli–Kohn–
Nirenberg type having a critical-like nonlinearity with a sign-changing weight function.
We shall examine how the properties of the Nehari manifold and the fibering maps affect
the question of existence of positive solutions.

1. Introduction. In this paper we are concerned with the existence of
positive solutions for a singular class of equations in RN ,

(1.1) −div(|x|−pa|∇u|p−2∇u)− λh(x)|x|−p(1+a)|u|p−2u

= Q(x)|x|−qb|u|q−2u,

where λ > 0 is a parameter, 1 < p < N , 0 ≤ a < b < a+ 1 < N/p and q =
q(a, b, p) := Np/(N + p(b− a)− p). Here, h ≥ 0 and Q are given functions
on RN with Q changing sign. Throughout this paper we always assume that
Q ∈ L∞(RN ), and lim|x|→∞Q(x) =: Q(∞) < 0. Further assumptions on h
and Q will be formulated later. We note that the weight function Q(x) on
the right-hand side of (1.1) is assumed to change sign. In such a situation
(and in the subcritical case for the Laplacian operator, i.e. 2 < q < 2∗ :=
2N/(N − 2), N ≥ 3), the existence of two positive solutions for λ in a small
right-neighborhood of the principal eigenvalue of (−∆, Dirichlet) was first
proved by Alama and Tarantello in their pioneering paper [1] for the equation
−∆u− λu = Q(x)|u|q−2u, in the case of a bounded domain Ω ⊂ RN under
Dirichlet boundary condition. On the other hand, the case Ω = RN was
considered in [11].

In our present problem (1.1), the exponent q = q(a, b, p) defined above
is a kind of critical exponent. In fact, when p = 2 < N and a = b = 0
then q = 2∗ = 2N/(N − 2), the well-known critical Sobolev exponent. We
also note that, when h(x) = 1 and a = 0, the left-hand side of (1.1) is
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a perturbation of the p-Laplacian by the so-called Lp-Hardy potential (or
the more common Hardy potential λ/|x|2 in the case p = 2 of the usual
Laplacian).

General problems like (1.1) are related to the interpolation inequalities
proved by Caffarelli, Kohn and Nirenberg in [4] and have been studied by
other authors, but mostly in the case of bounded domains or else when
a = 0 (Hardy potential) or p = 2. In particular, we could mention the works
[16, 14, 26, 5, 9, 25, 10, 15, 18] (for Ω bounded), [29, 13, 27] (when Ω = RN ),
and their references. Regarding the Caffarelli–Kohn–Nirenberg inequalities
per se, in addition to the original paper [4], we would refer the interested
reader to the papers [6, 19].

Our main goal in the present work is to obtain existence of two posi-
tive solutions for (1.1), again when λ is in a suitable right-neighborhood of
the principal eigenvalue of (1.1). In our approach we make use of the Ne-
hari manifold and the fibering method for our equation combined with the
concentration-compactness principle of P.-L. Lions [22]. To our knowledge,
the Nehari/fibering approach was first applied by Drábek and Pohozaev in
[12] (for more recent applications see e.g. [3, 8])

The range of the parameter λ in (1.1) will be determined by the principal
eigenvalue of the nonlinear eigenvalue problem

(1.2) −div(|x|−pa|∇u|p−2∇u)− λh(x)|x|−p(a+1)|u|p−2u = 0 in RN \ {0}.
Given r ∈ [1,∞) and c ≥ 0, we denote by Lrc(RN ) := Lr(RN , |x|−rcdx) the
Banach space of measurable functions on RN whose rth power is Lebesgue
integrable with respect to the measure |x|−rc dx, endowed with the norm

‖u‖Lr
c

:=
( �

RN

|x|−rc|u|r dx
)1/r

.

Note that Lrc(RN ) consists of those functions u such that u/|x|c ∈ Lr(RN ).
We will need the Caffarelli–Kohn–Nirenberg inequality [4]

(1.3) Ŝ
( �

RN

|x|−qb|u|q dx
)p/q

≤
�

RN

|x|−pa|∇u|p dx,

which holds for u ∈ C∞c (RN ) and where 1 < p < N , 0 ≤ a ≤ b ≤ a + 1 <
N/p, q = q(a, b, p) := Np/(N + p(b− a)− p) and Ŝ = Ŝ(a, b, p) > 0.

Let D1,p
a (RN ) be the completion of C∞c (RN ) with respect to the norm

‖u‖
D1,p

a
:=
( �

RN

|x|−pa|∇u|p dx
)1/p

and let Lpb(R
N ) be the space defined above. In view of (1.3) the weighted

Sobolev space D1,p
a (RN ) is continuously embedded in the weighted Lebesgue
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space Lqb(R
N ). We make the following assumption on the coefficient h(x) in

(1.2), where we are denoting p0 = p0(a, b, p) := p− p(b− a):

(H) 0 6≡ h ≥ 0 is such that h ∈ LN/p0p0 (RN )∩LN/p0+θ
loc (RN \{0}) for some

θ > 0, i.e.,
�

RN

|h(x)|N/p0
|x|N

dx <∞,
�

B

|h(x)|N/p0+θ dx <∞ ∀ ball B ⊂ RN \ {0}.

Remark. We note that the hypothesis (H) is satisfied if 0 ≤ h ∈ LN/p0
(h 6≡ 0) is continuous and such that h(x) = O(|x|s) as |x| → 0 for some
s > 0.

Proposition 1.1. Suppose (H) holds. Then the nonlinear eigenvalue
problem (1.2) has a principal eigenvalue λ1(h) > 0 which is simple. More-
over, a corresponding eigenfunction ϕ1 belongs to the space D1,p

a (RN ) and
can be taken to be positive in the sense that ϕ1 > 0 a.e. in RN \ {0}.

Proof. For simplicity of notation, from now on we will omit writing RN

in the pertinent spaces and integrals. For each fixed u ∈ D1,p
a , consider the

linear functional K(u) defined by the formula

〈K(u), φ〉 =
�
h(x)|x|−p(a+1)|u|p−2uφ dx ∀φ ∈ D1,p

a .

First of all, we must show that K(u) is well-defined on D1,p
a . Indeed, the

continuous embedding of D1,p
a into Lqb implies that

(1.4) βu(x) := |x|−b(p−1)|u|p−2u ∈ Lq/(p−1) and γφ(x) := |x|−bφ ∈ Lq.
Therefore, writing the integrand of 〈K(u), φ〉 as

h(x)|x|−p(a+1)|u|p−2uφ = h(x)|x|p(b−a)−pβu(x)γφ(x) := αh(x)βu(x)γφ(x)

and noticing that βuγφ ∈ Lq/p, we conclude by the Hölder inequality that
K(u) is well-defined on D1,p

a provided

(1.5) αh(x) := h(x)|x|p(b−a)−p ∈ Lr with r =
q

q−p
=

N

p−p(b−a)
=
N

p0
.

But this holds true in view of the first integrability condition in (H), and
we obtain the following estimate, for some Ĉ = Ĉ(a, b, p) > 0:

(1.6) |〈K(u), φ〉| ≤ C‖u‖Lq
b
‖φ‖Lq

b
≤ Ĉ‖u‖

D1,p
a
‖φ‖

D1,p
a

∀u, φ ∈ D1,p
a .

Next, we show that the mapping u 7→ K(u) from D1,p
a into (D1,p

a )∗ is
compact. For that, let (um) be a weakly convergent sequence in D1,p

a , say
um ⇀ û ∈ D1,p

a . Passing to a subsequence if necessary, we must show that

〈K(um), φ〉 → 〈K(û), φ〉
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uniformly for ‖φ‖
D1,p

a
bounded, say ‖φ‖

D1,p
a
≤ 1. Let us write

|〈K(um), φ〉 − 〈K(û), φ〉|

≤
( �

|x|<δ

+
�

δ≤|x|≤R

+
�

|x|>R

)
|αh(x)| |βum(x)− βû(x)| |γφ(x)|

:= [I] + [II] + [III],

where some large R > 0 and small δ > 0 are chosen so that, for given ε > 0,
�

|x|>R

|h(x)|N/p0
|x|N

dx ≤ ε

6Ĉ(sup ‖um‖D1,p
a

)

and �

|x|<δ

|h(x)|N/p0
|x|N

dx ≤ ε

6Ĉ(sup ‖um‖D1,p
a

)

and, hence,

(1.7) [III] ≤ ε/3 and [I] ≤ ε/3.
Next, note that one has the continuous embeddings

D1,p
a (RN ) ⊂W 1,p

a (BR \Bδ) ⊂ Lq1(BR \Bδ)
for all 2 ≤ q1 ≤ p∗ := Np/(N − p), with the last inclusion being compact
if q1 < p∗. Then, since um ⇀ û weakly in D1,p

a , we have (passing to a
subsequence if necessary)

um → û a.e. in RN ,

um → û strongly in Lq1(BR \Bδ),

if 2 ≤ q1 < p∗. And since we have assumed that h ∈ L
N/p0+θ
loc (RN \ {0})

for some θ > 0, it follows that αh ∈ Lr1(BR \Bδ) with r1 > r = N/p0 (see
(1.5)). Therefore, if we define q1 := pr1/(r1 − 1) (note that q1 < q), recall
the definitions of βum and βu in (1.4), and use Hölder’s inequality as before,
we infer that

βum → βu strongly in Lq1/(p−1)(BR \Bδ)
with q1 < q ≤ p∗, and hence

[II] =
�

δ≤|x|≤R

|α(x)| |βum(x)− βû(x)| |γφ(x)| dx ≤ ε/3

for all m large, uniformly for ‖φ‖
D1,p

a
≤ 1. Combining the above estimate

with the ones in (1.7) we conclude that

〈K(um), φ〉 → 〈K(û), φ〉

uniformly for ‖φ‖
D1,p

a
≤ 1, in other words, the mapping K : D1,p

a → (D1,p
a )∗
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is compact. In particular, the function

〈K(u), u〉 =
�

RN

h(x)|x|−p(a+1)|u|p dx, u ∈ D1,p
a ,

is completely continuous and the principal eigenvalue λ1(h) > 0 is defined
by the formula

1
λ1(h)

= sup
u∈D1,p

a

	
|x|−p(a+1)h(x)|u|p dx	
|x|−pa|∇u|p dx

.

Next, we will show as a consequence of the work in [17] (see also [28, 24])
that λ1(h) is simple and possesses a corresponding eigenfunction ϕ1(x), with
‖ϕ1‖D1,p

a
= 1, and such that ϕ1 > 0 a.e. in RN \{0}. We point out that, when

a = b = 0, |x|−ph(x) := w(x) is a bounded function and one is dealing with
a bounded domain, the simplicity of the principal eigenvalue and constant
sign of a corresponding eigenfunction are well-known facts dating back to
Anane [2] and Lindqvist [20, 21]. We refer the interested reader to the already
cited work [17] of Kawohl–Lucia–Prashanth (and references therein), where
a comprehensive study is done on simplicity of the principal eigenvalue for
a large class of quasilinear problems.

In our present case, where the positive weight |x|−pa is degenerate and
unbounded on RN \{0}, we will make an adaptation of the results in [17]. To
start, note that we may assume that any λ1(h)-eigenfunction ϕ1 is nonneg-
ative by replacing ϕ1 with |ϕ1|. Then we use the maximum principle given
by Proposition 3.2 in [17] for the differential inequality

(1.8) −div(a(x,∇u)) + V (x)|u|q−2u ≥ 0, u ∈W 1,p
loc (Ω),

where V ∈ L1
loc(Ω), V ≥ 0, q ≥ p > 1, and a : Ω × RN → RN is a

Carathéodory function satisfying (for some α > 1)

〈a(x, η), η〉 ≥ 1
α
|η|p a.e. x ∈ Ω, ∀η ∈ RN ,

|a(x, η)| ≤ α|η|p−1 a.e. x ∈ Ω, ∀η ∈ RN .

For our situation, we let Ω = ΩR := {x ∈ RN | 1/R < |x| < R} (with R > 1
fixed), consider the differential inequality

(1.9) −div(|x|−pa|∇ϕ1|p−2∇ϕ1) = λ1h(x)|x|−p(a+1)|ϕ1|p−2ϕ1 ≥ 0 in ΩR,

and use Proposition 3.2 from [17] to conclude that the set Z of zeros of ϕ1

has W 1,p-capacity zero.
Finally, the simplicity of λ1(h) (i.e., the fact that the solutions of (1.9)

form a 1-dimensional space) follows from arguments in [23], exactly as in
Section 6.2 of [17]. The proof of Proposition 1.1 is now complete, since a
solution ϕ1 of (1.2) is also a solution of (1.9) for any R > 0.
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Remark. Clearly, by the above proposition and through the Krasno-
sel’skĭı genus, the nonlinear eigenvalue problem (1.2) has a sequence of
eigenvalues 0 < λ1(h) < λ2(h) ≤ · · · → +∞ (and, if h(x) changes sign,
there also exists a corresponding sequence of negative eigenvalues). Since
we are concerned with positive solutions, the parameter λ > 0 will not be
interacting with eigenvalues higher than λ1(h).

2. The singular problem. We now consider our singular problem (1.1)
mentioned in the Introduction:

(2.1) −div(|x|−pa|∇u|p−2∇u)− λh(x)|x|−p(1+a)|u|p−2u

= Q(x)|x|−qb|u|q−2u,

where λ > 0 is a parameter, 1 < p < N , 0 ≤ a < b < a + 1 < N/p
and q = q(a, b, p) := Np/(N + p(b− a)− p). As before, we assume that
the weight function h(x) satisfies condition (H) introduced in the previous
section, namely

(H) 0 6≡ h ≥ 0 is such that h ∈ LN/p0p0 (RN )∩LN/p0+θ
loc (RN \{0}) for some

θ > 0,

and we shall make the following assumption on the coefficient Q(x):

(Q) Q∈C(RN ) changes sign, Q(0) ≤ 0, and lim|x|→∞Q(x) =: Q(∞)<0.

Under these hypotheses, solutions of problem (2.1) will be obtained as crit-
ical points of the functional

Jλ(u) =
1
p

�
(|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx− 1

q

�
|x|−qbQ(x)|u|q dx,

which is of class C1 on E := D1,p
a and it is not bounded from below on E

(we recall that we will be dropping RN when writing the pertinent integrals
and spaces). In addition, any solution u ∈ E of (2.1) belongs to the so-called
Nehari manifold (1)

S(λ)

=
{
u ∈ E

∣∣∣ � (|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx =
�
|x|−qbQ(x)|u|q dx

}
.

We shall follow some ideas from the papers [3, 8, 12]. With each u ∈ E \{0}
we associate the fibering map ϕu(t) defined by ϕu(t) = Jλ(tu), 0 ≤ t < ∞.
The three results that follow are basic as they relate S(λ) and critical points
of Jλ. In particular, Lemma 2.3 says that “most” local minimizers of Jλ on
S(λ) are critical points of Jλ.

(1) In fact, it can be shown that S(λ) \ S◦(λ) is indeed a C1-submanifold of E of
codimension 1, where S◦(λ) is a “meager” subset of S(λ) to be defined below.
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Lemma 2.1. If u ∈ E is a local minimizer of Jλ, then ϕu(t) has a local
minimum at t = 1. If u ∈ E \ {0} and tu ∈ S(λ) for some t > 0, then
ϕ′u(t) = 0.

Therefore, elements in S(λ) are stationary points of the maps ϕu(t). This
leads us to the decomposition of S(λ) into three subsets:

S+(λ) =
{
u ∈ S(λ)

∣∣∣ (p− 1)
�
(|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx

− (q − 1)
�
|x|−qbQ(x)|u|q dx > 0

}
,

S−(λ) =
{
u ∈ S(λ)

∣∣∣ (p− 1)
�
(|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx

− (q − 1)
�
|x|−qbQ(x)|u|q dx < 0

}
,

S◦(λ) =
{
u ∈ S(λ)

∣∣∣ (p− 1)
�
(|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx

− (q − 1)
�
|x|−qbQ(x)|u|q dx = 0

}
.

This partition of S(λ) corresponds to local minima, local maxima and in-
flection points of the fibering maps ϕu(t). Therefore we have

Lemma 2.2. If u ∈ S(λ) then ϕ′u(1) = 0. Moreover,

(i) if ϕ′′u(1) > 0, then u ∈ S+(λ),
(ii) if ϕ′′u(1) < 0, then u ∈ S−(λ),
(iii) if ϕ′′u(1) = 0, then u ∈ S◦(λ).

Lemma 2.3. If u◦ is a critical point of Jλ|S(λ) (in particular, a local
minimizer on S(λ)) such that u◦ 6∈ S◦(λ), then J ′λ(u◦) = 0.

For the proof of these lemmas we refer to [3].
Now, as recalled earlier, the principal eigenvalue of (1.2) is given by

1
λ1(h)

= sup
u∈E

	
|x|−p(a+1)h(x)|u|p dx	
|x|−pa|∇u|p dx

,

so that �
(|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx > 0

for every u ∈ E \ {0} := D1,p
a \ {0} and 0 < λ < λ1(h). In fact, a standard

argument shows that, for every 0 ≤ λ < λ1(h), there exists δ(λ) > 0 such
that

(2.2)
�
(|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx ≥ δ(λ)

�
|x|−pa|∇u|p dx
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for all u ∈ E. Next we observe that if u ∈ S(λ), then

Jλ(u) =
(

1
p
− 1
q

) �
(|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx

=
(

1
p
− 1
q

) �
|x|−qbQ(x)|u|q dx.

We also derive the following characterizations of S+(λ), S−(λ) and S◦(λ):

S+(λ) =
{
u ∈ S(λ)

∣∣∣ � |x|−qbQ(x)|u|q dx < 0
}
,

S−(λ) =
{
u ∈ S(λ)

∣∣∣ � |x|−qbQ(x)|u|q dx > 0
}
,

S◦(λ) =
{
u ∈ S(λ)

∣∣∣ � |x|−qbQ(x)|u|q dx = 0
}
.

Now, if for any given u ∈ E \{0} we denote B(u) :=
	
|x|−qbQ(x)|u|q dx and

Aλ(u) :=
	

(|x|−pa|∇u|p− λh(x)|x|−p(a+1)|u|p) dx, then it is easy to see that
ϕu(t) has exactly one stationary point in (0,∞) given by

t(u) =
(
Aλ(u)
B(u)

)1/(q−p)

provided that Aλ(u)B(u) > 0. By contrast, ϕu(t) has no stationary point in
(0,∞) if Aλ(u)B(u) < 0.

We also need the following sets (cf. [3, 8]) in order to better characterize
the stationary points of ϕu(t):

L+(λ) =
{
u ∈ E

∣∣∣ ‖u‖E = 1,
�
(|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx > 0

}
,

L−(λ) =
{
u ∈ E

∣∣∣ ‖u‖E = 1,
�
(|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx < 0

}
,

L◦(λ) =
{
u ∈ E

∣∣∣ ‖u‖E = 1,
�
(|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx = 0

}
,

and

B+ =
{
u ∈ E

∣∣∣ ‖u‖E = 1,
�
|x|−bqQ(x)|u|q dx > 0

}
,

B− =
{
u ∈ E

∣∣∣ ‖u‖E = 1,
�
|x|−bqQ(x)|u|q dx < 0

}
,

B◦ =
{
u ∈ E

∣∣∣ ‖u‖E = 1,
�
|x|−bqQ(x)|u|q dx = 0

}
.

Then, by looking at the behavior of ϕu(t) for small t > 0 and for t→∞ we
get the following characterization of the stationary points of ϕu(t) (where
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R+u := {tu | t > 0} denotes the positive ray through u):

(a) S−(λ) ∩ R+u 6= ∅ if and only if u/‖u‖E ∈ L+(λ) ∩B+;
(b) S+(λ) ∩ R+u 6= ∅ if and only if u/‖u‖E ∈ L−(λ) ∩B−;
(c) S(λ) ∩ R+u = ∅ whenever u/‖u‖E ∈ L+(λ) ∩ B− or u/‖u‖E ∈

L−(λ) ∩B+.

Finally, we need the following version of the concentration-compactness
principle (see [22, 7]):

Concentration-Compactness Principle. Let 1 < p < N , 0 ≤ a <
b < a+ 1 < N/p and let (um) be a sequence in E := D1,p

a such that

um(x)→ u(x) a.e. in RN ,

um ⇀ u in D1,p
a ,

|x|−a|∇(um − u)|p ⇀ µ in M(RN ),

|x|−b|um − u|q ⇀ ν in M(RN ),

where M(RN ) denotes the space of bounded measures in RN . Define the
quantities (measuring loss of mass at infinity of weakly convergent sequences
in E):

µ∞ = lim
R→∞

lim sup
m→∞

�

|x|>R

|x|−pa|∇um|p dx,(2.3)

ν∞ = lim
R→∞

lim sup
m→∞

�

|x|>R

|x|−qb|um|q dx.(2.4)

Then it follows (with Ŝ := Ŝ(a, b, p) defined in (1.3)) that

Ŝ‖ν‖p/q ≤ ‖µ‖, Ŝνp/q∞ ≤ µ∞
and

lim sup
m→∞

‖ |x|−a∇um‖pE = ‖ |x|−a∇u‖pE + ‖µ‖+ µ∞,(2.5)

lim sup
m→∞

‖ |x|−bum‖qLq = ‖ |x|−bu‖qLq + ‖ν‖+ ν∞(2.6)

(see [7]). Since a < b we have q < p∗ and the measures µ and ν are concen-
trated at 0. Therefore, (2.5) and (2.6) take the form

lim sup
m→∞

‖ |x|−a∇um‖pE = ‖ |x|−a∇u‖pE + µ0 + µ∞,(2.7)

lim sup
m→∞

‖ |x|−bum‖qLq = ‖ |x|−bu‖qLq + ν0 + ν∞,(2.8)

where µ0 > 0 and ν0 > 0 are constants satisfying

Ŝν
p/q
0 ≤ µ0.
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3. The case 0 < λ < λ1(h). In this section we show the existence of a
minimizer of Jλ on S−(λ). In this case inequality (2.2) implies that L−(λ)
and L◦(λ) are empty and hence S+(λ) is also empty and S◦(λ) = {0}.

Proposition 3.1. Assume (H), (Q), and 0 < λ < λ1(h). Then

(i) infS−(λ) Jλ > 0,
(ii) there exists u ∈ S−(λ) such that Jλ(u) = infS−(λ) Jλ.

Proof. Clearly infS−(λ) Jλ ≥ 0. We claim that infS−(λ) Jλ > 0. Indeed, if
u ∈ S−(λ), then v = u/‖u‖E ∈ L+(λ) ∩B+(λ) and u = t(v)v with

t(v) =
(	

(|x|−pa|∇v|p − λh(x)|x|−p(a+1)|v|p) dx	
|x|−qbQ(x)|v|q dx

)1/(q−p)
.

We then have

Jλ(u) = Jλ(t(v)v) =
(

1
p
− 1
q

)
t(v)p

�
(|x|−pa|∇v|p − λh(x)|x|−p(a+1)|v|p) dx

=
(

1
p
− 1
q

)(	
(|x|−pa|∇v|p − λh(x)|x|−p(a+1)|v|p) dx

)q/(q−p)(	
|x|−qbQ(x)|v|q dx

)p/(q−p)
≥
(

1
p
− 1
q

)
δ(λ)q/(q−p)(	

|x|−qbQ(x)|v|q dx
)p/(q−p) .

On the other hand, in view of the (C-K-N) inequality (1.3) we estimate the
integral appearing in the above denominator as

�
|x|−qbQ(x)|v|q dx ≤ ‖Q‖L∞

�
|x|−qb|v|q dx

≤ Ŝ−q/p ‖Q‖L∞
(�
|x|−pa|∇v|p dx

)q/p
= Ŝ−q/p‖Q‖L∞‖v‖qE = Ŝ−q/p‖Q‖L∞ .

Assertion (i) follows from the last two estimates.
Next, setA = infS−(λ) Jλ and let (um) ⊂ S−(λ) be a minimizing sequence

for A. Then (um) is bounded in E, so that we may assume that um ⇀ u
in E. In addition, the (C-K-N) inequality (1.3) shows that the sequence of
integrals

	
|x|−qbQ(x)|um|q dx is also bounded.

On the other hand, in view of the concentration-compactness principle,
and since
�
(|x|−pa|∇um|p − λh(x)|x|−p(a+1)|um|p) dx and

�
|x|−qbQ(x)|um|q dx
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converge to the same limit (as um ∈ S(λ)), we have
�
(|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx+ µ0 + µ∞

≤
�
|x|−qbQ(x)|u|q dx+Q(0)ν0 +Q(∞)ν∞.

If u ≡ 0 on RN it follows that

µ0 + µ∞ ≤ Q(0)ν0 +Q(∞)ν∞,

hence µ0 = µ∞ = 0 since Q(0) ≤ 0 and Q(∞) < 0 by (Q). It follows that
um → 0 in E, which is impossible. Therefore, we must have u 6≡ 0 on RN .

We now claim that µ∞ = 0. Otherwise, we have

0 <
�
(|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx <

�
|x|−qbQ(x)|u|q dx,

hence
�
(|x|−pa|∇(su)|p − λh(x)|x|−p(a+1)|su|p) dx =

�
|x|−qbQ(x)|su|q dx

for some 0 < s < 1. This implies that su ∈ S−(λ) and, since we can assume
that

	
h(x)|x|−p(a+1)|um|p dx→

	
h(x)|x|−p(a+1)|u|p dx, we deduce that

�
(|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx

≤ lim inf
m→∞

�
(|x|−pa|∇um|p − λh(x)|x|−p(a+1)|um|p) dx

=
pq

q − p
A ≤

�
(|x|−pa|∇(su)|p − λh(x)|x|−p(a+1)|su|p) dx,

which yields the contradiction s ≥ 1. Thus µ∞ = 0 and a similar argument
also shows that µ0 = 0. Consequently, we conclude that um → u in E and

Jλ(u) = A = inf
S−(λ)

Jλ.

Since
	
|x|−qbQ(x)|u|q dx > 0, it is clear that u 6∈ S◦(λ) so that, by Lemma

2.3, u is a critical point of Jλ. Finally, since Jλ(|u|) = Jλ(u), we may assume
by the maximum principle that u > 0 on RN .

Next, we examine the behavior of infS−(λ) Jλ when λ → λ1(h)−. In
Proposition 3.2 below we assume that

	
|x|−qbQ(x)ϕq1 dx > 0. We note that

the principal eigenfunction ϕ1 automatically belongs to Lqb(R
N ) in view of

(C-K-N) and the fact that ϕ1 ∈ D1,p
a by Proposition 1.1. Since Q(∞) < 0,

this “positivity” condition on the above integral guarantees that “most” of
the Lqb-norm of ϕ1 lies in the region {x |Q(x) > 0}.
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Proposition 3.2. Assume (H), (Q) and let
	
|x|−qbQ(x)ϕq1 dx > 0.

Then

(i) limλ→λ1(h)−(infS−(λ) Jλ) = 0,
(ii) if λm→λ1(h)− and um minimizes Jλm on S−(λ) then um→0 in E.

Proof. (i) Since 0 < λ < λ1(h), we have ϕ1∈ L+(λ)∩B+ and Jλ(t(ϕ1)ϕ1)
→ 0 as λ→ λ1(h)−. Thus, assertion (i) follows.

(ii) First we show that (um) is bounded in E. Arguing by contradiction,
we assume (up to a subsequence) that ‖um‖ → ∞ and set vm = um/‖um‖E .
Then, again up to a subsequence, we may assume that

vm → v a.e. in RN ,

vm ⇀ v in E,�
h(x)|x|−p(a+1)|vm|p dx→

�
h(x)|x|−p(a+1)|v|p dx.

Since
Jλ(um)
‖um‖pE

=
(

1
p
− 1
q

) �
(|x|−pa|∇vm|p − λmh(x)|x|−p(a+1)|vm|p) dx

=
(

1
p
− 1
q

)
‖um‖q−pE

�
|x|−qbQ(x)|vm|q dx,

we see that

lim
m→∞

�
(|x|−pa|∇vm|p − λmh(x)|x|−p(a+1)|vm|p) dx

= lim
m→∞

�
|x|−qbQ(x)|vm|q dx = 0.

Now, if vm 9 v in E we obtain�
(|x|−pa|∇v|p−λ1(h)h(x)|x|−p(a+1)|v|p) dx < lim

m→∞

�
|x|−qbQ(x)|vm|q dx = 0,

which is impossible. Therefore, it follows that vm → v = kϕ1 for some k ∈ R.
On the other hand, since S(λ)\S◦(λ) is a natural constraint for Jλ, we have
J ′λm

(um) = 0. Therefore,
�
(|x|−pa|∇vm|p−2∇vm · ∇φ− λmh(x)|x|−p(a+1)|vm|p−2vmφ) dx

= ‖um‖q−pE

�
|x|−qbQ(x)|vm|q−2vmφdx

for every φ ∈ C∞c (RN ). Letting m→∞ we get

|k|q−2k
�
|x|−qbQ(x)ϕq−2

1 ϕ1φdx = 0
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for every φ ∈ C∞c (RN ). If k 6= 0 then ϕ1 = 0 on the set {x | Q(x) > 0} ∪
{x | Q(x) < 0}, which is impossible since ϕ1 > 0 on RN \ {0}. Therefore, we
conclude that vm → 0 in E, which contradicts the fact that ‖vm‖E = 1 for
all m ≥ 1.

Consequently, (um) is bounded in E and we may assume that

um → u a.e. in RN ,

um ⇀ u in E,�
h(x)|x|−p(a+1)|um|p dx→

�
h(x)|x|−p(a+1)|u|p dx.

If �
|x|−pa|∇u|p dx < lim

m→∞

�
|x|−pa|∇um|p dx

then
�
(|x|−pa|∇u|p − λ1(h)h(x)|x|−p(a+1)|u|p) dx

< lim
m→∞

�
(|x|−pa|∇um|p − λmh(x)|x|−p(a+1)|um|p) dx = 0,

which is impossible. Therefore, for some k ∈ R, we have um → u = kϕ1

in E. As in the previous part of the above proof, we show that k = 0. So,
um → 0 in E and the result stated in (ii) follows. The proof is complete.

4. The case λ > λ1(h). If λ > λ1(h) then the principal eigenfunction
ϕ1 > 0 satisfies�

(|x|−pa|∇ϕ1|p − λh(x)|x|−p(a+1)ϕp1) dx = (λ1(h)− λ)
�
h(x)|x|−p(a+1)ϕp1 dx

< 0,

so ϕ1 ∈ L−(λ). If we assume
	
|x|−qbQ(x)ϕq1 dx < 0 then ϕ1 ∈ L−(λ) ∩ B−,

and hence t(ϕ1)ϕ1 ∈ S+(λ).

Lemma 4.1. Suppose that
	
|x|−qbQ(x)ϕq1 dx < 0. Then there exists δ > 0

such that L−(λ) ∩B+ = ∅ whenever λ1(h) ≤ λ < λ1(h) + δ.

Proof. Arguing by contradiction we can find sequences λm → λ1(h)+

and ‖um‖E = 1 such that�
(|x|−pa|∇um|p − λmh(x)|x|−p(a+1)|um|p) dx ≤ 0

and �
|x|−qbQ(x)|um|q dx ≥ 0.

As before, we may assume that um ⇀ u in E, um → u a.e., and�
h(x)|x|−p(a+1)|um|p dx→

�
h(x)|x|−p(a+1)|u|p dx.



56 J. CHABROWSKI AND D. G. COSTA

Now, if um 9 u in E we obtain
�
(|x|−pa|∇u|p − λ1(h)h(x)|x|−p(a+1)|u|p) dx

< lim
m→∞

�
(|x|−pa|∇um|p − λmh(x)|x|−p(a+1)|um|p) dx ≤ 0,

which is impossible. Therefore, for some k ∈ R, we have um → u = kϕ1

in E. Since
	
|x|−qbQ(x)|u|q dx ≥ 0, we must have k = 0. Therefore, um → 0

in E, which is again impossible.

In the next proposition we present essential properties of the Nehari
manifold under the assumption that L−(λ) ∩B+ = ∅.

Proposition 4.2. Suppose that L−(λ) ∩B+ = ∅. Then

(i) S◦(λ) = {0},
(ii) 0 6∈ S−(λ) and S−(λ) is closed,

(iii) S−(λ) ∩ S+(λ) = ∅,
(iv) S+(λ) is bounded.

Proof. (i) If u ∈ S◦(λ)\{0} then u/‖u‖E ∈ L◦(λ)∩B◦ ⊆ L−(λ)∩B+ = ∅,
which gives a contradiction.

(ii) Arguing by contradiction, assume that there exists {um} ⊂ S−(λ)
such that um → 0 in E. Then

0 <
�
(|x|−pa|∇um|p − λh(x)|x|−p(a+1)|um|p) dx =

�
|x|−qbQ(x)|um|q dx→ 0.

Set vm = um/‖um‖E . We may assume that vm ⇀ v in E, vm → v a.e., and	
h(x)|x|−p(a+1)|vm|p dx→

	
h(x)|x|−p(a+1)|v|p dx. We now observe that

0 <
�
|x|−qbQ(x)|vm|q‖um‖q−pE dx ≤ ‖Q‖L∞

�
|x|−qb|vm|q‖um‖q−pE dx

≤ ‖Q‖L∞Ŝ−q/p‖um‖q−pE → 0

and also that
0 <

�
(|x|−pa|∇vm|p − λh(x)|x|−p(a+1)|vm|p) dx

=
�
|x|−qbQ(x)|vm|q‖um‖q−pE dx→ 0.

This yields

lim
m→∞

λ
�
h(x)|x|−p(a+1)|vm|p dx = λ

�
h(x)|x|−p(a+1)|v|p dx = 1,

so that v 6= 0. We also have
�
(|x|−pa|∇v|p − λh(x)|x|−p(a+1)|v|p) dx

≤ lim
m→∞

�
(|x|−pa|∇vm|p − λh(x)|x|−p(a+1)|vm|p) dx = 0.
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Thus v/‖v‖E ∈ L−(λ). Since
	
|x|−qbQ(x)|vm|q dx ≥ 0, the concentration-

compactness principle yields

0 ≤
�
|x|−qbQ(x)|v|q dx+Q(0)ν0 +Q(∞)ν∞,

so that v/‖v‖E ∈ B+. Therefore we have proved that v/‖v‖E ∈ L−(λ)∩B+,
which is impossible. Hence 0 6∈ S−(λ). Finally, since S−(λ) ⊆ S−(λ) ∪ {0}
and 0 6∈ S−(λ), we conclude that S−(λ) is closed.

(iii) According to (i) and (ii) we have

S−(λ) ∩ S+(λ) ⊆ S−(λ) ∩ (S+(λ) ∪ S◦(λ)) = S−(λ) ∩ (S+(λ) ∪ {0})
= (S−(λ) ∩ S+(λ)) ∪ (S−(λ) ∩ {0}) = ∅.

(iv) If S+(λ) is unbounded we can find a sequence {um} ⊂ S+(λ) such
that ‖um‖E →∞. We set vm = um/‖um‖E and we may assume that vm → v
a.e. and

	
h(x)|x|−p(a+1)|vm|p dx→

	
h(x)|x|−p(a+1)|v|p dx. Now, since

�
(|x|−pa|∇vm|p − λh(x)|x|−p(a+1)|vm|p) dx =

�
|x|−qbQ(x)|vm|q‖um‖q−p dx

we deduce that
lim
m→∞

�
|x|−qbQ(x)|vm|q dx = 0.

On the other hand, in view of the concentration-compactness principle,
we obtain

0 = lim
m→∞

�
|x|−qbQ(x)|vm|q dx =

�
|x|−qbQ(x)|v|q dx+Q(0)ν0 +Q(∞)ν∞,

which yields
	
|x|−qbQ(x)|v|q dx ≥ 0, hence v ∈ B+. If vm 9 v in E, then

�
(|x|−pa|∇v|p − λh(x)|x|−p(a+1)|v|p) dx

< lim
m→∞

�
(|x|−pa|∇vm|p − λh(x)|x|−p(a+1)|vm|p) dx ≤ 0.

Therefore v ∈ L−(λ)∩B+, which is impossible. Hence the case vm → v in E
prevails. Since ‖v‖E = 1 and v ∈ L−(λ)∩B+, we again get a contradiction.
The proof is complete.

Theorem 4.3. Suppose that L−(λ) ∩B+ = ∅. Then

(i) every minimizing sequence for Jλ in S−(λ) is bounded,
(ii) infu∈S−(λ) Jλ(u) > 0,
(iii) there exists u ∈ S−(λ) such that Jλ(u) = infv∈S−(λ) Jλ(v).

Proof. (i) Let {um} ⊂ S−(λ) be a minimizing sequence for Jλ. Suppose
that {um} is unbounded in E, say (without loss of generality) ‖um‖→∞,
and set vm = um/‖um‖E . We may assume that vm ⇀ v in E and
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h(x)|x|−p(a+1)|vm|p dx→

	
h(x)|x|−p(a+1)|v|p dx. Since

�
(|x|−pa|∇um|p − λh(x)|x|−p(a+1)|um|p) dx→

pq

q − p
inf

u∈S−(λ)
Jλ(u),

we have
�
(|x|−pa|∇vm|p − λh(x)|x|−p(a+1)|vm|p) dx

=
�
|x|−qbQ(x)|vm|q‖um‖q−pE dx→ 0,

and this implies that limm→∞
	
|x|−qbQ(x)|vm|q dx = 0. It then follows

from the concentration-compactness principle that
	
|x|−qbQ(x)|v|q dx ≥ 0.

If vm 9 v in E, then
�
(|x|−pa|∇v|p − λh(x)|x|−p(a+1)|v|p) dx

< lim
m→∞

�
(|x|−pa|∇vm|p − λh(x)|x|−p(a+1)|vm|p) dx = 0.

Hence, v ∈ L−(λ) ∩B+, which is impossible. Therefore, vm → v in E. This
yields again the impossibility v ∈ L−(λ) ∩B+.

(ii) We clearly have infv∈S−(λ) Jλ(v) ≥ 0. We will now show, by con-
tradiction, that infv∈S−(λ) Jλ(v) > 0. Indeed, suppose that a minimizing
sequence (um) ⊂ S−(λ) for Jλ satisfies

lim
m→∞

�
(|x|−pa|∇um|p − λh(x)|x|−p(a+1)|um|p) dx

= lim
m→∞

�
|x|−qbQ(x)|um|q dx = 0.

By (i), the sequence (um) is bounded in E. So we may assume that um ⇀ u
in E, um → u a.e. and

	
h(x)|x|−p(a+1)|um|p dx→

	
h(x)|x|−p(a+1)|u|p dx. By

the concentration-compactness principle we have
	
|x|−qbQ(x)|u|q dx ≥ 0. If

um 9 u in E, then
�
(|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx

< lim
m→∞

�
(|x|−pa|∇um|p − λh(x)|x|−p(a+1)|um|p) dx = 0.

Therefore u 6= 0 and u/‖u‖E ∈ L−(λ) ∩B+, which is impossible.
(iii) Let (um) be a minimizing sequence for Jλ on S−(λ). By (i), the

sequence (um) is bounded in E. We may assume that um ⇀ u in E, um → u
a.e. and

	
h(x)|x|−p(a+1)|um|p dx→

	
h(x)|x|−p(a+1)|u|p dx. Since(

1
p
− 1
q

)
lim
m→∞

�
|x|−qbQ(x)|um|q dx = inf

v∈S−(λ)
Jλ(v) > 0,
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the concentration-compactness principle implies
	
|x|−qbQ(x)|u|q dx > 0. Ac-

cording to our assumption, we have L−(λ) ∩ B+ = ∅, hence B+ ⊆ L+(λ),
and consequently

	
(|x|−pa|∇u|p − λ|x|−p(a+1)h(x)|u|p) dx > 0. Therefore

u/‖u‖E ∈ L+(λ) ∩B+, which yields t(u)u ∈ S−(λ) with

t(u) =
(
Aλ(u)
B(u)

)1/(q−p)
=
(	

(|x|−pa|∇u|p − λ|x|−p(a+1)h(x)|u|p) dx	
|x|−qbQ(x)|u|q dx

)1/(q−p)
.

If um 9 u in E then, by the concentration-compactness principle,
�
(|x|−pa|∇u|p − λ|x|−p(a+1)h(x)|u|p) dx

< lim
m→∞

�
(|x|−pa|∇um|p − λ|x|−p(a+1)h(x)|um|p) dx

= lim
m→∞

�
|x|−qbQ(x)|um|q dx =

�
|x|−qbQ(x)|u|q dx+Q(0)ν0 +Q(∞)ν∞

≤
�
|x|−qbQ(x)|u|q dx,

and therefore t(u) < 1. We now observe that t(u)um 9 t(u)u and the map
t 7→ Jλ(tum) attains its maximum at t = 1, so that

Jλ(t(u)u) < lim
m→∞

Jλ(t(u)um) ≤ lim
m→∞

Jλ(um) = inf
v∈S−

Jλ(v),

an impossibility. Thus um → u in E and u is a minimizer of Jλ on S−(λ).

Theorem 4.4. If L−(λ) 6= ∅ and L−(λ) ∩ B+ = ∅ then there exists
u ∈ S+(λ) such that Jλ(u) = infv∈S+(λ) Jλ(v).

Proof. It follows from our assumptions that L−(λ)∩B− 6= ∅. By Propo-
sition 4.2(iv) there exists M > 0 such that ‖v‖E ≤M for every v ∈ S+(λ).
Using this fact we obtain the following estimate from below for Jλ on S+(λ)
(see (1.6) with u = φ = v):

Jλ(v) =
(

1
p
− 1
q

) �
(|x|−pa|∇v|p − λh(x)|x|−p(a+1)|v|p) dx

≥ −λ
(

1
p
− 1
q

) �
h(x)|x|−p(a+1)|v|p dx

≥ −λ
(

1
p
− 1
q

)
Ĉ‖v‖2E ≥ −λ

(
1
p
− 1
q

)
ĈM2.

It is obvious that B = infv∈S+(λ) Jλ(v) < 0. Let (um) ⊂ S+(λ) be a mini-
mizing sequence for Jλ. Then
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Jλ(um) =
(

1
p
− 1
q

) �
(|x|−pa|∇um|p − λh(x)|x|−p(a+1)|um|p) dx

=
(

1
p
− 1
q

) �
|x|−qbQ(x)|um|q dx→ B < 0.

We can assume that um ⇀ u in E, um → u a.e. and
	
h(x)|x|−p(a+1)|um|p dx

→
	
h(x)|x|−p(a+1)|u|p dx. Since
�
|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx

≤ lim
m→∞

�
(|x|−pa|∇um|p − λh(x)|x|−p(a+1)|um|p) dx < 0

and L−(λ)∩B+ = ∅, we see that u/‖u‖E ∈ L−(λ)∩B− and t(u)u ∈ S+(λ)
with

t(u) =
(
Aλ(u)
B(u)

)1/(q−p)
=
(	

(|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx	
|x|−qbQ(x)|u|q dx

)1/(q−p)
.

We now claim that um → u in E. Otherwise, we obtain
�
(|x|−pa|∇u|p − λh(x)|x|−p(a+1)|u|p) dx

< lim
m→∞

�
(|x|−pa|∇um|p − λh(x)|x|−p(a+1)|um|p) dx

= lim
m→∞

�
|x|−qbQ(x)|um|q dx =

�
|x|−qbQ(x)|u|q dx+Q(0)ν0 +Q(∞)ν∞

≤
�
|x|−qbQ(x)|u|q dx.

From this we derive that t(u) > 1. On the other hand, we have

Jλ(t(u)u) < Jλ(u) ≤ lim
m→∞

Jλ(um) = B,

which is impossible. Thus, um → u in E and we conclude that u is a mini-
mizer of Jλ on S+(λ).

Now, if
	
|x|−qbQ(x)ϕq1 dx < 0 then, by Lemma 4.1, there exists δ > 0

such that L−(λ) ∩ B+ = ∅ for λ1(h) < λ < λ1(h) + δ. By Theorems 4.3
and 4.4, Jλ has minimizers on S−(λ) and on S+(λ). These minimizers are
clearly distinct and we have therefore proved the following:

Theorem 4.5. If
	
|x|−qbQ(x)ϕq1 dx<0 then there exists δ>0 such that,

for λ1(h)<λ<λ1(h)+δ, problem (2.1) has two distinct positive solutions.
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