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GALOIS COVERINGS AND SPLITTING PROPERTIES OF
THE IDEAL GENERATED BY HALFLINES

BY

PIOTR DOWBOR (Toruń)

Abstract. Given a locally bounded k-category R and a group G ⊆ Autk(R) acting
freely on R we study the properties of the ideal generated by a class of indecomposable
locally finite-dimensional modules called halflines (Theorem 3.3). They are applied to
prove that under certain circumstances the Galois covering reduction to stabilizers, for
the Galois covering F : R→ R/G, is strictly full (Theorems 1.5 and 4.2).

Introduction. The Galois coverings technique is one of the most effi-
cient tools of the modern representation theory, used successfully in solu-
tion of many important theoretical and classification problems. Originally
invented for studying algebras of finite representation type [23, 17, 3, 19], the
covering method was adopted for the representation infinite case [13, 12, 14]
(see e.g. [30, 31, 32, 18] for applications), and also for matrix problems
[25, 26, 28, 16, 11].

The fundamental and still unsolved problem concerning a Galois covering
Λ̃ → Λ of an algebra Λ is if the representation type of the algebra Λ is
determined by the representation type of its cover Λ̃; in particular we do
not know if Λ is tame provided so is Λ̃.

There are two different approaches to this problem. The first, stated in
[13, 12, 14] and developed in [4, 5, 8] (where the concept of direct Galois
covering reduction to stabilizers was introduced) relies on a description of
the structure of the category of all indecomposable Λ-modules that cannot
be obtained “directly” from indecomposables over Λ̃. This is done in terms
of some group representation categories (the groups involved are usually
infinite). The second approach bases on a reduction of the original problem
to the analogous one for special classes of BOCS’s and using methods specific
to matrix problems (see [15]).

The first approach depends strongly on a splitting property of the Jacob-
son radical (viewed as a representation of certain group) between Λ̃-modules
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of some special form (see 1.4, [8, Theorem A]). This property is usually a
consequence of the description of nonisomorphisms between G-atoms (see
1.3), where Λ̃/G is a locally bounded category corresponding to Λ. Some-
times it can be expressed in terms of factorization through modules from
some fixed class (see the example of the ideal Pu of ModR generated by
finite-dimensional modules in [6, Theorem A] and [8, Theorem B]).

One of the main results of this paper, the Main Theorem of 1.5, is a
development of [8, Theorem B]. It is obtained by a detailed analysis of
splitting properties (with respect to injectivity) of the ideal generated by
the class of locally finite-dimensional modules called halflines (see Definition
3.1 and Theorem 3.3). It seems to us that the halflines form a class much
more suitable and natural with respect to that kind of properties than the
finite-dimensional modules; this is especially visible when one compares the
proofs of the corresponding facts (in the case of halflines they are much
simpler and better reflect the general intuitions concerning the injectivity
concept).

The paper is organized as follows. In Section 1 we recall basic notions
used in the paper and the general context of the problems considered. We
also formulate the main result of the paper, Main Theorem 1.5. In Sec-
tion 2, properties of special homomorphism spaces consisting of all mor-
phisms whose supports are halflines are studied. Section 3 is devoted to
the properties of the ideal generated by the class of indecomposable locally
finite-dimensional modules consisting of all halflines; our main results there
are Theorem 3.3 and Proposition 3.4. In Section 4, by applying results of
the previous sections, we prove Theorem 1.5 and we state its specialization
(Theorem 4.2).

1. Preliminaries and the result. Before we formulate our main re-
sults, we recall from [5, 8], for the convenience of the reader, the basic
notions and we sketch more precisely the situation we are dealing with in
this paper. For basic information concerning representation theory of alge-
bras (resp. rings and modules, and notions of the theory of categories) we
refer to [2, 24, 27] (resp. [1], [21]).

1.1. Let k be a field and R be a locally bounded k-category, i.e. all objects
of R have local endomorphism rings, different objects are nonisomorphic,
and both sums

∑
y∈R dimk R(x, y) and

∑
y∈R dimk R(y, x) are finite for each

x ∈ R. By an R-module we mean a contravariant k-linear functor from R to
the category of k-vector spaces. An R-module M is locally finite-dimensional
(resp. finite-dimensional) if dimkM(x) is finite for each x ∈ R (resp. the di-
mension dimkM =

∑
x∈R dimkM(x) of M is finite). We denote by MODR

the category of all R-modules, and by ModR (resp. modR) the full sub-
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category formed by all locally finite-dimensional (resp. finite-dimensional)
R-modules. By the support of an object M in MODR we mean the full sub-
category suppM of R formed by the set {x ∈ R : M(x) 6= 0}. If f : M → N
is a homomorphism of R-modules then supp(Im f) is called simply the sup-
port of f and briefly denoted by supp f . We denote by JR the Jacobson
radical of the category ModR (see [22]).

For any k-algebra A we denote by MODA (resp. modA) the category
of all (resp. all finite-dimensional) right A-modules.

1.2. Let G be a group of k-linear automorphisms of R acting freely
on the set obR of all objects of R. Then G acts on the category MODR
by translations g(−), which assign to each M in MODR the R-module
gM = M ◦ g−1 and to each f : M → N in MODR the R-homomorphism
gf : gM → gN given by the family

(
f(g−1(x))

)
x∈R of k-linear maps. Given M

in MODR the subgroup

GM = {g ∈ G : gM 'M}
ofG is called the stabilizer ofM . We do not assume here thatG acts freely on
the set of isoclasses of indecomposable finite-dimensional R-modules (briefly
(indR)/'), i.e. that GM = {idR} for every indecomposable M in modR.

We consider the orbit category R = R/G, which is again a locally
bounded k-category (see [17]), and we study the module category modR
in terms of the category ModR. The tool we have at our disposal is a pair
of functors

MODR
Fλ−→←−
F•

MODR,

where F• : MODR → MODR is the “pull-up” functor associated with the
canonical Galois covering functor F : R→ R, assigning to each X in MODR
the R-module X ◦F , and the “push-down” functor Fλ : MODR→MODR
is the left adjoint to F•.

The classical results from [17] state that if G acts freely on (indR)/'
then Fλ induces an embedding of the set ((indR)/')/G of G-orbits into
(indR)/'.

Let H be a subgroup of the stabilizer GM of a given M in MODR. By
an R-action of H on M we mean a family

µ = (µg : M → g−1
M)g∈H

of R-homomorphisms such that µe = idM , where e = idR is the unit of H,
and g−1

1 µg2 · µg1 = µg2g1 for all g1, g2 ∈ H (see [17]). Observe that if H is
a free group then M admits an R-action of H (see [4, Lemma 4.1]). We
denote by ModH R the category of pairs (M,µ), where M is a locally finite-
dimensional R-module and µ an R-action of H on M . For any M = (M,µ)
and N = (N, ν) in ModH R the space HomH

R (M,N) of morphisms from M
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to N in ModH R consists of all f ∈ HomR(M,N) such that g
−1
f · µg = νg ·f

for every g ∈ H. Note that HomH
R (M,N) is the set ofH-invariant elements in

HomR(M,N) with respect to the action HomR(µ, ν) : H ×HomR(M,N)→
HomR(M,N) given by (g, f) 7→ hνg

gfµg−1 for g ∈ H, f ∈ HomR(M,N),
and that J (M,N) forms an H-invariant subspace in HomR(M,N). We de-
note by JHR the ideal HomH

R ∩JR of the category ModH R.
A useful interpretation of modR is the category ModGf R consisting of

pairs (M,µ) in ModGR such that suppM is contained in the union of a
finite number of G-orbits in R (see [4, 17]). The functor F• associating with
any X in modR the R-module F•X endowed with the trivial R-action of G
yields an equivalence

mod(R) ' ModGf R.

We denote by IR the ideal F−1
• (J GR ) which constitutes an essential class

of morphisms in modR. It is clear that IR is contained in the Jacobson
radical JR, but usually we have IR 6= JR.

1.3. An important role in understanding the nature of objects from
ModGf R, or equivalently from modR, is played by a class of indecompos-
able locally finite-dimensional R-modules called G-atoms. Following [4], an
indecomposable B in ModR (with local endomorphism ring) is called a
G-atom if suppB is contained in the union of a finite number of GB-orbits
in R.

Denote by A a fixed set of representatives of isoclasses of all G-atoms,
by Ao a fixed set of representatives of G-orbits of the induced action of G
on A, and by A the set of all B ∈ A such that EndR(B)/J(EndR(B)) ' k.
Given a subset U ⊂ A we set Uo = GU ∩ Ao (resp. U = GU ∩ A), where GU
is the union of all orbits of elements from U in A. For any B ∈ A, denote
by SB a fixed set of representatives of left cosets of GB in G, containing the
unit e of G.

It is well known that the set of isoclasses of R-modules M in ModR such
that GM = G and suppM/G is finite, is in bijective correspondence with
the set (NAo)0 of all sequences n = (nB)B∈Ao of natural numbers such that
almost all nB are zero. This correspondence is given by n 7→Mn, where

Mn =
⊕

B∈Ao

( ⊕

g∈SB

g(BnB)
)

(see [8, Corollary 2.4]). In consequence, modR is equivalent via F• to the
full subcategory of ModGf R formed by all pairs (Mn, µ), where n ∈ (NAo)0
and µ is an arbitrary R-action of G on Mn. Therefore to any X in modR one
can attach the finite set dss(X), called the direct summand support of X,
consisting of all B ∈ Ao such that nB is nonzero, where F•X 'Mn.
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This suggests restricting the investigation of modR to some of its parts.
For any U ⊂ Ao one can study the full subcategory modU R of modR
consisting of all X in modR such that dss(X) ⊂ U .

The set A splits naturally into the disjoint union A = Af ∪ A∞, where
Af (resp. A∞) is the subset of all finite (dimensional) (resp. infinite (dimen-
sional)) G-atoms. It is well known that if G acts freely on (indR)/' then
the above splitting induces the splitting

(∗) modR = modAf R ∨modA∞ R

in the sense explained below (see [12, Lemma] and [14, 2.3]).
Let C be a Krull–Schmidt category and C0, C1, C2 full subcategories of

C which are closed under direct sums, direct summands and isomorphisms.
The notation C = C1 ∨ C2 means that the set of indecomposable objects
in C splits into the disjoint union of the indecomposables in C1 and in C2.
We denote by [C0] the ideal of all morphisms in C which factor through an
object from C0. For any ideal I in the category C the restriction of I to C0

is denoted by IC0 .

1.4. The splitting as in (∗) occurs in other, more general situations,
when we replace modAf R by the category modU R, for some special classes
U ⊂ Ao, also contained in A∞.

Let B be a periodic G-atom B and νB an R-action of GB on B. Then
(B, νB) is in ModGBf R and FλB has the structure of a kGB-R-bimodule,
which is finitely generated free as a left kGB-module, where kGB is the
group algebra of GB over k (see [14, 3.6] for the precise definition of this
structure). Consequently, it induces two functors

ΦB = −⊗kGB FλB : mod kGB → modB R

and
ΨB = (HR(B,F•(−))−1 : modR→ mod kGB,

where HR = HomR /JR (see [4, 2.3 and 2.4]).
Now we recall the concept of Galois covering reduction to stabilizers,

introduced in [5] and developed in [8].
Let U = (U , ν) be a pair where U ⊂ Po is a subset of periodic G-atoms

and ν = (νB)B∈U a fixed selection of R-actions of GB on B. We denote by

ΦU :
∐

B∈U
mod kGB → modR

the functor defined by the family (ΦB)B∈U , and by

ΨU : modR→
∏

B∈U
mod kGB



242 P. DOWBOR

the functor induced by the family (ΨB)B∈U , where ΦB and ΨB are defined
by the pairs (B, νB) (note that ImΨU ⊂ ∐B∈U mod kGB). Then the pair
(ΦU ,ΨU) of functors

∐

B∈U
mod kGB

ΦU−→←−
ΨU

modR

is called the Galois covering reduction to stabilizers (briefly, GCS-reduction)
with respect to U (in fact with respect to (νB)B∈U ). It is used to describe (in
suitable situations) the category modU R in terms of the module categories
of the stabilizer group algebras.

It is proved in [5, Theorem 2.2] that for any family U ⊂ Po the functor
ΦU :

∐
B∈U mod kGB → modR is a right quasi-inverse for ΨU : modR →∏

B∈U mod kGB (therefore faithful) and is a representation embedding in the
sense of [29] (i.e. yields an injection of the set of isoclasses of indecomposables
in
∐
B∈U mod kGB into the set of isoclasses of indecomposables in modU R).

Note that ΨU induces a functor

ΨU : modR/[modAo\U R]→
∐

B∈U
mod kGB

(kerΨU ⊂ [modAo\U R] by [8, Proposition 6.1]), and that ΦU induces a
faithful representation embedding functor

ΦU :
∐

B∈U
mod kGB → modR/[modAo\U R],

which is a right quasi-inverse for ΨU .
Following [5, 8], the GCS-reduction (ΦU , ΨU) with respect to U is said

to be full provided ΦU and ΨU induce

(a) a splitting modR = modU R ∨mod(Ao\U)R,
(b) a bijection between the sets of isoclasses of indecomposable objects

in the categories
∐
B∈U mod kGB and modU R.

The GCS-reduction (ΦU , ΨU) with respect to U is called strictly full [8]
provided the pair (ΦU , ΨU ) yields an equivalence of categories.

The possibility and efficiency of applying GCS-reduction with respect
to a fixed set of G-atoms U usually depends on the splitting properties of
G-atoms from U .

Let B be a periodic G-atom together with an R-action νB of GB on B.
Following [8] we say that B = (B, νB) splits (resp. splits properly) an
object M = (M,µ) in ModH R provided both embeddings JR(B,M) ⊂
HomR(B,M) and JR(M,B) ⊂ HomR(B,M) are splittable (resp. splittable,
proper) monomorphisms in MOD (kGB)op (see 1.2 for the definition of the
GB-action defining the kGB-module structure).
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The general result [8, Theorem A] concerning GCS-reductions asserts
the following:

Let R be a locally bounded k-category and G ⊂ Autk(R) be a group of
k-linear automorphisms acting freely on obR. Suppose that U ⊂ Po is a
family of G-atoms together with a selection (νB)B∈U of R-actions of GB on
B such that each (B, νB) splits ModGf R, for B ∈ U . Then the GCS-reduction
(ΦU , ΨU) with respect to U is full.

1.5. As usual, we denote by A1 the set of all G-atoms B ∈ A (in fact
infinite G-atoms) such that GB is an infinite cyclic group, and by A1′ the
subset of all B ∈ A∞ such that GB has an infinite cyclic subgroup of finite
index. Observe that A1 ⊂ P and that for any B ∈ A1 the group algebra kGB
is isomorphic to the Laurent polynomial algebra k[T, T−1]. It is shown in [7]
that A∞ coincides with A1 provided R is a representation-tame category
over an algebraically closed field and the group G is torsion-free. Moreover,
A1′ = A1 provided G is torsion-free (see [9, Corollary 6.3]).

Following [8] for any B ∈ A1 we denote by A1(B) (resp. A1′(B)) the set
of all B′ ∈ A1 (resp. B′ ∈ A1′) satisfying the following conditions:

(a) suppB′ ⊂ ̂̂suppB,
(b) GB′ ∩GB 6= {e},
(c) suppB′ ∩ suppB 6= ∅.

Here for any subcategory L of R, L̂ denotes the full subcategory of R con-
sisting of all y ∈ R such that R(x, y) or R(y, x) is nonzero for some x ∈ L
(see [13]). Note that if (b) and (c) hold then suppB ′ ∩ suppB is infinite
since so is GB ∩GB′ .

We recall from [8, proof of Proposition 6.3] that for a given B ∈ A1 only
G-atoms from A1′(B) are important when R-modules containing B in their
direct summand support are considered. Moreover, the splitting properties
of G-atoms B ∈ A1 often depend on the properties of the homomorphism
spaces between B and G-atoms B′ ∈ A1′(B), which are expressed in terms
of factorization through direct sums of R-modules which belong to a fixed
class (see [8]). In [8] the class of finite-dimensional modules is considered; in
the present paper we consider a larger class of indecomposable R-modules
called halflines.

An R-module M in IndR is called a halfline provided there exists a
torsion-free element h ∈ G and a finite full subcategory D of R such that
suppM ⊂ ⋃n∈N h

nD (see 3.1 and 2.1 for the precise definitions).
We are interested in the properties of the ideal generated by halflines,

especially in some injectivity property (see Theorem 3.3). One of our main
results is the following theorem, which is a generalization of [8, Theorem B].
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Main Theorem. Let R be a locally bounded k-category , G ⊂ Autk(R)
be a group of k-linear automorphisms acting freely on obR, and U be a
subset of A1

o together with a selection {νB}B∈U of R-actions of GB on B.
Assume that for any B ∈ U and B′ ∈ A1′(B) each R-nonisomorphism
f : B → B′ (resp. f : B′ → B) factors through a direct sum of halflines.
Then the Galois covering reduction (ΦU , ΨU ) to stabilizers with respect to
U is strictly full and the functors ΦU :

∐
B∈U mod kGB → modR and ΨU :

modR → ∏
B∈U mod kGB defined by the families (ΦB)B∈U and (ΨB)B∈U

induce the following equivalence:∐

B∈U
mod k[T, T−1] ' modR/[modAo\U R] ' modU R/[modAf R]modU R.

In particular , the functors ΦU and ΨU induce:

(i) a splitting modR = modU R ∨mod(Ao\U)R,
(ii) a bijection between the sets of isoclasses of indecomposables in

modU R and in
∐
B∈U mod k[T, T−1].

In case the group G acts freely on (indR)/' the above equivalence has the
form ∐

B∈U
mod k[T, T−1] ' mod UR,

where mod UR is defined below.

Suppose the group G acts freely on (indR)/'. We denote by mod1R the
full subcategory of modR consisting of the R-modules of the first kind, i.e.
those of the form Fλ(M) for some M in modR (see [14, 4, 5]). We denote
by modR the factor category modR/[mod1R]. For any subset U ⊂ A we
denote by mod UR the image of modU R in the factor category modR.

2. Injectivity of the modules H+ and H−

2.1. The full subcategory L of R is called a generalized line if there
exists a torsion-free element h ∈ G and a finite full subcategory D of R such
that L ⊂ ⋃n∈Z h

nD and the intersection L ∩ hnD is nontrivial, for every
n ∈ Z. We then say that L is an H-line, where H = {hn : n ∈ Z}.

The subcategory L is called a generalized halfline (briefly, a halfline) if
there exists a torsion-free element h ∈ G and a finite full subcategory D
of R such that L ⊂ ⋃n∈N h

nD. We then say that L is an H ′-halfline, where
H ′ = {hn : n ∈ N}. The halfline L is called proper if L ∩ hnD is nontrivial
for almost all n ∈ N.

Remark. L is a proper halfline if and only if there exists h and D as
above such that L ⊂ ⋃n∈N h

nD and L∩hnD is nontrivial for all n ∈ N (take
D′ =

⋃
0≤n≤n0

hnD, where L ∩ hnD is nontrivial for all n ≥ n0).
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Lemma. (a) Let L be a subcategory of R, H an infinite cyclic group with
a fixed generator h ∈ G, and Hm the subgroup generated by hm for
m ∈ N \ {0}. Then L is an H-line if and only if L is an Hm-line.

(b) Let L be a subcategory of R, H ′ = {hn : n ∈ N} for some torsion-free
element h ∈ G, and H ′m = {hnm : n ∈ N} for m ∈ N \ {0}. Then L
is an H ′-halfline (resp. a proper H ′-halfline) if and only if L is an
H ′m-line (resp. a proper H ′m-halfline).

(c) Let L′ be a halfline (resp. proper halfline) and L be an H-line,
where H is an infinite cyclic group with a fixed torsion-free gen-
erator h ∈ G. Suppose that L ∩ L′ is infinite. Then L′ is an H ′-
halfline (resp. a proper H ′-halfline), where H ′ = {hn : n ∈ N} or
H ′ = {h−n : n ∈ N}.

Proof. (a) Assume that L is contained in the H-line
⋃
n∈Z h

nD (with
finite D) such that hnD ∩ L is nontrivial for all n ∈ Z. Then setting D′ =⋃

0≤n<m h
nD we have L ⊂ ⋃n∈Z h

nmD′ (=
⋃
n∈Z h

nD) and L ∩ hnmD′ is
clearly nontrivial for all n ∈ N, so L is an Hm-line.

Suppose now that L is an Hm-line contained in the Hm-line
⋃
n∈Z h

nmD
(with finiteD) such that L∩hnmD is nontrivial for every n ∈ N. Then setting
again D′ =

⋃
0≤n<m h

nD we clearly have L ⊂ ⋃n∈Z h
nD′ and hnD′ ∩ L is

nontrivial for every n ∈ N (mZ∩{n, . . . , n+m−1} 6= ∅!), so L is an H-line.
(b) The proof is analogous to that of (a).
(c) Assume that L is contained in the H-line L1 =

⋃
n∈Z h

nD and L′ is
contained in the halfline

⋃
n∈N h

′nD′ (h, h′ and D,D′ are as in the defini-
tion). Denote by L2 the H2-line

⋃
n∈Z h

nD′, where H2 is the infinite cyclic
group generated by h′, and set H1 = H. By assumption L1 ∩ L2 is infinite;
consequently, by [4, Lemma 3.6], H0 = H1 ∩ H2 is nontrivial. Since H0 is
an infinite cyclic group with a generator h0, there exist m,m′ ∈ Z such that
h0 = hm = (h′)m

′
. Now the assertion follows easily from (b).

2.2. LetM ,N be a pair of modules in ModR. Set L = suppM∩ suppN .
Assume that the intersection of the stabilizers GM ∩GN contains an infinite
cyclic group H such that L is contained in a finite number of H-orbits in R
(in fact L).

Fix a pair of R-actions: µ of H on M and ν of H on N (always exist
since H is a free group). Then the k-vector space H = HomR(M,N) can
be regarded as a left kH-module with the structure defined by the action
HomR(µ, ν), which is given by the mapping (h, f) 7→ hνh ·hf ·µh−1 for h ∈ H
and f ∈ HomR(M,N).

Fix a generator h of the group H and denote by H+ (resp. H−) the
subsemigroup {hn : n ∈ N} (resp. {h−n : n ∈ N}).

Denote by H+ (resp. H−) the subset of H formed by all f ∈ H such
that supp f is an H+-halfline (resp. H−-halfline). It is easily seen that
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both H+ and H− are KH-submodules of H. We can also regard H+ as
a kH+-submodule and H− as a kH−-submodule of H, where kH+ = k[h]
(=
⊕

n∈N kh
n) and kH− = k[h−1] (=

⊕
n∈N kh

−n) are two different copies
of the polynomial algebra in one variable over k contained in the algebra
kH. We denote by k[[h]] and k[[h−1]] the corresponding formal power series
algebras.

Theorem. The kH-modules H+ and H− are injective.

The proof of this theorem (see 2.4) needs some preparation.

2.3. Recall from [6] that for R-modules M1 and M2 in MODR a family
(fi)i∈I of homomorphisms in HomR(M1,M2) is said to be summable if for
each x ∈ R and m ∈ M1(x), fi(x)(m) = 0 for almost all i ∈ I (if M1 is in
ModR, this is equivalent to the condition that for each x ∈ R, fi(x) = 0
for almost all i ∈ I). In this case the well defined R-homomorphism f =∑

i∈I fi : M1 → M2, given by f(x)(m) =
∑

i∈I fi(x)(m) for any x ∈ R and
m ∈M1(x), is called the sum of the family (fi)i∈I .

A subspace W of HomR(M1,M2) is called summably closed if the sum
of any summable family (fi)i∈I of R-homomorphisms in W belongs to W.
An ideal I of a full subcategory C of MODR is said to be summably closed
if the subspace I(M1,M2) of HomR(M1,M2) is summably closed for each
pair M1,M2 of R-modules in C.

Let M and N be as in 2.2. We denote by H+ the set of all f ∈ H
such that {hnf}n∈N is summable in H. For any f ∈ H+ and a formal se-
ries a =

∑
n∈N anh

n ∈ k[[h]], where an ∈ k for n ∈ N, we denote by a · f
the sum

∑
n∈N an(hnf) in H ({an(hnf)}n∈N is summable in H). This yields

a map

(∗) · : k[[h]]×H+ →H.
Analogously, we denote by H− the set of all f ∈ H such that {h−nf}n∈N is
summable in H, and for any f ∈ H− and a =

∑
n∈N anh

−n ∈ k[[h−1]] we
denote by a · f the sum

∑
n∈N an(h−nf) in H. This furnishes a map

(∗∗) · : k[[h−1]]×H− →H.
Lemma.

(i) (a) H+ is a kH-submodule (resp. kH+-submodule) of H.
(b) H+ is a k[[h]]-module (via the map (∗)).
(c) If W ⊆ H+ is a summably closed subspace (in H) which is

a kH+-submodule of H then W is a k[[h]]-submodule of H+.
(d) H+ is a k[[h]]-submodule of H+, in fact H+ = H+.

(ii) (a′) H− is a kH-submodule (resp. kH−-submodule) of H.
(b′) H− is a k[[h−1]]-module (via the map (∗∗)).
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(c′) If W ⊆ H− is a summably closed subspace (in H) which is
a kH−-submodule of H then W is a k[[h−1]]-submodule of H−.

(d′) H− is a k[[h−1]]-submodule of H+, in fact H− = H−.

Proof. We only prove (i); the proof of (ii) is completely analogous.
(a) Fix f in H+. For any x ∈ R there exists the smallest natural number

nx = nx(f) such that (hnf)(x) = f(h−nx) = 0 for all n ≥ nx. Then for
any p ∈ Z and n ∈ N, (hn(hpf))(x) = (hn+pf)(x) = 0 if n + p ≥ nx.
Consequently, for p ∈ Z, the family (hn(hpf))n∈N is summable (nx(hpf) =
nx − p if nx ≥ p, and nx(hpf) = 0, otherwise).

(b) We have to show that for any fixed a =
∑

n∈N anh
n ∈ k[[h]] and

f ∈ H+ the element a · f belongs to H+ (i.e. (hm(a · f))m∈N is summable).
We start by observing that under the notation introduced above for any
p ∈ Z and x ∈ R,

nhpx =
{
nx + p if nx + p ≥ 0,

0 otherwise,

since (hnf)(hpx) = f(hp−nx) = (hn−pf)(x) for every n ∈ N, and (hn−pf)(x)
= 0 if n− p ≥ nx. For any m ∈ N, the family (hm+nf)n∈N is summable (see
proof of (a)); therefore hm(a · f) is well defined and we have

hm(a · f) =
∑

n∈N
an(hm+nf)

since for any x ∈ R,(∑

n∈N
an(hnf)

)
(h−mx) =

∑

0≤n≤nh−mx

an(hnf)(h−mx)

=
∑

0≤n≤nx−m
anf(h−m−nx) =

∑

0≤n≤n′x
an(hn+mf)(x)

(by previous remarks nh−mx = nx −m = n′x, where n′x = nx(hmf)). Con-
sequently, (hm(a · f))(x) = 0 for all m ≥ nx (then (hm+nf)(x) = 0), the
family (hm(a · f))m∈N is summable (nx(a · f) ≤ nx) and a · f belongs to H+.

(c) Follows easily from (b).
(d) To show H+ ⊆ H+ fix f ∈ H+ with supp f ⊂ ⋃n∈N h

nD, where D is
a finite subcategory of L. Then there exists n0 ∈ N such that D ∩ hnD = ∅
for every n ≥ n0 (R is locally bounded and H acts freely on R). Therefore
for any fixed p ∈ N, hpD ∩ hnD = ∅ for all n ≥ n0 + p. Consequently,
(hmf)|hpD = 0 for every m ≥ n0 + p, since supphmf ⊂ hm(supp f) ⊂⋃
n∈N h

n+mD ⊂ ⋃n≥n0+p h
nD. Hence, (hmf)m∈N is summable and f ∈ H+.

It is clear that supp(a·f) ⊂ ⋃n∈N h
nD for every a ∈ k[[h]], and thereforeH+

is a k[[h]]-submodule of H+.
To prove the last assertion (H+ ⊆ H+) fix f ∈ H+ and a (finite) set Lo

of representatives of H-orbits in L. For any x ∈ Lo we denote by x′ the
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object x′ = h−nxx of L, where nx = nx(f) is as in the proof of (a). Then
nx′ = 0 by the definition, and f(h−nx′) = (hnf)(x′) = 0 for all n ∈ N.
Consequently, supp f ⊂ ⋃n∈N h

nD, where D is a finite full subcategory of L
formed by the set {x′ : x ∈ Lo}, and so f ∈ H+.

Remark. H+ (resp. H−) is not necessarily summably closed since for
any f ∈ H with supp f finite (equivalently, f ∈ H+ ∩ H−) the family
(h−nf)n∈N (contained in H+) is summably closed but

∑
n∈N(h−nf) ∈

H+ \ H−.

2.4. Denote by k[t] the polynomial algebra in one variable t over k,
by k[t, t−1] the Laurent polynomial algebra and by k[[t]] the corresponding
power series algebra. Since k[t] can be naturally treated as a canonical sub-
algebra of k[t, t−1] (resp. of k[[t]]), each module M over k[t, t−1] (resp. k[[t]])
can be regarded as a module over k[t].

Lemma. Let W be a k[[t]]-module such that t· : W → W is a k-
isomorphism. Then W is injective as a module over k[t], as well as over
k[t, t−1].

Proof. First observe that by the assumptions W can indeed be regarded
as a k[t, t−1]-module. Moreover, both k[t] and k[t, t−1] are principal ideal
domains, so they are factorial. Therefore to prove the injectivity of W it
suffices to show that W is divisible, that is, rW = W for any irreducible
r ∈ k[t] (resp. r ∈ k[t, t−1]). It is well known that irreducible elements in
k[t, t−1] are, up to invertibles (multiplicities of powers of t), polynomials (in
k[t]) with nonzero constant term. Consequently, in the case of k[t, t−1] we
can assume that the irreducible elements r ∈ k[t, t−1] belong to k[t] and are
invertible as elements of k[[t]]; hence, the required equality rW = W holds
automatically since W is a k[[t]]-module. Similarly, in the case of k[t], any
irreducible element r ∈ k[t] is, up to an invertible (now a nonzero scalar),
either equal to t or invertible in k[[t]]. Now, by the assumption and the
argument as above we again obtain rW = W .

Proof of Theorem 2.2. To show that the kH-module H+ is injective ob-
serve that by Lemma 2.3, H+ is a k[[h]]-module which satisfies the assump-
tion of Lemma 2.4. Consequently, H+ is injective as kH+ and kH-module.
The proof for H− is analogous.

2.5. The following fact plays an essential role in further considerations
and allows us to understand better the structure of lines.

Lemma (cf. [6, Lemma 2.4]). Let L be a full subcategory of a locally
bounded k-category R, and H be an infinite cyclic group of k-linear auto-
morphisms of R acting freely on R, with a fixed generator h ∈ H. Assume
that H stabilizes L (i.e. gL = L for all g ∈ H) and L is contained in the
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union of a finite number of H-orbits in R (consequently , L is a line). Then
for any finite subcategory D of L there exist full subcategories D0, D+ and
D− of R and a trisection

L = D− ∨D0 ∨D+

of the category L satisfying the following conditions:

(a) D0 is a finite subcategory containing D and intersecting nontrivially
each H-orbit in L,

(b) D+ and D− are orthogonal ,
(c) D+ is a proper H+-halfline in R contained in

⋃
n∈N h

nD0,
(d) D− is a proper H−-halfline in R contained in

⋃
n∈N h

−nD0,
(e) hn(D0 ∪D+) ⊂ D+ for n� 0,
(f) h−n(D0 ∪D−) ⊂ D− for n� 0.

Proof. Fix any full subcategory Lo of L formed by a fixed set of rep-
resentatives of H-orbits in L. Then L =

⋃
n∈Z h

nLo so L is a line. We set
D′ = D∪Lo. Then clearly L =

⋃
n∈Z h

nD′. Since R is locally bounded there
exists n0 ∈ N such thatD′ and hmD′ are pairwise orthogonal for anym ≥ n0.
Now it is easily seen that setting D0 =

⋃
0<m<n0

hmD′, D+ =
⋃
n0≤m h

mD′

and D− =
⋃
m≤0 h

mD′, we obtain the required trisection and conditions
(a)–(f) are satisfied.

Remark. If L is a connected line then D0 can also be chosen connected.

3. Properties of the ideal generated by halflines

3.1. An R-module M in IndR is called a halfline (resp. proper halfline)
if suppM is a halfline (resp. proper halfline).

Now we prove the following property of halflines (rather natural from
the intuitive point of view).

Lemma. Let the R-module M be a halfline. Then either M is in indR
or M is a proper halfline.

Sublemma. Let L be a full subcategory of R, and L0, L1, L2 be three
full nontrivial subcategories of L. Suppose that L admits a trisection L =
L1 ∨ L0 ∨ L2 such that L1 and L2 are orthogonal. If M is in IndR with
suppM ⊂ L and suppM ∩ L0 is trivial then exactly one of the inclusions
suppM ⊂ L2 or suppM ⊂ L1 holds.

Proof. Follows immediately from the fact that the support of any in-
decomposable R-module forms a connected subcategory of R (apply for
example [13, Lemma 2]).

Proof of Lemma. Let M be an infinite-dimensional halfline (in IndR)
such that S = suppM is contained in the halfline L+ =

⋃
n∈N h

nD, where h
and D are as in the definition. Without loss of generality we can assume
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that D∩S is nontrivial; fix x ∈ D∩S. Set L =
⋃
n∈Z h

nD. Then there exists
a trisection L = D− ∨ D0 ∨ D+ as in Lemma 2.5 (in particular D ⊂ D0).
Let n0 be the smallest m ∈ N such that hmD0 ⊂ L+ (it exists, see the
construction of D0 in the proof of Lemma 2.5). Then clearly hmD0 ⊂ L+

for all m ≥ n0 (as hL+ ⊂ L+). Moreover, hmD− contains x for almost all
m ≥ n0, and consequently L+ admits a splitting

L+ = (hmD− ∩ L+) ∨ hmD0 ∨ hmD+

into three nontrivial subcategories (note that x ∈ hmD−∩L+, hmD0∩L+ =
hmD0 and D+ ⊂ ⋃n∈N h

nD0, so hmD+ ⊂ ⋃n≥n0
hnD0 ⊂ L+). Then for

any m as above, S cannot be contained in hmD− ∩ L+ since the latter is
finite, while S is an infinite subcategory of L+. Hence by the Sublemma,
S ∩ hmD0 is nontrivial since x ∈ hmD− ∩ S. Consequently, M is a proper
halfline (S ⊂ ⋃n∈N h

nD ⊂ ⋃n∈N h
nD0 and S∩hmD0 is nontrivial for almost

all m ≥ n0).

Corollary. Let M in ModR be such that suppM is contained in a
halfline. Then each term of a decomposition of M into a direct sum of in-
decomposables is either in indR or a proper halfline.

3.2. For any M and N in MODR we define the subspace

(∗) Half(M,N) ⊆ HomR(M,N)

to consist of all R-homomorphisms f : M → N having a factorization
through a direct sum of halflines in IndR. It is easily seen that the subspaces
(∗) define a two-sided ideal

(∗∗) Half(·,−) ⊆ HomR(·,−)

of the category MODR.
The following property of the restriction HalfModR of the ideal Half to

ModR is essential for further considerations.

Lemma. Let M , N in ModR be as in 2.2. Then Half(M,N) consists
of all homomorphisms f : M → N factorizing through a locally finite-
dimensional module Z =

⊕
i∈I Zi such that each Zi is an (indecomposable)

halfline with suppZi contained in the line L = suppM ∩ suppN .

Proof. Fix any f ∈ Half(M,N) and a factorization

M
f ′−→
⊕

i∈I
Zi

f ′′−→ N

of f , where f ′ (resp. f ′′) is given by the family (f ′i : M → Zi)i∈I (resp.
(f ′′i : Zi → N)i∈I) of R-homomorphisms and each Zi, i ∈ I, is a halfline.
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For every i ∈ I, we set Zi = Im fi, where fi = f ′′i f ′i . Then f also has
the factorization

M
f ′−→
⊕

i∈I
Zi

f ′′−→ N,

where f ′ is given by (fi : M → Im fi)i∈I and f ′′ by (Im fi ↪→ N)i∈I . Note
that Z =

⊕
i∈I Zi is a locally finite-dimensional R-module since all fi :

M → Zi, i ∈ I, are surjective and M is locally finite-dimensional. Now we
decompose each Zi into indecomposables, Z i =

⊕
j∈Ii Zi,j . Thus f factorizes

through
⊕

i∈I
⊕

j∈Ii Zi,j . Moreover, by Lemma 2.1(c), each Z i,j is a halfline
with suppZi,j ⊂ L, because suppZi,j ⊂ suppZi and suppZi,j ⊂ suppZi ⊂
L.

Remark. If L′ is a halfline contained in the H-line L (H is a cyclic
group with a fixed generator h) then L′ is an H+- or H−-halfline.

3.3. Let M and N be as in 2.2, together with fixed R-actions µ and ν
of H on M and N , respectively. Define H′ = Half(M,N) ⊆ H (=
HomR(M,N)). Observe that H′ is a kH-submodule of H.

Theorem. H′ is an injective kH-module.

Proof. We show that H′ = H+ +H−, which implies the assertion. Note
that H+ +H− is divisible since both H+ and H− are injective (see Theorem
2.2), so divisible; therefore it is injective (kH is a principal ideal domain).

Observe first that H+ ⊂ H′ since by Corollary 3.1 for any f ∈ H′
each term of a decomposition of Im f =

⊕
i∈I Zi into a direct sum of inde-

composable R-submodules (Im f belongs to ModR) is a halfline (supp f is
a halfline). By analogous reasonsH− ⊆ H′, and consequentlyH++H− ⊆ H′.

To prove the inverse inclusion, let f ∈ H′ have a factorization

M
f ′−→
⊕

i∈I
Zi

f ′′−→ N,

where f ′ (resp. f ′′) is given by the family (f ′i : M → Zi)i∈I (resp. (f ′′i : Zi →
N)i∈I) of R-homomorphisms and each Zi, i ∈ I, is an (indecomposable)
halfline. Then by Lemma 3.2 we can assume that Z =

⊕
i∈I Zi is locally

finite-dimensional and each Zi is a halfline (by Lemma 3.1, either a finite-
dimensional module or a proper halfline) with suppZi ⊂ L. Now we fix
a trisection L = D−∨D0∨D+ satisfying the assertions of Lemma 2.5. Then
by Sublemma 3.1, the set I splits into the disjoint union

I = I− ∪ I0 ∪ I+,

where I0 = {i ∈ I : suppZi ∩D0 6= ∅}, I+ = {i ∈ I : suppZi ⊂ D+}, and
I− = {i ∈ I : suppZi ⊂ D−}. Observe that I0 is finite since Z is a locally
finite-dimensional R-module and D0 is a finite subcategory.
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Denote by I+
0 (resp. I−0 ) the set of all i ∈ I0 such that suppZi is a

proper H+-halfline (resp. H−-halfline), and set I0
0 = I0 \ (I+

0 ∪ I−0 ) (note
that I0

0 = {i ∈ I0 : dimk Zi <∞}). Then f =
∑

i∈I fi can be represented in
the form

f =
∑

i∈I+∪I+
0

fi +
∑

i∈I−0 ∪I−0

fi +
∑

i∈I0
0

fi

(note that (fi)i∈I is summable!). Observe that the first sum is in H+ since
fi ∈ H+ for all i ∈ I+

0 (I+
0 is finite) and supp

∑
i∈I+ fi ⊂ D+, which is an

H+-halfline. Analogously one shows that the second sum is in H−. It is also
easily seen that

∑
i∈I0

0
fi ∈ H+ ∩H−; consequently, f ∈ H+ +H−.

3.4. We need one more result on the behaviour of the ideal Half with
respect to the property of summable closedness.

Proposition. Let M and N be as in 2.2. Then for any decomposition
N =

⊕
t∈T Nt (=

∏
t∈T Nt) into a direct sum of R-submodules the induced

injections

(∗) Half(M,N)→
∏

t∈T
Half(M,Nt)

and

(∗∗) Half(N,M)→
∏

t∈T
Half(Nt,M)

are k-isomorphisms.

Proof. It suffices to prove that one of the maps is a k-isomorphism.
Indeed, we have the duality

(−)∗ : ModR→ModRop.

Moreover, for any X, Y in ModR as in 2.2 the space Half(X,Y ) consists
of all R-homomorphisms f : X → Y which factorize through a locally
finite-dimensional module Z =

⊕
i∈I Zi such that all Zi are halflines (see

Lemma 3.2). Finally, (−)∗ preserves halflines and direct sums which are
locally finite-dimensional.

We prove that (∗) is a k-isomorphism. Let ft ∈ Half(M,Nt), t ∈ T . We
can regard each ft as a map in HomR(M,N) (via the canonical embedding
Nt ⊆ N); then (ft)t∈T is a summable family in HomR(M,N), in fact in
Half(M,N). To prove our claim it suffices to show that f =

∑
t∈T ft ∈

Half(M,N). We fix a trisection L = D− ∨ D0 ∨ D+ as in Lemma 2.5,
where D is an arbitrary selection of representatives of H-orbits in L. Note
that f factors through

⊕
t∈T Im ft which is a locally finite-dimensional sub-

module N (each Im ft is a submodule of Nt). There exists a finite subset
T0 ⊆ T such that (Im ft)|D0 = 0 for all t ∈ T ′ = T \ T0. Consequently, by
Sublemma 3.1, Im ft admits a (unique) decomposition Im ft = N+

t ⊕ N−t
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such that suppN+
t ⊂ D+ and suppN−t ⊂ D− (decompose Im ft into a di-

rect sum of indecomposables in IndR; then N+
t , resp. N−t , is the direct sum

of all summands in the decomposition whose support is contained in D+,
resp. D−). The decomposition Im ft = N+

t ⊕N−t , t ∈ T ′, induces two stan-
dard maps f+

t , f
−
t : M → N such that ft = f+

t + f−t . Note that (f+
t )t∈T ′

(resp. (f−t )t∈T ′) is a summable family since so is (ft)t∈T ′ and f+
t |D+ = ft|D+ ,

f+
t |D0∪D− = 0 (resp. f−t |D− = ft|D− , f−t |D0∪D+ = 0). Moreover,

∑

t∈T ′
ft =

∑

t∈T ′
f+
t +

∑

t∈T ′
f−t .

Recall that Half(M,N) = H+ +H− (the proof of Theorem 2.2) and there-
fore for any t ∈ T0, ft has a decomposition ft = f+

t + f−t , where f+
t ∈ H+

and f−t ∈ H−. Consequently, (f+
t )t∈T and (f−t )t∈T are summable families

with sums f+ =
∑

t∈T f
+
t and f− =

∑
t∈T f

−
t , and we have

f = f+ + f−

since
∑

t∈T0∪T ′
ft =

∑

t∈T ′
f+
t +

∑

t∈T ′
f−t +

∑

t∈T0

(f+
t + f−t ) =

∑

t∈T
f+
t +

∑

t∈T
f−t .

Moreover, f+ belongs to H+ since so do f+
t , t ∈ T0, and

∑
t∈T ′ f

+
t

(supp
∑

t∈T ′ f
+
t ⊂D+); analogously, f− belongs to H− since so do f−t , t∈T0,

and
∑

t∈T ′ f
−
t (supp

∑
t∈T ′ f

−
t ⊂ D−). In conclusion, f ∈ Hafl(M,N) and

the proof is complete.

Corollary. Let M and N be as above. Then for any decompositions
M =

⊕
s∈SMs, N =

⊕
t∈T Nt (=

∏
t∈T Nt) the induced injective map

Half(M,N)→
∏

s∈S

∏

t∈T
Half(Ms, Nt)

is a k-linear isomorphism.

Proof. Since by the proposition the standard map induces a k-isomor-
phism Half(M,N) ' ∏t∈T Half(M,Nt) it suffices to show that the stan-
dard injection induces isomorphisms

(∗)t Half(M,Nt) '
∏

s∈S
Half(Ms, Nt)

for all t ∈ T . For any t ∈ T , set N ′t = N ′t =
⊕

t′∈T\{t}Nt. Then applying the
above proposition and the standard isomorphism we have

Half(M,N) '
∏

s∈S
Half(Ms, N) '

∏

s∈S
Half(Ms, Nt)⊕

∏

s∈S
Half(Ms, N

′
t).
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Composing the above isomorphism with

Half(M,Nt)⊕Half(M,N ′t) ' Half(M,N)

and next looking at components we obtain the required isomorphism (∗)t
for every t ∈ T .

4. Proof of the main result and some specialization

4.1. Proof of Main Theorem. We proceed analogously to the proof of [8,
Theorem B]. First we show that under the assumptions of the theorem, for a
G-atom B ∈ A1 and a fixed R-action νB of GB on B, (B, νB) splits properly
(see Introduction) every (M,µ) ∈ ModGB R such thatB is a direct summand
of M (in ModR), provided JR(B,B′) = Half(B,B′) and JR(B′, B) =
Half(B′, B) for every B′ ∈ A1′(B). This follows by repeating the arguments
from the proof of [8, Proposition 6.3], where injectivity of the kGB-modules
JR(B,M) and JR(M,B) is proved (GB is an infinite cyclic group). We just
need to replace the ideal Pu in that proof by Half , and references to [6,
Theorem A] by references to Theorem 3.3 and Proposition 3.4. In this way
we conclude that the GCS-reduction (ΦU , ΨU) with respect to U is full (see
Introduction).

To prove the main assertion of the theorem, the equivalence
∐

B∈U
mod k[T, T−1] ' modR/[modAo\U R] ' modU R/[modAf R]modU R

(in particular, that the GCS-reduction (ΦU , ΨU) is strictly full), we again
apply the arguments from [8, 6.3]. Since the inclusion

[modAf R] ⊂ [modAo\U R] ⊂ kerΨU

is obvious (cf. [8, 6.3(d)]), we only have to show the inverse inclusion

ImodU R ⊂ [modAf R]modU R

(cf. [8, 6.3(e)]; recall that by [8, Proposition 6.1], (kerΨU )modU R = ImodU R

and kerΨU (X,Y ) = HomR(X,Y ) if X or Y is not in modU R). To show
this inclusion fix any f ∈ I(X ′,X), where X and X ′ are indecomposables in
modU R (X ' ΦBV , X ′ ' ΦB

′
V ′ for some B,B′ ∈ U and indecomposables

V, V ′ in mod kGB). To prove that f ∈ [modAf R] we proceed as in [8, 6.3] to
show that f (in fact, its composition with some R-isomorphism u) factors
through the R-module HomkGB(FλBkGB , CB∗(F•X ′)−1), where CB∗(F•X ′)
is as in [8, 4.4 and 5.1]. Note that since the kGB-module J B(F•X ′) =
JR(F•X ′, B) is injective, the finitely generated kGB-module CB∗(F•X ′) is
free (CB∗(F•X ′)∗ ' JR(F•X ′, B), see [8, 5.4]). Consequently, f factors
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through FλB
m for some m ∈ N, and a slight modification of [4, Lemma

4.4] yields f ∈ [modAf R].

4.2. Now we formulate an immediate consequence of the main result.
We need some notation from [8].

For any subset U ⊂ Po and n ∈ N we denote by U(n) the set of all B ∈ U
such that the rank of the free kGB-module FλB is n.

Theorem (cf. [8, Theorem 6.3]). Let R be a locally bounded k-category
over an algebraically closed field , and G ⊂ Autk(R) be a torsion free group
of k-linear automorphisms of R acting freely on R such that R is a finite
category. Assume R satisfies the following conditions:

(i) A∞ = A1,
(ii) JR(B1, B2) = Half (B1, B2) (resp. JR(B2, B1) = Half (B2, B1) for

all B1 ∈ A1
o and B2 ∈ A1(B1).

Then the functors ΦA
1
o and ΨA

1
o induce an equivalence

∐

B∈A1
o

mod k[T, T−1] ' modR,

and R is tame if and only if R is tame and all sets A1
o(n), n ∈ N, are finite.

Proof. Note that A1′ = A1 (see [9, Corollary 6.3]) and A = A (see
[10, Proposition 7.5]). Then the assertions follow directly from the Main
Theorem by applying [14, Lemma 2.2] and [13, Lemma 3, Proposition 2].

Remark. (!) Assume that R is tame (this is always the case if R is
tame, see [13, Proposition 2]). Then (i) of Theorem 4.2 automatically holds
under the assumptions preceding (i) (see [9, Main Theorem]).

REFERENCES

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Grad. Texts in
Math. 13, Springer, 1992.

[2] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras,
Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.

[3] K. Bongartz and P. Gabriel, Covering spaces in representation theory , Invent. Math.
65 (1982), 331–378.

[4] P. Dowbor, On modules of the second kind for Galois coverings, Fund. Math. 149
(1996), 31–54.

[5] —, Galois covering reduction to stabilizers, Bull. Polish Acad. Sci. Math. 44 (1996),
341–352.

[6] —, The pure projective ideal of a module category , Colloq. Math. 71 (1996), 203–214.



256 P. DOWBOR

[7] P. Dowbor, On stabilizers of G-atoms of representation-tame categories, Bull. Polish
Acad. Sci. Math. 46 (1998), 304–315.

[8] —, Properties of G-atoms and full Galois covering reduction to stabilizers, Colloq.
Math. 83 (2000) 231–265.

[9] —, Stabilizer conjecture for representation-tame Galois coverings of algebras, J.
Algebra 239 (2001), 112–149.

[10] —, Non-orbicular modules for Galois coverings, Colloq. Math. 89 (2001), 241–310.
[11] P. Dowbor and S. Kasjan, Galois covering technique and non-simply connected

posets of polynomial growth, J. Pure Appl. Algebra 147 (2000), 1–24.
[12] P. Dowbor, H. Lenzing and A. Skowroński, Galois coverings of algebras by locally

support-finite categories, in: Lecture Notes in Math. 1177, Springer, 1986, 91–93.
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