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ON MULTIPLE SOLUTIONS OF THE NEUMANN PROBLEM
INVOLVING THE CRITICAL SOBOLEV EXPONENT

BY

JAN CHABROWSKI (Brisbane)

Abstract. We consider the Neumann problem involving the critical Sobolev exponent
and a nonhomogeneous boundary condition. We establish the existence of two solutions.
We use the method of sub- and supersolutions, a local minimization and the mountain-pass
principle.

1. Introduction. Let Ω ⊂ RN be a bounded domain with a smooth
boundary ∂Ω. We consider the Neumann problem

(1.1λ)
{−∆u+ λu = Q(x)u2∗−1 in Ω,

∂u/∂ν = φ(x) on ∂Ω, u > 0 on Ω,

where λ > 0 is a parameter and 2∗ = 2N/(N − 2), N ≥ 3, is the critical
Sobolev exponent. We assume that Q(x) > 0 on Ω, φ(x) ≥ 0 and φ(x) 6≡ 0
on ∂Ω and moreover Q ∈ Cα(Ω) and φ ∈ Cα(∂Ω).

In the case where Q ≡ 1 and φ ≡ 0, problem (1.1λ) has an extensive
literature. We refer to papers [2], [3], [8] and [9], where further references can
be found. In this case solutions of (1.1λ) have been obtained as minimizers
of the constrained variational problem

mλ = inf
u∈H1(Ω)−{0}

�
Ω(|∇u|2 + λu2) dx

(
�
Ω |u|2

∗
dx)2/2∗

.

A suitable multiple of a minimizer u for mλ is a solution of (1.1λ) and is
called the least energy solution of this problem. The main ingredient in the
proof of the existence of the least energy solution is the inequality mλ <
S/22/N , which is valid for every λ, provided Ω is smooth and bounded. Here
S is the best Sobolev constant. This inequality allows us to show that every
minimizing sequence for mλ is relatively compact in H1(Ω). These results
have been extended to the case Q 6≡ const and φ ≡ 0 (see [8] and [9]). In this
situation the existence of least energy solutions depends on the relationship
between the global maximumQM = maxx∈Ω Q(x) andQm = maxx∈∂Ω Q(x).
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The authors of these papers studied two cases: (i) QM ≤ 22/(N−2)Qm and
(ii) QM > 22/(N−2)Qm. In the first case problem (1.1λ) has the least energy
solution for every λ > 0, provided Qm is achieved at a point x◦ ∈ ∂Ω with
a positive mean curvature. In case (ii), the least energy solutions exist only
for λ ∈ (0, Λ], Λ > 0. For λ > Λ problem (1.1λ) does not have the least
energy solutions.

The main purpose of this paper is to establish an existence result for
problem (1.1λ) which involves a nonzero boundary data φ. We show that the
presence of φ 6= 0 generates the existence of at least two solutions. Results of
this nature are known in the cases where a nonhomogeneous term appears
in the nonlinear equation ([7], [6] and [13]).

Under an additional assumption on Q we establish the existence of a
constant λ∗ > 0 such that for λ > λ∗ problem (1.1λ) has at least two
solutions, at least one solution for λ = λ∗ and no solution for λ < λ∗. In the
case where λ > λ∗ the existence of one solution will be established through
the method of sub- and supersolutions. A second solution will be obtained
via the mountain-pass principle. These existence results are presented in
Sections 2, 3 and 4. In these sections we do not impose any restriction on
‖φ‖L2(∂Ω). In Section 5 we show that if ‖φ‖L2(∂Ω) is of order λ (as small
as λ), then problem (1.1λ) has at least two solutions. Section 6 is devoted
to the case λ = 0.

In this paper we use standard notations. In a given Banach space X
we denote strong convergence by “→” and weak convergence by “⇀”. We
recall that a C1-functional Φ : X → R on a Banach space X satisfies the
Palais–Smale condition at level c ((PS)c condition for short) if each sequence
{xm} such that

(∗) Φ(xm)→ c and (∗∗) Φ′(xm)→ 0 in X∗

is relatively compact in X. Finally, any sequence satisfying (∗) and (∗∗) is
called a Palais–Smale sequence at level c (a (PS)c sequence for short).

The norms in the Lebesgue spaces Lq(Ω) will be denoted by ‖ · ‖q.

2. Sub- and supersolutions. To construct a supersolution to problem
(1.1λ) we need the solution of the problem

(2.1λ)
{−∆v + λv = 0 in Ω,

∂v/∂ν = φ(x) on ∂Ω.

This problem has a unique positive solution vλ ∈ C1,α(Ω). Let v1 be a
solution of (2.1λ) with λ = 1. We set

λ◦ = max
x∈Ω

Q(x)v1(x)2∗−2 + 1.

We then have
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−∆v1 + λ◦v1 −Q(x)v2∗−1
1

= −∆v1 + (λ◦ −Q(x)v2∗−2
1 )v1

= −∆v1 + (max
x∈Ω

Q(x)v1(x)2∗−2 + 1−Q(x)v1(x)2∗−2)v1

≥ −∆v1 + v1 = 0.

Hence u = v1 is a supersolution for (1.1λ◦). Since u = 0 is a subsolution for
(1.1λ◦), there exists a minimal solution uλ◦ of (1.1λ◦) satisfying

u < uλ◦ < u on Ω.

Let
S = {λ; (1.1λ) has a positive solution}

If λ > λ◦, then uλ◦ is a supersolution to (1.1λ). Indeed, we have
{−∆uλ◦ + λuλ◦ > −∆uλ◦ + λ◦uλ◦ = Q(x)u2∗−1

λ◦ in Ω,

∂uλ◦/∂ν = φ(x) on ∂Ω.

As before, since u = 0 is a subsolution, there exists a minimal solution uλ
satisfying

u < uλ < u = uλ◦ .

This argument shows that (λ◦,∞) ⊂ S. We set

λ∗ = inf
λ∈S

λ.(2.1)

Repeating the above argument we show that for every λ > λ∗ problem (1.1λ)
has a solution. If uλ > 0 is a solution of (1.1λ), then

�

Ω

λuλ dx−
�

∂Ω

φ(x) dSx =
�

Ω

Q(x)u2∗−1
λ dx.

This yields λ > 0 and consequently λ∗ ≥ 0.
Let λ > λ∗ and let uλ be a positive solution of (1.1λ). We now consider

the variational problem

(2.2) µλ = inf
{ �

Ω

(|∇v|2 + λv2) dx; v ∈ H1(Ω),

(2∗ − 1)
�

Ω

Q(x)u2∗−2
λ v2 dx = 1

}
.

Proposition 2.1. If λ > λ∗, then the constant µλ defined by (2.2) sat-
isfies µλ > 1. Moreover , problem (2.2) has a minimizer Vλ which is the first
eigenfunction of the problem

{−∆v + λv = µλ(2∗ − 1)Q(x)u2∗−2
λ v in Ω,

∂v/∂ν = 0 on ∂Ω.
(2.3)
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Proof. Since the functional v 7→
�
Ω Q(x)u2∗−2

λ v2 dx is completely contin-
uous on H1(Ω), the existence of a minimizer easily follows. We show that
µλ > 1. Let λ > λ and let uλ and uλ be the corresponding minimal solutions
of (1.1λ) and (1.1λ), respectively. It follows from the construction of {uλ}
that uλ > uλ > 0. We then have

(2.4) −∆(uλ − uλ) + λ(uλ − uλ)

> −∆(uλ − uλ) + λuλ − λuλ = Q(x)(u2∗−1
λ − u2∗−1

λ
)

= Q(x)[(uλ + uλ − uλ)2∗−1 − u2∗−1
λ

]

= (2∗ − 1)Q(x)u2∗−2
λ

(uλ − uλ)

+ 1
2(2∗ − 1)(2∗ − 2)Q(x)[uλ + θ(uλ − uλ)]2

∗−3(uλ − uλ)2

> (2∗ − 1)Q(x)u2∗−2
λ

(uλ − uλ)

for some 0 < θ < 1. Let Vλ be the first eigenfunction of problem (2.3) with
λ = λ. Since

∂

∂ν
(uλ − uλ) = 0 on ∂Ω,

testing (2.4) with Vλ and integrating by parts gives
�

Ω

(uλ − uλ)(−∆Vλ + λVλ) dx > (2∗ − 1)
�

Ω

Q(x)u2∗−2
λ

(uλ − uλ)Vλ dx.

Hence

µλ(2∗ − 1)
�

Ω

Q(x)(uλ − uλ)uλVλ dx > (2∗ − 1)
�

Ω

Q(x)u2∗−2
λ

(uλ − uλ)Vλ dx

and the assertion follows.

Let Q∗ = minx∈Ω Q(x).

Lemma 2.2. Let uλ be a solution of problem (1.1λ) for some λ > 0. Then

λ(N+2)/4 ≥ Q(N+2)/4
∗

�
Ω Q(x)u2∗−1

λ dx+ N+2
4

�
∂Ω φ(x) dSx�

Ω Q(x) dx
.

Proof. Integrating (1.1λ) we get

λ
�

Ω

uλ dx =
�

Ω

Q(x)u2∗−1
λ dx+

�

∂Ω

φ(x) dSx.(2.5)

It then follows from the Young inequality that

λ
�

Ω

uλ dx ≤ λQ−1
∗

�

Ω

Q(x)uλ dx

≤ 2∗ − 2
2∗ − 1

λ
2∗−1
2∗−2Q

− 2∗−1
2∗−2
∗

�

Ω

Q(x) dx+
1

2∗ − 1

�

Ω

Q(x)u2∗−1
λ dx.
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This combined with (2.5) gives

2∗ − 2
2∗ − 1

�

Ω

Q(x)u2∗−1
λ dx+

�

∂Ω

φ(x) dSx ≤
2∗ − 2
2∗ − 1

λ
2∗−1
2∗−2Q

− 2∗−1
2∗−2
∗

�

Ω

Q(x) dx

and the result easily follows.

Corollary 2.3. If

λ(N+2)/4 ≤ Q(N+2)/4
∗

�
∂Ω φ(x) dSx�
Ω Q(x) dx

,

then problem (1.1λ) has no solution. Consequently , λ∗ > 0, where λ∗ is the
constant defined by (2.1).

In Proposition 2.4 below, we derive an estimate for ‖uλ‖H1 in terms of
the parameter λ and norms of v1.

Proposition 2.4. Solutions of (1.1λ) for 0 < λ ≤ 1 satisfy the estimate

‖uλ‖2H1 ≤ L(‖v1‖2H1 + ‖v1‖2
∗

2∗ + (1− λ)‖v1‖22 + (1− λ)N/2)

and for λ > 1 we have
‖uλ‖2H1 ≤ L1

for some constants L > 0 and L1 > 0 independent of λ.

Proof. Let uλ be a solution of (1.1λ) and v1 be a solution of (2.11). We
set v = uλ − v1. Then v satisfies

{−∆v + v = Q(x)(v + v1)2∗−1 + (1− λ)(v + v1) in Ω,

∂v/∂ν = 0 on ∂Ω.
(2.6)

First we consider the case 0 < λ ≤ 1. By the maximum principle v > 0
on Ω. Testing (2.6) with v we get

�

Ω

(|∇v|2 + v2) dx =
�

Ω

Q(x)(v + v1)2∗−1v dx+ (1− λ)
�

Ω

(v + v1)v dx.

Since 0 < λ ≤ 1, it follows from Proposition 2.1 that

(2∗ − 1)
�

Ω

Q(x)u2∗−2
λ v2 dx

≤
�

Ω

Q(x)(v + v1)2∗−1v dx+ (1− λ)
�

Ω

(v + v1)v dx

=
�

Ω

Q(x)(v + v1)2∗−2v2 dx+
�

Ω

Q(x)(v + v1)2∗−2vv1 dx

+ (1− λ)
�

Ω

(v + v1)v dx.
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Thus

(2.7) (2∗ − 2)
�

Ω

Q(x)(v + v1)2∗−2v2 dx

≤
�

Ω

Q(x)(v + v1)2∗−2vv1 dx+ (1− λ)
�

Ω

(v + v1)v dx

≤
�

Ω

Q(x)(v + v1)2∗−1v1 dx+ (1− λ)
�

Ω

(v + v1)v dx

≤ 22∗−2
�

Ω

Q(x)v2∗−1v1 dx+ 22∗−2
�

Ω

Q(x)v2∗
1 dx

+ (1− λ)
�

Ω

v2 dx+ (1− λ)
�

Ω

v1v dx

≤ 22∗−2
�

Ω

Q(x)v2∗−1v1 dx+ 22∗−2
�

Ω

Q(x)v2∗
1 dx

+ 2(1− λ)
�

Ω

v2 dx+ (1− λ)
�

Ω

v2
1 dx.

Using the Young inequality we get for ε > 0,
�

Ω

Q(x)v2∗−1v1 dx ≤ ε
�

Ω

Q(x)v2∗ dx+ C(ε)
�

Ω

Q(x)v2∗
1 dx,(2.8)

2(1− λ)
�

Ω

v2 dx ≤ ε
�

Ω

v2∗ dx+ C1(ε)(1− λ)2∗/(2∗−2)|Ω|,(2.9)

for some constants C(ε) > 0 and C1(ε) > 0. Letting QM = maxx∈Ω Q(x) we
deduce from (2.7)–(2.9) that

((2∗ − 2)Q∗ − 22∗−2QMε− ε)
�

Ω

v2∗ dx ≤ (22∗−2 + C(ε))
�

Ω

Q(x)v2∗
1 dx

+ C1(ε)(1− λ)2∗/(2∗−2)|Ω|+ (1− λ)
�

Ω

v2
1 dx.

Choosing ε > 0 small enough we derive from this the estimate
�

Ω

v2∗ dx ≤ C
[ �

Ω

v2∗
1 dx+ (1− λ)2∗/(2∗−2) + (1− λ)

�

Ω

v2
1 dx

]
.(2.10)

We now use (2.10) to estimate ‖v‖2H1 in terms of λ and v1. We have
�

Ω

(|∇v|2 + v2) dx =
�

Ω

Q(x)(v + v1)2∗−1v dx+ (1− λ)
�

Ω

v2 dx

+ (1− λ)
�

Ω

v1v dx
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≤ 22∗−2
�

Ω

Q(x)v2∗ dx+ 22∗−2
�

Ω

Q(x)v2∗−1
1 v dx

+ 2(1− λ)
�

Ω

v2 dx+ (1− λ)
�

Ω

v2
1 dx

≤ 22∗−3(2∗ + 1)
�

Ω

Q(x)v2∗ dx+ 22∗−3(2∗ − 1)
�

Ω

Q(x)v2∗
1 dx

+ 2(1− λ)
�

Ω

v2 dx+ (1− λ)
�

Ω

v2
1 dx.

The last estimate combined with (2.9) and (2.10) gives
�

Ω

(|∇v|2 + v2) dx ≤ C1

[ �

Ω

v2∗
1 dx+ (1− λ)

�

Ω

v2
1 dx+ (1− λ)2∗/(2∗−2)

]
,

where C1 > 0 is of the same nature as C in (2.10). Since ‖uλ‖H1 ≤ ‖v‖H1 +
‖v1‖H1 the result in the case 0 < λ ≤ 1 readily follows. If λ > 1, then
uλ ≤ u1 on Ω, where u1 is a minimal solution of problem (1.11). Thus�

Ω

(|∇uλ|2 + u2
λ) dx ≤

�

Ω

(|∇uλ|2 + λu2
λ) dx =

�

Ω

Q(x)u2∗
λ dx+

�

Ω

φ(x)uλ dSx

≤ QM

�

Ω

u2∗
1 dx+

�

Ω

φ(x)u1 dSx,

and the result follows.

Proposition 2.5. Problem (1.1λ∗) has a solution.

Proof. Let λn → λ∗ and λn > λ∗ for each n. By Proposition 2.4 the
sequence {uλn} of the corresponding solutions is bounded in H1(Ω). It is
routine to show that up to a subsequence uλn ⇀ u in H1(Ω) and u is a
solution of problem (1.1λ∗).

3. Second solution. Let uλ be a minimal solution of (1.1λ). To find
the second solution we consider the problem

(3.1λ)
{−∆v + λv = Q(x)[(v + uλ)2∗−1 − u2∗−1

λ ] in Ω,

∂v/∂ν = 0 on ∂Ω, v > 0 on Ω,

where λ > λ∗. If v is a solution of (3.1λ), then Uλ = uλ + v is a solution of
(1.1λ). A solution of (3.1λ) will be found as a critical point of the functional

Jλ(v) =
1
2

�

Ω

(|∇v|2 + λv2) dx− 1
2∗

�

Ω

Q(x)(uλ + v+)2∗ dx

+
1
2∗

�

Ω

Q(x)u2∗
λ dx+

�

Ω

Q(x)u2∗−1
λ v+ dx.

Proposition 3.1. Let λ > λ∗. There exist constants α > 0 and % > 0
such that Jλ(v) ≥ α for v ∈ H1(Ω) with ‖v‖H1 = %.
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Proof. We write Jλ in the form

Jλ(v) =
1
2

�

Ω

(|∇v|2 + λv2) dx− 2∗ − 1
2

�

Ω

Q(x)u2∗−2
λ (v+)2 dx(3.1)

−
�

Ω

v+�

0

Q(x)[(uλ + s)2∗−1 − u2∗−1
λ − (2∗ − 1)u2∗−2

λ s] ds dx.

Since for every ε > 0 there exists Cε > 0 such that

(uλ + s)2∗−1 − u2∗−1
λ − (2∗ − 1)u2∗−2

λ s ≤ εu2∗−2
λ s+ Cεs

2∗−1,

we get

Jλ(v) ≥ 1
2

�

Ω

[|∇v|2 + λv2 − (2∗ − 1)Q(x)u2∗−2
λ (v+)2] dx

−
�

Ω

Q(x)
[
ε

2
u2∗−2
λ (v+)2 + Cε

(v+)2∗

2∗

]
dx.

Hence by Proposition 2.1 we have

Jλ(v) ≥ 1
2

(
1− 2∗ − 1− ε

µλ(2∗ − 1)

) �

Ω

(|∇v|2 + λv2) dx− Cε
2∗

�

Ω

Q(x)(v+)2∗ dx.

We choose 0 < ε < 2∗−1. An application of the Sobolev inequality completes
the proof.

Lemma 3.2. Let {um} ⊂ H1(Ω) be a Palais–Smale sequence for Jλ.
Then {um} is bounded in H1(Ω).

Proof. We compute

(3.2) Jλ(um)− 1
2
〈J ′λ(um), um〉

= − 1
2∗

�

Ω

Q(x)(uλ + u+
m)2∗ dx+

1
2∗

�

Ω

Q(x)u2∗
λ dx+

�

Ω

Q(x)u2∗−1
λ u+

m dx

+
1
2

�

Ω

Q(x)(uλ + u+
m)2∗−1um dx−

1
2

�

Ω

Q(x)u2∗−1
λ um dx

=
1
N

�

Ω

Q(x)(uλ + u+
m)2∗ dx− 1

2

�

Ω

Q(x)(uλ + u+
m)2∗−1u−m dx

− 1
2

�

Ω

Q(x)(uλ + u+
m)2∗−1uλ dx

+
1
2∗

�

Ω

Q(x)u2∗
λ dx+

�

Ω

Q(x)u2∗−1
λ u+

m dx−
1
2

�

Ω

Q(x)u2∗−1
λ um dx
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=
1
N

�

Ω

Q(x)(uλ + u+
m)2∗ dx− 1

2

�

Ω

Q(x)(uλ + u+
m)2∗−1uλ dx

− 1
2

�

Ω

Q(x)u2∗−1
λ u−m dx+

1
2∗

�

Ω

Q(x)u2∗
λ dx+

�

Ω

Q(x)u2∗−1
λ u+

m dx

− 1
2

�

Ω

Q(x)u2∗−1
λ um dx

=
1
N

�

Ω

Q(x)(uλ + u+
m)2∗ dx− 1

2

�

Ω

Q(x)(uλ + u+
m)2∗−1uλ dx

+
1
2

�

Ω

Q(x)u2∗−1
λ u+

m dx+
1
2∗

�

Ω

Q(x)u2∗
λ dx.

By the Young inequality given δ > 0 we choose C(δ) > 0 so that

(3.3)
�

Ω

Q(x)(uλ + u+
m)2∗−1uλ dx

≤ δ
�

Ω

Q(x)(uλ + u+
m)2∗ dx+ C(δ)

�

Ω

Q(x)u2∗
λ dx.

Taking δ > 0 small enough and using the fact that {um} is a (PS)c sequence
we derive from (3.1) and (3.3) that

�

Ω

Q(x)(uλ + um)2∗ dx ≤ C1 + C2‖um‖H1(3.4)

for every m ≥ 1. On the other hand, we have

Jλ(um)− 1
2∗
〈J ′λ(um), um〉

=
1
N

�

Ω

(|∇um|2 + λu2
m) dx+

1
2∗

�

Ω

Q(x)(uλ + u+
m)2∗−1(um − u+

m − uλ) dx

+
1
2∗

�

Ω

Q(x)u2∗
λ dx+

�

Ω

Q(x)u2∗−1
λ u+

m dx−
1
2∗

�

Ω

Q(x)u2∗−1
λ um dx

=
1
N

�

Ω

(|∇um|2 + λu2
m) dx− 1

2∗
�

Ω

Q(x)(uλ + u+
m)2∗−1uλ dx

− 1
2∗

�

Ω

Q(x)(uλ + u+
m)2∗−1u−m dx+

1
2∗

�

Ω

Q(x)u2∗
λ dx

+
�

Ω

Q(x)u2∗−1
λ u+

m dx−
1
2∗

�

Ω

Q(x)u2∗−1
λ um dx



212 J. CHABROWSKI

=
1
N

�

Ω

(|∇um|2 + λu2
m) dx− 1

2∗
�

Ω

Q(x)(uλ + u+
m)2∗−1uλ dx

+
1
2∗

�

Ω

Q(x)u2∗
λ dx+

(
1− 1

2∗

) �

Ω

Q(x)u2∗−1
λ u+

m dx dx

≥ 1
N

�

Ω

(|∇um|2 + λu2
m) dx− 1

2∗
�

Ω

Q(x)(uλ + u+
m)2∗−1uλ dx.

From this we deduce, using the Young inequality, that

‖um‖2H1 ≤ C3

�

Ω

Q(x)(uλ + u+
m)2∗ dx+ C4‖um‖H1 + C5.(3.5)

The assertion follows from (3.3) and (3.5).

To proceed further we set

Qm = max
x∈∂Ω

Q(x).

We recall that QM is defined by QM = maxx∈Ω Q(x). By S we denote the
best Sobolev constant, that is,

S = inf
u∈D1,2(RN )−{0}

�
RN |∇u|2 dx

(
�
RN |u|2

∗
dx)2/2∗

,

where D1,2(RN ) is the Sobolev space defined by D1,2(RN ) = {u; ∇u ∈
L2(RN ), u ∈ L2∗(RN )}. The best Sobolev constant is achieved by

U(x) =
cN

(N(N − 2) + |x|2)(N−2)/2
,

where cN > 0 is a constant depending on N . The function U , called an
instanton, satisfies the equation

−∆U = U2∗−1 in RN .
We have

�
RN |∇U |2 dx =

�
RN U

2∗ dx = SN/2. For future use we introduce
the notation

Uε,y = ε−(N−2)/2U

(
x− y
ε

)
, y ∈ RN , ε > 0.

We set

S∞ = min
(

SN/2

2NQ(N−2)/2
m

,
SN/2

NQ
(N−2)/2
M

)
.

Proposition 3.3. Let λ > λ∗. Suppose that

Jλ(um)→ c < S∞,(3.6)

J ′λ(um)→ 0 in H−1(Ω).(3.7)

Then up to a subsequence um ⇀ v 6= 0 and v is a solution of problem (3.1λ).
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Proof. By Lemma 3.2, {um} is bounded in H1(Ω). Hence we may assume
that um ⇀ v in H1(Ω), um → u in Lq(Ω) for each 2 ≤ q < 2∗ and um(x)→
v(x) a.e. on Ω. Testing J ′λ(um)→ 0 with u−m we get

�

Ω

(|∇u−m|2 + λ(u−m)2) dx = o(1).

Therefore we may assume that um ≥ 0 on Ω. We now show that v 6= 0.
Arguing by contradiction assume that v ≡ 0. By the P. L. Lions [12] concen-
tration-compactness principle there exist sequences of points {xj} ⊂ RN and
numbers {νj}, {µj} ⊂ (0,∞) such that

|um|2
∗ ∗
⇀
∑

j

νjδxj and |∇um|2 ∗⇀
∑

j

µjδxj

in M, where M is a space of measures. Moreover,

Sν
2/2∗

j ≤ µj if xj ∈ Ω and S
ν

2/2∗

j

22/N
≤ µj if xj ∈ ∂Ω.

Testing (3.7) with umφδ, where φδ, δ > 0, is a family of functions concen-
trating at xj as δ→0, we deduce that µj≤Q(xj)νj for every j. If νj>0 and
xj∈Ω, then νj≥SN/2/Q(xj)N/2, and if xj∈∂Ω, then νj≥SN/2/2Q(xj)N/2.
By the Brézis–Lieb lemma we have

Jλ(um)− 1
2
〈J ′λ(um), um〉

=
1
N

�

Ω

Q(x)(uλ + um)2∗ dx− 1
2

�

Ω

Q(x)(uλ + um)2∗−1uλ dx

+
1
2∗

�

Ω

Q(x)u2∗
λ dx+

1
2

�

Ω

Q(x)u2∗−1
λ um dx+ o(1)

=
1
N

∑

xj∈∂Ω
Q(xj)νj +

1
N

∑

xj∈Ω
Q(xj)νj + o(1)

≥ 1
2N

∑

xj∈∂Ω

SN/2

Q(xj)(N−2)/2
+

1
N

∑

xj∈Ω

SN/2

Q(xj)(N−2)/2
+ o(1).

If QM>22/(N−2)Qm, then letting m→∞ we derive that c ≥ SN/2/NQN−2/2
M ,

and if QM ≤ 22/(N−2)Qm, then c ≥ SN/2/2NQ(N−2)/2
m . In both cases we

obtain a contradiction.

4. Main result. In order to apply the mountain-pass theorem we set

c = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)),
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where
Γ = {γ ∈ C([0, 1],H1(Ω)); γ(0), γ(1) = t◦}

and the constant t◦ is chosen so large that Jλ(tt◦) ≤ 0 for t ≥ 1. It follows
from Proposition 3.1 that c > 0.

We need the following relations for Uε,y with y ∈ ∂Ω (see [1] or [14]):

(4.1)

�
Ω(|∇Uε,y|2 + λU2

ε,y) dx

(
�
Ω U

2∗
ε,y dx)2/2∗

≤





S/22/N − ANH(y)ε log 1
ε + aNλε+O(ε) + o(λε) if N = 3,

S/22/N − ANH(y)ε+ aNλε
2 log 1

ε +O(ε2 log 1
ε )

+ o(λε2 log 1
ε ) if N = 4,

S/22/N − ANH(y)ε+ aNλε
2 +O(ε2) + o(λε2) if N ≥ 5,

where H(y) denotes the mean curvature of ∂Ω at y.
It is known that

c ≤ c∗ = inf
u∈H1(Ω), u6=0

sup
t≥0

Jλ(tu).(4.2)

Theorem 4.1. Suppose that QM ≥ 22/(N−2)Qm and that at some point
y ∈ ∂Ω with H(y) > 0 we have

|Q(x)−Q(y)| = o(|x− y|) for x close to y.(4.3)

Then problem (3.1λ) has a solution for every λ > 0.

Proof. It follows from (4.2) that

c ≤ c∗ ≤ 1
N

(
�
Ω(|∇Uε,y|2 + λU2

ε,y) dx)N/2

(
�
Ω U

2∗
ε,y dx)(N−2)/2

.

Thus (4.1) and (4.3) yield

c <
SN/2

2NQ(N−2)/2
m

for ε > 0 sufficiently small. By Proposition 3.3 problem (3.1λ) has a solu-
tion.

Corollary 4.2. Under the assumptions of Theorem 4.1 there exists
λ∗ > 0 such that problem (1.1λ) has at least two solutions for λ > λ∗.

5. Existence of solutions for small boundary data. Lemma 2.2
(see also Corollary 2.3) provides the estimate of λ∗ in terms of

�
∂Ω φdSx.

For λ < λ∗ problem (1.1λ) does not have a solution for a given φ. In this
section we establish the existence of a solution of problem (1.1λ) for every
λ > 0 if

�
∂Ω φdSx is small. Obviously, the size of

�
∂Ω φdSx will depend on λ.
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Let

Iλ(u) =
1
2

�

Ω

(|∇u|2 + λu2) dx− 1
2∗

�

Ω

Q(x)|u|2∗ dx−
�

∂Ω

uφ(x) dSx

for u ∈ H1(Ω) be a variational functional corresponding to problem (1.1λ).
In what follows we shall use the Sobolev inequality

( �

Ω

|u|2∗ dx
)2/2∗

≤ Cs
�

Ω

(|∇u|2 + u2) dx

for u ∈ H1(Ω), where Cs > 0 is a constant. Letting Cs(λ) = Cs for λ ≥ 1
and Cs(λ) = Cs/λ for 0 < λ < 1, we can write this inequality in the form

( �

Ω

|u|2∗ dx
)2/2∗

≤ Cs(λ)
�

Ω

(|∇u|2 + λu2) dx.

Proposition 5.1. Given 0 < λ <∞ there exists a constant %1 = %1(λ)
such that for a boundary data φ satisfying ‖φ‖L2(∂Ω) ≤ %1 problem (1.1λ)
has a solution. (If λ ≥ 1 the choice of %1 can be made independent of λ.)

Proof. A solution will be found as a local minimizer of Iλ. We commence
by estimating Iλ from below:

Iλ(u) ≥ 1
2

�

Ω

(|∇u|2 + λu2) dx− Cs(λ)2∗/2

2∗
QM

( �

Ω

(|∇u|2 + λu2) dx
)2∗/2

−K
( �

∂Ω

φ2 dSx

)1/2( �

Ω

(|∇u|2 + u2) dx
)1/2

,

where K > 0 is the best constant for the embedding of H1(Ω) into L2(∂Ω),
that is,

K = inf
{ �

Ω

(|∇u|2 + u2) dx; u ∈ H1(Ω),
�

∂Ω

u2 dSx = 1
}
.

Letting ‖u‖2λ =
�
Ω(|∇u|2 + λu2) dx we can write this estimate as

Iλ(u) ≥ ‖u‖λ
(
‖u‖λ −

Cs(λ)2∗/2

2∗
QM‖u‖2

∗−1
λ −K(λ)‖φ‖L2(∂Ω)

)
,

where K(λ) = K for λ ≥ 1 and K(λ) = K/λ for 0 < λ < 1. First we choose
% > 0 such that

%− Cs(λ)2∗/2

2∗
QM%

2∗−1 ≥ 3
4
%.

If ‖φ‖L2(∂Ω) ≤ %/K(λ) = %1, then

Iλ(u) ≥ %2/4 for ‖u‖λ = %.(5.1)
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Testing Iλ(u) with a constant function u = t we get

Iλ(t) =
|Ω|
2
t2 − t2

∗

2∗
�

Ω

Q(x) dx− t
�

∂Ω

φ(x) dSx < 0

for sufficiently small t. Therefore

c1 = inf
‖u‖λ=%

Iλ(u) < 0.(5.2)

It follows from (5.1), (5.2) and the Ekeland variational principle that there
exists a minimizing sequence {um} satisfying

Iλ(um)→ c1 and I ′λ(um)→ 0 in H−1(Ω).

It is clear that {um} is bounded inH1(Ω). Thus we may assume that um ⇀ u
in H1(Ω), um → u in Lp(Ω) for 2 ≤ p < 2∗ and um → a a.e. on Ω. Moreover,
u is a solution of (1.1λ). We now observe that ‖u‖λ ≤ % and Iλ(u) ≥ c1.
Since 〈I ′λ(u), u〉 = 0, we see that

(
1
2
− 1

2∗

) �

Ω

(|∇u|2 + λu2) dx−
(

1− 1
2∗

) �

Ω

φudSx ≥ c1.

The weak lower semicontinuity of
�
Ω |∇u|2 dx yields

(
1
2
− 1

2∗

) �

Ω

(|∇u|2 + λu2) dx−
(

1− 1
2∗

) �

Ω

φudSx ≤ c1

and consequently Iλ(u) = c1.

To prove the existence of a second solution we use the method of Sec-
tion 3. In what follows we assume that the boundary data φ satisfies

‖φ‖L2(∂Ω) < %1 =
%

4K(λ)
.(5.3)

This condition on φ guarantees the existence of a local minimizer vλ of the
functional Iλ. As in Section 3 we consider the problem

(5.3λ)

{
−∆v + λv = Q(x)[(v + vλ)2∗−1 − v2∗−1

λ ] in Ω,

∂v/∂ν = 0.

If problem (5.3λ) has a solution w, then w+vλ is a solution of problem (1.1λ).
Let Ĩλ(v) be a variational functional corresponding to problem (5.3λ). We
now consider the variational problem

(5.4) µ̃λ = inf
{ �

Ω

(|∇v|2 + λv2) dx; v ∈ H1(Ω),

(2∗ − 2)
�

Ω

Q(x)v2∗−1
λ v2 dx = 1

}
.
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Proposition 5.2. Problem (5.4) has a minimizer wλ which is the first
eigenfunction of the eigenvalue problem

{−∆v + λv = µ̃λ(2∗ − 1)Q(x)v2∗−2
λ v in Ω,

∂v/∂ν = 0 on ∂Ω.

Proof. As in the proof of Proposition 2.1 we obtain the existence of a
minimizer wλ. To show that µ̃λ > 1 we take λ < λ = λ, where λ is chosen
so that

‖φ‖L2(∂Ω) <
%

4K(λ)
<

%

4K(λ)
.

Hence Iλ and Iλ have local minimizers vλ and vλ, respectively. Let zλ and
zλ be the minimal solutions of (1.1λ) satisfying 0 ≤ zλ ≤ vλ and zλ ≤ vλ.
Repeating estimates (2.2) with uλ and uλ replaced by zλ and zλ we derive
that µ̃λ > 1.

This allows us to show that the variational functional J̃λ for problem
(5.3λ) has a mountain-pass geometry. It is also easy to see that Proposi-
tion 3.3 continues to hold for the functional J̃λ for every λ > 0.

We are now in a position to formulate the following existence result:

Theorem 5.3. Suppose that φ satisfies (5.3).

(i) If QM ≤ 22/(N−2)Qm and at some point y ∈ ∂Ω the function Q
satisfies condition (4.3) of Theorem 4.1, then problem (5.3λ) has a
solution.

(ii) If QM > 22/(N−2)Qm, then there exists a λ̃ > 0 such that problem
(5.3λ) has a solution for λ < λ̃.

The proof of part (i) is identical to that of Theorem 4.1. To establish
part (ii) we observe that S∞ = SN/2/NQ

(N−2)/2
M . Testing Ĩλ with a constant

function u = 1, we see that the mountain-pass level is below S∞ if λ is small.

6. Case λ = 0. If λ = 0, then problem (1.10) cannot have a solution.
Indeed, integrating equation (1.10) we get

−
�

∂Ω

φ(x) dSx =
�

Ω

Q(x)u2∗−1 dx,

which is impossible. Therefore we assume throughout this section that

(Q) Q changes sign on Ω and
�
Ω Q(x) dx < 0.

Since 0 is the first eigenvalue of the linear part of equation (1.1λ) with
the Neumann boundary conditions, it is convenient to decompose H1(Ω) =
R⊕ V , where the space V consists of functions v satisfying

�
Ω v(x) dx = 0.
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Having this decomposition we define an equivalent norm in H1(Ω) by

‖u‖2V = t2 +
�

Ω

|∇v|2 dx.

Lemma 6.1. Suppose that Q(x) satisfies (Q). Then there exists a con-
stant η > 0 such that for each t ∈ R and v ∈ V the inequality

( �

Ω

|∇v|2 dx
)1/2

≤ η|t|

implies
�

Ω

Q(x)|t+ v(x)|2∗ dx ≤ |t|
2∗

2

�

Ω

Q(x) dx.

For the proof we refer to [4].

Proposition 6.2. Suppose that Q(x) satisfies (Q). Then there exist
constants β > 0, β◦ > 0 and % > 0 such that

I◦(u) ≥ β for ‖u‖V = % and ‖φ‖L2(∂Ω) ≤ β◦.(6.1)

Proof. We write

I◦(u) =
1
2

�

Ω

|∇u|2 dx− 1
2∗

�

Ω

Q(x)|u|2∗ dx−
�

∂Ω

uφ(x) dSx

= I◦(u)−
�

∂Ω

uφ(x) dSx.

We now consider two cases: (i) ‖∇v‖2 ≤ η|t| and (ii) ‖∇v‖2 > η|t|. If
‖∇v‖2 ≤ η|t| and ‖∇v‖22 + t2 = %2, then t2 ≥ %2/(1 + η2). It then follows
from Lemma 6.1 that

�

Ω

Q(x)|t+ v(x)|2∗ dx ≤ |t|
2∗

2

�

Ω

Q(x) dx = −|t|2∗α,

where α = −1
2

�
Ω Q(x) dx > 0. Hence we have

I◦(u) ≥ |t|
2∗

2∗
α ≥ α%2∗

2∗(1 + η2)2∗/2
.

In case (ii) we have ‖∇u‖V ≤ ‖∇v‖2(1+1/η2)1/2. Thus applying the Sobolev
inequality we get

�

Ω

Q(x)|u|2∗ dx ≤ C1‖u||2
∗
V ≤ C1(1 + 1/η2)2∗/2‖∇v‖2∗2

for some constant C1 > 0. Hence

I◦(u) ≥ 1
2
‖∇v‖22 − C1(1 + 1/η2)2∗/2‖∇v‖2∗2 .
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Taking ‖∇v‖2 ≤ % small enough we deduce from the above inequality the
estimate

I◦(u) ≥ 1
4
‖∇v‖22.

On the other hand, if ‖u‖V = %, then % ≤ (‖∇v‖2/η)(1 + η2)1/2. Hence

I◦(u) ≥ η2%2

4(1 + η2)
.

Taking

β1 = min
(

η2%2

4(1 + η2)
,

α%2∗

2∗(1 + η2)2∗/2

)
,

we obtain the following estimate for ‖u‖V = %:

I◦(u) ≥ β1 − C2‖φ‖L2(∂Ω)‖u‖V = β1 − C2%‖φ‖L2(∂Ω)

for some constant C2 > 0. We now choose ‖φ‖L2(∂Ω) so that

‖φ‖L2(∂Ω) ≤
β1

2C2%
.

This gives the desired estimate for I◦(u) with β = β1/2 and β◦ = β1/2C2%.

Testing I◦(u) with a constant function u = t, with t sufficiently small,
we get I◦(t) < 0. Hence

c2 = inf
‖u‖V≤%

I◦(u) < 0.

Repeating the argument used in the proof of Proposition 5.1 we obtain

Proposition 6.3. Suppose that (Q) holds. Then there exists a constant
β◦ > 0 such that for φ satisfying ‖φ‖L2(∂Ω) ≤ β◦ problem (1.10) admits a
solution which is a local minimizer of I◦(u).
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[5] H. Brézis and E. Lieb, A relation between point convergence of functions and con-
vergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.



220 J. CHABROWSKI

[6] D. M. Cao, G. B. Li and H. S. Zhou, Multiple solutions for nonhomogeneous elliptic
equations involving critical Sobolev exponent, Proc. Roy. Soc. Edinburgh Sect. A 124
(1994), 1177–1191.

[7] D. M. Cao and H. S. Zhou, Multiple positive solutions of nonhomogeneous semilinear
elliptic equations in RN , ibid. 126 (1996), 443–463.

[8] J. Chabrowski, Mean curvature and least energy solutions for the critical Neumann
problem with weight, Boll. Un. Mat. Ital. Sez. B (8) 5 (2002), 715–733.

[9] J. Chabrowski and M. Willem, Least energy solutions of a critical Neumann problem
with a weight, Calc. Var. Partial Differential Equations 15 (2002), 421–431.

[10] Y. B. Deng and S. J. Peng, Existence of multiple positive solutions for inhomoge-
neous Neumann problem, J. Math. Anal. Appl. 271 (2002), 155–174.

[11] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second
Order, 2nd ed., Springer, 1983.

[12] P. L. Lions, The concentration-compactness principle in the calculus of variations.
The limit case, Rev. Math. Iberoamericana 1 (1985), no. 1, 145–201, and no. 2,
45–120.

[13] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev ex-
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