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A GENERALIZATION OF A THEOREM OF SCHINZEL

BY

GEORGES RHIN (Metz)

Abstract. We give lower bounds for the Mahler measure of totally positive algebraic
integers. These bounds depend on the degree and the discriminant. Our results improve
earlier ones due to A. Schinzel. The proof uses an explicit auxiliary function in two vari-
ables.

1. Introduction. Let P = a0X
d + · · ·+ ad be a polynomial in C[X] of

degree d ≥ 1. The Mahler measure of P is defined by

(1) M(P ) = |a0|
d∏

i=1

max(1, |αi|)

where α1, . . . , αd are the roots of P in C. The Mahler measure of an algebraic
number α is the Mahler measure of its minimal polynomial in Z[X]. In this
paper we prove a lower bound for the Mahler measure of some algebraic
numbers. Kronecker’s theorem implies that if M(α) = 1 then α is a root
of unity or 0. Lehmer’s question: “does there exist a constant c > 1 such
that, if M(α) > 1, then M(α) > c?” is open. Using the Cantor and Straus
method [1], P. Voutier has proved [9] that if M(α) > 1 and d = deg(α) ≥ 3
then

(2) M(α) ≥ 1 +
1
4

(
log log d

log d

)3

.

Let Ω be the set of nonzero algebraic integers α of degree d such that
deg(α) = deg(αp) for all primes p. For ε > 0, let d? = max(δ(α), δ0(ε)) where
δ(α) = d/|disc(α)|1/d and δ0(ε) > 0 depends only on ε. E. M. Matveev [5]
proved that if α ∈ Ω, the inequality (2) is still valid if the constant 1/4 is
replaced by 2− ε and d is replaced by d?.
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In 1973, A. Schinzel [7] proved that if α is a nonzero totally real algebraic
integer, different from ±1, of degree d then

(3) M(α) ≥
(

1 +
√

5
2

)d/2
,

and if α is totally positive (i.e. all the conjugates of α are positive) then

(4) M(α) ≥
(

1 +
√

5
2

)d
.

We remark that for α = (3 +
√

5)/2, which is a Pisot number of degree 2,
the previous inequality becomes an equality. C. J. Smyth [8] has studied
the set of M(α)1/deg(α) for α totally real and for α totally positive. These
results have been extended by V. Flammang [3].

Here we will restrict ourselves to totally positive algebraic integers and
give lower bounds for their Mahler measure in terms of their discriminant.
Using Hadamard’s inequality it is easy to prove that, in this case, if d =
deg(α) ≥ 2 then

(5) M(α) ≥ |disc(α)|1/2(d−1).

T. Zäımi [10] has proved an inequality which implies

(6) M(α) ≥ (|disc(α)|1/2
√

5(d−1))
(

1 +
√

5
2

)d/2
.

We will prove the following:

Theorem 1. Let α be a totally positive algebraic integer of degree d ≥ 2.
Then

(7) M(α) ≥
(
δ +
√
δ2 + 4
2

)d/2

where δ = |disc(α)|1/d(d−1).

Remark. Inequality (7) becomes an equality when α is a totally positive
Pisot number of degree 2 which is a unit.

The method of proof uses an auxiliary function in two variables. For a
short proof of Schinzel’s result by means of an auxiliary function in one
variable see G. Höhn and N. P. Skoruppa [4]. For an inequality using also
this method and giving a lower bound involving the norm of α see V. Flam-
mang [2]. These results have been improved by L. Panaitopol [6]. Theorem 1
is a consequence of the more general Theorem 2:

Theorem 2. Let c be a real number 0 < c < 1 and P be a monic
polynomial of degree d ≥ 2 with real coefficients whose roots are distinct
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positive real numbers. Put δ = |disc(P )|1/d(d−1). Then

(8) M(P )2/d ≥
(
δ

1 + c

2c

)c(
|P (0)|2/d 1 + c

1− c

)(1−c)/2
.

Theorem 2 is proved in Section 2. In Section 3 we deduce Theorem 1
from Theorem 2 and prove that inequality (7) is better than (5) and (6) and
that it is better than (4) when δ >

√
5.

I am indebted to Chris Smyth for interesting discussions about the results
of this paper.

2. Proof of Theorem 2. For x > 0, y > 0 and x 6= y we consider the
auxiliary function

g(x, y) = log+ x+ log+ y − c log |x− y| − 1− c
2

log xy

where log+ x = log(max(1, x)). We need the following lemma:

Lemma. The function g satisfies the three properties:

(i) g(y, x) = g(x, y).
(ii) g(1/x, 1/y) = g(x, y).

(iii) min
x>0, y>0, x6=y

g(x, y) = c log
1 + c

2c
+

1− c
2

log
1 + c

1− c .

The definition of g implies (i), and (ii) is obtained by a straightforward
computation. To prove (iii), it is sufficient to compute the minimum of g(x, y)
in the two regions

R1 := {(x, y) : 0 < y < x ≤ 1}, R2 := {(x, y) : 0 < y < 1 < x}.
In the open region R1 \ {x = 1} the conditions ∂g

∂x (x, y) = ∂g
∂y (x, y) = 0 give

the equations
c

x− y +
1− c
2x

= 0,
c

y − x +
1− c

2y
= 0.

We multiply these equations by 2x(x − y) and 2y(y − x) respectively to
obtain

(1 + c)x− (1− c)y = 0, (1− c)x− (1 + c)y = 0.

This implies that x = y. The minimum of g in R1 is then taken on the line
x = 1, because g(x, y) tends to∞ when y or |x−y| tends to 0. The function

g(1, y) = −c log(1− y)− 1− c
2

log y

attains its minimum

m = c log
1 + c

2c
+

1− c
2

log
1 + c

1− c
at y = (1− c)/(1 + c).
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In the region R2 the conditions ∂g
∂x(x, y) = ∂g

∂y (x, y) = 0 give the equa-
tions

1
x
− c

x− y −
1− c
2x

= 0,
c

y − x +
1− c

2y
= 0.

This gives

(1 + c)(x− y)− 2cx = 0, 2cy + (1− c)(y − x) = 0,

which is equivalent to

(1− c)x− (1 + c)y = 0.

So, in R2, the minimum of the function g is taken on the interval
{(

t,
1− c
1 + c

t

)
: 1 ≤ t ≤ 1 + c

1− c

}

because g tends to∞ when y or |x−y| tends to 0 and when x tends to infinity.
A direct computation shows that for all t with 1 ≤ t ≤ (1 + c)/(1− c),

g

(
t,

1− c
1 + c

t

)
= m.

Now we can prove Theorem 2. Let (αi)1≤i≤d be the roots of P . Then
∑

1≤i,j≤d
i6=j

g(αi, αj) ≥ d(d− 1)m

and

2(d− 1) logM(P )− c log |disc(P )| − (d− 1)(1− c) log |P (0)| ≥ d(d− 1)m.

We divide both sides by d(d− 1) and take the exponential; then

M(P )2/d ≥ |disc(P )|c/d(d−1)|P (0)|(1−c)/d
(

1 + c

2c

)(
1 + c

1− c

)(1−c)/2

and

M(P )2/d ≥
(

1 + c

2c
δ

)c(1 + c

1− c |P (0)|2/d
)1−c/2

.

3. Proof of Theorem 1. We suppose now that P is the minimal poly-
nomial of a totally positive algebraic number of degree d ≥ 2. Then we may
apply Theorem 2 to P . Put

% = |P (0)|2/d, c =
δ√

δ2 + 4%
, ω =

δ +
√
δ2 + 4%
2

.

Then

% ≥ 1, 0 < c < 1,
1 + c

2c
=
ω

δ
,

1 + c

1− c =
ω2

%
.
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Inequality (8) gives

M(P )2/d ≥ ωc(ω2)(1−c)/2 = ω ≥ δ +
√
δ2 + 4
2

.

Now we prove that Theorem 1 implies (5), (6) and (4) when δ ≥
√

5.
Since (δ +

√
δ2 + 4)/2 > δ, Theorem 1 implies (5). To prove that Theorem

1 implies (6) it is sufficient to prove that

δ +
√
δ2 + 4
2

> δ1/
√

5 1 +
√

5
2

.

But one may obtain inequality (6) (but not a strict inequality) directly from
Theorem 2 with c = 1/

√
5 and |P (0)| ≥ 1. The term (δ +

√
δ2 + 4)/2 is an

increasing function of δ ≥ 1 which is equal to ((1 +
√

5)/2)2 when δ =
√

5.
So inequality (7) is better than (4) when δ >

√
5.
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