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GENERALIZED CALDERÓN CONDITIONS
AND REGULAR ORBIT SPACES

BY

HARTMUT FÜHR (Aachen)

Abstract. The construction of generalized continuous wavelet transforms on locally
compact abelian groups A from quasi-regular representations of a semidirect product group
G = A o H acting on L2(A) requires the existence of a square-integrable function whose
Plancherel transform satisfies a Calderón-type resolution of the identity. The question
then arises under what conditions such square-integrable functions exist.

The existing literature on this subject leaves a gap between sufficient and necessary
criteria. In this paper, we give a characterization in terms of the natural action of the
dilation group H on the character group of A. We first prove that a Calderón-type resolu-
tion of the identity gives rise to a decomposition of Plancherel measure of A into measures
on the dual orbits, and then show that the latter property is equivalent to regularity
conditions on the orbit space of the dual action.

Thus we obtain, for the first time, sharp necessary and sufficient criteria for the ex-
istence of a wavelet inversion formula associated to a quasi-regular representation. As a
byproduct and special case of our results we deduce that discrete series subrepresenta-
tions of the quasi-regular representation correspond precisely to dual orbits with positive
Plancherel measure and associated compact stabilizers. Only sufficiency of the conditions
was previously known.

1. Introduction. The continuous wavelet transform of f ∈ L2(R) is
obtained by picking a suitable ψ ∈ L2(R) and letting

Vψf(b, a) =
�

R
f(t)|a|−1/2ψ

(
t− b
a

)
dt for b ∈ R, a ∈ R \ {0}.

Among the many useful aspects of wavelets, probably the most fundamental
one is wavelet inversion, usually formulated as

f(t) =
�

R

�

R
Vψf(b, a)|a|−1/2ψ

(
t− b
a

)
db

da

|a|2
,

to be read in the weak sense (rather than pointwise). This remarkable iden-
tity holds precisely if ψ is chosen to be an admissible vector, satisfying the
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Calderón condition

(1)
�

R

|ψ̂(ξ)|2

|ξ|
dξ = 1.

The generalization of this construction, in particular to higher-dimen-
sional euclidean space, has been studied early on (see e.g. [18, 3]). In the
euclidean setting, the role of the dilations a 6= 0 is assumed by the elements
of a matrix group H, and various sources have studied which properties
of H ensure the existence of an inversion formula (see e.g. [2, 8, 11, 16]).
A further extension, replacing Rd by a general locally compact group A and
H by a group of topological automorphisms, was considered in [4].

The wavelet inversion formula is closely related to a suitable general-
ization of the Calderón condition. As will be seen in the next section, this
condition is quite easy to write down. However, it is not at all trivial to
decide whether there actually exist L2-functions satisfying it. Sufficient con-
ditions for dilation groups acting on Rd were derived in [11, 16], along with
some necessary conditions. However, a complete characterization of these
groups in terms of necessary and sufficient conditions has been missing. The
chief contribution of this paper is to provide such a characterization in terms
of the natural action on the dual group.

The paper is structured as follows: Section 2 contains a more detailed
exposition of the group-theoretic construction of continuous wavelet trans-
forms from the action of an automorphism group on a locally compact
abelian group. We investigate wavelet inversion formulae valid for elements
from a proper closed invariant subspace. For this purpose, we introduce the
dual action of the dilation group, and formulate the Calderón condition for
admissible vectors. A useful auxiliary notion for the discussion of admissi-
ble vectors is “weak admissiblity”. We formulate a full characterization of
dilation groups admitting weakly admissible vectors (Theorem 6), which is
the central result of this paper. The following two sections are devoted to
a proof of this theorem. As it turns out, the core result is of a predominantly
measure-theoretic nature, and our treatment highlights these aspects. The
main result of these sections is Theorem 12. In the final section we resume
the discussion of admissible vectors. Theorems 6 and 19 provide a complete
characterization of invariant subspaces allowing a wavelet inversion formula.
We also comment on irreducible subspaces with a wavelet inversion formula,
which necessarily correspond to orbits of the dual action with positive mea-
sure and compact fixed groups (Corollary 21).

2. Wavelet transforms from semidirect products. Let us briefly
sketch the group-theoretic framework for the construction of continuous
wavelet transforms on locally compact abelian groups. The case where the
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underlying group is Rn has been studied e.g. in [2, 11, 16], the generalization
to arbitrary LCA groups was considered in [4].

Let A denote a second countable locally compact abelian group (with
group structure written additively), and let H be a group of topological au-
tomorphisms of A, endowed with a second countable locally compact group
topology making the natural action of H on A continuous. The semidirect
product group G = A o H consists of elements (a, h) ∈ A × H, with the
group law (a, h) · (b, g) = (a + h(b), hg). When endowed with the product
topology, G is a second countable locally compact group as well.

For any locally compact group S, integration against (left) Haar measure
is denoted as

	
S g(s) ds. Haar measure of a Borel set B ⊂ S is denoted by

|B| =
	
S 1B(s) ds. Here, as below, we use the notation 1B for the indicator

function of B.
The action of H on A induces a continuous homomorphism δ : H → R+

by δ(h) = |h(B)|/|B|, where B ⊂ A is any Borel set of positive measure.
The left Haar integral on G is given by

�

G

f(x, h) d(x, h) =
�

H

�

A

f(x, h) dx
dh

δ(h)
,

and the modular function of G is ∆G(a, h) = ∆H(h)/δ(h).
The group G has a natural unitary representation acting on L2(A) via

π(a, h)f(t) = δ(h)−1/2f(h−1(t− a)) (t ∈ A).

Given a function g ∈ L2(A), the associated wavelet transform is an operator
Vψ mapping f ∈ L2(A) to its coefficient function Vψf , defined on G as

Vψf(a, h) = 〈f, π(a, h)ψ〉.

Definition 1. Let H ⊂ L2(A) be a closed π-invariant subspace. Then
g ∈ H is called weakly admissible (for H) if Vψ : H → L2(G) is a (well-
defined) bounded injective map. It is called admissible (for H) if Vψ : H →
L2(G) is an isometric embedding.

Remark 2. Admissibility is equivalent to a weak-sense inversion for-
mula: ψ is admissible for H iff for all f ∈ H,

f =
�

H

�

A

Vψf(a, h)π(a, h)ψ da
dh

δ(h)
,

holds in the weak sense (see e.g. [10, Section 2.2]).

Remark 3. Note that Vψ intertwines the action of π with left trans-
lation. In particular, g is weakly admissible iff Vψ is a bounded injective
intertwining operator between the restriction of π to H and the left regular
representation acting on L2(G). In fact, the existence of weakly admissible
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vectors is equivalent to unitary containment in the regular representation
[10, 2.21].

We denote by Â the dual group of A. It is a second countable locally
compact abelian group as well. (For this and the following facts concerning
locally compact abelian groups, see [6].) The Fourier transform of f ∈ L1(A)
is defined as

f̂(ξ) =
�

A

f(x)ξ(x) dx.

We normalize Haar measure on Â so that for all f ∈ L1(G)∩L2(G), ‖f‖2 =
‖f̂‖2. The Plancherel theorem implies that the Fourier transform extends to
a unitary operator L2(A) → L2(Â). For this reason, Haar measure on Â is
also called Plancherel measure of A.

The action of H on A gives rise to the dual action on Â, which is a right
action defined by (ξ.h)(x) = ξ(h(x)). The behaviour of Haar measure on Â

is similar to that of Haar measure on A, i.e., |B.h| = δ(h)|B| for all B ⊂ Â
Borel.

For the study of (weakly) admissible vectors for invariant subspaces,
the dual action is an indispensable tool. To begin with, invariant subspaces
are in one-to-one correspondence to H-invariant Borel subsets of Â, by the
following result.

Lemma 4. Let X ⊂ Â be an H-invariant Borel subset. Let

HX = {f ∈ L2(A) : f̂ · 1X = f̂}.

Then HX ⊂ L2(A) is a π-invariant closed subspace. We write πX for the
restriction of π to HX .

Conversely, if H ⊂ L2(A) is a π-invariant closed subspace, then H = HX
for a suitably chosen H-invariant Borel set X.

Proof. First note that if H is invariant under shifts, i.e. all operators
of the type π(a, eH), then necessarily H = HX for some Borel set X. This
follows from the characterization of the commuting algebra by the Fourier
transform, e.g. in [6, 4.44]. If, in addition, H is also invariant under π(0, h)
for all h, it necessarily follows that, possibly after removing a set of measure
zero, X is in addition H-invariant. The proof given in [8] for this fact in the
case A = Rn carries over verbatim.

We next turn to the derivation of admissibility criteria. Direct calcula-
tion employing the Plancherel theorem for A allows us to derive the crucial
equality

‖Vψf‖22 =
�

bA
|f̂(ξ)|2

�

H

|ψ̂(ξ.h)|2 dh dξ.



GENERALIZED CALDERÓN CONDITIONS 107

See e.g. [11, 16] for the proof in the case A = Rd, which immediately carries
over to the general setting. From this, one easily derives the following criteria
for strong and weak admissibility, generalizing the Calderón condition for
wavelets over the reals:

Lemma 5. Let H ⊂ L2(A) be closed and π-invariant. Hence H = HX for
a suitable H-invariant Borel set X ⊂ Â. Then ψ ∈ H is weakly admissible
iff the function

(2) ξ 7→
�

H

|ψ̂(ξ.h)|2 dh

is a.e. bounded and nonzero on X. Moreover, ψ is admissible iff this function
equals 1 a.e.

Furthermore, it is easily verified that for
�

H

|ψ̂(ξ.h)|2 dh

to be finite, the stabilizer of ξ, defined by Hξ = {h ∈ H : ξ.h = ξ}, must
be compact (see Lemma 11 below). Hence Lemma 5 implies that almost all
stabilizers must be compact for H to be weakly admissible. However, it has
been noticed early on that this necessary condition is not sufficient: The
relevant counterexample is provided by letting A = R2 and H = SL(2,Z).
It turns out that almost all stabilizers are trivial, but H is not weakly
admissible (see [8] for a related example).

Additional sufficient criteria were provided in [10, 11, 16] for the case
of A = Rn and a matrix group H, but the results in those papers do
not yield a full characterization. The authors of [16] studied the condi-
tion that for almost every ξ there exists ε > 0 such that the ε-stabilizer
Hε,ξ = {h ∈ H : |ξ − ξ.h| < ε} is a compact subset of H. Here | · | denotes
the Euclidean distance. It is shown in [16] that this condition ensures weak
admissibility. Necessity of this condition was conjectured, but not shown in
[16]. By contrast, [10, 11] studied regularity conditions on the orbit spaces,
somewhat similar to the properties that will be considered in the next sec-
tion. However, no necessary condition was derived.

The following theorem is the chief result of this paper. It characterizes
the groups H allowing a weakly admissible vector in terms of regularity
properties of the orbit space.

Theorem 6. Let H = HX for X ⊂ Â Borel and H-invariant. Then H
has a weakly admissible vector iff there exists a conull H-invariant Borel
subset B ⊂ X such that:

(i) For all ξ ∈ B, the stabilizer Hξ is compact.
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(ii) There exists a Borel set C ⊂ B such that for all ξ ∈ B, the set
C ∩ ξ.H is a singleton.

This result is a direct consequence of the purely measure-theoretic Theo-
rem 12 below. We have chosen to remove (almost) all references to wavelets
and harmonic analysis from the following two sections, because we believe
that the central problem is measure-theoretic in nature, and of a certain
independent interest.

3. Measure-theoretic setup and main result. Let us begin by fixing
terminology. A useful survey of the relevant definitions and results concern-
ing Borel spaces can be found in [1].

A Borel space is a set X endowed with a σ-algebra on X. The elements
of the σ-algebra are called Borel sets. A measure defined on the σ-algebra
is called a Borel measure. A map between Borel spaces is called Borel if the
preimage of Borel sets are Borel again. A Borel isomorphism is a bijection
between Borel spaces that is Borel in both directions. In the following, the
Borel structures of locally compact groups and metric spaces are understood
to be generated by the respective topologies. A Borel space is called standard
if it is Borel isomorphic to a Borel subset of a separable complete metric
space. We note that second countable locally compact groups are completely
metrizable, and therefore standard. This applies to H, but also to A and Â.
Also, Borel subsets of standard spaces are clearly standard. Throughout the
next two sections, X denotes a standard Borel measure space, on which a
locally compact second countable group H acts jointly measurably from the
right.

We assume that a fixed σ-finite Borel measure λ on X is given, which
is quasi-invariant under H. This means that for all h ∈ H, the measure
λh : A 7→ λ(A.h) is equivalent to λ. By the Radon–Nikodym theorem, this
assumption implies the existence of a function ρ : X ×H → R such that

dλh
dλ

(ξ) = eρ(ξ,h)

holds for all (ξ, h) ∈ X×H. This ρ is called the cocycle of the measure; it can
be assumed measurable on X × H, and such that it satisfies the following
cocycle conditions, for all g, h ∈ H and ξ ∈ X:

ρ(ξ, gh) = ρ(ξ.g, h) + ρ(ξ, g),(3)
ρ(ξ, h) = 0 if ξ.h = ξ;(4)

see e.g. [13] or [20, Appendix B]. We note that the definition of the cocycle
entails the following two formulae for integration:
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λ(B.h) =
�

B

eρ(ξ,h) dλ(ξ),(5)

�

X

f(ξ.h−1) dλ(ξ) =
�

X

f(ξ)eρ(ξ,h) dλ(ξ),(6)

where the second equation holds for all positive Borel functions f , in the
extended sense that one side is infinite iff the other is.

We denote by X/H the space of all H-orbits in X. Let q : X → X/H
denote the quotient map. X/H is endowed with the quotient Borel structure:
a subset B ⊂ X/H is declared Borel if q−1(B) =

⋃
{W : W ∈ B} ⊂ X is

Borel.

Definition 7. The action of H on X is called weakly admissible if there
exists a Borel function ϕ : X → R+ satisfying

(7) 0 <
�

H

ϕ(ξ.h)dh <∞ for λ-a.e. ξ ∈ X.

The definition is a clear analogy to the Calderón condition. If X ⊂ Â is
an invariant Borel subset, we will see shortly that the existence of weakly
admissible vectors for a representation is equivalent to weak admissibility of
the dual action. The following lemma spells out the technical details.

Lemma 8. If the action of H is weakly admissible, there exists a function
ϕ such that

(8) ϕ ≥ 0, 0 <
�

H

ϕ(ξ.h)dh ≤ 1 (λ-a.e.), ϕ ∈ L1(X,λ).

Proof. WriteX as a disjoint union of sets of finite measure,X=
⋃
n∈NXn.

Assume that ϕ1 satisfies (7), and define

ϕ2(ξ) =
min(1, ϕ1(ξ))
2n(1 + λ(Xn))

, ξ ∈ Xn.

Then ϕ2 is integrable, and also satisfies (7). The same is then true for

ϕ(ξ) =
ϕ2(ξ)

1 +
	
H ϕ2(ξ.h) dh

,

which is the desired function.

Corollary 9. Let H = HX ⊂ L2(A) for a suitable H-invariant X ⊂ Â.
There exists a weakly admissible vector for H iff the dual action of H on X̂
is weakly admissible.

Proof. The “only if” part is clear. For the other direction, we let ψ̂(ξ) =
ϕ(ξ)1/2, where ϕ satisfies (8).

As already indicated in the title, the structure of the orbit space X/H is
of central interest. Such spaces can be quite pathological. By contrast, the
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situation for each individual orbit is quite simple, as the following lemma
shows.

Lemma 10. For all ξ ∈ X, the orbit ξ.H ⊂ X is Borel. Furthermore,
the stabilizer Hξ = {h ∈ H : ξ.h = ξ} is a closed subgroup of H, and the
quotient map H 3 h 7→ ξ.h induces a Borel isomorphism Hξ \H → ξ.H.

Proof. See [1, Chapter I, Proposition 3.7].

Now the first necessary condition for weakly admissible actions is easily
proved.

Lemma 11. The set

Xc := {ξ ∈ X : Hξ is compact} ⊂ X
is Borel and H-invariant. If H is weakly admissible, then Xc ⊂ X is conull.

Proof. The stabilizer map x 7→ Hξ is Borel, if one endows the set of
closed subgroups with the Fell topology [1, Chapter II, Proposition 2.3].
Moreover, the set of compact subgroups is Borel (see [10, Proposition 5.5]),
hence Xc is Borel. H-invariance is immediate from the observation that all
stabilizers associated to a given orbit are conjugate.

If ϕ is a positive Borel function on X and ξ ∈ X is such that

0 <
�

H

ϕ(ξ.h) dh <∞

then the fact that the function h 7→ ϕ(ξ.h) is integrable (with nonzero
integral) and left invariant under the closed subgroup Hξ at the same time
forces Hξ to be compact: for instance, pick ε > 0 such that |{h : ϕ(ξ.h)
> ε}| > 0. This set has finite Haar measure, and is left Hξ-invariant, thus
[8, Lemma 11] yields compactness of Hξ.

Thus, if the action of H is weakly admissible, then |X \Xc| = 0.

We will characterize weak admissibility in terms of measure-theoretic
properties of X/H, which are closely related to standardness. A Borel space
is called countably generated if the σ-algebra is generated by a countable
subset. It is called separated if single points are Borel. A Borel space is
called countably separated if there is a sequence of Borel sets separating the
points. All these properties are inherited by products and Borel subspaces.
A Borel space is called analytic if it is (Borel-isomorphic to) the Borel image
of a standard space in a countably generated space.

We say that X/H admits a λ-transversal if there exists an H-invariant
λ-conull Borel set Y ⊂ X and a Borel set C ⊂ Y meeting each orbit in Y
in precisely one point.

A pseudo-image of λ is a measure λ onX/H obtained as image measure of
an equivalent finite measure under the quotient map q; clearly, all pseudo-
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images are equivalent. We call λ standard if there exists Y ⊂ X Borel,
H-invariant, conull, such that Y/H is standard.

Finally, we need the notion of a measure decomposition: A measurable
family of measures is a family (βO)O⊂X indexed by the orbits in X, such
that for all Borel sets B ⊂ X, the map O 7→ βO(B) is Borel on X/H.

A measure decomposition of λ consists of a pair (λ, (βO)O⊂X), where λ
is a pseudo-image of λ on X/H, or a σ-finite measure equivalent to such a
pseudo-image, and a measurable family (βO)O⊂X such that for all B ⊂ X
Borel,

λ(B) =
�

X/H

βO(B) dλ(O).

Note that this entails, for all positive Borel functions f on X, that
�

X

f(ξ) dλ(ξ) =
�

X/H

�

O
f(ξ) dβO(ξ) dλ(O).

We say that λ decomposes over the orbits if there exists a measure decompo-
sition with the additional requirement that, for λ-almost every O ∈ X/H,
the measure βO is supported in O, meaning βO(X \ O) = 0.

Theorem 12. Let X be a standard Borel space, and H a second count-
able group acting measurably on X. Assume that λ is a quasi-invariant σ-
finite measure on X. Consider the following statements:

(a) The action of H is weakly admissible.
(b) λ decomposes over the orbits.
(c) λ is standard.
(d) X/H admits a λ-transversal.

Then (a)⇒(b)⇔(c)⇔(d), and λ(X \Xc) = 0.
Conversely, if λ(X \Xc) = 0, then (d)⇒(a).

The equivalence of (b) through (d) is possibly folklore, although we have
not been able to locate a handy reference for the “almost everywhere” ver-
sion that we consider here. Also, the proof of (b)⇒(c) turned out to be rather
more technical than initially expected. We include detailed arguments for
the sake of reference.

Note that Corollary 9 and Theorem 12, applied to the dual action of H
on the invariant set X, indeed imply Theorem 6.

4. Proof of Theorem 12. If the action of H is weakly admissible, then
λ(X \Xc) = 0 by Lemma 11. Without loss of generality, we will therefore
assume in the following that X = Xc.
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4.1. Proof of (a)⇒(b). Assume that the action of H is weakly admis-
sible. The proof strategy will be to define a measure µ that decomposes over
the orbits, and to show that µ is σ-finite and equivalent to λ.

Lemma 13. Let λ be a pseudo-image of λ on X/H. Let ϕ : X → R+
0 be

a Borel function satisfying (8). For Borel sets U ⊂ X/H let

λϕ(U) =
�

q−1(U)

ϕ(ξ) dλ(ξ).

Then λϕ is a finite measure on X that is equivalent to λ, satisfying for all
Borel functions g : X/H → R+

0 the equality

(9)
�

X/H

g(O) dλϕ =
�

X

g(ξ.H)ϕ(ξ) dλ(ξ).

Proof. We need to show for an H-invariant Borel set V ⊂ X that

λ(V ) = 0 ⇔
�

V

ϕ(ξ) dλ(ξ) = 0.

The direction “⇒” is clear; after all, the right-hand side is an integral over
a λ-null set.

For the other direction, we employ the quasi-invariance of λ and invari-
ance of V to note that for all h ∈ H,�

V

ϕ(ξ.h) dλ(ξ) = 0.

Integrating over H and applying Tonelli’s theorem, we obtain�

V

�

H

ϕ(ξ.h) dh dλ(ξ) = 0.

By assumption, the inner integral vanishes λ-almost nowhere, hence λ(V )
= 0 follows.

By definition, equation (9) holds for indicator functions, and extends to
nonnegative Borel maps by standard arguments.

Lemma 14.

(a) Let O = ξ.H, and assume that Hξ is compact. Then
µO(B) = |{h ∈ H : ξ.h ∈ B}|

defines a σ-finite measure supported on O. Furthermore, µO is in-
dependent of the choice of ξ ∈ O.

(b) Let ϕ be a Borel function satisfying (8). For Borel sets B ⊂ X,
define

(10) µ(B) =
�

X/H

µO(B) dλϕ(O) =
�

X

ϕ(ξ)
�

H

1B(ξ.h) dh dξ.

Then µ is a well-defined Borel measure.
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Proof. Since O is Borel, µO is a well-defined Borel measure. Further-
more, since Hξ is compact, µO is finite on sets of the form ξ.C, with C
compact. In particular, since H is σ-compact, µO is σ-finite. The measure
µO is independent of the choice of ξ, since the action is on the right, and
Haar-measure on H is left invariant. The well-definedness of µ follows from
Fubini’s theorem and the measurability of (h, ξ) 7→ 1A(ξ.h). The second
equation of (10) is obtained directly from (9).

The following result will allow us to establish equivalence of µ and λ.

Lemma 15. Let ϕ be a positive Borel function satisfying (8), and let

Φ(ξ) =
�

H

ϕ(ξ.h) dh.

Then, for all Borel functions f : X → R+
0 ,

(11)
�

X

f(ξ) dλ(ξ) =
�

X

ϕ(ξ)
Φ(ξ)

�

H

f(ξ.h)eρ(ξ,h)∆H(h)−1 dh dλ(ξ).

Proof. The proof is a straightforward computation, using Tonelli’s the-
orem:
�

X

f(ξ) dλ(ξ) =
�

X

f(ξ)
Φ(ξ)

�

H

ϕ(ξ.h) dh dλ(ξ) =
�

H

�

X

f(ξ)
Φ(ξ)

ϕ(ξ.h) dλ(ξ) dh

=
�

H

�

X

f(ξ)
Φ(ξ)

ϕ(ξ.h) dλ(ξ) dh =
�

H

�

X

f(ξ.h−1)
Φ(ξ.h−1)

ϕ(ξ)eρ(ξ,h
−1) dλ(ξ) dh

=
�

X

ϕ(ξ)
Φ(ξ)

�

H

f(ξ.h−1)eρ(ξ,h
−1) dh dλ(ξ)

=
�

X

ϕ(ξ)
Φ(ξ)

�

H

f(ξ.h)eρ(ξ,h)∆H(h)−1 dh,

where the penultimate equality used H-invariance of Φ.

The next lemma establishes σ-finiteness of µ:

Lemma 16. Let H be weakly admissible.

(a) There exists ϕ : X → R+
0 satisfying (8), and an associated H-

invariant conull Borel subset Ωϕ, such that, for all ξ ∈ Ωϕ, the map
H 3 h 7→ ϕ(ξ.h) is continuous.

(b) Let ϕ satisfy (2). For k ∈ N, define

Ak = {ξ ∈ X : ϕ(ξ) > 1/k}.
Then, for all k ∈ N and g ∈ H,

(12) µ(Ak.g) = ∆H(g)µ(Ak) ≤ ∆H(g)kλϕ(X/H) <∞.
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(c) With ϕ,Ωϕ as in part (a), and Ak as in part (b): If (hn)n∈N ⊂ H is
dense, then Ωϕ ⊂

⋃
n,k∈NAk.hn. In particular, µ is σ-finite.

Proof. For the proof of (a) pick ϕ0 satisfying (8). Pick a continuous,
compactly supported ν : H → R+

0 satisfying
�

H

ν(g)∆H(g) dg = 1.

Letting

Ωϕ =
{
ξ ∈ X :

�

H

ϕ0(ξ.h) dh <∞
}

defines an H-invariant conull Borel subset. For ξ ∈ Ωϕ, we define

ϕ(ξ) =
�

H

ϕ0(ξ.g)ν(g) dg,

and obtain

ϕ(ξ.h) =
�

H

ϕ0(ξ.hg)ν(g)dg.

The assumption ξ ∈ Ωϕ amounts to saying that the map g 7→ ϕ0(ξ.g)
is in L1(H). Now strong continuity of the left action of H on L1(H) and
boundedness of ν imply that h 7→ ϕ(ξ.h) is continuous.

Integrability of ϕ is a straightforward consequence of ϕ0 ∈ L1(X,λ),
ν ∈ L1(H) and Fubini’s theorem. Finally,

�

H

ϕ(ξ.h)dh =
�

H

�

H

ϕ0(ξ.hg)ν(g) dg dh =
�

H

ν(g)
�

H

ϕ0(ξ.hg) dh dg

=
�

H

ν(g)∆H(g)
�

H

ϕ0(ξ.h) dh dg =
�

H

ϕ0(ξ.h) dh,

where the last equation was due to our choice of ν. Hence (8) for ϕ0 implies
the same for ϕ, and (a) is shown.

The first equality of (12) follows from
�

H

1Ak.g(ξ.h) dh =
�

H

1Ak(ξ.hg−1) dh = ∆H(g)
�

H

1Ak(ξ.h) dh ,

and integration over X/H. For the inequality, observe that by definition
of Ak, we have 1Ak(ξ) < kϕ(ξ), and thus, by our choice of ϕ,

µξ.H(Ak) =
�

H

1Ak(ξ.h) dh ≤ k
�

H

ϕ(ξ.h) dh ≤ k.

But then
µ(Ak) =

�

X/H

µO(Ak) dλϕ(O) ≤ kλϕ(X/H).
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For part (c) let ξ ∈ Ωϕ, hence 0 <
	
H ϕ(ξ.h) dλ(ξ) ≤ 1. Hence the

integrand cannot be identically zero, and there exists k ∈ N such that

B = {g ∈ H : ϕ(ξ.g−1) > 1/k}
is nonempty. By the choice of ϕ, the set B is open, hence there exists n ∈ N
such that hn ∈ B, implying ϕ(ξ.h−1

n ) > 1/k. But this means ξ ∈ Ak.hn, as
desired.

Now the implication (a)⇒(b) is easily proved. We pick ϕ according to
Lemma 16(a), and consider the measure µ defined in Lemma 14(b), using
λ = λϕ. Then µ is equivalent to λ: On the one hand, Lemma 15 provides,
for an arbitrary Borel set A ⊂ X,

(13) λ(A) =
�

X

ϕ(ξ)
Φ(ξ)

�

H

1A(ξ.h)eρ(ξ,h)∆H(h)−1 dh dλ(ξ),

whereas, by Lemma 13,

(14) µ(A) =
�

X

ϕ(ξ)
�

H

1A(ξ.h) dh dλ(ξ).

Hence, by (13), λ(A) = 0 iff ϕ(ξ)
	
H 1A(ξ.h)eρ(ξ,h)∆H(h)−1 dh = 0 for λ-

a.e. ξ. Both ∆H and the exponential function are strictly positive, hence
this is the case precisely when ϕ(ξ)

	
H 1A(ξ.h) dh = 0 for λ-a.e. ξ. But by

(14), the latter condition is equivalent to µ(A) = 0. Hence λ and µ are
equivalent.

Recall that by definition, dµ(ξ) = dµO(ξ)dλ(O). By Lemma 16(c), µ is
σ-finite. Hence the Radon–Nikodym theorem applies, and yields

dλ(ξ) =
dλ

dµ
(ξ)dµ(ξ) =

dλ

dµ
(ξ)dµO(ξ)dλ(O),

which shows that letting

dβO(ξ) =
dλ

dµ
(ξ)dµO(ξ)

yields the desired measure decomposition.

4.2. Proof of (b)⇒(c). For this step, we first replace λ by an equivalent
probability measure α. Then α decomposes over the orbits as well, by the
same argument as in the proof of (a)⇒(b). In the decomposition of α, almost
every βO is finite, and can thus be normalized to be a probability measure.
Then the measure on the quotient space effecting the decomposition of α
into the normalized measures turns out to be a probability measure as well.

In short, λ can be assumed to be a probability measure, together with
all measures involved in the decomposition. Furthermore, we may assume
that λ is the image measure of λ under q. The following argument relates
the decomposition to the ergodic decomposition constructed in [13], and
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then uses properties of the latter. For this purpose, let ρ denote the cocycle
of λ. Let Mρ(X) denote the set of Borel probability measures on X with
cocycle ρ.

We endow Mρ(X) with the coarsest σ-algebra such that, for all Borel
sets B ⊂ X, the mapping Mρ(X) 3 ν 7→ ν(B) is Borel. Let S denote the
σ-algebra of X, and let SH be the subalgebra of H-invariant Borel sets.
Clearly, SH is a subalgebra of S. The conditional expectation of f with
respect to ν ∈Mρ(X) is a Borel function

Eν(f | SH) : X → R+
0

which is H-invariant and satisfies�

B

f(ξ) dν(ξ) =
�

B

Eν(f | SH)(ξ) dν(ξ)

for all H-invariant Borel sets B. The conditional expectation always exists
and is ν-a.e. unique [19, 5.1.15].

By [13, Theorem 5.2], there exists an H-invariant map p : X →Mρ(X),
ξ 7→ pξ, such that pξ is ergodic, and in addition, for every ν ∈ Mρ(X) and
every positive Borel function f on X,

(15) Eν(f | SH)(ξ) =
�

X

f(ω) dpξ(ω)

holds for ν-almost all ξ ∈ X.

Lemma 17. Assume that (λ, (βO)O⊂X) is a decomposition of λ into
probability measures over the orbits. Let ρ be the cocycle of λ, and let
p : X → Mρ(X) denote the ergodic decomposition associated to ρ. There
exists a conull, H-invariant Borel set Y ⊂ X such that pξ = βξ.H for all
ξ ∈ Y .

Proof. We first prove that for almost all orbits O, βO ∈ Mρ(X). For
Borel subsets B ⊂ X and H-invariant C ⊂ X,�

C

βO(B.h) dλ(O) = λ(B.h ∩ C) =
�

C

1B(ξ)eρ(ξ,h) dλ(ξ)

=
�

C

�

B

eρ(ξ,h) dβO(ξ) dλ(O),

and thus, for all h ∈ H,

(16) βO(B.h) =
�

B

eρ(ξ,h) dβO(ξ)

is valid for a λ-conull set of orbits O that may still depend on h ∈ H and B.
By Fubini’s theorem, for each B ∈ S there exists Y (B) ⊂ X Borel,

H-invariant and conull such that (16) holds for all orbits O ⊂ Y (B) and
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all h ∈ T (O, B), with T (O, B) ⊂ H Borel, conull. Next pick a generating
sequence (Bk)k∈N of S, and define

Y =
⋂
k∈N

Y (Bk), ∀O ⊂ Y : T (O) =
⋂
k∈N

T (O, Bk).

Then (16) holds for all B ∈ S, O ⊂ Y and h ∈ T (O), since both sides of
(16) define a Borel measure, hence coincide on a σ-algebra.

Now fix O ⊂ Y , and define

H(O) =
{
h ∈ H : ∀B ∈ S : βO(B.h) =

�

B

eρ(ξ,h) dβO(ξ)
}
.

We claim that H(O) is a subgroup of H: Assume that h ∈ H(O). Then (16)
extends to positive Borel functions f , yielding

(17)
�

X

f(ξ.h−1) dβO(ξ) =
�

X

f(ξ)eρ(ξ,h) dβO(ξ).

Furthermore, the cocycle properties (3) and (4) entail that ρ(ξ, h−1) =
−ρ(ξ.h−1, h). Using this, we can compute

�

B

eρ(ξ,h
−1) dβO(ξ) =

�

B

e−ρ(ξ.h
−1,h) dβO(ξ) =

�

X

1B(ξ)eρ(ξ.h
−1,h) dβO(ξ)

(17)
=

�

X

1B(ξ.h)e−ρ(ξ,h)eρ(ξ,h) dβO(ξ)

=
�

B.h−1

dβO(ξ) = βO(B.h−1),

which proves h−1 ∈ H(O).
Next let g, h ∈ H(O). Then, since g ∈ O,

βO(B.hg) =
�

B.h

eρ(ξ,g) dβO(ξ) =
�

X

1B(ξ.h−1)eρ(ξ,g) dβO(ξ)

(17)
=

�

X

1B(ξ)eρ(ξ,h)eρ(ξ.h,g) dβO(ξ)
(3)
=

�

X

1B(ξ)eρ(ξ,hg) dβO(ξ),

and therefore hg ∈ H(O).
Hence H(O) ⊂ H is a subgroup, with H(O) ⊃ T (O). In particular,

H(O) ⊃ T (O)T (O)−1, and since T (O) has positive Haar measure, H(O)
contains a nonempty open subset [5, Proposition III.12.3]. Hence H(O) is
an open subgroup, and therefore closed. On the other hand, T (O) is conull
and thus dense in H, whence finally H = H(O). But this shows βO ∈Mρ(X)
for all O ⊂ Y .

Then, since βO is supported in O, it follows for every nonnegative Borel
function f and ξ ∈ O that
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�

X

f(ω) dβO(ω) = EβO(f | SH)(ξ) =
�

X

f(ω) dpξ(ω),

where the second equation is due to (15). But this means that βO = pξ.

Hence, after passing to a suitable conull H-invariant subset, we may
assume that βξ.H = pξ holds for all ξ ∈ X. In particular, we may assume in
the following that p separates the orbits in X.

Denote by T the coarsest σ-algebra on X making p a Borel map. Since
the βO are a measurable family, p : X → Mρ(X) is clearly Borel, thus
T ⊂ S. On the other hand, by [13, Theorem 5.2], T is countably generated.

Since p is H-invariant, the elements of T are H-invariant as well. Hence
q : X → X/H induces an isomorphism of σ-algebras between T and its
image T = {q(A) : A ∈ T }. In particular, the latter is countably generated
as well, and it is contained in the quotient σ-algebra on X/H. Furthermore,
it is clearly separated, since p separates the orbits. But then the quotient σ-
algebra, being finer than T , is countably separated. Hence, by [1, Chapter I,
Proposition 2.9], it follows that X/H is an analytic Borel space. But then
there exists a conull Borel subset A ⊂ X/H which is standard (see [1,
remarks following Chapter I, 2.13]). This shows (c).

4.3. Proof of (c)⇒(d)⇒(b). For (c)⇒(d) we may assume, after passing
to a suitable conull subset, that X/H is standard. Then [1, Chapter I, Propo-
sition 2.15], yields a λ-conull Borel set V ⊂ X/H and a Borel cross-section
σ : V → q−1(V ). Then σ is injective, and V is standard, as a Borel subset
of X/H. But then σ(V ) is Borel, by [1, Chapter I, Proposition 2.5], and it
meets every orbit contained in V in precisely one point.

Finally, (d)⇒(b) follows by [17, Lemma 11.1].

4.4. Proof of (d)⇒(a). Now assume (d), and that all stabilizers are
compact. Let Y ⊂ X be H-invariant and conull, and let C ⊂ Y be a Borel
transversal for the orbits in Y . Let K ⊂ H denote a compact neighbourhood
of the identity, and V = C.K = {ξ.h : ξ ∈ C, h ∈ K}. Then V is an analytic
subset of X, as the Borel image of the standard set C ×K in the countably
generated space Y . Since analytic sets are universally measurable (cf. [1,
p. 11]), V is λ-measurable. Hence there exist sets U ⊂ V ⊂ W with U , W
Borel and λ(W \ U) = 0.

We intend to use ϕ = 1W to show weak admissibility. This amounts to
showing, for almost all ξ ∈ X, that

(18) 0 < µO(W ) = µH({h : ξ.h ∈W}) <∞,
for O 3 ξ . In order to do this, we first consider 1V . Note that for every
ξ ∈ X,

{h ∈ H : ξ.h ∈ V } = HξK
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is compact. Since the canonical map Hξ \H → O is a Borel isomorphism,
it follows that V ∩ ξ.H is in fact a Borel set. In addition, since HξK is a
compact neighborhood of the identity element,

(19) 0 < µO(V ∩ ξ.H) <∞.

In order to deduce (18) from this, we use (d)⇒(b) and decompose λ
into a family (βO)O⊂X of measures supported on the orbits. Then almost
every βO is equivalent to a finite quasi-invariant measure β̃O. With respect
to the topology induced by the canonical bijection Hξ \H → O, the finite
measure β̃O becomes regular [7, Theorem 7.8]. On the other hand, µO is
also a regular quasi-invariant measure, hence µO is equivalent to β̃O by [5,
III.14.9], and thus finally to βO.

Now λ(W \U) = 0 entails βO(W \U) = 0 for almost all orbits O. Since
βO is equivalent to µO, it follows for these orbits that

µO((W ∩ ξ.H) \ (V ∩ ξ.H)) ≤ µO((W ∩ ξ.H) \ (U ∩ ξ.H)) = 0,

with ξ ∈ O. Thus µO(W ) = µO(W ∩ ξ.H) = µO(V ∩ ξ.H), and thus (19)
implies (18).

5. Admissible vectors versus weakly admissible vectors. We re-
turn to the discussion of Section 2, dealing with the quasi-regular repre-
sentation of G = A o H on L2(A). We consider suitable Borel-measurable
H-invariant X ⊂ Â and the associated invariant subspace H = HX . We
assume the existence of a weakly admissible vector in H, and want to clarify
which additional criteria must be met to ensure the existence of an admissi-
ble vector. For explicit reference to the results of the previous two sections,
let λ denote Haar measure on Â.

The main tool will be the decomposition of Haar measure on X. The
discussion in this section closely follows [10, Section 5.2], but we have chosen
to spell out most details for two reasons: first, we start from somewhat more
general assumptions, and secondly, the arguments in [10, Section 5.2] are
partly flawed. This applies in particular to [10, Lemma 5.9], which is an
analog of Lemma 18 below. Thus the following serves both as an erratum
to some of the results in [10] and a generalization thereof.

Lemma 18. Assume that H has a weakly admissible vector.

(a) Fix any pseudo-image λ of Plancherel measure on X. There exists
an essentially unique family of measures (βO)O⊂X such that dξ =
dβO(ξ)dλ(O).

(b) For every orbit O ⊂ X let µO be as in Lemma 14. There exists an
essentially unique Borel function κ : X → R+

0 such that, for λ-almost
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all orbits,
dβO
dµO

(ξ) = κ(ξ).

(c) The function κ can be chosen in such a way that for all h ∈ H and
all ξ in a fixed H-invariant conull set,

κ(ξ.h) = κ(ξ)∆G(0, h)−1.

In particular, κ is H-invariant iff G is unimodular. In this case,
λ has a decomposition (λ, (µO)O⊂X), where λ is a suitable σ-finite
measure.

Proof. Part (a) is Theorem 12 (a)⇒(b). For part (b) let µ be as defined
in Lemma 14. Then µ and λ are equivalent σ-finite measures, as was shown
in the proof of 12(a)⇒(b), and we find that

κ(ξ) =
dλ

dµ
(ξ) =

dβO
dµO

(ξ)

is the desired global Radon–Nikodym derivative. Thus (b) follows. For part
(c), we let µh(B) = µ(B.h), and λh(B) = λ(B.h). Then

dµh
dµ

(ξ) = ∆H(h),
dλh
dλ

(ξ) = δ(h).

For any nonnegative Borel map f on X, the definition of µh entails�

X

f(ξ) dµh(ξ) =
�

X

f(ξ.h−1) dµ(ξ).

It follows for h ∈ H and arbitrary Borel sets B ⊂ X that
�

B

dλ

dµ
(ξ.h) dµh(ξ) =

�

X

1B(ξ)
dλ

dµ
(ξ.h) dµh(ξ) =

�

X

1B(ξ.h−1)
dλ

dµ
(ξ) dµ(ξ)

=
�

B.h

dλ

dµ
(ξ) dµ(ξ) = λh(B) =

�

B

dλh
dµh

(ξ) dµh(ξ),

and thus
dλh
dµh

(ξ) =
dλ

dµ
(ξ.h) (λ-a.e.)

Hence, for a.e. ξ ∈ X, the chain rule for Radon–Nikodym derivatives yields

κ(ξ.h) =
dλ

dµ
(ξ.h) =

dλh
dµh

(ξ) =
dλh
dλ

(ξ)
dλ

dµ
(ξ)

dµ

dµh
(ξ) = κ(ξ)

δ(h)
∆H(h)

,

which is the desired equality, except that the conull subset of X on which it
holds may still depend on h. However, by [20, B.5], one finds a conull invari-
ant Borel subset of X on which the relation holds everywhere, independent
of h.
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If κ is constant on the orbits, it defines a Borel mapping κ on X/H.
Replacing each βO by µO, we can make up for it by taking κ(O)dλ(O) as
the new measure on the orbit space. The result is a σ-finite measure κdλ.

The next result clarifies the role of the specific choice of λ.

Theorem 19. Let H = HX ⊂ L2(A) be closed and π-invariant. There
exists an admissible vector for H iff there exists a weakly admissible vector,
and in addition,

(i) G is nonunimodular, or
(ii) G is unimodular, and with λ chosen according to Lemma 18(c),

λ(X/H) <∞.
Proof. First assume that G is unimodular, and that ψ is an admissible

vector. Then the Plancherel theorem and the measure decomposition over
the orbits, with λ as in Lemma 18(c) and βO = µO, allow us to compute

‖ψ‖22 =
�

X

|ψ̂(ξ)|2 dλ(ξ) =
�

X/H

�

H

|ψ̂(ξ)|2 dµO(ξ) dλ(O)

=
�

X/H

�

H

|ψ̂(ξ.h)|2 dh dλ(O) =
�

X/H

1 dλ(O) = λ(X/H).

Here the penultimate equality is due to admissibility of ψ. In particular,
λ(X/H) <∞.

For the converse, assume that ψ0 is a weakly admissible vector. Define

Φ(ξ) =
( �

H

|ψ̂0(ξ.h)|2 dh
)1/2

.

By assumption, 0 < Φ(ξ) < 1 a.e. Let ϕ(ξ) = ψ̂0(ξ)/Φ(ξ). It follows that�

H

|ϕ(ξ.h)|2 dξ = 1 (λ-a.e.).

If G is unimodular, the measure decomposition allows us to compute

‖ϕ‖22 =
�

X/H

�

H

|ϕ(ξ.h)|2 dξ dλ(O) = λ(X/H).

Thus, if λ(X/H) < ∞, the inverse Plancherel transform of ϕ is admissible
for HX .

Finally, assume that G is nonunimodular. Then ∆G is nontrivial on H,
and there exists h0 ∈ H such that ∆G(h0) < 1/2. Since λ is σ-finite, we can
write X as a disjoint union X =

⋃
n∈N Vn, with Vn ⊂ X Borel, H-invariant

and with λ(Vn/H) <∞. Since ψ̂ ∈ L2(Â),

Ψ : ξ 7→
( �

ξ.H

|ψ̂(ξ)|2 dβξ.H(ξ)
)1/2
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is finite a.e., and we may in addition assume that Ψ is bounded on each Vn;
in particular, the functions (1Vn · Ψ)n∈N are square-integrable.

Now pick a sequence (kn)n∈N of integers satisfying

2−kn‖1Vn · Ψ‖22 < 2−n,

and let
ν(ξ) =

∑
n∈N

∆H(h0)knϕ(ξ.hkn0 ).

On the one hand,�

X

|ν(ξ)|2 dλ(ξ) =
�

X/H

�

O
|ν(ξ)|2 dβO(ξ) dλ(O)

=
∑
n∈N

�

Vn

�

O
∆H(h0)kn |ϕ(ξ.hkn0 )|2 dβO(ξ) dλ(O)

=
∑
n∈N

�

Vn

�

O
∆H(h0)knδ(h0)−kn |ϕ(ξ)|2 dβO(ξ) dλ(O)

=
∑
n∈N

∆G(h0)kn
�

Vn

�

O
|ϕ(ξ)|2 dβO(ξ) dλ(O)

=
∑
n∈N

∆G(h0)kn‖1Vn · Ψ‖22 ≤
∑
n∈N

2−kn‖1Vn · Ψ‖22 <∞,

by choice of the kn. Hence ν is square-integrable. Moreover, the Calderón
condition is also easily verified: For x ∈ Vn,�

H

|ν(ξ.h)|2 dh =
�

H

|ϕ(ξ.hhkn0 )|2∆H(h0)kn dh =
�

H

|ϕ(ξ.h)|2 dh = 1

by construction of ϕ. Thus the inverse Plancherel transform of ν is the
desired admissible vector.

Remark 20. For unimodular semidirect products, we do not have a
clean-cut and complete characterization of the groups having an admissible
vector for all of L2(A). A straightforward adaptation of the proof for [10,
Proposition 5.14] allows us to describe a rather general setting in which
L2(A) does not have an admissible vector:

Suppose that G = A o H is unimodular, and has a weakly admissible
vector. Let r be a topological automorphism of A. We assume that r has
the following properties:

(i) r normalizes H.
(ii) For any (hence all) B ⊂ H and C ⊂ A of positive finite Haar mea-

sure,
|rBr−1|
|B|

6= |r(C)|
|C|

.
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Then λ(X/H) = ∞. In particular, there exists no admissible vector for
L2(A).

This result applies in particular to A = Rd: Choose r = s · IdRd with
s 6= 1. Then r commutes with all elements of the matrix group H. In par-
ticular, conjugation with r leaves Haar measure on H invariant, whereas
|r(C)|/|C| = sd. Thus (ii) is ensured, which proves that there exist no ad-
missible vectors in this case.

The final result concerns irreducible representations. Recall that irre-
ducible representations with admissible vectors are called discrete series
representations. Most early sources generalizing wavelets to higher dimen-
sion, e.g. [14, 18, 2, 8], restricted their attention to the discrete series case.
The implication (b)⇒(a) of the following result has been proved for A = Rn

in [8]. However, the converse was previously known only for special cases
in the setting A = Rn and H ⊂ GL(n,R): For H discrete, it boils down to
stating that no discrete series representation of that type exists, which was
observed in [8, Remark 12]. For G unimodular, the converse was proved in
[9, Proposition 2.7.1].

Corollary 21. Let HX ⊂ L2(A) be a nontrivial closed π-invariant
subspace. The following are equivalent:

(a) The restriction of π to HX is a discrete series representation.
(b) There exists an orbit O ⊂ X such that |X \ O| = 0, with associated

compact stabilizers.

Proof. For (b)⇒(a), the arguments given in [8] immediately carry over;
see also [4].

Conversely, assume that π restricted to HX is in the discrete series. If
X = W ∪ V with disjoint, H-invariant Borel sets U,W of positive measure,
then HX = HW ⊕ HV contradicts irreducibility. Thus the action of H on
X is ergodic with respect to Haar measure. Since λ is standard on X/H,
it follows by [1, Chapter I, Proposition 3.9] that there exists a conull orbit.
The associated stabilizers must be compact by Theorem 6.

Remark 22. The measure decompositions discussed in this paper are
closely related to direct integral theory. In order to see this connection, first
note that the quasi-regular representation π is type I: Its commuting al-
gebra is contained in the commuting algebra of the regular representation of
A on L2(A); A being abelian, the latter algebra is commutative. Hence π is
multiplicity-free, in particular type I. It therefore has a unique direct inte-
gral decomposition into irreducibles, which is closely related to the ergodic
decomposition of λ.

For the sake of simplicity, let us assume that there exists a weakly admis-
sible vector, so that the ergodic decomposition is in fact a decomposition
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over the orbits. Then the measure decomposition dλ(ξ) = dβO(ξ)dλ(O)
gives rise to a direct integral decomposition

L2(Â) '
�⊕

X/H

L2(O, dβO) dλ(A).

It can be shown that this decomposition also applies to the representation,
yielding

π '
�⊕

X/H

IndGAoHξ(ξ × 1) dλ(O),

where 1 denotes the trivial representation of Hξ. By Mackey’s theory, the
induced representations are irreducible (and pairwise inequivalent), thus we
have decomposed π into irreducibles.

But the orbit space Â/H also occurs in the direct integral decomposi-
tion of the regular representation of G. In fact, the existence of a weakly
admissible vector for L2(A) implies that the regular representation of G is
type I: By Theorem 6, almost all stabilizers are compact, and the dual orbit
space is standard up to a set of measure zero. Note that compactness of the
stabilizer Hξ entails that Hξ has a type I regular ω-representation, where
ω denotes an arbitrary multiplier on Hξ. Furthermore, the orbit space is
standard (outside a set of measure zero). Thus, by [15, Theorem 2.3], it fol-
lows that the regular representation of G is type I, and that the Plancherel
measure of G is obtained as fibred measure with base space given by Â/H,
base measure given by λ, and fibres given by the ωξ-duals of the Hξ, where
ωξ are suitably chosen multipliers on Hξ.

Now the connection between π and the left regular representation can
also be realized by observing that Mackey’s construction yields a mapping

Â/H 3 ξ.H 7→ IndGAoHξ(ξ × 1) ∈ Ĝ

identifying Â/H with a (Borel) subset of Ĝ. It then becomes apparent that
the measure λ underlying the direct integral decomposition of π is nothing
but the restriction of Plancherel measure of G to this subset. This is an
alternative proof for the containment of π in the regular representation. This
type of reasoning, using direct integral decompositions to study existence
of inversion formulae, has been developed systematically in [10]. In parti-
cular, [10, Section 5.3] contains a rigorous investigation of the double role
of the measure λ in decomposing both π and the regular representation.
Note however that the underlying assumption of [10] is that G is type I.
By contrast, we make no such initial assumption on G, and find that the
regular representation is type I as a consequence of the existence of weakly
admissible vectors.

Remark 23. The results presented in this paper are satisfactory to a
certain degree, since they provide a sharp characterization. However, we are
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not aware of an easy general procedure for the explicit verification of the
criteria in concrete cases. Also, we do not know how our characterization
relates to other criteria, in particular compactness of almost all ε-stabilizers,
proved to be sufficient in [16].

To our knowledge, the first systematic and substantial investigation of
regularity properties for orbit spaces was carried out by Glimm [12], who
proved that standardness of the orbit space of a second countable locally
compact group H acting continuously on a second countable locally compact
space X is equivalent to a variety of conditions, most notably countable
separatedness of X/H, or the existence of a Borel cross-section, or local
compactness of the orbits in the relative topology. On the one hand, these
results closely resemble our conditions (c) and (d) from Theorem 12, but
also the ε-stabilizer condition: To see this, note that compactness of Hε,ξ, for
some ε > 0, is equivalent to (i) compactness of Hξ, and in addition (ii) local
compactness of the orbit ξ.H in the relative topology (cf. the proof of [10,
Proposition 5.7]). Hence, if Glimm’s results were applicable to our setting,
they would imply that weak admissibility of the dual action is equivalent to
existence of a compact ε-stabilizer, for a.e. ξ.

However, a direct application of Glimm’s results to our problem is im-
peded by the fact that, by definition, weak admissibility only concerns the
behaviour of the orbits in a suitable conull subset. In particular, weak ad-
missibility is robust under passage to a conull invariant subset, whereas the
assumptions underlying Glimm’s characterization can be seriously affected
by this step: a conull Borel subset of a locally compact space no longer
needs to be locally compact. It was mostly this obstacle that stopped pre-
vious efforts of the author to characterize weakly admissible group actions.
Attempts to use more recent generalizations of Glimm’s results for the study
of admissibility got stuck for similar reasons.

Remark 24. Throughout this paper, all groups have been assumed to
be second countable. Most of the measure-theoretic arguments in this paper
strongly rely on countability assumptions, and it is currently open to what
extent our results can be generalized beyond second countable groups.
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