
C O L L O Q U I U M M A T H E M A T I C U M
VOL. 101 2004 NO. 2

ON PAIRS OF BANACH SPACES WHICH ARE ISOMORPHIC TO
COMPLEMENTED SUBSPACES OF EACH OTHER

BY

ELÓI MEDINA GALEGO (São Paulo)

Abstract. We establish the existence of Banach spaces E and F isomorphic to com-
plemented subspaces of each other but with Em⊕Fn isomorphic to Ep⊕F q, m,n, p, q ∈ N,
if and only if m = p and n = q.

1. Introduction. For the sake of clarity we start with the notation.
Throughout the note X and Y are real (R) or complex (C) Banach spaces.
We write X

c
↪→ Y if X is isomorphic to a complemented subspace of Y , and

X ∼ Y if X is isomorphic to Y . If n ∈ N∗ = {1, 2, 3, . . .}, then Xn denotes
the sum of n copies of X. It is useful to define X0 = {0}. By

∑
X we denote

the infinite zero sum of X [4]. Now we are ready to present the motivation
for the question which we consider here.

Suppose that X and Y are isomorphic to complemented subspaces of
each other, that is,

X
c
↪→ Y and Y

c
↪→ X.(1)

In 1996 W. T. Gowers [12] solved the so-called Schroeder–Bernstein Problem
for Banach spaces by showing that X is not necessarily isomorphic to Y (see
also [6], [8], and [13]). Moreover, in a recent paper [7], the author showed that
one cannot conclude that some finite sum of X, Xn, n ∈ N∗, is isomorphic
to some finite sum of Y , Y m, m ∈ N∗.

However, it is well known that Pełczyński’s decomposition method [4,
p. 64] implies that X and Y satisfy the following equation which involves
infinite sums of X and Y :

∑
X ∼

∑
Y.(2)

Hence, it is natural to ask whether X and Y also satisfy some non-trivial
equation which involves only finite sums of X and Y . More precisely, is it
true that there exist m,n, p, q ∈ N with m 6= p or n 6= q satisfying the
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Key words and phrases: Pełczyński’s decomposition method, Schroeder–Bernstein

problem.

[279]



280 E. M. GALEGO

equation below?
Xm ⊕ Y n ∼ Xp ⊕ Y q.(3)

The aim of this note is to answer this question in the negative, in other
words, we prove what is announced in the abstract [Theorem 2.3]. Therefore,
equations like (2) are in some sense the best ones that we can obtain from (1).

The construction of the Banach spaces E and F and the proofs of their
properties are based on some recent developments in the theory of hereditar-
ily indecomposable Banach spaces. In fact, our theorem is an application of
a universal property of reflexive hereditarily indecomposable Banach spaces
recently proved by S. A. Argyros [3, Theorem 1.1]. This result states that
every separable Banach space containing an isomorphic copy of any reflex-
ive hereditarily indecomposable Banach spaces also contains an isomorphic
copy of any separable Banach space. We recall that a Banach space H is
hereditarily indecomposable (H.I.) if no closed subspace E of H contains a
pair of infinite-dimensional closed subspaces M and N such that E = M⊕N
[11]. The H.I. spaces have been used to provide negative answers to several
questions in Banach spaces; see for example [2], [7], [11], [12] and [14];

The main tool used in the proof of Theorem 2.3 is the theory of essentially
incomparable Banach spaces. Thus, we also need to recall some definitions
concerning operator theory. Let L(X,Y ) be the Banach space of all contin-
uous linear operators from X into Y . An operator T ∈ L(X,Y ) is Fredholm
if its kernel is finite-dimensional and its range is finite-codimensional. T is
inessential (T ∈ In(X,Y )) if IX − ST is Fredholm for every S ∈ L(Y,X).
If L(X,Y ) = In(X,Y ), then the spaces X and Y are said to be essentially
incomparable [1].

2. The result. We begin with a simple lemma that will be used several
times in this work.

Lemma 2.1. Suppose that X and Y satisfy (1) and (3) for some m,n,
p, q ∈ N.

(a) If d ∈ N, d ≤ n and d ≤ q, then Xm+d ⊕ Y n−d ∼ Xp+d ⊕ Y q−d.
(b) If d ∈ N, d ≤ m and d ≤ p, then Xm−d ⊕ Y n+d ∼ Xp−d ⊕ Y q+d.

Proof. By symmetry it suffices to prove (a). Let A be a Banach space
such that X ∼ Y ⊕ A. Hence, if 1 ≤ n and 1 ≤ q, then

Xm+1 ⊕ Y n−1 ∼ Xm ⊕ Y n ⊕ A ∼ Xp ⊕ Y q ⊕ A ∼ Xp ⊕ Y q−1 ⊕ Y ⊕ A
∼ Xp+1 ⊕ Y q−1.

Analogously, if 2 ≤ n and 2 ≤ q, we have Xm+2 ⊕ Y n−2 ∼ Xp+2 ⊕ Y q−2.
Therefore, if d ∈ N, d ≤ n and d ≤ q, then after d steps, we obtain Xm+d ⊕
Y n−d ∼ Xp+d ⊕ Y q−d.
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The following lemma plays an important role in the proof of our theorem.

Lemma 2.2. Suppose that X and Y satisfy (1) and (3) for some m,n,
p, q ∈ N. If p < m and n < q, then X2u(m−p) ∼ Y 2u(q−n) for some u ∈ N∗.

Proof. First we show that there existm1, n1, p1, q1 ∈ N with 2n1+p1 ≤ q1

and 2p1 + n1 ≤ m1 such that

Xm1 ⊕ Y n1 ∼ Xp1 ⊕ Y q1 .(4)

In order to do this, we define M = m+ n, P = p+ n and Q = q − n. Since
(1) and (3) hold, it follows from Lemma 2.1(a) with d = n that

XM ∼ XP ⊕ Y Q.(5)

We observe thatQ > 0, therefore there exist u, v ∈ N∗ such that P+v ≤ 2uQ
and uQ ≤ v. By (5), we obtain

Y v ⊕XP ∼ Y v−Q ⊕XP ⊕ Y Q ∼ Y v−Q ⊕XM .(6)

Moreover,

Y v−Q ⊕XM ∼ Y v−2Q ⊕ Y Q ⊕XM−P ⊕XP ∼ Y v−2Q ⊕XM+(M−P ).(7)

It follows from (6) and (7) that

Y v ⊕XP ∼ Y v−2Q ⊕XM+(M−P ).(8)

Thus, after u steps, we have

Y v ⊕Xp ∼ Y v−uQ ⊕XM+(u−1)(M−P ).(9)

Finally, we define m1 = M + (u − 1)(M − P ), n1 = (v − uQ), p1 = P
and q1 = v. By the choice of u and v, we know that 2n1 + p1 ≤ q1 and
2p1 + n1 ≤ m1. This finishes the proof of (4).

Now, by applying Lemma 2.1(a) with d = n1 and Lemma 2.1(b) with
d = p1 in (4), we conclude that

Xm1+n1 ∼ Y n1+p1 ⊕ Y q1−n1 and Y p1+q1 ∼ Xm1−p1 ⊕ Y n1+p1 .(10)

From (10) we deduce that

X2(m1−p1) ∼ Xm1−n1−2p1 ⊕Xm1+n1 ∼ Xm1−p1 ⊕ Y q1−n1

∼ Y q1−p1−2n1 ⊕ Y p1+q1 ∼ Y 2(q1−n1).

Hence the proof of the lemma is complete, since m1 − p1 = u(m − p) and
q1 − n1 = u(q − n).

Theorem 2.3. There exist Banach spaces E and F which are isomor-
phic to complemented subspaces of each other and such that Em ⊕ Fn is
isomorphic to Ep ⊕ F q, with m,n, p, q ∈ N, if and only if m = p and n = q.

Proof. Let X and Y be the separable Banach spaces considered in [7].
So, X and Y satisfy (1) and X t is not isomorphic to Y t, for every t ∈ N∗
[7, Theorem 4].
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Claim 1. Let p ∈ R, 1 < p < 2. Then X contains no subspace isomor-
phic to lp.

First we recall that X is a sequence space and the support of a vector
x = (xn)∞n=1 in X, written supp(x), is {n : xn 6= 0}. We write x < y to mean
i < j for every i ∈ supp(x) and j ∈ supp(y). We say that (xn)∞n=1 in X is a
sequence of successive vectors if x1 < x2 < x3 < · · ·.

Suppose now that T : lp → X is an isomorphism onto its image. Let
(en)∞n=1 stand for the unit vector basis of lp. Since (en)∞n=1 converges weakly
to zero, by standard arguments, we may perturb T slightly in such a way
that xn = T (en), n ∈ N, are successive vectors.

Let K,L > 0 be such that K‖x‖ ≤ ‖T (x)‖ ≤ L‖x‖ for every x ∈ lp. By
[7, Lemma 2], for every sequence of real numbers (an)mn=1, m ∈ N, we have

K
( m∑

i=1

|ai|p
)1/p
≤
∥∥∥

m∑

i=1

aixi

∥∥∥≤
( m∑

i=1

‖aixi‖2
)1/2
≤L

( m∑

i=1

|ai|p
)1/p

,(11)

which of course gives a contradiction because lp is not isomorphic to l2.
Thus, Claim 1 is proved.

Hence, X is not universal for the class of separable Banach spaces. Thus,
according to the theorem of S. A. Argyros mentioned in the introduction,
there exists a H.I. space H which is not isomorphic to any subspace of X.

Claim 2. H and X are essentially incomparable.

Assume on the contrary that H and X are not essentially incomparable.
By [1, Proposition 4.11] and [1, Theorem 23], X ∼ H1 ⊕ Z for some Ba-
nach spaces H1 and Z, where H1 is an infinite-dimensional complemented
subspace of H. Suppose that Z is finite-dimensional. Since X

c
↪→ Y and

Y
c
↪→ X, it follows that H1⊕Z ∼ Y ⊕A and Y ∼ H1⊕Z ⊕B for some Ba-

nach spaces A and B. Therefore, H1 ⊕Z ∼ H1 ⊕Z ⊕A⊕B. Consequently,
H1 ∼ H1 ⊕ A ⊕ B. Hence, by [11, Corollary 23], A = {0} and B = {0}.
It follows immediately that X ∼ Y , which is a contradiction. Hence Z is
infinite-dimensional.

SinceH is a H.I. space,H ∼ H1⊕W for some finite-dimensional spaceW .
Therefore, writing Z ∼ W ⊕ Z1 for some Banach space Z1, we have X ∼
H1 ⊕W ⊕ Z1 ∼ H ⊕ Z1, contrary to the choice of H. This completes the
proof of Claim 2.

Now we denote by densX∗ the density character of the dual space of X,
that is, the smallest cardinal number δ such that there exists a set of car-
dinality δ dense in X∗. Fix a regular ordinal α with densX∗ < α, where α
indicates the cardinality of α.
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Next we consider the Banach space Xα of continuous X-valued functions
defined on the interval [1, α] of ordinals and equipped with the supremum
norm [6].

Finally, we define E = H ⊕Xα and F = H ⊕ Y α.
Clearly E

c
↪→ F and F

c
↪→ E. Suppose that Em⊕Fn ∼ Ep⊕F q for some

m,n, p, q ∈ N, that is,

Hm+n ⊕Xαm ⊕ Y αn ∼ Hp+q ⊕Xαp ⊕ Y αq.(12)

We must show that m = p and n = q. We note that if m = 0 and n = 0,
then, by (12), p = 0 and q = 0. Assume next that m > 0; then, again by
(12), either p > 0 or q > 0. We will consider the case p > 0; the other case
is similar.

Claim 3. H and Xαp are essentially incomparable.

Indeed, otherwise, by [1, Proposition 4.11] and [1, Theorem 23], there
exists an infinite-dimensional complemented subspace H2 of H such that
H2

c
↪→ Xαp. Therefore, according to [9, Theorem 2.4], H2

c
↪→ Xr for some

r ∈ N, r ≥ 1. Hence, [10, Observation 1.b] and [1, Theorem 23] imply that
H2 and X are not essentially incomparable. Consequently, the same applies
to H and X, contrary to Claim 2. So, Claim 3 is proved.

Therefore (Hm+n,Xαm ⊕ Y αn) and (Hp+q,Xαp ⊕ Y αq) are also pairs of
essentially incomparable spaces [10, Observation 1.b]. Thus, by (12) and [8,
Remark 3.3], there exist r, s ∈ N such that

Hm+n ⊕ Rr ∼ Hp+q ⊕ Rs.(13)

Suppose first that m+ n < p+ q. Let H3 be an infinite-dimensional Ba-
nach space such that H ∼ H3⊕Rr. Adding H3 to both sides of (13), we have

Hm+n+1 ∼ Hp+q ⊕ Rs ⊕H3.(14)

In particular, (14) implies that Hm+n+1 is isomorphic to a direct sum of
p + q + 1 infinite-dimensional subspaces, which is a contradiction because
m+ n+ 1 < p+ q + 1 [5, Corollary 2].

By the same argument, we cannot have m+n > p+q. Therefore, m+n =
p + q. If m = p, then n = q and the proof is complete. Otherwise, without
loss of generality we may assume that p < m and therefore n < q.

Hence, by (12) and Lemma 2.2, there exists t ∈ N∗, t = 2u(m − p) =
2u(q − n) for some u ∈ N∗, such that Et ∼ F t, that is,

Ht ⊕Xαt ∼ Ht ⊕ Y αt.(15)

Notice that (H t,Xαt) and (H t, Y αt) are pairs of essentially incomparable
spaces. Thus, by (15) and [8, Remark 3.3], there exist u and v in N such that

Ru ⊕Xαt ∼ Rv ⊕ Y αt.(16)
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Since Xαt and Y αt are isomorphic to any of their respective hyperplanes, it
follows from (16) that

Xαt ∼ Y αt.(17)

Finally, it suffices to apply [6, Corollary 2.8] to (17) to conclude thatX t∼Y t,
which contradicts the choice of X and Y . Thus m = p and n = q, yielding
the theorem.

3. Remarks and questions. Pełczyński’s decomposition method [4,
p. 64] states that if the equation X ∼ ∑X is added to (1), then X ∼ Y .
Thus, in view of Lemma 2.2, it is natural to ask whether there exists a
non-trivial equation that involves only finite sums of X and Y in such a way
that when added to (1), it yields X ∼ Y . To be more precise:

Question 3.1. Do there exist m,n, p, q ∈ N with (m,n, p, q) different
from (1, 0, 0, 1) and (0, 1, 1, 0) such that if X and Y satisfy (1) and (3), then
X ∼ Y ?

Remark 3.2. The answer to Question 3.1 is negative for some m,n, p
and q. For instance:

(a) For any m,n, p, q ∈ N with m ≤ p and n < q, there exist non-
isomorphic Banach spaces X and Y satisfying (1) and (3).

Suppose first that m > 0. Then we write d = m− 1 ≥ 0, r = p − d > 0
and s = q − n > 0. Take t = r + 2s − 1 ≥ 2 and let Xt be the Banach
space constructed by W. T. Gowers and B. Maurey in [13, p. 563]. That is,
Xu
t ∼ Xv

t with u, v ∈ N∗ if and only if u and v are equal modulo t. We define
X = Xt and Y = X2

t . Then X and Y are not isomorphic, they satisfy (1)
and moreover,

X = Xt ∼ Xt+1
t ∼ Xr+2s

t ∼ Xr
t ⊕ (X2

t )s = Xr ⊕ Y s.(18)

Hence, if Xd ⊕ Y n is added to both sides of (18), we conclude that (3) is
also satisfied.

Suppose now that m = 0. Then n ≥ 1. By what we have just proved,
there exist Banach spaces X and Y which satisfy (1) as well as the following
equation:

X ⊕ Y n−1 ∼ Xp+1 ⊕ Y q−1.(19)

Therefore, if we apply Lemma 2.1(b) with d = 1 to (19), once again we
obtain (3).

(b) For some m,n, p, q ∈ N with p < m and n < q, there exist non-
isomorphic Banach spaces X and Y satisfying (1) and (3).

Denote by W the complex Banach space introduced by W. T. Gowers
and B. Maurey in [13, Section 4.3]. Then, by [13, Theorem 19], X = W is
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not isomorphic to Y = W ⊕ C, these spaces satisfy (1) and furthermore,

X3 ⊕ Y ∼W 3 ⊕ (W ⊕ C2)⊕ C ∼W ⊕ (W ⊕ C)3 ∼ X ⊕ Y 3.(20)

When p < m and n < q, we do not even know the answer to the simplest
case of Question 3.1, that is:

Question 3.3. Suppose that X and Y satisfy (1) and Xp+1 ⊕ Y q ∼
Xp ⊕ Y q+1 for some p, q ∈ N. Does it follow that X ∼ Y ?

It is interesting to observe that the answer to the above question is
affirmative for every p, q ∈ N if and only if the following question has an
affirmative answer for every p ∈ N, p ≥ 2.

Question 3.4. Suppose that X and Y satisfy (1) and Xn ∼ Y n for
every n ≥ p, with p ≥ 2. Is it true that X ∼ Y ?

Indeed, assume that Question 3.4 has an affirmative answer for every
p ∈ N, p ≥ 2, and let X and Y satisfy (1) and Xp+1 ⊕ Y q ∼ Xp ⊕ Y q+1 for
some p, q ∈ N. According to Lemma 2.1(a) with d = q, we have Xp+q+1 ∼
Xp+q ⊕ Y . Therefore Xp+q+1+n ∼ Xp+q+n ⊕ Y for every n ∈ N. Hence,
applying Lemma 2.1(a) with d = 1, p+q+n times to the previous equation,
we conclude that

Xp+q+1+n ∼ Xp+q+n ⊕ Y ∼ Xp+q+n−1 ⊕ Y 2 ∼ · · · ∼ Y p+q+1+n

for every n ∈ N. Consequently, X ∼ Y .
Conversely, assume that Question 3.3 has an affirmative answer for every

p, q ∈ N, and suppose Xn ∼ Y n for every n ≥ p, with p ≥ 2, X ∼ Y ⊕A and
Y ∼ X ⊕ B for some Banach spaces A and B. Thus Xp ∼ Xp−1 ⊕ Y ⊕ A
and Xp−1 ⊕ Y ∼ Xp ⊕ B. That is, Xp c

↪→ Xp−1 ⊕ Y and Xp c
↪→ Xp−1 ⊕ Y .

Moreover,Xp2 ∼ Y p2 ∼ Y p2−1⊕Y ∼ Xp2−1⊕Y . That is, (Xp)p ∼ (Xp)p−1⊕
(Xp−1⊕Y ). Therefore, putting q = 0 in the hypothesis of Question 3.3 with
Xp and Xp−1⊕Y , we have Xp ∼ Xp−1⊕Y . Hence, again by our hypothesis,
X ∼ Y .

Finally, we observe that the answer to Question 3.3 is affirmative when X
is isomorphic to some non-trivial finite sum ofX and Y , that is,X ∼ Xr⊕Y s

for some r, s ∈ N, r + s ≥ 2. This is a direct consequence of the fact that
Xp+q+1 ∼ Xp+q ⊕ Y and the following remark:

Remark 3.5. Suppose that X and Y satisfy (1) and Xp ∼ Xp−1 ⊕ Y
for some p ∈ N, p ≥ 2. If X ∼ Xr ⊕ Y s for some r, s ∈ N, r + s ≥ 2, then
X ∼ Y .

Indeed, let B be a Banach space such that Y ∼ X⊕B. We first suppose
that r ≥ 2. Then there exists n ∈ N such that r+ (n− 1)(r− 1) ≥ p. Define
m = r + (n − 1)(r − 1) and j = ns. Now, adding Xr−1 ⊕ Y s to both sides
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of X ∼ Xr ⊕ Y s we obtain X ∼ Xr ⊕ Y s ∼ Xr+(r−1) ⊕ Y 2s. Hence, by
induction, X ∼ Xm ⊕ Y j . Consequently,

Y ∼ X ⊕B ∼ Xm−p ⊕Xp−1 ⊕ Y j ⊕X ⊕B
∼ Xm−p ⊕Xp−1 ⊕ Y j ⊕ Y ∼ Xm−p ⊕Xp ⊕ Y j ∼ Xm ⊕ Y j ∼ X.

Next we suppose that r = 1, that is, X ∼ X⊕Y s, with s ≥ 1. By Lemma
2.1(b) with d = 1, we have Y ∼ Y s+1. Moreover, since Xp ∼ Xp−1 ⊕ Y ,
by Lemma 2.1(b) with d = p − 1, Y p ∼ Y p−1 ⊕X. Thus, by the first case,
X ∼ Y .

Finally, assume that r = 0, that is, X ∼ Y s with s ≥ 2. We have

X ∼ Y s ∼ Y s−1 ⊕X ⊕B ∼ Y s−1 ⊕ Y s ⊕B ∼ Y 2s−1 ⊕B
∼ Y 2s−2 ⊕X ⊕B ⊕B ∼ Y 2s−2 ⊕ Y s ⊕B2 ∼ Y 3s−2 ⊕B2.

Hence, by induction, X ∼ Y ns−(n−1) ⊕Bn−1 for every n ∈ N. In particular,
X ∼ Y p(s−1)+s ⊕Bp.

On the other hand, if we apply Lemma 2.1(a) with d = 1, p times to
Xp ∼ Xp−1 ⊕ Y , we obtain Xp ∼ Xp−1 ⊕ Y ∼ Xp−2 ⊕ Y 2 ∼ · · · ∼ Y p.
Therefore, it follows from Y p ∼ Xp ⊕Bp that

X ∼ Y p(s−1)+s ⊕Bp ∼ Y p(s−1)+s−p ⊕ Y p ⊕Bp

∼ Y p(s−1)+s−p ⊕Xp ⊕Bp ∼ Y p(s−1)+s−p ⊕ Y p

∼ Y p(s−1)+s ∼ (Y p)s−1 ⊕ Y s ∼ (Xp)s−1 ⊕X ∼ Xp(s−1)+1.

Hence, once again by the first case, X ∼ Y .
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