VOL. 101

2004

NO. 2

ON MULTIPLE SOLUTIONS OF THE NEUMANN PROBLEM INVOLVING THE CRITICAL SOBOLEV EXPONENT

ΒY

JAN CHABROWSKI (Brisbane)

Abstract. We consider the Neumann problem involving the critical Sobolev exponent and a nonhomogeneous boundary condition. We establish the existence of two solutions. We use the method of sub- and supersolutions, a local minimization and the mountain-pass principle.

1. Introduction. Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with a smooth boundary $\partial \Omega$. We consider the Neumann problem

(1.1_{$$\lambda$$})
$$\begin{cases} -\Delta u + \lambda u = Q(x)u^{2^*-1} & \text{in } \Omega, \\ \partial u/\partial \nu = \phi(x) & \text{on } \partial \Omega, \quad u > 0 & \text{on } \Omega \end{cases}$$

where $\lambda > 0$ is a parameter and $2^* = 2N/(N-2)$, $N \ge 3$, is the critical Sobolev exponent. We assume that Q(x) > 0 on $\overline{\Omega}$, $\phi(x) \ge 0$ and $\phi(x) \ne 0$ on $\partial \Omega$ and moreover $Q \in C^{\alpha}(\overline{\Omega})$ and $\phi \in C^{\alpha}(\partial \Omega)$.

In the case where $Q \equiv 1$ and $\phi \equiv 0$, problem (1.1_{λ}) has an extensive literature. We refer to papers [2], [3], [8] and [9], where further references can be found. In this case solutions of (1.1_{λ}) have been obtained as minimizers of the constrained variational problem

$$m_{\lambda} = \inf_{u \in H^{1}(\Omega) - \{0\}} \frac{\int_{\Omega} (|\nabla u|^{2} + \lambda u^{2}) \, dx}{(\int_{\Omega} |u|^{2^{*}} \, dx)^{2/2^{*}}}.$$

A suitable multiple of a minimizer u for m_{λ} is a solution of (1.1_{λ}) and is called the *least energy solution* of this problem. The main ingredient in the proof of the existence of the least energy solution is the inequality $m_{\lambda} < S/2^{2/N}$, which is valid for every λ , provided Ω is smooth and bounded. Here S is the best Sobolev constant. This inequality allows us to show that every minimizing sequence for m_{λ} is relatively compact in $H^1(\Omega)$. These results have been extended to the case $Q \not\equiv \text{const}$ and $\phi \equiv 0$ (see [8] and [9]). In this situation the existence of least energy solutions depends on the relationship between the global maximum $Q_{\mathrm{M}} = \max_{x \in \overline{\Omega}} Q(x)$ and $Q_{\mathrm{m}} = \max_{x \in \partial \Omega} Q(x)$.

²⁰⁰⁰ Mathematics Subject Classification: 35B33, 35J65, 35Q55.

 $Key \ words \ and \ phrases:$ Neumann problem, critical Sobolev exponent, multiple solutions.

The authors of these papers studied two cases: (i) $Q_{\rm M} \leq 2^{2/(N-2)}Q_{\rm m}$ and (ii) $Q_{\rm M} > 2^{2/(N-2)}Q_{\rm m}$. In the first case problem (1.1_{λ}) has the least energy solution for every $\lambda > 0$, provided $Q_{\rm m}$ is achieved at a point $x_{\rm o} \in \partial \Omega$ with a positive mean curvature. In case (ii), the least energy solutions exist only for $\lambda \in (0, \Lambda], \Lambda > 0$. For $\lambda > \Lambda$ problem (1.1_{λ}) does not have the least energy solutions.

The main purpose of this paper is to establish an existence result for problem (1.1_{λ}) which involves a nonzero boundary data ϕ . We show that the presence of $\phi \neq 0$ generates the existence of at least two solutions. Results of this nature are known in the cases where a nonhomogeneous term appears in the nonlinear equation ([7], [6] and [13]).

Under an additional assumption on Q we establish the existence of a constant $\lambda_* > 0$ such that for $\lambda > \lambda_*$ problem (1.1_{λ}) has at least two solutions, at least one solution for $\lambda = \lambda_*$ and no solution for $\lambda < \lambda_*$. In the case where $\lambda > \lambda_*$ the existence of one solution will be established through the method of sub- and supersolutions. A second solution will be obtained via the mountain-pass principle. These existence results are presented in Sections 2, 3 and 4. In these sections we do not impose any restriction on $\|\phi\|_{L^2(\partial\Omega)}$. In Section 5 we show that if $\|\phi\|_{L^2(\partial\Omega)}$ is of order λ (as small as λ), then problem (1.1_{λ}) has at least two solutions. Section 6 is devoted to the case $\lambda = 0$.

In this paper we use standard notations. In a given Banach space X we denote strong convergence by " \rightarrow " and weak convergence by " \rightarrow ". We recall that a C^1 -functional $\Phi : X \to \mathbb{R}$ on a Banach space X satisfies the *Palais–Smale condition at level c* ((PS)_c condition for short) if each sequence $\{x_m\}$ such that

 $(*) \ \Phi(x_m) \to c \quad \text{and} \quad (**) \ \Phi'(x_m) \to 0 \text{ in } X^*$

is relatively compact in X. Finally, any sequence satisfying (*) and (**) is called a *Palais–Smale sequence at level c* (a (PS)_c sequence for short).

The norms in the Lebesgue spaces $L^q(\Omega)$ will be denoted by $\|\cdot\|_q$.

2. Sub- and supersolutions. To construct a supersolution to problem (1.1_{λ}) we need the solution of the problem

(2.1_{$$\lambda$$})
$$\begin{cases} -\Delta v + \lambda v = 0 & \text{in } \Omega, \\ \partial v / \partial \nu = \phi(x) & \text{on } \partial \Omega \end{cases}$$

This problem has a unique positive solution $v_{\lambda} \in C^{1,\alpha}(\overline{\Omega})$. Let v_1 be a solution of (2.1_{λ}) with $\lambda = 1$. We set

$$\lambda_{\circ} = \max_{x \in \Omega} Q(x) v_1(x)^{2^* - 2} + 1.$$

We then have

$$\begin{aligned} -\Delta v_1 + \lambda_o v_1 - Q(x) v_1^{2^* - 1} \\ &= -\Delta v_1 + (\lambda_o - Q(x) v_1^{2^* - 2}) v_1 \\ &= -\Delta v_1 + (\max_{x \in \overline{\Omega}} Q(x) v_1(x)^{2^* - 2} + 1 - Q(x) v_1(x)^{2^* - 2}) v_1 \\ &\geq -\Delta v_1 + v_1 = 0. \end{aligned}$$

Hence $\overline{u} = v_1$ is a supersolution for (1.1_{λ_o}) . Since $\underline{u} = 0$ is a subsolution for (1.1_{λ_o}) , there exists a minimal solution u_{λ_o} of (1.1_{λ_o}) satisfying

$$\underline{u} < u_{\lambda_{\circ}} < \overline{u} \quad \text{on } \Omega.$$

Let

 $S = \{\lambda; (1.1_{\lambda}) \text{ has a positive solution}\}$ If $\lambda > \lambda_{\circ}$, then $u_{\lambda_{\circ}}$ is a supersolution to $(1.1_{\lambda_{\circ}})$ Indeed

If
$$\lambda > \lambda_{\circ}$$
, then $u_{\lambda_{\circ}}$ is a supersolution to (1.1_{λ}) . Indeed, we have

$$\begin{cases}
-\Delta u_{\lambda_{\circ}} + \lambda u_{\lambda_{\circ}} > -\Delta u_{\lambda_{\circ}} + \lambda_{\circ} u_{\lambda_{\circ}} = Q(x)u_{\lambda_{\circ}}^{2^{*}-1} & \text{in } \Omega, \\
\partial u_{\lambda_{\circ}}/\partial \nu = \phi(x) & \text{on } \partial\Omega.
\end{cases}$$

As before, since $\underline{u} = 0$ is a subsolution, there exists a minimal solution u_{λ} satisfying

$$\underline{u} < u_{\lambda} < \overline{u} = u_{\lambda_{\circ}}.$$

This argument shows that $(\lambda_{\circ}, \infty) \subset \mathcal{S}$. We set

(2.1)
$$\lambda_* = \inf_{\lambda \in \mathcal{S}} \lambda.$$

Repeating the above argument we show that for every $\lambda > \lambda_*$ problem (1.1_{λ}) has a solution. If $u_{\lambda} > 0$ is a solution of (1.1_{λ}) , then

$$\int_{\Omega} \lambda u_{\lambda} \, dx - \int_{\partial \Omega} \phi(x) \, dS_x = \int_{\Omega} Q(x) u_{\lambda}^{2^* - 1} \, dx.$$

This yields $\lambda > 0$ and consequently $\lambda_* \ge 0$.

Let $\lambda > \lambda_*$ and let u_{λ} be a positive solution of (1.1_{λ}) . We now consider the variational problem

(2.2)
$$\mu_{\lambda} = \inf \left\{ \int_{\Omega} (|\nabla v|^2 + \lambda v^2) \, dx; \, v \in H^1(\Omega), \\ (2^* - 1) \int_{\Omega} Q(x) u_{\lambda}^{2^* - 2} v^2 \, dx = 1 \right\}.$$

PROPOSITION 2.1. If $\lambda > \lambda_*$, then the constant μ_{λ} defined by (2.2) satisfies $\mu_{\lambda} > 1$. Moreover, problem (2.2) has a minimizer V_{λ} which is the first eigenfunction of the problem

(2.3)
$$\begin{cases} -\Delta v + \lambda v = \mu_{\lambda}(2^* - 1)Q(x)u_{\lambda}^{2^* - 2}v & \text{in } \Omega, \\ \frac{\partial v}{\partial \nu} = 0 & \text{on } \partial\Omega. \end{cases}$$

Proof. Since the functional $v \mapsto \int_{\Omega} Q(x) u_{\lambda}^{2^*-2} v^2 dx$ is completely continuous on $H^1(\Omega)$, the existence of a minimizer easily follows. We show that $\mu_{\lambda} > 1$. Let $\overline{\lambda} > \underline{\lambda}$ and let $u_{\overline{\lambda}}$ and $u_{\underline{\lambda}}$ be the corresponding minimal solutions of $(1.1_{\overline{\lambda}})$ and $(1.1_{\underline{\lambda}})$, respectively. It follows from the construction of $\{u_{\lambda}\}$ that $u_{\lambda} > u_{\overline{\lambda}} > 0$. We then have

$$(2.4) \qquad -\Delta(u_{\underline{\lambda}} - u_{\overline{\lambda}}) + \overline{\lambda}(u_{\underline{\lambda}} - u_{\overline{\lambda}}) > -\Delta(u_{\underline{\lambda}} - u_{\overline{\lambda}}) + \underline{\lambda}u_{\underline{\lambda}} - \overline{\lambda}u_{\overline{\lambda}} = Q(x)(u_{\underline{\lambda}}^{2^*-1} - u_{\overline{\lambda}}^{2^*-1}) = Q(x)[(u_{\overline{\lambda}} + u_{\underline{\lambda}} - u_{\overline{\lambda}})^{2^*-1} - u_{\overline{\lambda}}^{2^*-1}] = (2^* - 1)Q(x)u_{\overline{\lambda}}^{2^*-2}(u_{\underline{\lambda}} - u_{\overline{\lambda}}) + \frac{1}{2}(2^* - 1)(2^* - 2)Q(x)[u_{\overline{\lambda}} + \theta(u_{\underline{\lambda}} - u_{\overline{\lambda}})]^{2^*-3}(u_{\underline{\lambda}} - u_{\overline{\lambda}})^2 > (2^* - 1)Q(x)u_{\overline{\lambda}}^{2^*-2}(u_{\underline{\lambda}} - u_{\overline{\lambda}})$$

for some $0 < \theta < 1$. Let $V_{\overline{\lambda}}$ be the first eigenfunction of problem (2.3) with $\lambda = \overline{\lambda}$. Since

$$\frac{\partial}{\partial \nu} (u_{\underline{\lambda}} - u_{\overline{\lambda}}) = 0 \quad \text{on } \partial \Omega.$$

testing (2.4) with $V_{\overline{\lambda}}$ and integrating by parts gives

$$\int_{\Omega} (u_{\underline{\lambda}} - u_{\overline{\lambda}}) (-\Delta V_{\overline{\lambda}} + \overline{\lambda} V_{\overline{\lambda}}) \, dx > (2^* - 1) \int_{\Omega} Q(x) u_{\overline{\lambda}}^{2^* - 2} (u_{\underline{\lambda}} - u_{\overline{\lambda}}) V_{\overline{\lambda}} \, dx.$$

Hence

$$\mu_{\lambda}(2^*-1)\int_{\Omega}Q(x)(u_{\underline{\lambda}}-u_{\overline{\lambda}})u_{\overline{\lambda}}V_{\overline{\lambda}}\,dx > (2^*-1)\int_{\Omega}Q(x)u_{\overline{\lambda}}^{2^*-2}(u_{\underline{\lambda}}-u_{\overline{\lambda}})V_{\overline{\lambda}}\,dx$$

and the assertion follows. \blacksquare

Let $Q_* = \min_{x \in \overline{\Omega}} Q(x)$.

LEMMA 2.2. Let u_{λ} be a solution of problem (1.1_{λ}) for some $\lambda > 0$. Then

$$\lambda^{(N+2)/4} \ge Q_*^{(N+2)/4} \frac{\int_{\Omega} Q(x) u_{\lambda}^{2^*-1} \, dx + \frac{N+2}{4} \int_{\partial \Omega} \phi(x) \, dS_x}{\int_{\Omega} Q(x) \, dx}.$$

Proof. Integrating (1.1_{λ}) we get

(2.5)
$$\lambda \int_{\Omega} u_{\lambda} dx = \int_{\Omega} Q(x) u_{\lambda}^{2^*-1} dx + \int_{\partial \Omega} \phi(x) dS_x.$$

It then follows from the Young inequality that

$$\begin{split} \lambda & \int_{\Omega} u_{\lambda} \, dx \leq \lambda Q_{*}^{-1} \int_{\Omega} Q(x) u_{\lambda} \, dx \\ & \leq \frac{2^{*} - 2}{2^{*} - 1} \, \lambda^{\frac{2^{*} - 1}{2^{*} - 2}} Q_{*}^{-\frac{2^{*} - 1}{2^{*} - 2}} \int_{\Omega} Q(x) \, dx + \frac{1}{2^{*} - 1} \int_{\Omega} Q(x) u_{\lambda}^{2^{*} - 1} \, dx. \end{split}$$

This combined with (2.5) gives

$$\frac{2^* - 2}{2^* - 1} \int_{\Omega} Q(x) u_{\lambda}^{2^* - 1} dx + \int_{\partial \Omega} \phi(x) dS_x \le \frac{2^* - 2}{2^* - 1} \lambda^{\frac{2^* - 1}{2^* - 2}} Q_*^{-\frac{2^* - 1}{2^* - 2}} \int_{\Omega} Q(x) dx$$

and the result easily follows. \blacksquare

Corollary 2.3. If

$$\lambda^{(N+2)/4} \le Q_*^{(N+2)/4} \frac{\int_{\partial\Omega} \phi(x) \, dS_x}{\int_\Omega Q(x) \, dx}$$

then problem (1.1_{λ}) has no solution. Consequently, $\lambda_* > 0$, where λ_* is the constant defined by (2.1).

In Proposition 2.4 below, we derive an estimate for $||u_{\lambda}||_{H^1}$ in terms of the parameter λ and norms of v_1 .

PROPOSITION 2.4. Solutions of (1.1_{λ}) for $0 < \lambda \leq 1$ satisfy the estimate $\|u_{\lambda}\|_{H^{1}}^{2} \leq L(\|v_{1}\|_{H^{1}}^{2} + \|v_{1}\|_{2^{*}}^{2^{*}} + (1-\lambda)\|v_{1}\|_{2}^{2} + (1-\lambda)^{N/2})$

and for $\lambda > 1$ we have

$$\|u_\lambda\|_{H^1}^2 \le L_1$$

for some constants L > 0 and $L_1 > 0$ independent of λ .

Proof. Let u_{λ} be a solution of (1.1_{λ}) and v_1 be a solution of (2.1_1) . We set $v = u_{\lambda} - v_1$. Then v satisfies

(2.6)
$$\begin{cases} -\Delta v + v = Q(x)(v+v_1)^{2^*-1} + (1-\lambda)(v+v_1) & \text{in } \Omega, \\ \frac{\partial v}{\partial \nu} = 0 & \text{on } \partial \Omega. \end{cases}$$

First we consider the case $0 < \lambda \leq 1$. By the maximum principle v > 0 on Ω . Testing (2.6) with v we get

$$\int_{\Omega} (|\nabla v|^2 + v^2) \, dx = \int_{\Omega} Q(x)(v+v_1)^{2^*-1} v \, dx + (1-\lambda) \int_{\Omega} (v+v_1) v \, dx.$$

Since $0 < \lambda \leq 1$, it follows from Proposition 2.1 that

$$(2^* - 1) \int_{\Omega} Q(x) u_{\lambda}^{2^* - 2} v^2 dx$$

$$\leq \int_{\Omega} Q(x) (v + v_1)^{2^* - 1} v \, dx + (1 - \lambda) \int_{\Omega} (v + v_1) v \, dx$$

$$= \int_{\Omega} Q(x) (v + v_1)^{2^* - 2} v^2 \, dx + \int_{\Omega} Q(x) (v + v_1)^{2^* - 2} v v_1 \, dx$$

$$+ (1 - \lambda) \int_{\Omega} (v + v_1) v \, dx.$$

Thus

$$(2.7) \quad (2^* - 2) \int_{\Omega} Q(x)(v + v_1)^{2^* - 2} v^2 dx$$

$$\leq \int_{\Omega} Q(x)(v + v_1)^{2^* - 2} vv_1 dx + (1 - \lambda) \int_{\Omega} (v + v_1) v dx$$

$$\leq \int_{\Omega} Q(x)(v + v_1)^{2^* - 1} v_1 dx + (1 - \lambda) \int_{\Omega} (v + v_1) v dx$$

$$\leq 2^{2^* - 2} \int_{\Omega} Q(x) v^{2^* - 1} v_1 dx + 2^{2^* - 2} \int_{\Omega} Q(x) v_1^{2^*} dx$$

$$+ (1 - \lambda) \int_{\Omega} v^2 dx + (1 - \lambda) \int_{\Omega} v_1 v dx$$

$$\leq 2^{2^* - 2} \int_{\Omega} Q(x) v^{2^* - 1} v_1 dx + 2^{2^* - 2} \int_{\Omega} Q(x) v_1^{2^*} dx$$

$$+ 2(1 - \lambda) \int_{\Omega} v^2 dx + (1 - \lambda) \int_{\Omega} v_1^2 dx.$$

Using the Young inequality we get for $\varepsilon > 0$,

(2.8)
$$\int_{\Omega} Q(x)v^{2^*-1}v_1 \, dx \le \varepsilon \int_{\Omega} Q(x)v^{2^*} \, dx + C(\varepsilon) \int_{\Omega} Q(x)v_1^{2^*} \, dx$$

(2.9)
$$2(1-\lambda)\int_{\Omega} v^2 dx \le \varepsilon \int_{\Omega} v^{2^*} dx + C_1(\varepsilon)(1-\lambda)^{2^*/(2^*-2)} |\Omega|,$$

for some constants $C(\varepsilon) > 0$ and $C_1(\varepsilon) > 0$. Letting $Q_M = \max_{x \in \overline{\Omega}} Q(x)$ we deduce from (2.7)–(2.9) that

$$((2^* - 2)Q_* - 2^{2^* - 2}Q_{\mathcal{M}}\varepsilon - \varepsilon) \int_{\Omega} v^{2^*} dx \le (2^{2^* - 2} + C(\varepsilon)) \int_{\Omega} Q(x)v_1^{2^*} dx + C_1(\varepsilon)(1 - \lambda)^{2^*/(2^* - 2)}|\Omega| + (1 - \lambda) \int_{\Omega} v_1^2 dx.$$

Choosing $\varepsilon > 0$ small enough we derive from this the estimate

(2.10)
$$\int_{\Omega} v^{2^*} dx \le C \Big[\int_{\Omega} v_1^{2^*} dx + (1-\lambda)^{2^*/(2^*-2)} + (1-\lambda) \int_{\Omega} v_1^2 dx \Big].$$

We now use (2.10) to estimate $||v||_{H^1}^2$ in terms of λ and v_1 . We have

$$\begin{split} \int_{\Omega} (|\nabla v|^2 + v^2) \, dx &= \int_{\Omega} Q(x) (v + v_1)^{2^* - 1} v \, dx + (1 - \lambda) \int_{\Omega} v^2 \, dx \\ &+ (1 - \lambda) \int_{\Omega} v_1 v \, dx \end{split}$$

$$\leq 2^{2^*-2} \int_{\Omega} Q(x) v^{2^*} dx + 2^{2^*-2} \int_{\Omega} Q(x) v_1^{2^*-1} v dx + 2(1-\lambda) \int_{\Omega} v^2 dx + (1-\lambda) \int_{\Omega} v_1^2 dx \leq 2^{2^*-3} (2^*+1) \int_{\Omega} Q(x) v^{2^*} dx + 2^{2^*-3} (2^*-1) \int_{\Omega} Q(x) v_1^{2^*} dx + 2(1-\lambda) \int_{\Omega} v^2 dx + (1-\lambda) \int_{\Omega} v_1^2 dx.$$

The last estimate combined with (2.9) and (2.10) gives

$$\int_{\Omega} (|\nabla v|^2 + v^2) \, dx \le C_1 \Big[\int_{\Omega} v_1^{2^*} \, dx + (1 - \lambda) \int_{\Omega} v_1^2 \, dx + (1 - \lambda)^{2^*/(2^* - 2)} \Big],$$

where $C_1 > 0$ is of the same nature as C in (2.10). Since $||u_{\lambda}||_{H^1} \leq ||v||_{H^1} + ||v_1||_{H^1}$ the result in the case $0 < \lambda \leq 1$ readily follows. If $\lambda > 1$, then $u_{\lambda} \leq u_1$ on Ω , where u_1 is a minimal solution of problem (1.1₁). Thus

$$\begin{split} \int_{\Omega} (|\nabla u_{\lambda}|^{2} + u_{\lambda}^{2}) \, dx &\leq \int_{\Omega} (|\nabla u_{\lambda}|^{2} + \lambda u_{\lambda}^{2}) \, dx = \int_{\Omega} Q(x) u_{\lambda}^{2^{*}} \, dx + \int_{\Omega} \phi(x) u_{\lambda} \, dS_{x} \\ &\leq Q_{\mathrm{M}} \int_{\Omega} u_{1}^{2^{*}} \, dx + \int_{\Omega} \phi(x) u_{1} \, dS_{x}, \end{split}$$

and the result follows. \blacksquare

PROPOSITION 2.5. Problem (1.1_{λ^*}) has a solution.

Proof. Let $\lambda_n \to \lambda^*$ and $\lambda_n > \lambda^*$ for each n. By Proposition 2.4 the sequence $\{u_{\lambda_n}\}$ of the corresponding solutions is bounded in $H^1(\Omega)$. It is routine to show that up to a subsequence $u_{\lambda_n} \rightharpoonup u$ in $H^1(\Omega)$ and u is a solution of problem (1.1_{λ^*}) .

3. Second solution. Let u_{λ} be a minimal solution of (1.1_{λ}) . To find the second solution we consider the problem

(3.1_{$$\lambda$$})
$$\begin{cases} -\Delta v + \lambda v = Q(x)[(v+u_{\lambda})^{2^*-1} - u_{\lambda}^{2^*-1}] & \text{in } \Omega, \\ \partial v/\partial \nu = 0 & \text{on } \partial \Omega, \quad v > 0 & \text{on } \Omega, \end{cases}$$

where $\lambda > \lambda_*$. If v is a solution of (3.1_{λ}) , then $U_{\lambda} = u_{\lambda} + v$ is a solution of (1.1_{λ}) . A solution of (3.1_{λ}) will be found as a critical point of the functional

$$J_{\lambda}(v) = \frac{1}{2} \int_{\Omega} (|\nabla v|^2 + \lambda v^2) \, dx - \frac{1}{2^*} \int_{\Omega} Q(x) (u_{\lambda} + v^+)^{2^*} \, dx + \frac{1}{2^*} \int_{\Omega} Q(x) u_{\lambda}^{2^*} \, dx + \int_{\Omega} Q(x) u_{\lambda}^{2^*-1} v^+ \, dx.$$

PROPOSITION 3.1. Let $\lambda > \lambda_*$. There exist constants $\alpha > 0$ and $\varrho > 0$ such that $J_{\lambda}(v) \ge \alpha$ for $v \in H^1(\Omega)$ with $||v||_{H^1} = \varrho$. *Proof.* We write J_{λ} in the form

$$(3.1) J_{\lambda}(v) = \frac{1}{2} \int_{\Omega} (|\nabla v|^2 + \lambda v^2) \, dx - \frac{2^* - 1}{2} \int_{\Omega} Q(x) u_{\lambda}^{2^* - 2} (v^+)^2 \, dx \\ - \int_{\Omega} \int_{0}^{v^+} Q(x) [(u_{\lambda} + s)^{2^* - 1} - u_{\lambda}^{2^* - 1} - (2^* - 1)u_{\lambda}^{2^* - 2} s] \, ds \, dx.$$

Since for every $\varepsilon > 0$ there exists $C_{\varepsilon} > 0$ such that

$$(u_{\lambda}+s)^{2^{*}-1} - u_{\lambda}^{2^{*}-1} - (2^{*}-1)u_{\lambda}^{2^{*}-2}s \le \varepsilon u_{\lambda}^{2^{*}-2}s + C_{\varepsilon}s^{2^{*}-1},$$

we get

$$J_{\lambda}(v) \geq \frac{1}{2} \int_{\Omega} [|\nabla v|^{2} + \lambda v^{2} - (2^{*} - 1)Q(x)u_{\lambda}^{2^{*} - 2}(v^{+})^{2}] dx$$
$$- \int_{\Omega} Q(x) \left[\frac{\varepsilon}{2} u_{\lambda}^{2^{*} - 2}(v^{+})^{2} + C_{\varepsilon} \frac{(v^{+})^{2^{*}}}{2^{*}} \right] dx.$$

Hence by Proposition 2.1 we have

$$J_{\lambda}(v) \ge \frac{1}{2} \left(1 - \frac{2^* - 1 - \varepsilon}{\mu_{\lambda}(2^* - 1)} \right) \int_{\Omega} (|\nabla v|^2 + \lambda v^2) \, dx - \frac{C_{\varepsilon}}{2^*} \int_{\Omega} Q(x) (v^+)^{2^*} \, dx.$$

We choose $0<\varepsilon<2^*-1.$ An application of the Sobolev inequality completes the proof. \blacksquare

LEMMA 3.2. Let $\{u_m\} \subset H^1(\Omega)$ be a Palais-Smale sequence for J_{λ} . Then $\{u_m\}$ is bounded in $H^1(\Omega)$.

Proof. We compute

$$(3.2) J_{\lambda}(u_m) - \frac{1}{2} \langle J'_{\lambda}(u_m), u_m \rangle = -\frac{1}{2^*} \int_{\Omega} Q(x)(u_{\lambda} + u_m^+)^{2^*} dx + \frac{1}{2^*} \int_{\Omega} Q(x)u_{\lambda}^{2^*} dx + \int_{\Omega} Q(x)u_{\lambda}^{2^{*-1}}u_m^+ dx + \frac{1}{2} \int_{\Omega} Q(x)(u_{\lambda} + u_m^+)^{2^{*-1}}u_m dx - \frac{1}{2} \int_{\Omega} Q(x)u_{\lambda}^{2^{*-1}}u_m dx = \frac{1}{N} \int_{\Omega} Q(x)(u_{\lambda} + u_m^+)^{2^*} dx - \frac{1}{2} \int_{\Omega} Q(x)(u_{\lambda} + u_m^+)^{2^{*-1}}u_m^- dx - \frac{1}{2} \int_{\Omega} Q(x)(u_{\lambda} + u_m^+)^{2^{*-1}}u_{\lambda} dx + \frac{1}{2^*} \int_{\Omega} Q(x)u_{\lambda}^{2^*} dx + \int_{\Omega} Q(x)u_{\lambda}^{2^{*-1}}u_m^+ dx - \frac{1}{2} \int_{\Omega} Q(x)u_{\lambda}^{2^{*-1}}u_m dx$$

$$\begin{split} &= \frac{1}{N} \int_{\Omega} Q(x) (u_{\lambda} + u_{m}^{+})^{2^{*}} dx - \frac{1}{2} \int_{\Omega} Q(x) (u_{\lambda} + u_{m}^{+})^{2^{*}-1} u_{\lambda} dx \\ &\quad - \frac{1}{2} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m}^{-} dx + \frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}} dx + \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m}^{+} dx \\ &\quad - \frac{1}{2} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m} dx \\ &= \frac{1}{N} \int_{\Omega} Q(x) (u_{\lambda} + u_{m}^{+})^{2^{*}} dx - \frac{1}{2} \int_{\Omega} Q(x) (u_{\lambda} + u_{m}^{+})^{2^{*}-1} u_{\lambda} dx \\ &\quad + \frac{1}{2} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m}^{+} dx + \frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}} dx. \end{split}$$

By the Young inequality given $\delta > 0$ we choose $C(\delta) > 0$ so that

(3.3)
$$\int_{\Omega} Q(x)(u_{\lambda}+u_{m}^{+})^{2^{*}-1}u_{\lambda} dx$$
$$\leq \delta \int_{\Omega} Q(x)(u_{\lambda}+u_{m}^{+})^{2^{*}} dx + C(\delta) \int_{\Omega} Q(x)u_{\lambda}^{2^{*}} dx.$$

Taking $\delta > 0$ small enough and using the fact that $\{u_m\}$ is a $(PS)_c$ sequence we derive from (3.1) and (3.3) that

(3.4)
$$\int_{\Omega} Q(x)(u_{\lambda} + u_m)^{2^*} dx \le C_1 + C_2 \|u_m\|_{H^1}$$

for every $m \ge 1$. On the other hand, we have

$$\begin{split} J_{\lambda}(u_{m}) &- \frac{1}{2^{*}} \langle J_{\lambda}'(u_{m}), u_{m} \rangle \\ &= \frac{1}{N} \int_{\Omega} (|\nabla u_{m}|^{2} + \lambda u_{m}^{2}) \, dx + \frac{1}{2^{*}} \int_{\Omega} Q(x) (u_{\lambda} + u_{m}^{+})^{2^{*}-1} (u_{m} - u_{m}^{+} - u_{\lambda}) \, dx \\ &+ \frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}} \, dx + \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m}^{+} \, dx - \frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m} \, dx \\ &= \frac{1}{N} \int_{\Omega} (|\nabla u_{m}|^{2} + \lambda u_{m}^{2}) \, dx - \frac{1}{2^{*}} \int_{\Omega} Q(x) (u_{\lambda} + u_{m}^{+})^{2^{*}-1} u_{\lambda} \, dx \\ &- \frac{1}{2^{*}} \int_{\Omega} Q(x) (u_{\lambda} + u_{m}^{+})^{2^{*}-1} u_{m}^{-} \, dx + \frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}} \, dx \\ &+ \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m}^{+} \, dx - \frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m} \, dx \end{split}$$

$$= \frac{1}{N} \int_{\Omega} (|\nabla u_m|^2 + \lambda u_m^2) \, dx - \frac{1}{2^*} \int_{\Omega} Q(x) (u_\lambda + u_m^+)^{2^* - 1} u_\lambda \, dx \\ + \frac{1}{2^*} \int_{\Omega} Q(x) u_\lambda^{2^*} \, dx + \left(1 - \frac{1}{2^*}\right) \int_{\Omega} Q(x) u_\lambda^{2^* - 1} u_m^+ \, dx \, dx \\ \ge \frac{1}{N} \int_{\Omega} (|\nabla u_m|^2 + \lambda u_m^2) \, dx - \frac{1}{2^*} \int_{\Omega} Q(x) (u_\lambda + u_m^+)^{2^* - 1} u_\lambda \, dx.$$

From this we deduce, using the Young inequality, that

(3.5)
$$||u_m||_{H^1}^2 \le C_3 \int_{\Omega} Q(x)(u_\lambda + u_m^+)^{2^*} dx + C_4 ||u_m||_{H^1} + C_5.$$

The assertion follows from (3.3) and (3.5).

To proceed further we set

$$Q_{\rm m} = \max_{x \in \partial \Omega} Q(x).$$

We recall that Q_{M} is defined by $Q_{\mathrm{M}} = \max_{x \in \overline{\Omega}} Q(x)$. By S we denote the best Sobolev constant, that is,

$$S = \inf_{u \in D^{1,2}(\mathbb{R}^N) - \{0\}} \frac{\int_{\mathbb{R}^N} |\nabla u|^2 \, dx}{(\int_{\mathbb{R}^N} |u|^{2^*} \, dx)^{2/2^*}},$$

where $D^{1,2}(\mathbb{R}^N)$ is the Sobolev space defined by $D^{1,2}(\mathbb{R}^N) = \{u; \nabla u \in L^2(\mathbb{R}^N), u \in L^{2^*}(\mathbb{R}^N)\}$. The best Sobolev constant is achieved by

$$U(x) = \frac{c_N}{(N(N-2) + |x|^2)^{(N-2)/2}},$$

where $c_N > 0$ is a constant depending on N. The function U, called an *instanton*, satisfies the equation

$$-\Delta U = U^{2^* - 1} \quad \text{in } \mathbb{R}^N.$$

We have $\int_{\mathbb{R}^N} |\nabla U|^2 dx = \int_{\mathbb{R}^N} U^{2^*} dx = S^{N/2}$. For future use we introduce the notation

$$U_{\varepsilon,y} = \varepsilon^{-(N-2)/2} U\left(\frac{x-y}{\varepsilon}\right), \quad y \in \mathbb{R}^N, \ \varepsilon > 0.$$

We set

$$S_{\infty} = \min\left(\frac{S^{N/2}}{2NQ_{\rm m}^{(N-2)/2}}, \frac{S^{N/2}}{NQ_{\rm M}^{(N-2)/2}}\right).$$

PROPOSITION 3.3. Let $\lambda > \lambda_*$. Suppose that

$$(3.6) J_{\lambda}(u_m) \to c < S_{\infty},$$

(3.7)
$$J'_{\lambda}(u_m) \to 0 \quad in \ H^{-1}(\Omega).$$

Then up to a subsequence $u_m \rightharpoonup v \neq 0$ and v is a solution of problem (3.1_{λ}) .

Proof. By Lemma 3.2, $\{u_m\}$ is bounded in $H^1(\Omega)$. Hence we may assume that $u_m \to v$ in $H^1(\Omega)$, $u_m \to u$ in $L^q(\Omega)$ for each $2 \leq q < 2^*$ and $u_m(x) \to v(x)$ a.e. on Ω . Testing $J'_{\lambda}(u_m) \to 0$ with u_m^- we get

$$\int_{\Omega} (|\nabla u_m^-|^2 + \lambda(u_m^-)^2) \, dx = o(1).$$

Therefore we may assume that $u_m \geq 0$ on Ω . We now show that $v \neq 0$. Arguing by contradiction assume that $v \equiv 0$. By the P. L. Lions [12] concentration-compactness principle there exist sequences of points $\{x_j\} \subset \mathbb{R}^N$ and numbers $\{\nu_j\}, \{\mu_j\} \subset (0, \infty)$ such that

$$|u_m|^{2^*} \stackrel{*}{\rightharpoonup} \sum_j \nu_j \delta_{x_j}$$
 and $|\nabla u_m|^2 \stackrel{*}{\rightharpoonup} \sum_j \mu_j \delta_{x_j}$

in \mathcal{M} , where \mathcal{M} is a space of measures. Moreover,

$$S\nu_j^{2/2^*} \le \mu_j$$
 if $x_j \in \Omega$ and $S\frac{\nu_j^{2/2^*}}{2^{2/N}} \le \mu_j$ if $x_j \in \partial \Omega$.

Testing (3.7) with $u_m \phi_{\delta}$, where ϕ_{δ} , $\delta > 0$, is a family of functions concentrating at x_j as $\delta \to 0$, we deduce that $\mu_j \leq Q(x_j)\nu_j$ for every j. If $\nu_j > 0$ and $x_j \in \Omega$, then $\nu_j \geq S^{N/2}/Q(x_j)^{N/2}$, and if $x_j \in \partial \Omega$, then $\nu_j \geq S^{N/2}/2Q(x_j)^{N/2}$. By the Brézis–Lieb lemma we have

$$\begin{aligned} J_{\lambda}(u_{m}) &- \frac{1}{2} \langle J_{\lambda}'(u_{m}), u_{m} \rangle \\ &= \frac{1}{N} \int_{\Omega} Q(x) (u_{\lambda} + u_{m})^{2^{*}} dx - \frac{1}{2} \int_{\Omega} Q(x) (u_{\lambda} + u_{m})^{2^{*}-1} u_{\lambda} dx \\ &+ \frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}} dx + \frac{1}{2} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m} dx + o(1) \\ &= \frac{1}{N} \sum_{x_{j} \in \partial \Omega} Q(x_{j}) \nu_{j} + \frac{1}{N} \sum_{x_{j} \in \Omega} Q(x_{j}) \nu_{j} + o(1) \\ &\geq \frac{1}{2N} \sum_{x_{j} \in \partial \Omega} \frac{S^{N/2}}{Q(x_{j})^{(N-2)/2}} + \frac{1}{N} \sum_{x_{j} \in \Omega} \frac{S^{N/2}}{Q(x_{j})^{(N-2)/2}} + o(1). \end{aligned}$$

If $Q_{\rm M} > 2^{2/(N-2)}Q_{\rm m}$, then letting $m \to \infty$ we derive that $c \ge S^{N/2}/NQ_{\rm M}^{N-2/2}$, and if $Q_{\rm M} \le 2^{2/(N-2)}Q_{\rm m}$, then $c \ge S^{N/2}/2NQ_{\rm m}^{(N-2)/2}$. In both cases we obtain a contradiction.

4. Main result. In order to apply the mountain-pass theorem we set

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} J_{\lambda}(\gamma(t)),$$

where

$$\Gamma = \{ \gamma \in C([0,1], H^1(\Omega)); \gamma(0), \gamma(1) = t_\circ \}$$

and the constant t_{\circ} is chosen so large that $J_{\lambda}(tt_{\circ}) \leq 0$ for $t \geq 1$. It follows from Proposition 3.1 that c > 0.

We need the following relations for $U_{\varepsilon,y}$ with $y \in \partial \Omega$ (see [1] or [14]):

$$(4.1) \qquad \frac{\int_{\Omega} (|\nabla U_{\varepsilon,y}|^2 + \lambda U_{\varepsilon,y}^2) \, dx}{(\int_{\Omega} U_{\varepsilon,y}^{2*} \, dx)^{2/2*}} \\ \leq \begin{cases} S/2^{2/N} - A_N H(y)\varepsilon \log \frac{1}{\varepsilon} + a_N \lambda \varepsilon + O(\varepsilon) + o(\lambda \varepsilon) & \text{if } N = 3, \\ S/2^{2/N} - A_N H(y)\varepsilon + a_N \lambda \varepsilon^2 \log \frac{1}{\varepsilon} + O(\varepsilon^2 \log \frac{1}{\varepsilon}) \\ + o(\lambda \varepsilon^2 \log \frac{1}{\varepsilon}) & \text{if } N = 4, \\ S/2^{2/N} - A_N H(y)\varepsilon + a_N \lambda \varepsilon^2 + O(\varepsilon^2) + o(\lambda \varepsilon^2) & \text{if } N \ge 5, \end{cases}$$

where H(y) denotes the mean curvature of $\partial \Omega$ at y.

It is known that

(4.2)
$$c \le c^* = \inf_{u \in H^1(\Omega), u \ne 0} \sup_{t \ge 0} J_{\lambda}(tu).$$

THEOREM 4.1. Suppose that $Q_{\rm M} \geq 2^{2/(N-2)}Q_{\rm m}$ and that at some point $y \in \partial \Omega$ with H(y) > 0 we have

(4.3)
$$|Q(x) - Q(y)| = o(|x - y|)$$
 for x close to y.

Then problem (3.1_{λ}) has a solution for every $\lambda > 0$.

Proof. It follows from (4.2) that

$$c \le c^* \le \frac{1}{N} \frac{\left(\int_{\Omega} (|\nabla U_{\varepsilon,y}|^2 + \lambda U_{\varepsilon,y}^2) \, dx\right)^{N/2}}{\left(\int_{\Omega} U_{\varepsilon,y}^{2^*} \, dx\right)^{(N-2)/2}}.$$

Thus (4.1) and (4.3) yield

$$c < \frac{S^{N/2}}{2NQ_{\rm m}^{(N-2)/2}}$$

for $\varepsilon > 0$ sufficiently small. By Proposition 3.3 problem (3.1_{λ}) has a solution.

COROLLARY 4.2. Under the assumptions of Theorem 4.1 there exists $\lambda^* > 0$ such that problem (1.1_{λ}) has at least two solutions for $\lambda > \lambda^*$.

5. Existence of solutions for small boundary data. Lemma 2.2 (see also Corollary 2.3) provides the estimate of λ^* in terms of $\int_{\partial\Omega} \phi \, dS_x$. For $\lambda < \lambda^*$ problem (1.1_{λ}) does not have a solution for a given ϕ . In this section we establish the existence of a solution of problem (1.1_{λ}) for every $\lambda > 0$ if $\int_{\partial\Omega} \phi \, dS_x$ is small. Obviously, the size of $\int_{\partial\Omega} \phi \, dS_x$ will depend on λ .

Let

$$I_{\lambda}(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + \lambda u^2) \, dx - \frac{1}{2^*} \int_{\Omega} Q(x) |u|^{2^*} \, dx - \int_{\partial \Omega} u\phi(x) \, dS_x$$

for $u \in H^1(\Omega)$ be a variational functional corresponding to problem (1.1_{λ}) . In what follows we shall use the Sobolev inequality

$$\left(\int_{\Omega} |u|^{2^*} dx\right)^{2/2^*} \le C_s \int_{\Omega} (|\nabla u|^2 + u^2) dx$$

for $u \in H^1(\Omega)$, where $C_s > 0$ is a constant. Letting $C_s(\lambda) = C_s$ for $\lambda \ge 1$ and $C_s(\lambda) = C_s/\lambda$ for $0 < \lambda < 1$, we can write this inequality in the form

$$\left(\int_{\Omega} |u|^{2^*} dx\right)^{2/2^*} \le C_s(\lambda) \int_{\Omega} (|\nabla u|^2 + \lambda u^2) dx.$$

PROPOSITION 5.1. Given $0 < \lambda < \infty$ there exists a constant $\varrho_1 = \varrho_1(\lambda)$ such that for a boundary data ϕ satisfying $\|\phi\|_{L^2(\partial\Omega)} \leq \varrho_1$ problem (1.1_{λ}) has a solution. (If $\lambda \geq 1$ the choice of ϱ_1 can be made independent of λ .)

Proof. A solution will be found as a local minimizer of I_{λ} . We commence by estimating I_{λ} from below:

$$\begin{split} I_{\lambda}(u) &\geq \frac{1}{2} \int_{\Omega} (|\nabla u|^{2} + \lambda u^{2}) \, dx - \frac{C_{s}(\lambda)^{2^{*}/2}}{2^{*}} \, Q_{\mathrm{M}} \Big(\int_{\Omega} (|\nabla u|^{2} + \lambda u^{2}) \, dx \Big)^{2^{*}/2} \\ &- K \Big(\int_{\partial \Omega} \phi^{2} \, dS_{x} \Big)^{1/2} \Big(\int_{\Omega} (|\nabla u|^{2} + u^{2}) \, dx \Big)^{1/2}, \end{split}$$

where K > 0 is the best constant for the embedding of $H^1(\Omega)$ into $L^2(\partial \Omega)$, that is,

$$K = \inf \left\{ \int_{\Omega} (|\nabla u|^2 + u^2) \, dx; \, u \in H^1(\Omega), \, \int_{\partial \Omega} u^2 \, dS_x = 1 \right\}.$$

Letting $||u||_{\lambda}^2 = \int_{\Omega} (|\nabla u|^2 + \lambda u^2) \, dx$ we can write this estimate as

$$I_{\lambda}(u) \ge \|u\|_{\lambda} \bigg(\|u\|_{\lambda} - \frac{C_{s}(\lambda)^{2^{*}/2}}{2^{*}} Q_{\mathrm{M}} \|u\|_{\lambda}^{2^{*}-1} - K(\lambda) \|\phi\|_{L^{2}(\partial\Omega)} \bigg),$$

where $K(\lambda) = K$ for $\lambda \ge 1$ and $K(\lambda) = K/\lambda$ for $0 < \lambda < 1$. First we choose $\rho > 0$ such that

$$\varrho - \frac{C_s(\lambda)^{2^*/2}}{2^*} Q_{\mathrm{M}} \varrho^{2^*-1} \ge \frac{3}{4} \, \varrho.$$

If $\|\phi\|_{L^2(\partial\Omega)} \le \varrho/K(\lambda) = \varrho_1$, then (5.1) $I_{\lambda}(u) \ge \varrho^2/4$ for $\|u\|_{\lambda} = \varrho$. Testing $I_{\lambda}(u)$ with a constant function u = t we get

$$I_{\lambda}(t) = \frac{|\Omega|}{2} t^2 - \frac{t^{2^*}}{2^*} \int_{\Omega} Q(x) \, dx - t \int_{\partial \Omega} \phi(x) \, dS_x < 0$$

for sufficiently small t. Therefore

(5.2)
$$c_1 = \inf_{\|u\|_{\lambda}=\varrho} I_{\lambda}(u) < 0.$$

It follows from (5.1), (5.2) and the Ekeland variational principle that there exists a minimizing sequence $\{u_m\}$ satisfying

$$I_{\lambda}(u_m) \to c_1 \text{ and } I'_{\lambda}(u_m) \to 0 \text{ in } H^{-1}(\Omega).$$

It is clear that $\{u_m\}$ is bounded in $H^1(\Omega)$. Thus we may assume that $u_m \rightharpoonup u$ in $H^1(\Omega)$, $u_m \rightarrow u$ in $L^p(\Omega)$ for $2 \leq p < 2^*$ and $u_m \rightarrow a$ a.e. on Ω . Moreover, u is a solution of (1.1_{λ}) . We now observe that $||u||_{\lambda} \leq \rho$ and $I_{\lambda}(u) \geq c_1$. Since $\langle I'_{\lambda}(u), u \rangle = 0$, we see that

$$\left(\frac{1}{2} - \frac{1}{2^*}\right) \int_{\Omega} (|\nabla u|^2 + \lambda u^2) \, dx - \left(1 - \frac{1}{2^*}\right) \int_{\Omega} \phi u \, dS_x \ge c_1.$$

The weak lower semicontinuity of $\int_{\Omega} |\nabla u|^2 dx$ yields

$$\left(\frac{1}{2} - \frac{1}{2^*}\right) \int_{\Omega} (|\nabla u|^2 + \lambda u^2) \, dx - \left(1 - \frac{1}{2^*}\right) \int_{\Omega} \phi u \, dS_x \le c_1$$

and consequently $I_{\lambda}(u) = c_1$.

To prove the existence of a second solution we use the method of Section 3. In what follows we assume that the boundary data ϕ satisfies

(5.3)
$$\|\phi\|_{L^2(\partial\Omega)} < \varrho_1 = \frac{\varrho}{4K(\lambda)}$$

This condition on ϕ guarantees the existence of a local minimizer v_{λ} of the functional I_{λ} . As in Section 3 we consider the problem

(5.3_{$$\lambda$$})
$$\begin{cases} -\Delta v + \lambda v = Q(x)[(v + v_{\lambda})^{2^* - 1} - v_{\lambda}^{2^* - 1}] & \text{in } \Omega, \\ \frac{\partial v}{\partial \nu} = 0. \end{cases}$$

If problem (5.3_{λ}) has a solution w, then $w+v_{\lambda}$ is a solution of problem (1.1_{λ}) . Let $\widetilde{I}_{\lambda}(v)$ be a variational functional corresponding to problem (5.3_{λ}) . We now consider the variational problem

(5.4)
$$\widetilde{\mu}_{\lambda} = \inf \left\{ \int_{\Omega} (|\nabla v|^2 + \lambda v^2) \, dx; \, v \in H^1(\Omega), \\ (2^* - 2) \int_{\Omega} Q(x) v_{\lambda}^{2^* - 1} v^2 \, dx = 1 \right\}.$$

PROPOSITION 5.2. Problem (5.4) has a minimizer w_{λ} which is the first eigenfunction of the eigenvalue problem

$$\begin{cases} -\Delta v + \lambda v = \widetilde{\mu}_{\lambda}(2^* - 1)Q(x)v_{\lambda}^{2^* - 2}v & in \ \Omega, \\ \partial v/\partial \nu = 0 & on \ \partial\Omega. \end{cases}$$

Proof. As in the proof of Proposition 2.1 we obtain the existence of a minimizer w_{λ} . To show that $\tilde{\mu}_{\lambda} > 1$ we take $\underline{\lambda} < \overline{\lambda} = \lambda$, where $\underline{\lambda}$ is chosen so that

$$\|\phi\|_{L^2(\partial\Omega)} < \frac{\varrho}{4K(\underline{\lambda})} < \frac{\varrho}{4K(\lambda)}.$$

Hence $I_{\underline{\lambda}}$ and $I_{\overline{\lambda}}$ have local minimizers $v_{\underline{\lambda}}$ and $v_{\overline{\lambda}}$, respectively. Let $z_{\underline{\lambda}}$ and $z_{\overline{\lambda}}$ be the minimal solutions of (1.1_{λ}) satisfying $0 \le z_{\underline{\lambda}} \le v_{\underline{\lambda}}$ and $z_{\overline{\lambda}} \le v_{\overline{\lambda}}$. Repeating estimates (2.2) with $u_{\underline{\lambda}}$ and $u_{\overline{\lambda}}$ replaced by $z_{\underline{\lambda}}$ and $z_{\overline{\lambda}}$ we derive that $\widetilde{\mu}_{\lambda} > 1$.

This allows us to show that the variational functional \tilde{J}_{λ} for problem (5.3_{λ}) has a mountain-pass geometry. It is also easy to see that Proposition 3.3 continues to hold for the functional \tilde{J}_{λ} for every $\lambda > 0$.

We are now in a position to formulate the following existence result:

THEOREM 5.3. Suppose that ϕ satisfies (5.3).

- (i) If $Q_{\rm M} \leq 2^{2/(N-2)}Q_{\rm m}$ and at some point $y \in \partial \Omega$ the function Q satisfies condition (4.3) of Theorem 4.1, then problem (5.3_{λ}) has a solution.
- (ii) If $Q_{\rm M} > 2^{2/(N-2)}Q_{\rm m}$, then there exists a $\tilde{\lambda} > 0$ such that problem (5.3_{λ}) has a solution for $\lambda < \tilde{\lambda}$.

The proof of part (i) is identical to that of Theorem 4.1. To establish part (ii) we observe that $S_{\infty} = S^{N/2}/NQ_{\rm M}^{(N-2)/2}$. Testing \tilde{I}_{λ} with a constant function u = 1, we see that the mountain-pass level is below S_{∞} if λ is small.

6. Case $\lambda = 0$. If $\lambda = 0$, then problem (1.1_0) cannot have a solution. Indeed, integrating equation (1.1_0) we get

$$-\int_{\partial\Omega}\phi(x)\,dS_x=\int_{\Omega}Q(x)u^{2^*-1}\,dx,$$

which is impossible. Therefore we assume throughout this section that

(**Q**) Q changes sign on Ω and $\int_{\Omega} Q(x) dx < 0$.

Since 0 is the first eigenvalue of the linear part of equation (1.1_{λ}) with the Neumann boundary conditions, it is convenient to decompose $H^1(\Omega) = \mathbb{R} \oplus V$, where the space V consists of functions v satisfying $\int_{\Omega} v(x) dx = 0$. J. CHABROWSKI

Having this decomposition we define an equivalent norm in $H^1(\Omega)$ by

$$||u||_V^2 = t^2 + \int_{\Omega} |\nabla v|^2 dx$$

LEMMA 6.1. Suppose that Q(x) satisfies (**Q**). Then there exists a constant $\eta > 0$ such that for each $t \in \mathbb{R}$ and $v \in V$ the inequality

$$\left(\int_{\Omega} |\nabla v|^2 \, dx\right)^{1/2} \le \eta |t|$$

implies

$$\int_{\Omega} Q(x)|t + v(x)|^{2^*} \, dx \le \frac{|t|^{2^*}}{2} \int_{\Omega} Q(x) \, dx$$

For the proof we refer to [4].

PROPOSITION 6.2. Suppose that Q(x) satisfies (**Q**). Then there exist constants $\beta > 0$, $\beta_{\circ} > 0$ and $\rho > 0$ such that

(6.1)
$$I_{\circ}(u) \ge \beta \quad for \ \|u\|_{V} = \varrho \quad and \quad \|\phi\|_{L^{2}(\partial\Omega)} \le \beta_{\circ}.$$

Proof. We write

$$I_{\circ}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \frac{1}{2^*} \int_{\Omega} Q(x) |u|^{2^*} dx - \int_{\partial \Omega} u\phi(x) dS_x$$
$$= \bar{I}_{\circ}(u) - \int_{\partial \Omega} u\phi(x) dS_x.$$

We now consider two cases: (i) $\|\nabla v\|_2 \leq \eta |t|$ and (ii) $\|\nabla v\|_2 > \eta |t|$. If $\|\nabla v\|_2 \leq \eta |t|$ and $\|\nabla v\|_2^2 + t^2 = \varrho^2$, then $t^2 \geq \varrho^2/(1+\eta^2)$. It then follows from Lemma 6.1 that

$$\int_{\Omega} Q(x)|t+v(x)|^{2^*} dx \le \frac{|t|^{2^*}}{2} \int_{\Omega} Q(x) dx = -|t|^{2^*} \alpha,$$

where $\alpha = -\frac{1}{2} \int_{\Omega} Q(x) dx > 0$. Hence we have

$$\bar{I}_{\circ}(u) \ge \frac{|t|^{2^{*}}}{2^{*}} \alpha \ge \frac{\alpha \varrho^{2^{*}}}{2^{*}(1+\eta^{2})^{2^{*}/2}}.$$

In case (ii) we have $\|\nabla u\|_V \le \|\nabla v\|_2 (1+1/\eta^2)^{1/2}$. Thus applying the Sobolev inequality we get

$$\int_{\Omega} Q(x) |u|^{2^*} dx \le C_1 ||u||_V^{2^*} \le C_1 (1 + 1/\eta^2)^{2^*/2} ||\nabla v||_2^{2^*}$$

for some constant $C_1 > 0$. Hence

$$\bar{I}_{\circ}(u) \geq \frac{1}{2} \|\nabla v\|_{2}^{2} - C_{1}(1+1/\eta^{2})^{2^{*}/2} \|\nabla v\|_{2}^{2^{*}}.$$

Taking $\|\nabla v\|_2 \leq \rho$ small enough we deduce from the above inequality the estimate

$$\overline{I}_{\circ}(u) \ge \frac{1}{4} \|\nabla v\|_2^2.$$

On the other hand, if $||u||_V = \varrho$, then $\varrho \leq (||\nabla v||_2/\eta)(1+\eta^2)^{1/2}$. Hence

$$\overline{I}_{\circ}(u) \ge \frac{\eta^2 \varrho^2}{4(1+\eta^2)}.$$

Taking

$$\beta_1 = \min\left(\frac{\eta^2 \varrho^2}{4(1+\eta^2)}, \frac{\alpha \varrho^{2^*}}{2^*(1+\eta^2)^{2^*/2}}\right),$$

we obtain the following estimate for $||u||_V = \varrho$:

$$I_{\circ}(u) \geq \beta_1 - C_2 \|\phi\|_{L^2(\partial\Omega)} \|u\|_V = \beta_1 - C_2 \varrho \|\phi\|_{L^2(\partial\Omega)}$$

for some constant $C_2 > 0$. We now choose $\|\phi\|_{L^2(\partial\Omega)}$ so that

$$\|\phi\|_{L^2(\partial\Omega)} \le \frac{\beta_1}{2C_2\varrho}$$

This gives the desired estimate for $I_{\circ}(u)$ with $\beta = \beta_1/2$ and $\beta_{\circ} = \beta_1/2C_2\varrho$.

Testing $I_{\circ}(u)$ with a constant function u = t, with t sufficiently small, we get $I_{\circ}(t) < 0$. Hence

$$c_2 = \inf_{\|u\|_V \le \varrho} I_{\circ}(u) < 0.$$

Repeating the argument used in the proof of Proposition 5.1 we obtain

PROPOSITION 6.3. Suppose that (**Q**) holds. Then there exists a constant $\beta_{\circ} > 0$ such that for ϕ satisfying $\|\phi\|_{L^2(\partial\Omega)} \leq \beta_{\circ}$ problem (1.1₀) admits a solution which is a local minimizer of $I_{\circ}(u)$.

REFERENCES

- Adimurthi and G. Mancini, Geometry and topology of the boundary in the critical Neumann problem, J. Reine Angew. Math. 456 (1994), 1–18.
- [2] Adimurthi, G. Mancini and S. L. Yadava, The role of the mean curvature in semilinear Neumann problem involving critical exponent, Comm. Partial Differential Equations 20 (1995), 591–631.
- [3] Adimurthi, F. Pacella and S. L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal. 113 (1993), 318–350.
- H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA 2 (1995), 553–572.
- [5] H. Brézis and E. Lieb, A relation between point convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.

[6]	D. M. Cao, G. B. Li and H. S. Zhou, Multiple solutions for nonhomogeneous elliptic
	equations involving critical Sobolev exponent, Proc. Roy. Soc. Edinburgh Sect. A 124
	(1994), 1177-1191.

- [7] D. M. Cao and H. S. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in \mathbb{R}^N , ibid. 126 (1996), 443–463.
- [8] J. Chabrowski, Mean curvature and least energy solutions for the critical Neumann problem with weight, Boll. Un. Mat. Ital. Sez. B (8) 5 (2002), 715–733.
- J. Chabrowski and M. Willem, Least energy solutions of a critical Neumann problem with a weight, Calc. Var. Partial Differential Equations 15 (2002), 421–431.
- [10] Y. B. Deng and S. J. Peng, Existence of multiple positive solutions for inhomogeneous Neumann problem, J. Math. Anal. Appl. 271 (2002), 155–174.
- [11] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, 1983.
- [12] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Rev. Math. Iberoamericana 1 (1985), no. 1, 145–201, and no. 2, 45–120.
- [13] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 243–261.
- [14] X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (1991), 283–310.

Department of Mathematics University of Queensland St. Lucia 4072, Qld, Australia E-mail: jhc@maths.uq.edu.au

> Received 24 May 2004; revised 2 August 2004

(4459)