COLLOQUIUM MATHEMATICUM

ON MULTIPLE SOLUTIONS OF THE NEUMANN PROBLEM INVOLVING THE CRITICAL SOBOLEV EXPONENT

BY
JAN CHABROWSKI (Brisbane)

Abstract

We consider the Neumann problem involving the critical Sobolev exponent and a nonhomogeneous boundary condition. We establish the existence of two solutions. We use the method of sub- and supersolutions, a local minimization and the mountain-pass principle.

1. Introduction. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with a smooth boundary $\partial \Omega$. We consider the Neumann problem

$$
\begin{cases}-\Delta u+\lambda u=Q(x) u^{2^{*}-1} & \text { in } \Omega, \\ \partial u / \partial \nu=\phi(x) \quad \text { on } \partial \Omega, & u>0 \quad \text { on } \Omega\end{cases}
$$

where $\lambda>0$ is a parameter and $2^{*}=2 N /(N-2), N \geq 3$, is the critical Sobolev exponent. We assume that $Q(x)>0$ on $\bar{\Omega}, \phi(x) \geq 0$ and $\phi(x) \not \equiv 0$ on $\partial \Omega$ and moreover $Q \in C^{\alpha}(\bar{\Omega})$ and $\phi \in C^{\alpha}(\partial \Omega)$.

In the case where $Q \equiv 1$ and $\phi \equiv 0$, problem (1.1 ${ }_{\lambda}$) has an extensive literature. We refer to papers [2], [3], [8] and [9], where further references can be found. In this case solutions of $\left(1.1_{\lambda}\right)$ have been obtained as minimizers of the constrained variational problem

$$
m_{\lambda}=\inf _{u \in H^{1}(\Omega)-\{0\}} \frac{\int_{\Omega}\left(|\nabla u|^{2}+\lambda u^{2}\right) d x}{\left(\int_{\Omega}|u|^{2 *} d x\right)^{2 / 2^{*}}}
$$

A suitable multiple of a minimizer u for m_{λ} is a solution of $\left(1.1_{\lambda}\right)$ and is called the least energy solution of this problem. The main ingredient in the proof of the existence of the least energy solution is the inequality $m_{\lambda}<$ $S / 2^{2 / N}$, which is valid for every λ, provided Ω is smooth and bounded. Here S is the best Sobolev constant. This inequality allows us to show that every minimizing sequence for m_{λ} is relatively compact in $H^{1}(\Omega)$. These results have been extended to the case $Q \not \equiv$ const and $\phi \equiv 0$ (see [8] and [9]). In this situation the existence of least energy solutions depends on the relationship between the global maximum $Q_{\mathrm{M}}=\max _{x \in \bar{\Omega}} Q(x)$ and $Q_{\mathrm{m}}=\max _{x \in \partial \Omega} Q(x)$.

[^0]The authors of these papers studied two cases: (i) $Q_{\mathrm{M}} \leq 2^{2 /(N-2)} Q_{\mathrm{m}}$ and (ii) $Q_{\mathrm{M}}>2^{2 /(N-2)} Q_{\mathrm{m}}$. In the first case problem (1.1 λ) has the least energy solution for every $\lambda>0$, provided Q_{m} is achieved at a point $x_{\circ} \in \partial \Omega$ with a positive mean curvature. In case (ii), the least energy solutions exist only for $\lambda \in(0, \Lambda], \Lambda>0$. For $\lambda>\Lambda$ problem (1.1 $)$ does not have the least energy solutions.

The main purpose of this paper is to establish an existence result for problem (1.1 $)$ which involves a nonzero boundary data ϕ. We show that the presence of $\phi \neq 0$ generates the existence of at least two solutions. Results of this nature are known in the cases where a nonhomogeneous term appears in the nonlinear equation ([7], [6] and [13]).

Under an additional assumption on Q we establish the existence of a constant $\lambda_{*}>0$ such that for $\lambda>\lambda_{*}$ problem (1.1 λ_{λ}) has at least two solutions, at least one solution for $\lambda=\lambda_{*}$ and no solution for $\lambda<\lambda_{*}$. In the case where $\lambda>\lambda_{*}$ the existence of one solution will be established through the method of sub- and supersolutions. A second solution will be obtained via the mountain-pass principle. These existence results are presented in Sections 2,3 and 4 . In these sections we do not impose any restriction on $\|\phi\|_{L^{2}(\partial \Omega)}$. In Section 5 we show that if $\|\phi\|_{L^{2}(\partial \Omega)}$ is of order λ (as small as λ), then problem (1.1_{λ}) has at least two solutions. Section 6 is devoted to the case $\lambda=0$.

In this paper we use standard notations. In a given Banach space X we denote strong convergence by " \rightarrow " and weak convergence by " \rightarrow ". We recall that a C^{1}-functional $\Phi: X \rightarrow \mathbb{R}$ on a Banach space X satisfies the Palais-Smale condition at level $c\left((\mathrm{PS})_{c}\right.$ condition for short) if each sequence $\left\{x_{m}\right\}$ such that

$$
(*) \Phi\left(x_{m}\right) \rightarrow c \quad \text { and } \quad(* *) \Phi^{\prime}\left(x_{m}\right) \rightarrow 0 \text { in } X^{*}
$$

is relatively compact in X. Finally, any sequence satisfying ($*$) and ($* *$) is called a Palais-Smale sequence at level $c\left(\mathrm{a}(\mathrm{PS})_{c}\right.$ sequence for short).

The norms in the Lebesgue spaces $L^{q}(\Omega)$ will be denoted by $\|\cdot\|_{q}$.
2. Sub- and supersolutions. To construct a supersolution to problem (1.1 1_{λ}) we need the solution of the problem

$$
\begin{cases}-\Delta v+\lambda v=0 & \text { in } \Omega, \\ \partial v / \partial \nu=\phi(x) & \text { on } \partial \Omega .\end{cases}
$$

This problem has a unique positive solution $v_{\lambda} \in C^{1, \alpha}(\bar{\Omega})$. Let v_{1} be a solution of $\left(2.1_{\lambda}\right)$ with $\lambda=1$. We set

$$
\lambda_{\circ}=\max _{x \in \Omega} Q(x) v_{1}(x)^{2^{*}-2}+1 .
$$

We then have

$$
\begin{aligned}
& -\Delta v_{1}+\lambda_{\circ} v_{1}-Q(x) v_{1}^{2^{*}-1} \\
& =-\Delta v_{1}+\left(\lambda_{\circ}-Q(x) v_{1}^{2^{*}-2}\right) v_{1} \\
& =-\Delta v_{1}+\left(\max _{x \in \bar{\Omega}} Q(x) v_{1}(x)^{2^{*}-2}+1-Q(x) v_{1}(x)^{2^{*}-2}\right) v_{1} \\
& \geq-\Delta v_{1}+v_{1}=0 .
\end{aligned}
$$

Hence $\bar{u}=v_{1}$ is a supersolution for $\left(1.1_{\lambda_{\circ}}\right)$. Since $\underline{u}=0$ is a subsolution for $\left(1.1_{\lambda_{\circ}}\right)$, there exists a minimal solution $u_{\lambda_{\circ}}$ of $\left(1.1_{\lambda_{\circ}}\right)$ satisfying

$$
\underline{u}<u_{\lambda_{\circ}}<\bar{u} \quad \text { on } \Omega .
$$

Let

$$
\mathcal{S}=\left\{\lambda ;\left(1.1_{\lambda}\right) \text { has a positive solution }\right\}
$$

If $\lambda>\lambda_{\circ}$, then $u_{\lambda_{\circ}}$ is a supersolution to (1.1_{λ}). Indeed, we have

$$
\left\{\begin{array}{l}
-\Delta u_{\lambda_{\circ}}+\lambda u_{\lambda_{\circ}}>-\Delta u_{\lambda_{\circ}}+\lambda_{\circ} u_{\lambda_{\circ}}=Q(x) u_{\lambda_{\circ}}^{2^{*}-1} \quad \text { in } \Omega \\
\partial u_{\lambda_{\circ}} / \partial \nu=\phi(x) \quad \text { on } \partial \Omega
\end{array}\right.
$$

As before, since $\underline{u}=0$ is a subsolution, there exists a minimal solution u_{λ} satisfying

$$
\underline{u}<u_{\lambda}<\bar{u}=u_{\lambda_{0}} .
$$

This argument shows that $\left(\lambda_{\circ}, \infty\right) \subset \mathcal{S}$. We set

$$
\begin{equation*}
\lambda_{*}=\inf _{\lambda \in \mathcal{S}} \lambda \tag{2.1}
\end{equation*}
$$

Repeating the above argument we show that for every $\lambda>\lambda_{*} \operatorname{problem}\left(1.1_{\lambda}\right)$ has a solution. If $u_{\lambda}>0$ is a solution of $\left(1.1_{\lambda}\right)$, then

$$
\int_{\Omega} \lambda u_{\lambda} d x-\int_{\partial \Omega} \phi(x) d S_{x}=\int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} d x
$$

This yields $\lambda>0$ and consequently $\lambda_{*} \geq 0$.
Let $\lambda>\lambda_{*}$ and let u_{λ} be a positive solution of $\left(1.1_{\lambda}\right)$. We now consider the variational problem

$$
\begin{align*}
\mu_{\lambda}=\inf \left\{\int_{\Omega}\left(|\nabla v|^{2}+\lambda v^{2}\right) d x ; v\right. & \in H^{1}(\Omega) \tag{2.2}\\
& \left.\left(2^{*}-1\right) \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-2} v^{2} d x=1\right\}
\end{align*}
$$

Proposition 2.1. If $\lambda>\lambda_{*}$, then the constant μ_{λ} defined by (2.2) satisfies $\mu_{\lambda}>1$. Moreover, problem (2.2) has a minimizer V_{λ} which is the first eigenfunction of the problem

$$
\left\{\begin{array}{l}
-\Delta v+\lambda v=\mu_{\lambda}\left(2^{*}-1\right) Q(x) u_{\lambda}^{2^{*}-2} v \quad \text { in } \Omega \tag{2.3}\\
\partial v / \partial \nu=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

Proof. Since the functional $v \mapsto \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-2} v^{2} d x$ is completely continuous on $H^{1}(\Omega)$, the existence of a minimizer easily follows. We show that $\mu_{\lambda}>1$. Let $\bar{\lambda}>\underline{\lambda}$ and let $u_{\bar{\lambda}}$ and $u_{\underline{\lambda}}$ be the corresponding minimal solutions of $\left(1.1_{\bar{\lambda}}\right)$ and $\left(1.1_{\underline{\lambda}}\right)$, respectively. It follows from the construction of $\left\{u_{\lambda}\right\}$ that $u_{\underline{\lambda}}>u_{\bar{\lambda}}>0$. We then have

$$
\begin{align*}
&-\Delta\left(u_{\underline{\lambda}}-u_{\bar{\lambda}}\right)+\bar{\lambda}\left(u_{\underline{\lambda}}-u_{\bar{\lambda}}\right) \tag{2.4}\\
&>-\Delta\left(u_{\underline{\lambda}}-u_{\bar{\lambda}}\right)+\underline{\lambda} u_{\underline{\lambda}}-\bar{\lambda} u_{\bar{\lambda}}=Q(x)\left(u_{\underline{\lambda}}^{2^{*}-1}-u_{\bar{\lambda}}^{2^{*}-1}\right) \\
&= Q(x)\left[\left(u_{\bar{\lambda}}+u_{\underline{\lambda}}-u_{\bar{\lambda}}\right)^{2^{*}-1}-u_{\bar{\lambda}}^{2^{*}-1}\right] \\
&=\left(2^{*}-1\right) Q(x) u_{\bar{\lambda}}^{2^{*}-2}\left(u_{\underline{\lambda}}-u_{\bar{\lambda}}\right) \\
&+\frac{1}{2}\left(2^{*}-1\right)\left(2^{*}-2\right) Q(x)\left[u_{\bar{\lambda}}+\theta\left(u_{\underline{\lambda}}-u_{\bar{\lambda}}\right)\right]^{2^{*}-3}\left(u_{\underline{\lambda}}-u_{\bar{\lambda}}\right)^{2} \\
&>\left(2^{*}-1\right) Q(x) u_{\bar{\lambda}}^{2^{*}-2}\left(u_{\underline{\lambda}}-u_{\bar{\lambda}}\right)
\end{align*}
$$

for some $0<\theta<1$. Let $V_{\bar{\lambda}}$ be the first eigenfunction of problem (2.3) with $\lambda=\bar{\lambda}$. Since

$$
\frac{\partial}{\partial \nu}\left(u_{\underline{\lambda}}-u_{\bar{\lambda}}\right)=0 \quad \text { on } \partial \Omega
$$

testing (2.4) with $V_{\bar{\lambda}}$ and integrating by parts gives

$$
\int_{\Omega}\left(u_{\underline{\lambda}}-u_{\bar{\lambda}}\right)\left(-\Delta V_{\bar{\lambda}}+\bar{\lambda} V_{\bar{\lambda}}\right) d x>\left(2^{*}-1\right) \int_{\Omega} Q(x) u_{\bar{\lambda}}^{2^{*}-2}\left(u_{\underline{\lambda}}-u_{\bar{\lambda}}\right) V_{\bar{\lambda}} d x
$$

Hence

$$
\mu_{\lambda}\left(2^{*}-1\right) \int_{\Omega} Q(x)\left(u_{\underline{\lambda}}-u_{\bar{\lambda}}\right) u_{\bar{\lambda}} V_{\bar{\lambda}} d x>\left(2^{*}-1\right) \int_{\Omega} Q(x) u_{\bar{\lambda}}^{2^{*}-2}\left(u_{\underline{\lambda}}-u_{\bar{\lambda}}\right) V_{\bar{\lambda}} d x
$$

and the assertion follows.
Let $Q_{*}=\min _{x \in \bar{\Omega}} Q(x)$.
Lemma 2.2. Let u_{λ} be a solution of problem (1.1 $)$ for some $\lambda>0$. Then

$$
\lambda^{(N+2) / 4} \geq Q_{*}^{(N+2) / 4} \frac{\int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} d x+\frac{N+2}{4} \int_{\partial \Omega} \phi(x) d S_{x}}{\int_{\Omega} Q(x) d x}
$$

Proof. Integrating (1.1 $)$ we get

$$
\begin{equation*}
\lambda \int_{\Omega} u_{\lambda} d x=\int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} d x+\int_{\partial \Omega} \phi(x) d S_{x} \tag{2.5}
\end{equation*}
$$

It then follows from the Young inequality that

$$
\begin{aligned}
\lambda \int_{\Omega} u_{\lambda} d x & \leq \lambda Q_{*}^{-1} \int_{\Omega} Q(x) u_{\lambda} d x \\
& \leq \frac{2^{*}-2}{2^{*}-1} \lambda^{\frac{2^{*}-1}{2^{*}-2}} Q_{*}^{-\frac{2^{*}-1}{2^{*}-2}} \int_{\Omega} Q(x) d x+\frac{1}{2^{*}-1} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} d x
\end{aligned}
$$

This combined with (2.5) gives

$$
\frac{2^{*}-2}{2^{*}-1} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} d x+\int_{\partial \Omega} \phi(x) d S_{x} \leq \frac{2^{*}-2}{2^{*}-1} \lambda^{2^{2^{*}-1}} Q_{*}^{-\frac{2^{*}-1}{2^{*}-2}} \int_{\Omega} Q(x) d x
$$

and the result easily follows.
Corollary 2.3. If

$$
\lambda^{(N+2) / 4} \leq Q_{*}^{(N+2) / 4} \frac{\int_{\partial \Omega} \phi(x) d S_{x}}{\int_{\Omega} Q(x) d x}
$$

then problem $\left(1.1_{\lambda}\right)$ has no solution. Consequently, $\lambda_{*}>0$, where λ_{*} is the constant defined by (2.1).

In Proposition 2.4 below, we derive an estimate for $\left\|u_{\lambda}\right\|_{H^{1}}$ in terms of the parameter λ and norms of v_{1}.

Proposition 2.4. Solutions of (1.1_{λ}) for $0<\lambda \leq 1$ satisfy the estimate

$$
\left\|u_{\lambda}\right\|_{H^{1}}^{2} \leq L\left(\left\|v_{1}\right\|_{H^{1}}^{2}+\left\|v_{1}\right\|_{2^{*}}^{2^{*}}+(1-\lambda)\left\|v_{1}\right\|_{2}^{2}+(1-\lambda)^{N / 2}\right)
$$

and for $\lambda>1$ we have

$$
\left\|u_{\lambda}\right\|_{H^{1}}^{2} \leq L_{1}
$$

for some constants $L>0$ and $L_{1}>0$ independent of λ.
Proof. Let u_{λ} be a solution of (1.1 $)_{\lambda}$ and v_{1} be a solution of (2.1 $)$. We set $v=u_{\lambda}-v_{1}$. Then v satisfies

$$
\left\{\begin{array}{l}
-\Delta v+v=Q(x)\left(v+v_{1}\right)^{2^{*}-1}+(1-\lambda)\left(v+v_{1}\right) \quad \text { in } \Omega \tag{2.6}\\
\partial v / \partial \nu=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

First we consider the case $0<\lambda \leq 1$. By the maximum principle $v>0$ on Ω. Testing (2.6) with v we get

$$
\int_{\Omega}\left(|\nabla v|^{2}+v^{2}\right) d x=\int_{\Omega} Q(x)\left(v+v_{1}\right)^{2^{*}-1} v d x+(1-\lambda) \int_{\Omega}\left(v+v_{1}\right) v d x
$$

Since $0<\lambda \leq 1$, it follows from Proposition 2.1 that

$$
\begin{aligned}
\left(2^{*}-1\right) \int_{\Omega} Q(x) & u_{\lambda}^{2^{*}-2} v^{2} d x \\
\leq & \int_{\Omega} Q(x)\left(v+v_{1}\right)^{2^{*}-1} v d x+(1-\lambda) \int_{\Omega}\left(v+v_{1}\right) v d x \\
= & \int_{\Omega} Q(x)\left(v+v_{1}\right)^{2^{*}-2} v^{2} d x+\int_{\Omega} Q(x)\left(v+v_{1}\right)^{2^{*}-2} v v_{1} d x \\
& \quad+(1-\lambda) \int_{\Omega}\left(v+v_{1}\right) v d x
\end{aligned}
$$

Thus

$$
\begin{align*}
&\left(2^{*}-2\right) \int_{\Omega} Q(x)\left(v+v_{1}\right)^{2^{*}-2} v^{2} d x \tag{2.7}\\
& \leq \int_{\Omega} Q(x)\left(v+v_{1}\right)^{2^{*}-2} v v_{1} d x+(1-\lambda) \int_{\Omega}\left(v+v_{1}\right) v d x \\
& \leq \int_{\Omega} Q(x)\left(v+v_{1}\right)^{2^{*}-1} v_{1} d x+(1-\lambda) \int_{\Omega}\left(v+v_{1}\right) v d x \\
& \leq 2^{2^{*}-2} \int_{\Omega} Q(x) v^{2^{*}-1} v_{1} d x+2^{2^{*}-2} \int_{\Omega} Q(x) v_{1}^{2^{*}} d x \\
&+(1-\lambda) \int_{\Omega} v^{2} d x+(1-\lambda) \int_{\Omega} v_{1} v d x \\
& \leq 2^{2^{*}-2} \int_{\Omega} Q(x) v^{2^{*}-1} v_{1} d x+2^{2^{*}-2} \int_{\Omega} Q(x) v_{1}^{2^{*}} d x \\
&+2(1-\lambda) \int_{\Omega} v^{2} d x+(1-\lambda) \int_{\Omega} v_{1}^{2} d x
\end{align*}
$$

Using the Young inequality we get for $\varepsilon>0$,

$$
\begin{align*}
& \int_{\Omega} Q(x) v^{2^{*}-1} v_{1} d x \leq \varepsilon \int_{\Omega} Q(x) v^{2^{*}} d x+C(\varepsilon) \int_{\Omega} Q(x) v_{1}^{2^{*}} d x \tag{2.8}\\
& 2(1-\lambda) \int_{\Omega} v^{2} d x \leq \varepsilon \int_{\Omega} v^{2^{*}} d x+C_{1}(\varepsilon)(1-\lambda)^{2^{*} /\left(2^{*}-2\right)}|\Omega| \tag{2.9}
\end{align*}
$$

for some constants $C(\varepsilon)>0$ and $C_{1}(\varepsilon)>0$. Letting $Q_{\mathrm{M}}=\max _{x \in \bar{\Omega}} Q(x)$ we deduce from (2.7)-(2.9) that

$$
\begin{aligned}
\left(\left(2^{*}-2\right) Q_{*}-2^{2^{*}-2} Q_{\mathrm{M}} \varepsilon-\varepsilon\right) \int_{\Omega} & v^{2^{*}} d x \leq\left(2^{2^{*}-2}+C(\varepsilon)\right) \int_{\Omega} Q(x) v_{1}^{2^{*}} d x \\
& +C_{1}(\varepsilon)(1-\lambda)^{2^{*} /\left(2^{*}-2\right)}|\Omega|+(1-\lambda) \int_{\Omega} v_{1}^{2} d x
\end{aligned}
$$

Choosing $\varepsilon>0$ small enough we derive from this the estimate

$$
\begin{equation*}
\int_{\Omega} v^{2^{*}} d x \leq C\left[\int_{\Omega} v_{1}^{2^{*}} d x+(1-\lambda)^{2^{*} /\left(2^{*}-2\right)}+(1-\lambda) \int_{\Omega} v_{1}^{2} d x\right] \tag{2.10}
\end{equation*}
$$

We now use (2.10) to estimate $\|v\|_{H^{1}}^{2}$ in terms of λ and v_{1}. We have

$$
\begin{aligned}
\int_{\Omega}\left(|\nabla v|^{2}+v^{2}\right) d x= & \int_{\Omega} Q(x)\left(v+v_{1}\right)^{2^{*}-1} v d x+(1-\lambda) \int_{\Omega} v^{2} d x \\
& +(1-\lambda) \int_{\Omega} v_{1} v d x
\end{aligned}
$$

$$
\begin{aligned}
\leq & 2^{2^{*}-2} \int_{\Omega} Q(x) v^{2^{*}} d x+2^{2^{*}-2} \int_{\Omega} Q(x) v_{1}^{2^{*}-1} v d x \\
& +2(1-\lambda) \int_{\Omega} v^{2} d x+(1-\lambda) \int_{\Omega} v_{1}^{2} d x \\
\leq & 2^{2^{*}-3}\left(2^{*}+1\right) \int_{\Omega} Q(x) v^{2^{*}} d x+2^{2^{*}-3}\left(2^{*}-1\right) \int_{\Omega} Q(x) v_{1}^{2^{*}} d x \\
& +2(1-\lambda) \int_{\Omega} v^{2} d x+(1-\lambda) \int_{\Omega} v_{1}^{2} d x
\end{aligned}
$$

The last estimate combined with (2.9) and (2.10) gives

$$
\int_{\Omega}\left(|\nabla v|^{2}+v^{2}\right) d x \leq C_{1}\left[\int_{\Omega} v_{1}^{2^{*}} d x+(1-\lambda) \int_{\Omega} v_{1}^{2} d x+(1-\lambda)^{2^{*} /\left(2^{*}-2\right)}\right]
$$

where $C_{1}>0$ is of the same nature as C in (2.10). Since $\left\|u_{\lambda}\right\|_{H^{1}} \leq\|v\|_{H^{1}}+$ $\left\|v_{1}\right\|_{H^{1}}$ the result in the case $0<\lambda \leq 1$ readily follows. If $\lambda>1$, then $u_{\lambda} \leq u_{1}$ on Ω, where u_{1} is a minimal solution of problem (1.11). Thus

$$
\begin{aligned}
\int_{\Omega}\left(\left|\nabla u_{\lambda}\right|^{2}+u_{\lambda}^{2}\right) d x & \leq \int_{\Omega}\left(\left|\nabla u_{\lambda}\right|^{2}+\lambda u_{\lambda}^{2}\right) d x=\int_{\Omega} Q(x) u_{\lambda}^{2^{*}} d x+\int_{\Omega} \phi(x) u_{\lambda} d S_{x} \\
& \leq Q_{\mathrm{M}} \int_{\Omega} u_{1}^{2^{*}} d x+\int_{\Omega} \phi(x) u_{1} d S_{x}
\end{aligned}
$$

and the result follows.
Proposition 2.5. Problem (1.1 $\lambda_{\lambda^{*}}$) has a solution.
Proof. Let $\lambda_{n} \rightarrow \lambda^{*}$ and $\lambda_{n}>\lambda^{*}$ for each n. By Proposition 2.4 the sequence $\left\{u_{\lambda_{n}}\right\}$ of the corresponding solutions is bounded in $H^{1}(\Omega)$. It is routine to show that up to a subsequence $u_{\lambda_{n}} \rightharpoonup u$ in $H^{1}(\Omega)$ and u is a solution of problem $\left(1.1_{\lambda^{*}}\right)$.
3. Second solution. Let u_{λ} be a minimal solution of $\left(1.1_{\lambda}\right)$. To find the second solution we consider the problem

$$
\left\{\begin{array}{l}
-\Delta v+\lambda v=Q(x)\left[\left(v+u_{\lambda}\right)^{2^{*}-1}-u_{\lambda}^{2^{*}-1}\right] \quad \text { in } \Omega \\
\partial v / \partial \nu=0 \quad \text { on } \partial \Omega, \quad v>0 \quad \text { on } \Omega
\end{array}\right.
$$

where $\lambda>\lambda_{*}$. If v is a solution of $\left(3.1_{\lambda}\right)$, then $U_{\lambda}=u_{\lambda}+v$ is a solution of (1.1 λ_{λ}. A solution of $\left(3.1_{\lambda}\right)$ will be found as a critical point of the functional

$$
\begin{aligned}
J_{\lambda}(v)= & \frac{1}{2} \int_{\Omega}\left(|\nabla v|^{2}+\lambda v^{2}\right) d x-\frac{1}{2^{*}} \int_{\Omega} Q(x)\left(u_{\lambda}+v^{+}\right)^{2^{*}} d x \\
& +\frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}} d x+\int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} v^{+} d x
\end{aligned}
$$

Proposition 3.1. Let $\lambda>\lambda_{*}$. There exist constants $\alpha>0$ and $\varrho>0$ such that $J_{\lambda}(v) \geq \alpha$ for $v \in H^{1}(\Omega)$ with $\|v\|_{H^{1}}=\varrho$.

Proof. We write J_{λ} in the form

$$
\begin{align*}
J_{\lambda}(v)= & \frac{1}{2} \int_{\Omega}\left(|\nabla v|^{2}+\lambda v^{2}\right) d x-\frac{2^{*}-1}{2} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-2}\left(v^{+}\right)^{2} d x \tag{3.1}\\
& -\int_{\Omega} \int_{0}^{v^{+}} Q(x)\left[\left(u_{\lambda}+s\right)^{2^{*}-1}-u_{\lambda}^{2^{*}-1}-\left(2^{*}-1\right) u_{\lambda}^{2^{*}-2} s\right] d s d x
\end{align*}
$$

Since for every $\varepsilon>0$ there exists $C_{\varepsilon}>0$ such that

$$
\left(u_{\lambda}+s\right)^{2^{*}-1}-u_{\lambda}^{2^{*}-1}-\left(2^{*}-1\right) u_{\lambda}^{2^{*}-2} s \leq \varepsilon u_{\lambda}^{2^{*}-2} s+C_{\varepsilon} s^{2^{*}-1}
$$

we get

$$
\begin{aligned}
J_{\lambda}(v) \geq & \frac{1}{2} \int_{\Omega}\left[|\nabla v|^{2}+\lambda v^{2}-\left(2^{*}-1\right) Q(x) u_{\lambda}^{2^{*}-2}\left(v^{+}\right)^{2}\right] d x \\
& -\int_{\Omega} Q(x)\left[\frac{\varepsilon}{2} u_{\lambda}^{2^{*}-2}\left(v^{+}\right)^{2}+C_{\varepsilon} \frac{\left(v^{+}\right)^{2^{*}}}{2^{*}}\right] d x
\end{aligned}
$$

Hence by Proposition 2.1 we have

$$
J_{\lambda}(v) \geq \frac{1}{2}\left(1-\frac{2^{*}-1-\varepsilon}{\mu_{\lambda}\left(2^{*}-1\right)}\right) \int_{\Omega}\left(|\nabla v|^{2}+\lambda v^{2}\right) d x-\frac{C_{\varepsilon}}{2^{*}} \int_{\Omega} Q(x)\left(v^{+}\right)^{2^{*}} d x
$$

We choose $0<\varepsilon<2^{*}-1$. An application of the Sobolev inequality completes the proof.

Lemma 3.2. Let $\left\{u_{m}\right\} \subset H^{1}(\Omega)$ be a Palais-Smale sequence for J_{λ}. Then $\left\{u_{m}\right\}$ is bounded in $H^{1}(\Omega)$.

Proof. We compute

$$
\begin{align*}
& J_{\lambda}\left(u_{m}\right)-\frac{1}{2}\left\langle J_{\lambda}^{\prime}\left(u_{m}\right), u_{m}\right\rangle \tag{3.2}\\
= & -\frac{1}{2^{*}} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}} d x+\frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}} d x+\int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m}^{+} d x \\
& +\frac{1}{2} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}-1} u_{m} d x-\frac{1}{2} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m} d x \\
= & \frac{1}{N} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}} d x-\frac{1}{2} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}-1} u_{m}^{-} d x \\
& -\frac{1}{2} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}-1} u_{\lambda} d x \\
& +\frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}} d x+\int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m}^{+} d x-\frac{1}{2} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m} d x
\end{align*}
$$

$$
\begin{aligned}
= & \frac{1}{N} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}} d x-\frac{1}{2} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}-1} u_{\lambda} d x \\
& -\frac{1}{2} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m}^{-} d x+\frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}} d x+\int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m}^{+} d x \\
& -\frac{1}{2} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m} d x \\
= & \frac{1}{N} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}} d x-\frac{1}{2} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}-1} u_{\lambda} d x \\
& +\frac{1}{2} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m}^{+} d x+\frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}} d x
\end{aligned}
$$

By the Young inequality given $\delta>0$ we choose $C(\delta)>0$ so that

$$
\begin{align*}
& \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}-1} u_{\lambda} d x \tag{3.3}\\
& \quad \leq \delta \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}} d x+C(\delta) \int_{\Omega} Q(x) u_{\lambda}^{2^{*}} d x
\end{align*}
$$

Taking $\delta>0$ small enough and using the fact that $\left\{u_{m}\right\}$ is a $(\mathrm{PS})_{c}$ sequence we derive from (3.1) and (3.3) that

$$
\begin{equation*}
\int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}\right)^{2^{*}} d x \leq C_{1}+C_{2}\left\|u_{m}\right\|_{H^{1}} \tag{3.4}
\end{equation*}
$$

for every $m \geq 1$. On the other hand, we have

$$
\begin{aligned}
J_{\lambda}\left(u_{m}\right) & -\frac{1}{2^{*}}\left\langle J_{\lambda}^{\prime}\left(u_{m}\right), u_{m}\right\rangle \\
= & \frac{1}{N} \int_{\Omega}\left(\left|\nabla u_{m}\right|^{2}+\lambda u_{m}^{2}\right) d x+\frac{1}{2^{*}} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}-1}\left(u_{m}-u_{m}^{+}-u_{\lambda}\right) d x \\
& +\frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}} d x+\int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m}^{+} d x-\frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m} d x \\
= & \frac{1}{N} \int_{\Omega}\left(\left|\nabla u_{m}\right|^{2}+\lambda u_{m}^{2}\right) d x-\frac{1}{2^{*}} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}-1} u_{\lambda} d x \\
& -\frac{1}{2^{*}} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}-1} u_{m}^{-} d x+\frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}} d x \\
& +\int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m}^{+} d x-\frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m} d x
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{N} \int_{\Omega}\left(\left|\nabla u_{m}\right|^{2}+\lambda u_{m}^{2}\right) d x-\frac{1}{2^{*}} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}-1} u_{\lambda} d x \\
& +\frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}} d x+\left(1-\frac{1}{2^{*}}\right) \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m}^{+} d x d x \\
\geq & \frac{1}{N} \int_{\Omega}\left(\left|\nabla u_{m}\right|^{2}+\lambda u_{m}^{2}\right) d x-\frac{1}{2^{*}} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}-1} u_{\lambda} d x .
\end{aligned}
$$

From this we deduce, using the Young inequality, that

$$
\begin{equation*}
\left\|u_{m}\right\|_{H^{1}}^{2} \leq C_{3} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}^{+}\right)^{2^{*}} d x+C_{4}\left\|u_{m}\right\|_{H^{1}}+C_{5} \tag{3.5}
\end{equation*}
$$

The assertion follows from (3.3) and (3.5).
To proceed further we set

$$
Q_{\mathrm{m}}=\max _{x \in \partial \Omega} Q(x)
$$

We recall that Q_{M} is defined by $Q_{\mathrm{M}}=\max _{x \in \bar{\Omega}} Q(x)$. By S we denote the best Sobolev constant, that is,

$$
S=\inf _{u \in D^{1,2}\left(\mathbb{R}^{N}\right)-\{0\}} \frac{\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x}{\left(\int_{\mathbb{R}^{N}}|u|^{2^{*}} d x\right)^{2 / 2^{*}}}
$$

where $D^{1,2}\left(\mathbb{R}^{N}\right)$ is the Sobolev space defined by $D^{1,2}\left(\mathbb{R}^{N}\right)=\{u ; \nabla u \in$ $\left.L^{2}\left(\mathbb{R}^{N}\right), u \in L^{2^{*}}\left(\mathbb{R}^{N}\right)\right\}$. The best Sobolev constant is achieved by

$$
U(x)=\frac{c_{N}}{\left(N(N-2)+|x|^{2}\right)^{(N-2) / 2}}
$$

where $c_{N}>0$ is a constant depending on N. The function U, called an instanton, satisfies the equation

$$
-\Delta U=U^{2^{*}-1} \quad \text { in } \mathbb{R}^{N}
$$

We have $\int_{\mathbb{R}^{N}}|\nabla U|^{2} d x=\int_{\mathbb{R}^{N}} U^{2^{*}} d x=S^{N / 2}$. For future use we introduce the notation

$$
U_{\varepsilon, y}=\varepsilon^{-(N-2) / 2} U\left(\frac{x-y}{\varepsilon}\right), \quad y \in \mathbb{R}^{N}, \varepsilon>0
$$

We set

$$
S_{\infty}=\min \left(\frac{S^{N / 2}}{2 N Q_{\mathrm{m}}^{(N-2) / 2}}, \frac{S^{N / 2}}{N Q_{\mathrm{M}}^{(N-2) / 2}}\right)
$$

Proposition 3.3. Let $\lambda>\lambda_{*}$. Suppose that

$$
\begin{gather*}
J_{\lambda}\left(u_{m}\right) \rightarrow c<S_{\infty} \tag{3.6}\\
J_{\lambda}^{\prime}\left(u_{m}\right) \rightarrow 0 \quad \text { in } H^{-1}(\Omega) . \tag{3.7}
\end{gather*}
$$

Then up to a subsequence $u_{m} \rightharpoonup v \neq 0$ and v is a solution of problem (3.1 $)_{\lambda}$.

Proof. By Lemma 3.2, $\left\{u_{m}\right\}$ is bounded in $H^{1}(\Omega)$. Hence we may assume that $u_{m} \rightharpoonup v$ in $H^{1}(\Omega), u_{m} \rightarrow u$ in $L^{q}(\Omega)$ for each $2 \leq q<2^{*}$ and $u_{m}(x) \rightarrow$ $v(x)$ a.e. on Ω. Testing $J_{\lambda}^{\prime}\left(u_{m}\right) \rightarrow 0$ with u_{m}^{-}we get

$$
\int_{\Omega}\left(\left|\nabla u_{m}^{-}\right|^{2}+\lambda\left(u_{m}^{-}\right)^{2}\right) d x=o(1) .
$$

Therefore we may assume that $u_{m} \geq 0$ on Ω. We now show that $v \neq 0$. Arguing by contradiction assume that $v \equiv 0$. By the P. L. Lions [12] concen-tration-compactness principle there exist sequences of points $\left\{x_{j}\right\} \subset \mathbb{R}^{N}$ and numbers $\left\{\nu_{j}\right\},\left\{\mu_{j}\right\} \subset(0, \infty)$ such that

$$
\left|u_{m}\right|^{2^{*}} \stackrel{*}{\rightharpoonup} \sum_{j} \nu_{j} \delta_{x_{j}} \quad \text { and } \quad\left|\nabla u_{m}\right|^{2} \xrightarrow{*} \sum_{j} \mu_{j} \delta_{x_{j}}
$$

in \mathcal{M}, where \mathcal{M} is a space of measures. Moreover,

$$
S \nu_{j}^{2 / 2^{*}} \leq \mu_{j} \quad \text { if } x_{j} \in \Omega \quad \text { and } \quad S \frac{\nu_{j}^{2 / 2^{*}}}{2^{2 / N}} \leq \mu_{j} \quad \text { if } x_{j} \in \partial \Omega
$$

Testing (3.7) with $u_{m} \phi_{\delta}$, where $\phi_{\delta}, \delta>0$, is a family of functions concentrating at x_{j} as $\delta \rightarrow 0$, we deduce that $\mu_{j} \leq Q\left(x_{j}\right) \nu_{j}$ for every j. If $\nu_{j}>0$ and $x_{j} \in \Omega$, then $\nu_{j} \geq S^{N / 2} / Q\left(x_{j}\right)^{N / 2}$, and if $x_{j} \in \partial \Omega$, then $\nu_{j} \geq S^{N / 2} / 2 Q\left(x_{j}\right)^{N / 2}$. By the Brézis-Lieb lemma we have

$$
\begin{aligned}
J_{\lambda}\left(u_{m}\right)- & \frac{1}{2}\left\langle J_{\lambda}^{\prime}\left(u_{m}\right), u_{m}\right\rangle \\
= & \frac{1}{N} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}\right)^{2^{*}} d x-\frac{1}{2} \int_{\Omega} Q(x)\left(u_{\lambda}+u_{m}\right)^{2^{*}-1} u_{\lambda} d x \\
& +\frac{1}{2^{*}} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}} d x+\frac{1}{2} \int_{\Omega} Q(x) u_{\lambda}^{2^{*}-1} u_{m} d x+o(1) \\
= & \frac{1}{N} \sum_{x_{j} \in \partial \Omega} Q\left(x_{j}\right) \nu_{j}+\frac{1}{N} \sum_{x_{j} \in \Omega} Q\left(x_{j}\right) \nu_{j}+o(1) \\
\geq & \frac{1}{2 N} \sum_{x_{j} \in \partial \Omega} \frac{S^{N / 2}}{Q\left(x_{j}\right)^{(N-2) / 2}}+\frac{1}{N} \sum_{x_{j} \in \Omega} \frac{S^{N / 2}}{Q\left(x_{j}\right)^{(N-2) / 2}}+o(1)
\end{aligned}
$$

If $Q_{\mathrm{M}}>2^{2 /(N-2)} Q_{\mathrm{m}}$, then letting $m \rightarrow \infty$ we derive that $c \geq S^{N / 2} / N Q_{\mathrm{M}}^{N-2 / 2}$, and if $Q_{\mathrm{M}} \leq 2^{2 /(N-2)} Q_{\mathrm{m}}$, then $c \geq S^{N / 2} / 2 N Q_{\mathrm{m}}^{(N-2) / 2}$. In both cases we obtain a contradiction.
4. Main result. In order to apply the mountain-pass theorem we set

$$
c=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} J_{\lambda}(\gamma(t))
$$

where

$$
\Gamma=\left\{\gamma \in C\left([0,1], H^{1}(\Omega)\right) ; \gamma(0), \gamma(1)=t_{0}\right\}
$$

and the constant t_{\circ} is chosen so large that $J_{\lambda}\left(t t_{\circ}\right) \leq 0$ for $t \geq 1$. It follows from Proposition 3.1 that $c>0$.

We need the following relations for $U_{\varepsilon, y}$ with $y \in \partial \Omega$ (see [1] or [14]):

$$
\begin{align*}
& \frac{\int_{\Omega}\left(\left|\nabla U_{\varepsilon, y}\right|^{2}+\lambda U_{\varepsilon, y}^{2}\right) d x}{\left(\int_{\Omega} U_{\varepsilon, y}^{2^{*}} d x\right)^{2 / 2^{*}}} \tag{4.1}\\
& \quad \leq \begin{cases}S / 2^{2 / N}-A_{N} H(y) \varepsilon \log \frac{1}{\varepsilon}+a_{N} \lambda \varepsilon+O(\varepsilon)+o(\lambda \varepsilon) & \text { if } N=3 \\
S / 2^{2 / N}-A_{N} H(y) \varepsilon+a_{N} \lambda \varepsilon^{2} \log \frac{1}{\varepsilon}+O\left(\varepsilon^{2} \log \frac{1}{\varepsilon}\right) \\
\quad+o\left(\lambda \varepsilon^{2} \log \frac{1}{\varepsilon}\right) & \text { if } N=4 \\
S / 2^{2 / N}-A_{N} H(y) \varepsilon+a_{N} \lambda \varepsilon^{2}+O\left(\varepsilon^{2}\right)+o\left(\lambda \varepsilon^{2}\right) & \text { if } N \geq 5\end{cases}
\end{align*}
$$

where $H(y)$ denotes the mean curvature of $\partial \Omega$ at y.
It is known that

$$
\begin{equation*}
c \leq c^{*}=\inf _{u \in H^{1}(\Omega), u \neq 0} \sup _{t \geq 0} J_{\lambda}(t u) \tag{4.2}
\end{equation*}
$$

THEOREM 4.1. Suppose that $Q_{\mathrm{M}} \geq 2^{2 /(N-2)} Q_{\mathrm{m}}$ and that at some point $y \in \partial \Omega$ with $H(y)>0$ we have

$$
\begin{equation*}
|Q(x)-Q(y)|=o(|x-y|) \quad \text { for } x \text { close to } y \tag{4.3}
\end{equation*}
$$

Then problem $\left(3.1_{\lambda}\right)$ has a solution for every $\lambda>0$.
Proof. It follows from (4.2) that

$$
c \leq c^{*} \leq \frac{1}{N} \frac{\left(\int_{\Omega}\left(\left|\nabla U_{\varepsilon, y}\right|^{2}+\lambda U_{\varepsilon, y}^{2}\right) d x\right)^{N / 2}}{\left(\int_{\Omega} U_{\varepsilon, y}^{2^{*}} d x\right)^{(N-2) / 2}}
$$

Thus (4.1) and (4.3) yield

$$
c<\frac{S^{N / 2}}{2 N Q_{\mathrm{m}}^{(N-2) / 2}}
$$

for $\varepsilon>0$ sufficiently small. By Proposition 3.3 problem (3.1 ${ }_{\lambda}$) has a solution.

Corollary 4.2. Under the assumptions of Theorem 4.1 there exists $\lambda^{*}>0$ such that problem (1.1 $)$ has at least two solutions for $\lambda>\lambda^{*}$.
5. Existence of solutions for small boundary data. Lemma 2.2 (see also Corollary 2.3) provides the estimate of λ^{*} in terms of $\int_{\partial \Omega} \phi d S_{x}$. For $\lambda<\lambda^{*}$ problem (1.1 $)$ does not have a solution for a given ϕ. In this section we establish the existence of a solution of problem (1.1 $)$ for every $\lambda>0$ if $\int_{\partial \Omega} \phi d S_{x}$ is small. Obviously, the size of $\int_{\partial \Omega} \phi d S_{x}$ will depend on λ.

Let

$$
I_{\lambda}(u)=\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+\lambda u^{2}\right) d x-\frac{1}{2^{*}} \int_{\Omega} Q(x)|u|^{2^{*}} d x-\int_{\partial \Omega} u \phi(x) d S_{x}
$$

for $u \in H^{1}(\Omega)$ be a variational functional corresponding to problem (1.1 $)_{\lambda}$. In what follows we shall use the Sobolev inequality

$$
\left(\int_{\Omega}|u|^{2^{*}} d x\right)^{2 / 2^{*}} \leq C_{s} \int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x
$$

for $u \in H^{1}(\Omega)$, where $C_{s}>0$ is a constant. Letting $C_{s}(\lambda)=C_{s}$ for $\lambda \geq 1$ and $C_{s}(\lambda)=C_{s} / \lambda$ for $0<\lambda<1$, we can write this inequality in the form

$$
\left(\int_{\Omega}|u|^{2^{*}} d x\right)^{2 / 2^{*}} \leq C_{s}(\lambda) \int_{\Omega}\left(|\nabla u|^{2}+\lambda u^{2}\right) d x
$$

Proposition 5.1. Given $0<\lambda<\infty$ there exists a constant $\varrho_{1}=\varrho_{1}(\lambda)$ such that for a boundary data ϕ satisfying $\|\phi\|_{L^{2}(\partial \Omega)} \leq \varrho_{1}$ problem (1.1 $)$ has a solution. (If $\lambda \geq 1$ the choice of ϱ_{1} can be made independent of λ.)

Proof. A solution will be found as a local minimizer of I_{λ}. We commence by estimating I_{λ} from below:

$$
\begin{aligned}
I_{\lambda}(u) \geq & \frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+\lambda u^{2}\right) d x-\frac{C_{s}(\lambda)^{2^{*} / 2}}{2^{*}} Q_{\mathrm{M}}\left(\int_{\Omega}\left(|\nabla u|^{2}+\lambda u^{2}\right) d x\right)^{2^{*} / 2} \\
& -K\left(\int_{\partial \Omega} \phi^{2} d S_{x}\right)^{1 / 2}\left(\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x\right)^{1 / 2}
\end{aligned}
$$

where $K>0$ is the best constant for the embedding of $H^{1}(\Omega)$ into $L^{2}(\partial \Omega)$, that is,

$$
K=\inf \left\{\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x ; u \in H^{1}(\Omega), \int_{\partial \Omega} u^{2} d S_{x}=1\right\}
$$

Letting $\|u\|_{\lambda}^{2}=\int_{\Omega}\left(|\nabla u|^{2}+\lambda u^{2}\right) d x$ we can write this estimate as

$$
I_{\lambda}(u) \geq\|u\|_{\lambda}\left(\|u\|_{\lambda}-\frac{C_{s}(\lambda)^{2^{*} / 2}}{2^{*}} Q_{\mathrm{M}}\|u\|_{\lambda}^{2^{*-1}}-K(\lambda)\|\phi\|_{L^{2}(\partial \Omega)}\right)
$$

where $K(\lambda)=K$ for $\lambda \geq 1$ and $K(\lambda)=K / \lambda$ for $0<\lambda<1$. First we choose $\varrho>0$ such that

$$
\varrho-\frac{C_{s}(\lambda)^{2^{*} / 2}}{2^{*}} Q_{\mathrm{M}} \varrho^{2^{*}-1} \geq \frac{3}{4} \varrho
$$

If $\|\phi\|_{L^{2}(\partial \Omega)} \leq \varrho / K(\lambda)=\varrho_{1}$, then

$$
\begin{equation*}
I_{\lambda}(u) \geq \varrho^{2} / 4 \quad \text { for } \quad\|u\|_{\lambda}=\varrho \tag{5.1}
\end{equation*}
$$

Testing $I_{\lambda}(u)$ with a constant function $u=t$ we get

$$
I_{\lambda}(t)=\frac{|\Omega|}{2} t^{2}-\frac{t^{2^{*}}}{2^{*}} \int_{\Omega} Q(x) d x-t \int_{\partial \Omega} \phi(x) d S_{x}<0
$$

for sufficiently small t. Therefore

$$
\begin{equation*}
c_{1}=\inf _{\|u\|_{\lambda}=\varrho} I_{\lambda}(u)<0 \tag{5.2}
\end{equation*}
$$

It follows from (5.1), (5.2) and the Ekeland variational principle that there exists a minimizing sequence $\left\{u_{m}\right\}$ satisfying

$$
I_{\lambda}\left(u_{m}\right) \rightarrow c_{1} \quad \text { and } \quad I_{\lambda}^{\prime}\left(u_{m}\right) \rightarrow 0 \quad \text { in } H^{-1}(\Omega)
$$

It is clear that $\left\{u_{m}\right\}$ is bounded in $H^{1}(\Omega)$. Thus we may assume that $u_{m} \rightharpoonup u$ in $H^{1}(\Omega), u_{m} \rightarrow u$ in $L^{p}(\Omega)$ for $2 \leq p<2^{*}$ and $u_{m} \rightarrow a$ a.e. on Ω. Moreover, u is a solution of $\left(1.1_{\lambda}\right)$. We now observe that $\|u\|_{\lambda} \leq \varrho$ and $I_{\lambda}(u) \geq c_{1}$. Since $\left\langle I_{\lambda}^{\prime}(u), u\right\rangle=0$, we see that

$$
\left(\frac{1}{2}-\frac{1}{2^{*}}\right) \int_{\Omega}\left(|\nabla u|^{2}+\lambda u^{2}\right) d x-\left(1-\frac{1}{2^{*}}\right) \int_{\Omega} \phi u d S_{x} \geq c_{1}
$$

The weak lower semicontinuity of $\int_{\Omega}|\nabla u|^{2} d x$ yields

$$
\left(\frac{1}{2}-\frac{1}{2^{*}}\right) \int_{\Omega}\left(|\nabla u|^{2}+\lambda u^{2}\right) d x-\left(1-\frac{1}{2^{*}}\right) \int_{\Omega} \phi u d S_{x} \leq c_{1}
$$

and consequently $I_{\lambda}(u)=c_{1}$.
To prove the existence of a second solution we use the method of Section 3 . In what follows we assume that the boundary data ϕ satisfies

$$
\begin{equation*}
\|\phi\|_{L^{2}(\partial \Omega)}<\varrho_{1}=\frac{\varrho}{4 K(\lambda)} \tag{5.3}
\end{equation*}
$$

This condition on ϕ guarantees the existence of a local minimizer v_{λ} of the functional I_{λ}. As in Section 3 we consider the problem

$$
\left\{\begin{array}{l}
-\Delta v+\lambda v=Q(x)\left[\left(v+v_{\lambda}\right)^{2^{*}-1}-v_{\lambda}^{2^{*}-1}\right] \quad \text { in } \Omega \\
\partial v / \partial \nu=0
\end{array}\right.
$$

If problem $\left(5.3_{\lambda}\right)$ has a solution w, then $w+v_{\lambda}$ is a solution of problem $\left(1.1_{\lambda}\right)$. Let $\widetilde{I}_{\lambda}(v)$ be a variational functional corresponding to problem (5.3 ${ }_{\lambda}$). We now consider the variational problem

$$
\begin{align*}
\widetilde{\mu}_{\lambda}=\inf \left\{\int_{\Omega}\left(|\nabla v|^{2}+\lambda v^{2}\right) d x ; v\right. & \in H^{1}(\Omega) \tag{5.4}\\
& \left.\left(2^{*}-2\right) \int_{\Omega} Q(x) v_{\lambda}^{2^{*}-1} v^{2} d x=1\right\}
\end{align*}
$$

Proposition 5.2. Problem (5.4) has a minimizer w_{λ} which is the first eigenfunction of the eigenvalue problem

$$
\left\{\begin{array}{l}
-\Delta v+\lambda v=\widetilde{\mu}_{\lambda}\left(2^{*}-1\right) Q(x) v_{\lambda}^{2^{*}-2} v \quad \text { in } \Omega, \\
\partial v / \partial \nu=0 \quad \text { on } \partial \Omega .
\end{array}\right.
$$

Proof. As in the proof of Proposition 2.1 we obtain the existence of a minimizer w_{λ}. To show that $\widetilde{\mu}_{\lambda}>1$ we take $\underline{\lambda}<\bar{\lambda}=\lambda$, where $\underline{\lambda}$ is chosen so that

$$
\|\phi\|_{L^{2}(\partial \Omega)}<\frac{\varrho}{4 K(\underline{\lambda})}<\frac{\varrho}{4 K(\lambda)}
$$

Hence I_{λ} and $I_{\bar{\lambda}}$ have local minimizers v_{λ} and $v_{\bar{\lambda}}$, respectively. Let z_{λ} and $z_{\bar{\lambda}}$ be the minimal solutions of (1.1 $)$ satisfying $0 \leq z_{\underline{\lambda}} \leq v_{\underline{\lambda}}$ and $z_{\bar{\lambda}} \leq v_{\bar{\lambda}}$. Repeating estimates (2.2) with $u_{\underline{\lambda}}$ and $u_{\bar{\lambda}}$ replaced by $z_{\underline{\lambda}}$ and $z_{\bar{\lambda}}$ we derive that $\widetilde{\mu}_{\lambda}>1$.

This allows us to show that the variational functional \widetilde{J}_{λ} for problem (5.3) has a mountain-pass geometry. It is also easy to see that Proposition 3.3 continues to hold for the functional \widetilde{J}_{λ} for every $\lambda>0$.

We are now in a position to formulate the following existence result:
Theorem 5.3. Suppose that ϕ satisfies (5.3).
(i) If $Q_{\mathrm{M}} \leq 2^{2 /(N-2)} Q_{\mathrm{m}}$ and at some point $y \in \partial \Omega$ the function Q satisfies condition (4.3) of Theorem 4.1, then problem (5.3 ${ }_{\lambda}$) has a solution.
(ii) If $Q_{\mathrm{M}}>2^{2 /(N-2)} Q_{\mathrm{m}}$, then there exists a $\tilde{\lambda}>0$ such that problem (5.3 $)_{\lambda}$ has a solution for $\lambda<\widetilde{\lambda}$.

The proof of part (i) is identical to that of Theorem 4.1. To establish part (ii) we observe that $S_{\infty}=S^{N / 2} / N Q_{\mathrm{M}}^{(N-2) / 2}$. Testing \widetilde{I}_{λ} with a constant function $u=1$, we see that the mountain-pass level is below S_{∞} if λ is small.
6. Case $\lambda=0$. If $\lambda=0$, then problem (1.10) cannot have a solution. Indeed, integrating equation (1.10) we get

$$
-\int_{\partial \Omega} \phi(x) d S_{x}=\int_{\Omega} Q(x) u^{2^{*}-1} d x
$$

which is impossible. Therefore we assume throughout this section that
(Q) $\quad Q$ changes sign on Ω and $\int_{\Omega} Q(x) d x<0$.

Since 0 is the first eigenvalue of the linear part of equation (1.1 $)_{\lambda}$ with the Neumann boundary conditions, it is convenient to decompose $H^{1}(\Omega)=$ $\mathbb{R} \oplus V$, where the space V consists of functions v satisfying $\int_{\Omega} v(x) d x=0$.

Having this decomposition we define an equivalent norm in $H^{1}(\Omega)$ by

$$
\|u\|_{V}^{2}=t^{2}+\int_{\Omega}|\nabla v|^{2} d x
$$

Lemma 6.1. Suppose that $Q(x)$ satisfies (\mathbf{Q}). Then there exists a constant $\eta>0$ such that for each $t \in \mathbb{R}$ and $v \in V$ the inequality

$$
\left(\int_{\Omega}|\nabla v|^{2} d x\right)^{1 / 2} \leq \eta|t|
$$

implies

$$
\int_{\Omega} Q(x)|t+v(x)|^{2^{*}} d x \leq \frac{|t|^{2^{*}}}{2} \int_{\Omega} Q(x) d x
$$

For the proof we refer to [4].
Proposition 6.2. Suppose that $Q(x)$ satisfies (\mathbf{Q}). Then there exist constants $\beta>0, \beta_{\circ}>0$ and $\varrho>0$ such that

$$
\begin{equation*}
I_{\circ}(u) \geq \beta \quad \text { for }\|u\|_{V}=\varrho \quad \text { and } \quad\|\phi\|_{L^{2}(\partial \Omega)} \leq \beta_{\circ} \tag{6.1}
\end{equation*}
$$

Proof. We write

$$
\begin{aligned}
I_{\circ}(u) & =\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{1}{2^{*}} \int_{\Omega} Q(x)|u|^{2^{*}} d x-\int_{\partial \Omega} u \phi(x) d S_{x} \\
& =\bar{I}_{\circ}(u)-\int_{\partial \Omega} u \phi(x) d S_{x}
\end{aligned}
$$

We now consider two cases: (i) $\|\nabla v\|_{2} \leq \eta|t|$ and (ii) $\|\nabla v\|_{2}>\eta|t|$. If $\|\nabla v\|_{2} \leq \eta|t|$ and $\|\nabla v\|_{2}^{2}+t^{2}=\varrho^{2}$, then $t^{2} \geq \varrho^{2} /\left(1+\eta^{2}\right)$. It then follows from Lemma 6.1 that

$$
\int_{\Omega} Q(x)|t+v(x)|^{2^{*}} d x \leq \frac{|t|^{2^{*}}}{2} \int_{\Omega} Q(x) d x=-|t|^{2^{*}} \alpha
$$

where $\alpha=-\frac{1}{2} \int_{\Omega} Q(x) d x>0$. Hence we have

$$
\bar{I}_{\circ}(u) \geq \frac{|t|^{2^{*}}}{2^{*}} \alpha \geq \frac{\alpha \varrho^{2^{*}}}{2^{*}\left(1+\eta^{2}\right)^{2^{*} / 2}}
$$

In case (ii) we have $\|\nabla u\|_{V} \leq\|\nabla v\|_{2}\left(1+1 / \eta^{2}\right)^{1 / 2}$. Thus applying the Sobolev inequality we get

$$
\int_{\Omega} Q(x)|u|^{2^{*}} d x \leq C_{1}\|u\|_{V}^{2^{*}} \leq C_{1}\left(1+1 / \eta^{2}\right)^{2^{*} / 2}\|\nabla v\|_{2}^{2^{*}}
$$

for some constant $C_{1}>0$. Hence

$$
\bar{I}_{\circ}(u) \geq \frac{1}{2}\|\nabla v\|_{2}^{2}-C_{1}\left(1+1 / \eta^{2}\right)^{2^{*} / 2}\|\nabla v\|_{2}^{2^{*}}
$$

Taking $\|\nabla v\|_{2} \leq \varrho$ small enough we deduce from the above inequality the estimate

$$
\bar{I}_{\circ}(u) \geq \frac{1}{4}\|\nabla v\|_{2}^{2}
$$

On the other hand, if $\|u\|_{V}=\varrho$, then $\varrho \leq\left(\|\nabla v\|_{2} / \eta\right)\left(1+\eta^{2}\right)^{1 / 2}$. Hence

$$
\bar{I}_{\circ}(u) \geq \frac{\eta^{2} \varrho^{2}}{4\left(1+\eta^{2}\right)}
$$

Taking

$$
\beta_{1}=\min \left(\frac{\eta^{2} \varrho^{2}}{4\left(1+\eta^{2}\right)}, \frac{\alpha \varrho^{2^{*}}}{2^{*}\left(1+\eta^{2}\right)^{2^{*} / 2}}\right)
$$

we obtain the following estimate for $\|u\|_{V}=\varrho$:

$$
I_{\circ}(u) \geq \beta_{1}-C_{2}\|\phi\|_{L^{2}(\partial \Omega)}\|u\|_{V}=\beta_{1}-C_{2} \varrho\|\phi\|_{L^{2}(\partial \Omega)}
$$

for some constant $C_{2}>0$. We now choose $\|\phi\|_{L^{2}(\partial \Omega)}$ so that

$$
\|\phi\|_{L^{2}(\partial \Omega)} \leq \frac{\beta_{1}}{2 C_{2} \varrho}
$$

This gives the desired estimate for $I_{\circ}(u)$ with $\beta=\beta_{1} / 2$ and $\beta_{\circ}=\beta_{1} / 2 C_{2} \varrho$.
Testing $I_{\circ}(u)$ with a constant function $u=t$, with t sufficiently small, we get $I_{\circ}(t)<0$. Hence

$$
c_{2}=\inf _{\|u\|_{V} \leq \varrho} I_{\circ}(u)<0
$$

Repeating the argument used in the proof of Proposition 5.1 we obtain
Proposition 6.3. Suppose that (\mathbf{Q}) holds. Then there exists a constant $\beta_{\circ}>0$ such that for ϕ satisfying $\|\phi\|_{L^{2}(\partial \Omega)} \leq \beta_{\circ}$ problem (1.10) admits a solution which is a local minimizer of $I_{\circ}(u)$.

REFERENCES

[1] Adimurthi and G. Mancini, Geometry and topology of the boundary in the critical Neumann problem, J. Reine Angew. Math. 456 (1994), 1-18.
[2] Adimurthi, G. Mancini and S. L. Yadava, The role of the mean curvature in semilinear Neumann problem involving critical exponent, Comm. Partial Differential Equations 20 (1995), 591-631.
[3] Adimurthi, F. Pacella and S. L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal. 113 (1993), 318-350.
[4] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA 2 (1995), 553-572.
[5] H. Brézis and E. Lieb, A relation between point convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
[6] D. M. Cao, G. B. Li and H. S. Zhou, Multiple solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), 1177-1191.
[7] D. M. Cao and H. S. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in \mathbb{R}^{N}, ibid. 126 (1996), 443-463.
[8] J. Chabrowski, Mean curvature and least energy solutions for the critical Neumann problem with weight, Boll. Un. Mat. Ital. Sez. B (8) 5 (2002), 715-733.
[9] J. Chabrowski and M. Willem, Least energy solutions of a critical Neumann problem with a weight, Calc. Var. Partial Differential Equations 15 (2002), 421-431.
[10] Y. B. Deng and S. J. Peng, Existence of multiple positive solutions for inhomogeneous Neumann problem, J. Math. Anal. Appl. 271 (2002), 155-174.
[11] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, 1983.
[12] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Rev. Math. Iberoamericana 1 (1985), no. 1, 145-201, and no. 2, 45-120.
[13] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 243-261.
[14] X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (1991), 283-310.

Department of Mathematics
University of Queensland
St. Lucia 4072, Qld, Australia
E-mail: jhc@maths.uq.edu.au

[^0]: 2000 Mathematics Subject Classification: 35B33, 35J65, 35Q55.
 Key words and phrases: Neumann problem, critical Sobolev exponent, multiple solutions.

