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DIAGONAL POINTS HAVING DENSE ORBIT
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T. K. SUBRAHMONIAN MOOTHATHU (Hyderabad)

Abstract. Let f : X → X be a topologically transitive continuous map of a compact
metric space X. We investigate whether f can have the following stronger properties:
(i) for each m ∈ N, f × f2 × · · · × fm : Xm → Xm is transitive, (ii) for each m ∈ N, there
exists x ∈ X such that the diagonal m-tuple (x, x, . . . , x) has a dense orbit in Xm under
the action of f × f2 × · · · × fm. We show that (i), (ii) and weak mixing are equivalent for
minimal homeomorphisms, that all mixing interval maps satisfy (ii), and that there are
mixing subshifts not satisfying (ii).

1. Introduction. Using the structure theory of minimal systems, Glas-
ner proved the following statement in [10]:

Theorem 1. Let f : X → X be a minimal, weakly mixing homeomor-
phism of a compact metric space X. Then, for each m ∈ N, there exists a
residual set of points x ∈ X such that the diagonal m-tuple (x, . . . , x) has a
dense orbit in Xm under the action of f × f2 × · · · × fm.

In this article, we provide a simplified proof of this theorem without
resorting to the heavy machinery of structure theory. More generally, if X
is a compact metric space and f : X → X is a topologically transitive
continuous map, we may ask whether f should possess the following two
properties:

(i) For each m ∈ N, f × f2 × · · · × fm : Xm → Xm is transitive.
(ii) For each m ∈ N, there exists x ∈ X such that the diagonal m-tuple

(x, . . . ,x)has a dense orbit inXmunder the action off×f2× · · ·×fm.
The two properties can be thought of as formulations of the “mutual

independence” in a strong sense among the actions of various powers of f .
Observe that total transitivity is necessary and mixing is sufficient for f
to satisfy (i). We show that weak mixing is necessary but mixing is not
sufficient for f to satisfy (ii). Thus we have the interesting fact that (i) does
not imply (ii). On the other hand, we establish that the properties (i), (ii),
and weak mixing are all equivalent for minimal homeomorphisms. We also
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observe that all mixing interval maps and mixing subshifts of finite type
satisfy (ii).

2. Preliminaries. By a dynamical system we mean a pair (X, f) where
X is a compact metric space and f : X → X is a continuous map.

Convention. Unless otherwise specified, in the statement of our results
we will assume that X is without isolated points, to avoid pathologies.

If x ∈ X, then the f -orbit of x is {x, f(x), f2(x), f3(x), . . .}. For x ∈ X
and U, V ⊂ X write

Nf (x, U) = {n ∈ N : fn(x) ∈ U},(1)
Nf (U, V ) = {n ∈ N : fn(U) ∩ V 6= ∅}.(2)

A point x in a dynamical system (X, f) is called a recurrent point for f if
Nf (x, U) 6= ∅ for every neighborhood U of x. A dynamical system (X, f) is
a minimal system (or f is a minimal map) if the f -orbit of every x ∈ X is
dense in X. It is easy to see that (X, f) is a minimal system iff X has no
proper, nonempty, closed f -invariant subset. An element x ∈ X is a minimal
point if the restriction of f to the orbit-closure of x is minimal. Also, x ∈ X
is a minimal point iff Nf (x, U) is a syndetic set (i.e., an infinite set with
bounded gaps) [8] for every neighborhood U of x.

We say f is transitive if Nf (U, V ) 6= ∅ for any two nonempty open sets
U, V ⊂ X, f is syndetically transitive if Nf (U, V ) is syndetic for any two
nonempty open sets U, V ⊂ X, f is weakly mixing if f × f : X2 → X2 is
transitive, and f is mixing if Nf (U, V ) is cofinite in N for any two nonempty
open sets U, V ⊂ X. We remark that f is weakly mixing iff Nf (U, V ) is thick
(i.e., contains arbitrarily large blocks of consecutive integers) for any two
nonempty open sets U, V ⊂ X, and consequently, when f is weakly mixing,
any finite product f×· · ·×f is transitive [8]. Now we introduce the following
notions. We say f is multi-transitive if for each m ∈ N, f × f2 × · · · × fm :
Xm → Xm is transitive, ∆-transitive if for each m ∈ N, there exists a dense
Gδ set Y ⊂ X such that for every x ∈ Y , {(fn(x), f2n(x), . . . , fmn(x)) :
n ∈ N} is dense in Xm, and ∆-mixing if for each m ∈ N and infinite subset
A ⊂ N, there exists a dense Gδ set Y ⊂ X such that for every x ∈ Y ,
{(fn(x), f2n(x), . . . , fmn(x)) : n ∈ A} is dense in Xm.

Proposition 1. Let m ∈ N and A ⊂ N be infinite. Then the following
are equivalent for (X, f):

(i) If U0, U1, . . . , Um ⊂ X are nonempty open sets, there exists n ∈ A
such that

⋂m
i=0 f

−in(Ui) 6= ∅.
(ii) There exists a dense Gδ subset Y ⊂ X such that for every x ∈ Y ,
{(fn(x), f2n(x), . . . , fmn(x)) : n ∈ A} is dense in Xm.
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Moreover, when A = N, statements (i) and (ii) are equivalent to

(iii) There exists x ∈ X such that {(fn(x), f2n(x), . . . , fmn(x)) : n ∈ N}
is dense in Xm.

Proof. To prove (i) implies (ii), consider a countable base of open balls
{Bk : k ∈ N} of X. Put

(3) Y =
⋂

(k1,...,km)∈Nm

⋃
n∈A

m⋂
i=1

f−in(Bki
).

The set
⋃
n∈A

⋂m
i=1 f

−in(Bki
) is clearly open, and it is dense by (i). Thus by

the Baire category theorem, Y is a dense Gδ subset of X. By construction,
for any x ∈ Y , {(fn(x), f2n(x), . . . , fmn(x)) : n ∈ A} is dense in Xm.
To prove (ii) implies (i), choose x ∈ Y ∩ U0, and if n ∈ A is such that
(fn(x), f2n(x), . . . , fmn(x)) ∈ U1 × · · · × Um, then x ∈

⋂m
i=0 f

−in(Ui).
Now, suppose A = N. Clearly (ii) implies (iii). We prove that (iii) im-

plies (i). Choose k ∈ N such that y = fk(x) ∈ U0. Since f × f2 × · · · × fm
commutes with f × · · · × f , the set {(fn(y), f2n(y), . . . , fmn(y)) : n ∈ N}
is also dense in Xm. Hence (fn(y), f2n(y), . . . , fmn(y)) ∈ U1 × · · · × Um for
some n ∈ N. Thus, y ∈

⋂m
i=0 f

−in(Ui).

Let (X, f), (Y, g) be two dynamical systems. Then (X, f) is an extension
of (Y, g), or (Y, g) is a factor of (X, f), if there is a continuous surjection
h : X → Y (called a factor map) such that h ◦ f = g ◦ h. If further {x ∈ X :
h−1(h(x)) = {x}} is residual in X, (X, f) is said to be an almost one-one
extension of (Y, g). If (X, f) is an almost one-one extension of (Y, g) via a
factor map h : X → Y , then int[h(U)] 6= ∅ for every nonempty open U ⊂ X
and the set {y ∈ Y : |h−1(y)| = 1} is residual in Y .

A point x in a dynamical system (X, f) is a point of equicontinuity
for f if for every ε > 0 there is a δ > 0 such that d(x, y) < δ implies
d(fn(x), fn(y)) < ε for all n ∈ N and every y ∈ X. We denote the set of
equicontinuity points by Eq(f). If Eq(f) = X, we say the system (X, f) is
equicontinuous (note that then, for a given ε > 0, using the compactness
of X we can find a uniform δ > 0 which works for all points in X). It is
a well-known fact that if (X, f) is a dynamical system, then it has a maxi-
mal equicontinuous factor (Y, g) in the sense that any equicontinuous factor
(Y1, g1) of (X, g) is a factor of (Y, g) (see [7] for instance).

It is evident that multi-transitivity, ∆-transitivity and ∆-mixing are pre-
served under factors, and that multi-transitivity is preserved under almost
one-one extensions.

Proposition 2. Let (Y, g) be a dynamical system with g semi-open (that
is, int[g(V )] 6= ∅ for every nonempty open V ⊂ Y ) and let (X, f) be an
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almost one-one extension of (Y, g). If g is ∆-transitive or ∆-mixing, then
so is f .

Proof. We show only that f is ∆-mixing if g is. Let h : X → Y be an
almost one-one factor map with h◦f = g◦h. Given m ∈ N, an infinite subset
A ⊂ N and nonempty open sets U0, . . . , Um ⊂ X, let Vi = int[h(Ui)] for i =
0, 1, . . . ,m. Since g is ∆-mixing, there exists n ∈ A with

⋂m
i=0 g

−in(Vi) 6= ∅
by Proposition 1. As g is semi-open, the g-preimage of any dense open subset
of Y must be dense and open in Y . Therefore, if we consider the residual
set Z = {y ∈ Y : |h−1(y)| = 1}, then g−k(Z) is residual in Y for any
k ≥ 0. Consequently, we can find a point y in the intersection of the residual
set

⋂m
i=0 g

−in(Z) and the nonempty open set
⋂m
i=0 g

−in(Vi). If x ∈ X is the
unique point with h(x) = y, then x ∈

⋂m
i=0 f

−in(Ui). Thus by Proposition 1,
f is ∆-mixing.

We remark that if g is either a minimal map or a transitive interval
map, then g is semi-open (see [15] for the case of a minimal map). We do
not know whether the assumption of semi-openness of g can be removed
from Proposition 2.

3. Relation to other forms of transitivity. There is a rich collection
of (mutually inequivalent) stronger versions of transitivity in the literature;
the reader may have a look at [12, 13] for instance. In this section, we try to
clarify the relations among multi-transitivity, ∆-transitivity, ∆-mixing and
a few other prominent notions of stronger forms of transitivity.

Proposition 3.

(i) Mixing ⇒ multi-transitivity ⇒ total transitivity.
(ii) ∆-transitivity ⇒ weak mixing.

(iii) ∆-mixing ⇒ mixing.
(iv) There is a mixing dynamical system that is not ∆-transitive.

Proof. (i) is easy.
(ii) Let (X, f) be a dynamical system and let U, V ⊂ X be nonempty

open sets. To show (X, f) is weakly mixing, it suffices to show that Nf (U,U)
∩ Nf (U, V ) 6= ∅ (see [4]). Now, by ∆-transitivity and Proposition 1, there
exists n ∈ N with U∩f−n(U)∩f−2n(V ) 6= ∅. If x belongs to this intersection,
then x ∈ U ∩ f−n(U) and fn(x) ∈ U ∩ f−n(V ) so that n ∈ Nf (U,U) ∩
Nf (U, V ).

(iii) If (X, f) is not mixing, then there exist nonempty open sets U, V ⊂
X and an infinite A ⊂ N such that U ∩ f−n(V ) = ∅ for every n ∈ A. Then
there cannot be any x ∈ U satisfying (fn(x), f2n(x)) ∈ U × V for some
n ∈ A, for otherwise fn(x) ∈ U ∩ f−n(V ), a contradiction.
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(iv) Let Σ2 = {x = (xn)∞n=−∞ : xn ∈ {0, 1}}. With respect to the
product topology, Σ2 is homeomorphic to the Cantor set and the left shift
σ : Σ2 → Σ2 is a homeomorphism. Let X ⊂ Σ2 be the collection of all
x ∈ Σ2 satisfying the following two conditions: the word 11 does not appear
in x, and if u, v are nonempty words over {0, 1} with 1u1v1 appearing in x,
then u and v have different lengths. ThenX is closed, nonempty (as 0∞ ∈ X)
and σ-invariant so that (X,σ) is a dynamical system. It is also not difficult
to see that X has no isolated points.

Claim 1. (X,σ) is mixing.

Proof of Claim 1. Let x, y ∈ X and k ∈ N. Let u = x−k · · ·x0 · · ·xk,
v = y−k · · · y0 · · · yk, U = {z ∈ X : z−k · · · z0 · · · zk = u} and V = {z ∈ X :
z−k · · · z0 · · · zk = v}. In the product topology, U, V are basic neighborhoods
of x, y respectively. Now, z(n) ∈ Σ2 defined as z(n) = 0∞u0nv0∞ has the
property that z(n) ∈ U ∩ σ−(n+2k+1)(V ) for all n ∈ N, and z(n) ∈ X for all
large n.

Claim 2. There does not exist x ∈ X such that {(σn(x), σ2n(x)) : n ∈ N}
is dense in X2.

Proof of Claim 2. Suppose there is such an x ∈ X. Let W = {y ∈ X :
y0 = 1}, and choose k ∈ N with y = σk(x) ∈W . Now, (y, y) must also have
a dense orbit under σ × σ2, so there is n ∈ N such that (σn(y), σ2n(y)) ∈
W ×W . Hence y, σn(y), σ2n(y) ∈W , and therefore y0 · · · yn · · · y2n is of the
form 1u1v1 with u, v having the same length, a contradiction.

The rest of this section is aimed at proving that for a minimal system,
weak mixing and multi-transitivity coincide. For one of the implications, we
look at the properties of the “set of visiting times” Nf (U, V ). The other
implication is deduced by studying the maximal equicontinuous factor. The
following result is deduced as a corollary to the Weiss–Akin–Glasner Theo-
rem, in [12]. We provide a direct proof for the sake of completeness.

Proposition 4. Let (X, f), (Y, g) be dynamical systems. If f, g are both
syndetically transitive and weakly mixing, then f × g : X × Y → X × Y is
syndetically transitive and weakly mixing.

Lemma 1. Let f : X → X be weakly mixing and syndetically transitive.
Then for every k ∈ N and for any two nonempty open sets U, V ⊂ X, there
exists a syndetic set A ⊂ N such that A+ {1, . . . , k} ⊂ Nf (U, V ).

Proof. By weak mixing, choose m ∈ N such that for 1 ≤ j ≤ k, Uj := U∩
f−(m+j)(V ) 6= ∅. Let r1, . . . , rk ∈ N be such that W :=

⋂k
j=1 f

−rj (Uj) 6= ∅.
If n ∈ Nf (W,W ) and x ∈ W ∩ f−n(W ), put yj = f rj (x) for j = 1, . . . , k.
Then we see that yj ∈ Uj and fn+m+j(yj) ∈ V . Thus n+m+ j ∈ Nf (U, V ).
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This proves that [Nf (W,W ) + m] + {1, . . . , k} ⊂ Nf (U, V ); and Nf (W,W )
is syndetic.

Corollary 1. Let (X, f) be a dynamical system. If f is weakly mix-
ing and syndetically transitive, then fk is weakly mixing and syndetically
transitive for every k ∈ N.

Proof of Proposition 4. Let U1, U2 ⊂ X and V1, V2 ⊂ Y be nonempty
open sets, and let A = Nf (U1, U2), B = Ng(V1, V2). We should show that
A ∩ B is both syndetic and thick. Now, if k1 ∈ N is a bound for the gaps
in the syndetic set A, then applying Lemma 1 to g, we find a syndetic set
C ⊂ N such that C + {1, . . . , k1} ⊂ B. If k2 is a bound for the gaps in C,
then A ∩ (C + {1, . . . , k1}) is a syndetic set with gaps bounded by k1 + k2.
Also A ∩ (C + {1, . . . , k1}) ⊂ A ∩ B, and thus A ∩ B is syndetic. Now, to
show A ∩ B is thick, fix k ∈ N, and let D ⊂ N be a syndetic set with
D + {1, . . . , k} ⊂ B. Since A is thick, A ∩ (D + {1, . . . , k}) contains a block
of k consecutive integers. Thus A ∩ B contains a block of k consecutive
integers.

Corollary 2. Let (X, f) be a dynamical system. If f is weakly mixing
and syndetically transitive, then f × · · · × fm : Xm → Xm is weakly mix-
ing and syndetically transitive for every m ∈ N. In particular, f is multi-
transitive.

Corollary 3. Let (X, f) be a dynamical system. If f is weakly mixing
and syndetically transitive, then for every m, k ∈ N and nonempty open
sets U, V ⊂ X, there exists a syndetic set A ⊂ N such that

⋃m
i=1 i[A +

{1, . . . , k}] = {i(n+ j) : 1 ≤ i ≤ m, n ∈ A, 1 ≤ j ≤ k} ⊂ Nf (U, V ).

Proof. By Corollary 2, we know that f × · · · × fm is weakly mixing and
syndetically transitive. Now apply Lemma 1 to f × · · · × fm : Xm → Xm

and open subsets U × · · · × U , V × · · · × V of Xm.

Theorem 2. Let (X, f) be a dynamical system with X having at least
two points. If f × f2 : X2 → X2 is transitive, then Eq(f) = ∅.

Proof. Let if possible x ∈ Eq(f). We claim that {(fn(x), f2n(x)) : n =
0, 1, 2, . . .} cannot be dense in X2. For otherwise, we get a contradiction as
follows. Let U, V ⊂ X be nonempty open sets and let k ∈ N be such that
y = fk(x) ∈ U . Then {(fn(y), f2n(y)) : n = 0, 1, 2, . . .} must also be dense
in X2 since f × f2 commutes with f × f . If (fn(y), f2n(y)) ∈ U × V , then
y ∈ U ∩ f−n(U) and fn(y) ∈ U ∩ f−n(V ) so that n ∈ Nf (U,U) ∩Nf (U, V ).
This implies that f is weakly mixing, and therefore Eq(f) must be empty
since X is not a singleton, a contradiction.

Now, by the claim, we can choose ε > 0 such that
⋃∞
n=0[B(fn(x), ε) ×

B(f2n(x), ε)] is not dense in X2. For this ε, choose δ > 0 by using the fact



DIAGONAL POINTS HAVING DENSE ORBIT 133

that x ∈ Eq(f). Then the (fn× f2n)-image of B(x, δ)×B(x, δ) is contained
in B(fn(x), ε) × B(f2n(x), ε) for each n ∈ N, and therefore f × f2 cannot
be transitive.

This implies, for instance that irrational rotations of the circle are not
multi-transitive, and thus multi-transitivity is strictly stronger than total
transitivity. Also, we have:

Corollary 4. Let (X, f) be a dynamical system. If f×f2 : X2 → X2 is
transitive, then the maximal equicontinuous factor of (X, f) must be trivial.

Proof. Let (Y, g) be the maximal equicontinuous factor. Since (Y, g) is
a factor, g × g2 : Y 2 → Y 2 is transitive. If Y has an isolated point, then Y
must be a single periodic orbit by the transitivity of g and then Y must be
a singleton by the transitivity of g× g2. If Y has no isolated points, then Y
must be a singleton by the above theorem.

Corollary 5. If (X, f) is a minimal system, then the following are
equivalent:

(i) f × f2 : X2 → X2 is transitive.
(ii) f is multi-transitive.

(iii) f is weakly mixing.

Proof. To see (i) implies (iii), use the well-known fact that a minimal
system is weakly mixing iff its maximal equicontinuous factor is trivial (see
Theorem 4.31 of [11]). And (iii) implies (ii) by Corollary 2.

4. ∆-mixing for interval maps and subshifts of finite type. In-
terval maps and subshifts of finite type are two of the most studied classes
of dynamical systems. For systems in both these classes, total transitivity
is equivalent to mixing. Below we observe that mixing implies ∆-mixing for
interval maps and subshifts of finite type.

Theorem 3. Let (X, f) be a dynamical system. Suppose that for any
two nonempty open sets U, V ⊂ X, there exist a nonempty open set W ⊂ V
and n0 ∈ N such that W ⊂ fn(U) for every n ≥ n0. Then f is ∆-mixing.

Proof. We use induction on m, where the mth statement of induction
is that for nonempty open sets U0, U1, . . . , Um ⊂ X, and infinite A ⊂ N,
we have

⋂m
i=0 f

−in(Ui) 6= ∅ for some n ∈ A. The given hypothesis implies
that f is mixing and hence the induction statement is true for m = 1.
Now, assume the statement up to m and consider nonempty open sets
U0, U1, . . . , Um+1 ⊂ X, and infinite A ⊂ N. Choose a nonempty open set
W ⊂ U1 and n0 ∈ N such that W ⊂ fn(U0) for every n ≥ n0. By
induction assumption, there exists n ∈ A with n ≥ n0 so that W ′ :=
W ∩ f−n(U2) ∩ f−2n(U3) ∩ · · · ∩ f−mn(Um+1) 6= ∅. Since W ⊂ U1 and
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W ′ ⊂ fn(U0), we get
⋂m+1
i=0 f−in(Ui) 6= ∅. This completes the induction step

for m+ 1, and now by Proposition 1, f is ∆-mixing.

Corollary 6. Let f : [0, 1]→ [0, 1] be continuous. If f is mixing, then
f is ∆-mixing.

Proof. Mixing interval maps are known to satisfy the hypothesis of The-
orem 3. We give a quick sketch for this. If U, V ⊂ [0, 1] are open intervals,
choose δ ∈ (0, 1/2) such that W := (δ, 1−δ)∩V 6= ∅. By mixing, there exists
n0 ∈ N such that fn(U) intersects [0, δ) and (1−δ, 1] for every n ≥ n0. Since
fn(U) is connected, it follows that W ⊂ fn(U) for every n ≥ n0.

See Sections 3.4 and 3.7.3 of [5], or Chapter 2 and Section 6.3 of [16] for
the theory of subshifts of finite type. We skip the details.

Proposition 5. Let (X, f) be a mixing subshift of finite type. Then f
is ∆-mixing.

Proof. We only outline a proof. Let m ∈ N and U0, U1, . . . , Um ⊂ X be
nonempty open sets. It may be assumed that Ui’s are basic open sets (some-
times called ‘cylinders’) represented by words w(0), . . . , w(m) respectively,
and that all the words w(i)’s have equal length, say p. Since (X, f) is a mix-
ing subshift of finite type, there is an associated square matrix M such that
Mk > 0 for some k ∈ N. This implies that for any n ≥ k, there are words
u(1), . . . , u(m) of length n such that the word w(0)u(1)w(1)u(2)w(2) · · ·
· · ·u(m)w(m) appears in some x ∈ X. Consequently,

⋂m
i=0 f

−i(n+p)(Ui) 6= ∅
for all n ≥ k, and therefore f is ∆-mixing by Proposition 1.

5. Strong transitivity and ∆-transitivity. A dynamical system (X,f)
is said to be strongly transitive if for any nonempty open set U ⊂ X, we
have

⋃m
i=1 f

i(U) = X for some m ∈ N. It is not difficult to see that minimal
systems are strongly transitive, and it is also known [14] that positively
expansive, transitive open maps are strongly transitive.

Theorem 4. Let (X, f) be a dynamical system. If f is a weakly mixing
and strongly transitive homeomorphism, f is ∆-transitive.

Proof. We will borrow the elementary aspects of Glasner’s proof [10] to
go half-way and then will invoke Corollary 2. Let Pm denote the statement
that there exists a dense Gδ subset Y ⊂ X such that for every x ∈ Y ,
{(fn(x), f2n(x), . . . , fmn(x)) : n ∈ N} is dense in Xm. We prove Pm by
induction on m. First, P1 is clearly true. Now, assume that P1, . . . , Pm are
true. For a subset Z ⊂ X, let us write Z∗ = {(fn(x), . . . , f (m+1)n(x)) :
x ∈ Z, n ∈ N} ⊂ Xm+1. To prove Pm+1, in view of Proposition 1 it suffices
to show that U∗ = Xm+1 for every nonempty open set U ⊂ X. Now, since
strong transitivity implies syndetical transitivity, f is multi-transitive by
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Corollary 2, and in particular f × · · · × fm+1 is transitive. Hence, as U∗ is
(f × · · · × fm+1)-invariant, to establish Pm+1 it is enough to show that U∗
has nonempty interior in Xm+1 for every nonempty open set U ⊂ X.

Let φ = f × · · · × f , the (m+ 1)-fold product. By the strong transitivity
of f , X =

⋃k
j=0 f

j(U) for some k ∈ N and hence X∗ =
⋃k
j=0 φ

j(U∗) since φ
commutes with f ×· · ·×fm+1. Thus X∗ =

⋃k
j=0 φ

j(U∗), since φ is a contin-
uous map in the compact metric space Xm+1. To show that int[U∗] 6= ∅, it
suffices to show int[φj(U∗)] 6= ∅ for some j because φ is a homeomorphism
(here we use the fact that f is a homeomorphism). Now, it is sufficient to
show that int[X∗] 6= ∅. We proceed to do this.

Consider nonempty open sets V1, . . . , Vm+1 ⊂ X. By the induction as-
sumption, Pm is true and hence, by Proposition 1,

⋂m
i=0 f

−in(Vi+1) 6= ∅ for
some n ∈ N. Applying f−n, we have

⋂m+1
i=1 f−in(Vi) 6= ∅, as f is surjective. If

x ∈
⋂m+1
i=1 f−in(Vi), then (fn(x), . . . , f (m+1)n(x)) ∈ X∗ ∩ (V1 × · · · × Vm+1).

This shows that X∗ = Xm+1, completing the proof.

Combining Theorem 4 with Corollary 5, we arrive at a neat result for
the class of minimal homeomorphisms.

Corollary 7. Let (X, f) be a minimal homeomorphism. Then the fol-
lowing are equivalent:

(i) f × f2 : X2 → X2 is transitive.
(ii) f is multi-transitive.

(iii) f is weakly mixing.
(iv) f is ∆-transitive.

Remarks. The implication (iii)⇒(iv) is Glasner’s result [10]. We have
obtained it through a simpler proof without resorting to the structure theory
of minimal systems. In view of the above corollary, any weakly mixing,
minimal, non-mixing homeomorphism (for example, the Chacon map, cf.
p. 27 of [11]) serves as an example of a ∆-transitive system that is not ∆-
mixing. It is tempting to think that we may be able to show that any mixing,
strongly transitive system is ∆-mixing, but surprisingly this is not true. A
couterexample can be found in [6], where the authors produce (for a slightly
different purpose) a mixing, minimal substitution dynamical system (X, f)
having the property that there exist nonempty open sets U0, U1, U2 ⊂ X
and infinite A ⊂ N such that

⋂2
i=0 f

−in(Ui) = ∅ for every n ∈ A.

Question. Does Theorem 4 remain true for non-homeomorphic contin-
uous maps?

For a dynamical system (X, f) (not necessarily minimal), we summarize
below our knowledge of the implications and non-implications among various
stronger forms of transitivity discussed in this article. The implications are:
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∆-mixing
���:

HHj

Mixing

∆-transitivity

-

-

PPPPPq��
���1

Weak mixing

Multi-transitivity

XXXXz

���1
Total transitivity

There are no implications between mixing and ∆-transitivity, and for
each implication shown in the diagram, the reverse implication is false. Here,
each non-implication is based on one of the four examples: irrational rota-
tion of the unit circle, the example from [6] alluded to earlier, Chacon map
(cf. [11]) and the example constructed for Proposition 3(iv). The following
question is open.

Question. Are there any implications between weak mixing and multi-
transitivity (if the system is not syndetically transitive)?

6. Recurrence properties of f × f2 × · · · × fm. We conclude with a
few observations about the nature of recurrent points of f×f2×· · ·×fm. If
(x1, . . . , xm) ∈ Xm is a minimal point of f×f2×· · ·×fm (there is at least one
minimal point, by an application of Zorn’s lemma), then for any n1, . . . , nm
in N, (fn1(x1), . . . , fnm(xm)) is a minimal point for f × f2 × · · · × fm since
fn1×· · ·×fnm commutes with f×f2×· · ·×fm. Thus, if (X, f) is a minimal
dynamical system, then f × f2× · · · × fm has a dense set of minimal points
in Xm for every m ∈ N.

Proposition 6. Let (X, f) be a dynamical system and suppose f has an
invariant Borel probability measure of full support. Then for every m ∈ N,
there exists a dense Gδ set Y ⊂ X such that for every x ∈ Y , the diagonal
m-tuple (x, . . . , x) is a recurrent point for f × f2 × · · · × fm.

Proof. Applying the multiple recurrence theorem [9] to the commut-
ing maps f, f2, . . . , fm, we find that for any nonempty open set U ⊂ X,⋂m
i=0 f

−in(U) 6= ∅ for some n ∈ N, as U has positive measure. Now, let Y =⋂∞
k=1

⋃∞
n=1 Y (k, n), where Y (k, n) = {x ∈ X : d(x, f in(x)) < 1/k for i =

1, . . . ,m}. Then Y (k, n)’s are open, and
⋃∞
n=1 Y (k, n) is dense in X by the

first sentence of the proof. Thus Y is a dense Gδ, and every x ∈ Y clearly
has the required property.

In a dynamical system (X, f), a point x is said to be regularly recurrent if
for any neighborhood U of x, there exists l ∈ N such that lN ⊂ Nf (x, U). For
instance, an odometer is a minimal system in which all points are regularly
recurrent (see [7]). It is easy to observe that if x ∈ X is a regularly recurrent
point, then for every m ∈ N, the diagonal m-tuple (x, . . . , x) is a regularly
recurrent and hence minimal point for f × f2 × · · · × fm.

For points x, y in a dynamical system (X, f), we say (x, y) is a proximal
pair for f if lim infn→∞ d(fn(x), fn(y)) = 0, where d is the metric on X.
From the theory of enveloping semigoups (see p. 28 of [11]), we know that
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for every x ∈ X, there is a minimal point y in the orbit-closure of x such
that (x, y) is a proximal pair for f . Using this fact, we can say the following
about the possible minimality of the diagonal m-tuple (x, . . . , x).

Proposition 7. Let (X, f) be a dynamical system, let x ∈ X be a min-
imal point, and let Y be the closure of the f -orbit of x. If (x, y) is not a
proximal pair for f for any y ∈ Y \ {x}, then for every m ∈ N, the diagonal
m-tuple (x, . . . , x) is a minimal point of f × f2 × · · · × fm : Xm → Xm.

Proof. By the remark above, there is a minimal point (y1, . . . , ym) ∈ Y m

for f × f2 × · · · × fm such that ((x, . . . , x), (y1, . . . , ym)) is a proximal pair
for f × f2×· · ·× fm. It follows that for 1 ≤ i ≤ m, (x, yi) is a proximal pair
for f i and hence for f . Hence yi = x for 1 ≤ i ≤ m.

Corollary 8. Let (X, f) be a dynamical system, let x ∈ X be a min-
imal point, and let Y be the closure of the f -orbit of x. If x is a point of
equicontinuity for f |Y : Y → Y , then for every m ∈ N, the diagonal m-tuple
(x, . . . , x) is a minimal point of f × f2 × · · · × fm : Xm → Xm.

Proof. A minimal system containing at least one point of equicontinuity
must be equicontinuous (see [2]), and thus (Y, f |Y ) is equicontinuous. It is
also known (see Theorem 3.4 of [3]) that two distinct points cannot form a
proximal pair in a surjective equicontinuous system.

In particular, Corollary 8 is applicable for minimal equicontinuous sys-
tems such as irrational rotations. Two related questions have eluded our
attempt.

Questions. (i) In Proposition 7, can we drop the assumption that (x, y)
is not a proximal pair for any y ∈ Y \ {x}? (ii) Can f × f2 × · · · × fm :
Xm → Xm be minimal if m ≥ 2 and X has at least two elements?
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