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MONOMORPHISMS OF COALGEBRAS

BY

A. L. AGORE (Bucureşti)

Abstract. We prove new necessary and sufficient conditions for a morphism of coal-
gebras to be a monomorphism, different from the ones already available in the literature.
More precisely, ϕ : C → D is a monomorphism of coalgebras if and only if the first
cohomology groups of the coalgebras C and D coincide if and only if

P
i∈I ε(ai)bi =P

i∈I aiε(bi) for all
P

i∈I ai ⊗ bi ∈ C �D C. In particular, necessary and sufficient condi-
tions for a Hopf algebra map to be a monomorphism are given.

Introduction. In any concrete category C the natural problem of
whether epimorphisms are surjective maps arises, as well as the dual problem
of whether monomorphisms are injective maps. This type of problems have
already been studied before in several well known categories: for example in
[9] it is shown that the property of epimorphisms of being surjective holds in
the categories of von Neumann algebras, C∗-algebras, groups, finite groups,
Lie algebras, compact groups, while it fails to be true in the categories of
finite-dimensional Lie algebras, semisimple finite-dimensional Lie algebras,
locally compact groups and unitary rings (see [7], [10]). The more recent pa-
per [4] deals with the same problem in the context of Hopf algebras: several
examples of non-injective monomorphisms and non-surjective epimorphisms
are given. It turns out that the above problem is also intimately related to
Kaplansky’s first conjecture in the sense that every non-surjective epimor-
phism of Hopf algebras provides a counterexample to Kaplansky’s problem.

In [8] the problems mentioned above are studied in the category of coal-
gebras. The problem of whether epimorphisms of coalgebras are surjective
maps is easily settled in the positive using the existence of a cofree coalge-
bra on every vector space. The dual problem, on the other hand, is more
interesting: an example of a non-injective monomorphism is given and sev-
eral characterizations of monomorphisms are proved in [8, Theorem 3.5]. In
this note we complete the above characterization with two new equivalences.
Our interest in this problem comes also from the fact that a morphism of
Hopf algebras is a monomorphism if and only if it is a monomorphism when
viewed as a morphism of coalgebras ([4, Proposition 2.5]).
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A detailed discussion regarding the theory of coalgebras can be found in
[5] and [3].

1. Preliminaries. Throughout this paper, k is an arbitrary field. Unless
specified otherwise, all vector spaces, homomorphisms, algebras, coalgebras,
tensor products, comodules and so on are over k. For the standard categories
we use the following notations: kM (k-vector spaces), k-Coalg (coalgebras
over k), MC (right C-comodules), CMD ((C,D)-bicomodules).

For a coalgebra C, we use Sweedler’sΣ-notation, that is,∆(c)=c(1)⊗ c(2),
(I ⊗∆)∆(c) = c(1) ⊗ c(2) ⊗ c(3), etc. We also use the Sweedler notation for
left and right C-comodules: ρr

M (m) = m[0]⊗m[1] for any m ∈M if (M,ρr
M )

is a right C-comodule, and ρl
N (n) = n〈−1〉 ⊗ n〈0〉 for any n ∈ N if (N, ρl

N )
is a left C-comodule. For further details regarding the theory of comodules
we refer to [1].

If M is a right C-comodule with structure map ρr
M and N a left C-

comodule with structure map ρl
N , the cotensor product M �C N is the

kernel of the k-linear map

ρr
M ⊗ I − I ⊗ ρl

N : M ⊗N →M ⊗ C ⊗N.
Given comodule maps f : M →M ′ and g : N → N ′, the k-linear map f⊗g :
M ⊗N →M ′ ⊗N ′ induces a k-linear map f �C g : M �C N →M ′ �C N

′.
A left C-comodule M induces a functor −�C M :MC → kM.

If ϕ : C → D is a coalgebra map then every right (left) C-comodule
(M,ρr

M ) can be made into a right (left) D-comodule with structure map
τ r
M : M →M⊗D given by τ r

M (m) = m[0]⊗ϕ(m[1]). This association defines
a functor ϕ∗C,D :MC →MD usually called the corestriction functor.

If M ∈ CMD we obtain a functor −�C M :MC →MD. In particular,
C becomes a left D-comodule via ϕ and we obtain a functor − �D C :
MD → MC called the coinduction functor which is a right adjoint to the
corestriction functor ϕ∗C,D (see [1, 22.12]). Recall that (F,G) is a pair of
adjoint functors, with F : C → D and G : D → C if and only if there exist
two natural transformations η : 1C → GF and ε : FG → 1D, called the
unit and the counit of the adjunction, such that G(εD) ◦ ηG(D) = IG(D) and
εF (C) ◦ F (ηC) = IF (C) for all C ∈ C and D ∈ D.

Recall from [2] the construction of the trivial coextension of a coalgebra C
by a (C,C)-bicomodule N . We define a comultiplication and a counit on the
space C oN := C ⊕N by

∆(c, n) = (c(1), 0)⊗ (c(2), 0) + (n〈−1〉, 0)⊗ (0, n〈0〉) + (0, n[0])⊗ (n[1], 0),
ε(c, n) = ε(c)

for all (c, n) ∈ C ⊕ N . In this way C o N becomes a coalgebra, known as
the trivial coextension of C and N .
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Define the map πC : C oN → C by πC(c, n) = c for all (c, n) ∈ C ⊕N .
For every (c, n) ∈ C oN we have

εC ◦ πC(c, n) = εC(c) = ε(c, n)

and

(πC ⊗ πC)(∆(c, n)) = (πC ⊗ πC)
(
(c(1), 0)⊗ (c(2), 0) + (n〈−1〉, 0)⊗ (0, n〈0〉)

+ (0, n[0])⊗ (n[1], 0)
)

= c(1) ⊗ c(2) + n〈−1〉 ⊗ 0 + 0⊗ n[0]

= c(1) ⊗ c(2) = ∆C ◦ πC(c, n).

Thus πC is a coalgebra map.
We also require some notions related to homological coalgebra. For basic

definitions and properties we refer to [6]. We just recall here, for further
reference, the description of the zeroth cohomology group of a coalgebra C
with coefficients in a (C,C)-bicomodule N :

H0(N,C) = {γ ∈ N∗ | (I ⊗ γ)ρl
N = (γ ⊗ I)ρr

N}
= {γ ∈ N∗ | n〈−1〉γ(n〈0〉) = γ(n[0])n[1], ∀n ∈ N}.

2. Characterizations of monomorphisms of coalgebras. As men-
tioned before, a characterization of monomorphisms in k-Coalg is given in [8,
Theorem 3.5] and the equivalences (1)–(5) in our Theorem 2.1 are proved
there. In what follows we complete the description of monomorphisms in
k-Coalg with two more characterizations: the first one indicates a cohomo-
logical description of monomorphisms while the other is an elementary one
involving the cotensor product C �D C.

Theorem 2.1. Let ϕ : C → D be a coalgebra map. The following state-
ments are equivalent:

(1) ϕ is a monomorphism in the category k-Coalg.
(2) The functor ϕ∗C,D is full.
(3) C �D Ker(ϕ) = 0.
(4) The map ηC = ∆C : C → C �D C is surjective (hence bijective).
(5) The unit of the adjunction (ϕ∗C,D,−�D C),

η : 1MC → (−�D C) ◦ ϕ∗C,D,

is a natural isomorphism.
(6) H0(N,C) = H0(N,D) for any (C,C)-bicomodule N .
(7)

∑
i∈I ε(a

i)bi =
∑

i∈I a
iε(bi) for all

∑
i∈I a

i ⊗ bi ∈ C �D C.

Proof. (1)⇒(6). Suppose ϕ is a monomorphism of coalgebras. It is easy
to see that H0(N,C) ⊂ H0(N,D). Now let γ ∈ H0(N,D). Define the map
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β : C oN → C by

β(c, n) = c− n〈−1〉γ(n〈0〉) + γ(n[0])n[1]

for all (c, n) ∈ C oN . We prove that β is a coalgebra map. For all (c, n) ∈
C oN we have

εC ◦ β(c, n) = εC(c− n〈−1〉γ(n〈0〉) + γ(n[0])n[1])

= εC(c)− εC(n〈−1〉)γ(n〈0〉) + γ(n[0])εC(n[1])

= εC(c)− γ(εC(n〈−1〉)n〈0〉) + γ(n[0]εC(n[1])

= εC(c)− γ(n) + γ(n)
= ε(c, n)

and

(β⊗β) ◦∆(c, n) = (β ⊗ β)
(
(c(1), 0)⊗ (c(2), 0) + (m〈−1〉, 0)⊗ (0,m〈0〉)

+ (0,m[0])⊗ (m[1], 0)
)

= β((c(1), 0))⊗ β((c(2), 0)) + β((m〈−1〉, 0))⊗ β((0,m〈0〉))

+ β((0,m[0]))⊗ β((m[1], 0))

= c(1) ⊗ c(2)+n〈−1〉 ⊗ (−n〈0〉〈−1〉γ(n〈0〉〈0〉)+γ(n〈0〉[0])n〈0〉[1])

+ (−n[0]〈−1〉γ(n[0]〈0〉) + γ(n[0][0])n[0][1])⊗ n[1]

= c(1)⊗ c(2)−n〈−1〉⊗n〈0〉〈−1〉γ(n〈0〉〈0〉)+γ(n[0][0])n[0][1]⊗n[1]

= c(1)⊗ c(2)−n〈−1〉(1)⊗n〈0〉(2)γ(n〈0〉)+γ(n[0])n[1](1)⊗n[1](2)

= c(1) ⊗ c(2) −∆C(n〈−1〉γ(n〈0〉)) +∆C(γ(n[0])n[1])

= ∆C(c− n〈−1〉γ(n〈0〉) + γ(n[0])n[1])
= ∆C ◦ β(c, n).

Hence, β is a coalgebra map. Furthermore, it is easy to see that ϕ◦πC = ϕ◦β
and πC = β because ϕ is a monomorphism. Thus n〈−1〉γ(n〈0〉) = γ(n[0])n[1],
which implies that γ ∈ H0(N,C).

(6)⇒(7). C �D C is a (C,C)-bicomodule with left and right structures
given by

ψl
C�DC

(∑
i∈I

ai ⊗ bi
)

=
∑
i∈I

ai
(1) ⊗ (ai

(2) ⊗ b
i),

ψr
C�DC

(∑
i∈I

ai ⊗ bi
)

=
∑
i∈I

(ai ⊗ bi(1))⊗ b
i
(2)

for all
∑

i∈I a
i⊗ bi∈C�D C. We define the k-linear map T :C�D C→ k by

T
(∑

i∈I

ai ⊗ bi
)

=
∑
i∈I

ε(ai)ε(bi)
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for all
∑

i∈I a
i ⊗ bi ∈ C �D C. Now let

∑
i∈I a

i ⊗ bi ∈ C �D C, that is,∑
i∈I

ai
(1) ⊗ ϕ(ai

(2))⊗ b
i =

∑
i∈I

ai ⊗ ϕ(bi(1))⊗ b
i
(2).

By applying ε ⊗ I ⊗ ε in the above identity we obtain
∑

i∈I ϕ(ai)ε(bi) =∑
i∈I ε(a

i)ϕ(bi). Thus T ∈ H0(C �D C,D) = H0(C �D C,C) and it follows
that

∑
i∈I a

iε(bi) =
∑

i∈I ε(a
i)bi.

(7)⇒(1). Let M ∈MC . Define νM : M �D C →M by

νM

(∑
i∈I

mi ⊗ ci
)

=
∑
i∈I

miε(ci).

For any
∑

i∈I m
i ⊗ ci ∈M �D C we have

(νM ◦ I) ◦ ρr
M�DC

(∑
i∈I

mi ⊗ ci
)

=
∑
i∈I

(νM ◦ I)(mi ⊗ ci(1) ⊗ c
i
(2)) =

∑
i∈I

νM (mi ⊗ ci(1))⊗ c
i
(2)

=
∑
i∈I

miε(ci(1))⊗ c
i
(2) =

∑
i∈I

mi
[0]ε(m

i
[1])⊗ c

i

=
∑
i∈I

mi
[0] ⊗ ε(m

i
[1])c

i =
∑
i∈I

mi
[0] ⊗m

i
[1]ε(c

i)

=
∑
i∈I

ρr
M (miε(ci)) = (ρr

M ◦ νM )
(∑

i∈I

mi ⊗ ci
)
,

where we use the fact that
∑

i∈I m
i
[1] ⊗ c

i ∈ C �D C for all
∑

i∈I m
i ⊗ ci ∈

M �D C. Thus νM is a morphism of right C-comodules. Moreover, in the
computations above we also prove (ρr

M ◦ νM )(
∑

i∈I m
i ⊗ ci) =

∑
i∈I m

i ⊗ ci
for all

∑
i∈I m

i ⊗ ci ∈M �D C. It follows that for all M ∈MC there exists
a morphism of right C-comodules such that ρr

M ◦ νM = I. Since ηM = ρr
M ,

it follows that ϕ∗C,D is a full functor. Now, in the light of [8, Theorem 3.5]
we conclude that ϕ is a monomorphism in k-Coalg.

In view of a remark of A. Chirvăsitu ([4]) that a morphism of Hopf
algebras is a monomorphism if and only if it is a monomorphism when
viewed as a morphism of coalgebras, we obtain the following useful fact:

Corollary 2.2. Let ϕ : K → L be a Hopf algebra map. The following
are equivalent:

(1) ϕ : K → L is a Hopf algebra monomorphism.
(2) The map ηK = ∆K : K → K �L K is surjective (hence bijective).
(3) H0(N,K) = H0(N,L) for any (K,K)-bicomodule N .
(4)

∑
i∈I ε(x

i)yi =
∑

i∈I x
iε(yi) for all

∑
i∈I x

i ⊗ yi ∈ K �L K.
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Example 2.3. Let π :M2(k) →M2(k)/I be the canonical projection,
where k is a field and I is the coideal of the comatrix coalgebraM2(k) gener-
ated by the elements c21. It is proved in [8], using a result on epimorphisms
of finite-dimensional algebras [8, Theorem 3.2], that π is a non-injective
monomorphism of coalgebras. However, this can be easily shown by a simple
computation using (7) of Theorem 2.1.

Remark 2.4. The equivalence of the statements (1) and (4) in The-
orem 2.1 can be alternatively proved by applying the categorical duality
(k-Coalg)op ∼= PCk, C 7→ C∗, between the category k-Coalg of k-coalgebras
and the category PCk of pseudocompact k-algebras described in [11, Sec-
tion 3]. One should apply the isomorphism (C � C)∗ ∼= C∗ ⊗̂ C∗ and the
results of Knight ([7]), where ⊗̂ is the complete tensor product (see the
monograph [5]).
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