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OPTIMAL EMBEDDINGS OF GENERALIZED HOMOGENEOUS
SOBOLEV SPACES

BY

IRSHAAD AHMED (Lahore) and GEORGI EREMIEV KARADZHOV (Sofia)

Abstract. We prove optimal embeddings of homogeneous Sobolev spaces built over
function spaces in Rn with K-monotone and rearrangement invariant norm into other
rearrangement invariant function spaces. The investigation is based on pointwise and
integral estimates of the rearrangement or the oscillation of the rearrangement of f in
terms of the rearrangement of the derivatives of f .

1. Introduction. Let Lloc be the space of all locally integrable functions
f on Rn, n ≥ 2, with the Lebesgue measure and let f∗ be the decreasing
rearrangement of f, given by

f∗(t) = inf{λ > 0 : µf (λ) ≤ t}, t > 0,

where µf is the distribution function of f, defined by

µf (λ) = |{x ∈ Rn : |f(x)| > λ}|n,

| · |n denoting Lebesgue n-measure. Define f∗∗(t) := t−1
	t
0 f
∗(s) ds.

Let L be the space of all locally integrable functions g ≥ 0 on (0,∞)
with the Lebesgue measure that are in L1 + L∞ and have g∗(∞) = 0.

We shall consider rearrangement invariant spaces E, continuously em-
bedded in L1(Rn)+L∞(Rn), such that the norm ‖f‖E in E is generated by a
norm ρE defined on L with values in [0,∞], in the sense that ‖f‖E = ρE(f∗).
In this way equivalent norms ρE give the same space E. We suppose that E
is nontrivial.

We say that the norm ρE isK-monotone (cf. [5, Definition 1.16, p. 305]) if

(1.1)
t�

0

g∗1(s)ds ≤
t�

0

g∗2(s) ds implies ρE(g∗1) ≤ ρE(g∗2), g1, g2 ∈ L.

Then ρE is monotone, i.e. g1 ≤ g2 implies ρE(g1) ≤ ρE(g2). If ρE is K-
monotone, then ‖f‖E satisfies the triangle inequality, since (f + g)∗∗ ≤
(f∗ + g∗)∗∗.
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We use the notation a1 . a2 or a2 & a1 for nonnegative functions or
functionals to mean that the quotient a1/a2 is bounded; also, a1 ≈ a2 means
that a1 . a2 and a1 & a2, and we then say that a1 is equivalent to a2.

We say that the norm ρE satisfies the Minkowski inequality if

(1.2) ρE

(∑
gj

)
≤
∑

ρE(gj), gj ∈ L.

For example, if E is a rearrangement invariant Banach function space as
in [5], then by the Luxemburg representation theorem, ‖f‖E = ρE(f∗) for
some norm ρE satisfying (1.1) and (1.2). A more general example is given
by the Riesz–Fischer monotone spaces as in [5, p. 305].

Recall the definition of the lower and upper Boyd indices αE and βE .
Let

hE(s) = sup
{
ρE(g∗s)
ρE(g∗)

: g ∈ L
}
, gs(t) := g(t/s),

be the dilation function generated by ρE . Then

αE := sup
0<t<1

log hE(t)
log t

and βE := inf
1<t<∞

log hE(t)
log t

.

If ρE is monotone, then the function hE is submultiplicative, increasing,
hE(1) = 1, 1 ≤ hE(s)hE(1/s), therefore 0 ≤ αE ≤ βE . If ρE is K-monotone,
then by interpolation (analogously to [5, p. 148]), we see that hE(s) ≤
max(1, s). Hence 0 ≤ αE ≤ βE ≤ 1.

If βE < 1 we have, analogously to [5, p. 150],

(1.3) ρE(f∗) ≈ ρE(f∗∗).

The condition βE < 1 is equivalent to (see [5, p. 147])

(1.4)
1�

0

hE(1/s) ds <∞.

For example, consider the classical Lorentz spaces Λq(w), 1 ≤ q ≤ ∞,
with w a positive weight, i.e. a positive function from L; f ∈ Λq(w) if
‖f‖Λqw := ρw,q(f∗) <∞, where ρw,q(g) := (

	∞
0 [g(t)w(t)]q dt/t)1/q. In general,

the functional f 7→ ‖f‖Λqw is not a norm. But in many cases we can find
an equivalent norm. Consider the so-called Γ spaces, Γ q(w), with the norm
‖f‖Γ q(w) := ρw,q,Γ (f∗), where ρw,q,Γ (g) := (

	∞
0 [g∗∗(t)w(t)]q dt/t)1/q. The

following condition should be satisfied (otherwise the space will be trivial):(∞�
0

min(1, t−q)[w(t)]q dt/t
)1/q

<∞.

Then this space is continuously embedded in the sum L1 + L∞. Using this
embedding the completeness of the space can be established in a standard
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way. The space E = Γ q(w) with ρE = ρw,q,Γ satisfies the conditions (1.1),
(1.2).

In some cases the Lorentz space E = Λq(w), 1 ≤ q < ∞, also satisfies
the conditions (1.1), (1.2). For example, if [w(t)]q/t is not increasing, then
(see [5, p. 72]), the functional ρw,q is a K-monotone norm. It is easy to check
that this space is continuously embedded in Lq + L∞.

We have the equivalence

(1.5) ‖f‖Λq(w) ≈ ‖f‖Γ q(w)

in the following cases.
If 1 ≤ q <∞ then (1.5) is satisfied if and only if w is such that (see [2])

(1.6) tq
∞�

t

s−q[w(s)]q ds/s .
t�

0

[w(s)]q ds/s.

If q =∞ then (1.5) is valid if and only if (see [8])

(1.7)
1
t

t�

0

1
w(s)

ds .
1

w(t)
, where w(t) :=

t�

0

v(s) ds for some v.

For weights satisfying
	t
0w(s) ds/s . w(t), the condition (1.6) with q = 1

is equivalent to

(1.8)
∞�

t

w(s)
s

ds/s .
w(t)
t
.

Indeed, (1.8) implies (1.6) with q = 1 by integration and Fubini’s theorem.
Conversely, (1.8) follows from (1.6) with q = 1 if

	t
0w(s) ds/s � w(t).

Note also that if E = Γ q(w) and ρE = ρw,q,Γ , then (1.5) is equivalent to
βE < 1 (see [5, p. 150]).

Let C∞0 be the space of all infinitely differentiable functions f on Rn

with compact support and let |Dkf | :=
∑
|α|=k |Dαf |. Let

Mk = {f ∈ L1 + L∞ : |Djf |∗(∞) = 0, 0 ≤ j ≤ k, ρE(|Dkf |∗) <∞}.
Definition 1.1. The generalized homogeneous Sobolev norm is the func-

tional ‖f‖wkE := ρE(|Dkf |∗), defined on Mk, k < n.

The main goal of this paper is to prove optimal embeddings of wkE into
rearrangement invariant function spaces G with a norm ‖f‖G ≈ ρG(f∗),
where ρG is a monotone norm. Observe that we have two well known limiting
embeddings: wkL1 ↪→ Λ1(t1−k/n) and wkΛ1(tk/n) ↪→ L∞. For this reason
we shall suppose that the domain space E and the target space G satisfy
E ↪→ L1 + Λ1(tk/n) and G ↪→ Λ1(t1−k/n) + L∞. In particular, αE > 0 and
f ∈ wkE implies

	∞
1 uk/n|Dkf |∗∗(u) du/u <∞. It is convenient to introduce

the following classes of norms:



4 I. AHMED AND G. E. KARADZHOV

• Nd,0 consists of all norms ρE that are K-monotone, rearrangement
invariant and βE < 1;
• Nd,1 consists of all norms ρE that are K-monotone, rearrangement

invariant, satisfy the Minkowski inequality and αE>(k−2)/n, βE<1;
• Nd,2 consists of all norms ρE that are K-monotone, rearrangement

invariant, satisfy the Minkowski inequality and αE>(k−2)/n, βE =1;
• Nd is a shorter notation for any of the above classes;
• Nt consists of all norms ρG that are monotone;
• Nt,1 consists of all norms ρG that are monotone, satisfy the Minkowski

inequality and βG < 1− k/n.
Definition 1.2. We say that the couple ρE ∈ Nd, ρG ∈ Nt (or E,G) is

admissible if the following a priori estimate is valid:

(1.9) ρG(f∗) . ρE(|Dkf |∗), f ∈Mk.

If E and G are Banach spaces, then (1.9) allows us to define the Sobolev
space wkE as the closure of C∞0 ; then we have the continuous embedding
wkE ↪→ G. If (1.9) is true, then ρE (resp. E) is called the domain norm
(resp. domain space), and ρG (resp. G) is called the target norm (resp. target
space). We shall reserve the letter E for the domain space and ρE for the
domain norm, while the letter G will be reserved for the target space and
ρG for the target norm.

For example, by Theorem 3.1 or 3.2 below, the couple E = Γ q(tk/nw),
G = Λq0(v), 1 ≤ q ≤ ∞, is admissible if v is related to w by the Muckenhoupt
condition [25]:

(1.10)
(t�

0

[v(s)]q ds/s
)1/q(∞�

t

[w(s)]−r ds/s
)1/r

. 1, 1/q + 1/r = 1.

We denote by Λq0(v) the closure of C∞0 in the corresponding norm.
Now we recall the definition of optimal norms (see for example [13]).

Definition 1.3. Given the domain norm ρE ∈ Nd, the optimal target
norm, denoted by ρG(E), is the strongest target norm in Nt, i.e.

(1.11) ρG(g∗) . ρG(E)(g
∗), g ∈ L,

for any target norm ρG ∈ Nt such that the couple ρE , ρG is admissible.

Definition 1.4. Given the target norm ρG ∈ Nt, the optimal domain
norm, denoted by ρE(G), is the weakest domain norm in Nd, i.e.

(1.12) ρE(G)(g
∗) . ρE(g∗), g ∈ L,

for any domain norm ρE ∈ Nd such that the couple ρE , ρG is admissible.

Definition 1.5. The admissible couple ρE ∈ Nd, ρG ∈ Nt is said to be
optimal if ρE = ρE(G) and ρG = ρG(E).



EMBEDDINGS OF SOBOLEV SPACES 5

The optimal norms are uniquely determined up to equivalence, while the
corresponding optimal Banach spaces are unique.

We give a characterization of all admissible couples, optimal target
norms, optimal domain norms, and optimal couples. It is convenient to con-
sider the subcritical and critical cases separately.

Definition 1.6. The subcritical case is defined by the condition

(1.13)
1�

0

s−k/n−1hE(s) ds <∞, or equivalently k/n < αE .

For example, if E = Lp, 1 ≤ p < ∞, then we get the classical homoge-
neous Sobolev space wkp and the condition (1.13) means that k < n/p.

In the subcritical case we prove that the optimal target norm satisfies
ρG(E)(g) ≈ ρE(t−k/ng(t)), g ∈ L. Moreover, the couple ρE , ρG(E) is opti-
mal. For example, if E = Γ q(w), αE > k/n, 1 ≤ q ≤ ∞, then G(E) =
Λq0(t−k/nw), and this couple is optimal (see Theorem 3.13 below).

In the critical case, i.e. k/n = αE < 1, we use real interpolation similarly
to [10], but in a simpler way, and consider the domain norms

(1.14) ρE(g) := ρH((tk/nb(t)g∗∗(t))∗∗µ ),

where ρH is aK-monotone norm on (0,∞) satisfying (1.4), and h∗µ means the
rearrangement of h with respect to the Haar measure on (0,∞), dµ := dt/t,

h∗∗µ (t) := t−1
	t
0 h
∗
µ(s) ds. In this case the optimal target norm ρG(E) is

(1.15) ρG(E)(g) := ρH((cg)∗∗µ ).

Here b and c belong to a large class of Muckenhoupt slowly varying weights
(see Theorem 3.18 below).

Recall that w is slowly varying on (1,∞) (in the sense of Karamata) if for
all ε > 0 the function tεw(t) is equivalent to a nondecreasing function, and
the function t−εw(t) is equivalent to a nonincreasing function. By symmetry,
we say that w is slowly varying on (0, 1) if the function t 7→ w(1/t) is slowly
varying on (1,∞). Finally, w is slowly varying if it is slowly varying on (0, 1)
and (1,∞).

For example, if ρH(g) := (
	∞
0 [g(t)]q dt)1/q, 1<q≤∞, then βH =1/q<1,

and

ρE(g) ≈
(∞�

0

[(tk/nb(t)g∗(t))∗µ(s)]q ds
)1/q

=
(∞�

0

[tk/nb(t)g∗(t)]q dt/t
)1/q

.

Hence E = Λq(tk/nb(t)) and G(E) = Λq0(c).
The problem of optimal embeddings for inhomogeneous Sobolev spaces

has been treated in several papers by somewhat different methods. In [14],
[13], [17], [20], [24], [21], [15] the case of bounded domains is considered—and
in [9], the case of second order Sobolev spaces. A different method, based
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on the theory of capacities, is applied in [16], [23]. The case of homogeneous
Sobolev spaces is treated in [22] in the class of rearrangement invariant
Banach function spaces as in [5]. Our domain spaces are more general. In
particular, we do not use the Fatou property and duality arguments. The
construction of the optimal target space in the subcritical case is rather
simple and gives an optimal couple (see Theorem 3.13 below). In the critical
case we construct a large class of domain spaces for which the corresponding
optimal target space is found. In [22] the optimal target set is not linear (see
also Theorem 3.4 below). The main results in a slightly different form are
announced in [1].

2. Pointwise estimates for the rearrangement

Lemma 2.1 ([12]). For k = 1 and k = 2,

(2.1) f∗∗(t)− f∗∗(2t) . tk/n|Dkf |∗∗(t), f ∈ C∞0 ,

where |Dkf | =
∑
|α|=k |Dαf |.

When n = 1, k = 1 the estimate (2.1) is equivalent to one given in [18,
Lemma 5]. For k = 1 it was proved in [3] using another method.

Proof. Let t > 0 and let Bt be the ball in Rn with centre 0, radius h and
measure 2t. Let u ∈ Rn, |u| ≤ h. Let ∆uf(x) := f(x+ u)− f(x). Then

|f(x)| ≤ |∆uf(x)|+ |f(x+ u)|,
and, integrating with respect to u over Bt,

2t|f(x)| ≤
�

Bt

|∆uf(x)| du+
2t�

0

f∗(s) ds.

Now integrate with respect to x over a subset S of Rn with Lebesgue n-
measure t and take the supremum over all such sets S. This gives (see [5, p.
53, Proposition 2.3.3])

(2.2) 2t[f∗∗(t)− f∗∗(2t)] ≤
�

Bt

(∆uf)∗∗(t) du.

To estimate the right-hand side of this, we note that

|(∆uf)(x)| =
∣∣∣∣1�
0

n∑
j=1

∂f

∂xj
(x+ su)uj ds

∣∣∣∣ ≤ 1�

0

|∇f(x+ su)| |u| ds.

Integrate with respect to x over a subset E of Rn with Lebesgue measure t
and take the supremum over all such subsets E. Then by [5, p. 53, Propo-
sition 2.3.3],

(∆uf)∗∗(t) ≤
1�

0

|∇f |∗∗(t)|u| ds = |∇f |∗∗(t)|u|.
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Hence

f∗∗(t)− f∗∗(2t) ≤ 1
2t

�

Bt

|∇f |∗∗(t)|u| du . t1/n|∇f |∗∗(t),

as required.
To cover the case k = 2 we use ∆2

uf(x) := f(x+ 2u)− 2f(x+ u) + f(x),
whence

|f(x)| ≤ 1
2
|∆2

uf(x− u)|+ 1
2

[|f(x+ u)|+ |f(x− u)|].

Integration with respect to u over Bt gives

2t|f(x)| ≤ 1
2

�

Bt

|∆2
uf(x− u)| du+

2t�

0

f∗(s) ds.

Hence taking the norm f∗∗ we have

(2.3) 2t[f∗∗(t)− f∗∗(2t)] ≤ 1
2

�

Bt

(∆2
uf)∗∗(t) du.

On the other hand,

|(∆2
uf)(x)| .

1�

0

1�

0

∣∣∣∣ n∑
i,j=1

∂2f

∂xi∂xj
(x+ s1u+ s2u)uiuj

∣∣∣∣ ds1 ds2,
whence (∆2

uf)∗∗(t) . |D2f |∗∗(t). Now (2.1) for k = 2 follows from (2.3).

Lemma 2.2. If f ∈ C∞0 then

(2.4) f∗∗(t) .
∞�

t

uk/n|Dkf |∗∗(u)
du

u
.

and

(2.5) δf∗∗(t) := f∗∗(t)− f∗(t) . t2/n
∞�

t

u(k−2)/n|Dkf |∗∗(u)
du

u
.

Proof. In [22] the weaker estimate

δf∗∗(t) . t1/n
∞�

t

u(k−1)/n|Dkf |∗∗(u)
du

u

is proved using (2.1) for k = 1 and induction.
We prove (2.5) by induction for k > 2. (If k = 1 or k = 2, then it follows

from (2.1).) First we note that since d
dtf
∗∗(t) = (f∗(t)− f∗∗(t))t−1, we have

(2.6) f∗∗(t) =
∞�

t

δf∗∗(u)
du

u
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and also δf∗∗(t) . f∗∗(t)− f∗∗(2t). Using (2.1) and (2.6) we can write

δf∗∗(t) . t2/n
∞�

t

δ|D2f |∗∗(u)
du

u
. t2/n

∞�

t

u1/n|D3f |∗∗(u)
du

u
,

i.e. (2.5) for k = 3. By induction and (2.6), we have

δf∗∗(t) . t2/n
∞�

t

u(k−2)/n|Dkf |∗∗(u)
du

u

. t2/n
∞�

t

u(k−2)/n
∞�

u

δ|Dkf |∗∗(s) ds
s

du

u
.

Using also (2.1) for k = 1, we get

δf∗∗(t) . t2/n
∞�

t

u(k−2)/n
∞�

u

s1/n|Dk+1f |∗∗(s) ds
s

du

u

and applying Fubini’s theorem, we obtain the desired estimate (2.5) where
k is replaced by k + 1. Finally, from (2.5) and (2.6) again using Fubini’s
theorem, we derive (2.4).

The results of Lemmas 2.1 and 2.2 are sufficient in order to cover the
case βE < 1. The limiting case βE = 1 is more difficult. Then we shall use,
instead of (2.1), the sharper estimate (3.6) below, proved in [22] for k = 1
and in [9] for k = 2.

3. Optimal Sobolev embeddings

3.1. Admissible couples. Here we give a characterization of all ad-
missible couples ρE ∈ Nd, ρG ∈ Nt. Similar results are proved in [22] if E is
a rearrangement invariant space as in [5].

Theorem 3.1 (Case ρE ∈ Nd,0, ρG ∈ Nt). The couple ρE ∈ Nd,0,
ρG ∈ Nt is admissible if and only if

(3.1) ρG(Tg) . ρE(g), g ∈M,

where

(3.2) Tg(t) :=
∞�

t

sk/ng(s) ds/s, t > 0.

and

M := {g ∈ L : tmg(t) is increasing for some m > 0 and Tg(t) <∞}.

Proof. Evidently, (1.9) follows from (2.4) and (3.1). Now we prove that
(1.9) implies (3.1). The proof given below is valid without the restriction
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βE < 1. Moreover, we can replace the class M by M0 = {g ∈ L : g decreasing
and Tg(t) <∞}. To this end we choose the test function in the form

(3.3) f(x) =
∞�

0

ukg(un)ψ(|x/u|) du
u
,

where g ∈ M and ψ ≥ 0 is a smooth function with compact support such
that ψ(|x|) = 1 if |x| ≤ c and the constant c is chosen so that the ball
Bt := {x : |x| ≤ ct1/n} has volume t. Then ψ(|x/u|) ≥ 1 if x ∈ Bt and
u > t1/n. In particular

(3.4) f∗(t) ≥
∞�

t1/n

ukg(un)
du

u
=

1
n

∞�

t

uk/ng(u)
du

u
=

1
n
Tg(t).

Since for a certain continuous function ϕ with compact support in (0,∞),

|Dαf(x)| ≤
∞�

0

g(un)ϕ(|x/u|) du
u

=
∞�

0

g((|x|/s)n)ϕ(s)
ds

s
, |α| = k ≥ 1,

we have, by the monotonicity condition on g,

|Dkf(x)| . g(C|x|n).

Therefore,

(3.5) ρE(|Dkf |∗) . ρE(g∗) = ρE(g).

Thus, if (1.9) is given, then (3.4) and (3.5) imply (3.1).

In the case βE = 1 we require more properties of the domain norm ρE .

Theorem 3.2 (Case ρE ∈Nd,2, ρG∈Nt). The couple ρE ∈Nd,2, ρG∈Nt

is admissible if and only if the condition (3.1) is satisfied for all g ∈M .

A similar result is proved in [22] under the condition k < 1+nαE , n > 1,
if E is a rearrangement invariant Banach function space as in [5].

Proof. We only need to prove sufficiency. We start with the following
estimate, proved in [22] for k = 1:

(3.6)
t�

0

s−k/nδf∗∗(s) ds .
t�

0

|Dkf |∗(s) ds, f ∈ C∞0 .

If k = 2 and n > 2 this estimate is also valid. It follows from

(3.7)
t�

0

(s1−2/n(−f∗(s))′)∗(u) du .
t�

0

|D2f |∗(s) ds, n > 2,

which is proved in [9]. Indeed, let g(t) := t−2/n
	t
0 u(−f∗(u))′du. Since g(t) =

t1−2/nδf∗∗(t) we find, using also (2.1), that g(0) = 0. Now we can integrate
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by parts:
t�

0

s−2/nδf∗∗(s) ds =
t�

0

g(s) ds/s = −ng(t)/2 + n

t�

0

s1−2/n(−f∗(s))′ ds/2,

thus (3.6) for k = 2 follows.
Since αE > 0, inequalities (3.6) for k = 1 or k = 2 imply

(3.8) ρE(t−k/nδf∗∗(t)) . ρE(|Dkf |∗).
Indeed, the argument is similar to [22, proof of Lemma 2]. Introduce the
Hardy operators

Pg(t) :=
1
t

t�

0

g(s) ds, Qg(t) :=
∞�

t

g(s) ds/s,

which commute. Then (3.6) gives

(3.9)
t�

0

Q(s−k/nδf∗∗(s)) ds .
t�

0

Q(|Dkf |∗(s)) ds,

whence by K-monotonicity of ρE ,

(3.10) ρE(Q(t−k/nδf∗∗(t))) . ρE(Q(|Dkf |∗)).
We need the estimate

(3.11) ρE(t−aQg(t)) . ρE(t−ag(t)) if αE > a, 0 ≤ a < 1, g ∈M.

The proof is standard: we just have to use the fact that ρE satisfies (1.2),
the monotonicity properties of g ∈M and the fact that αE > a is equivalent
to

	1
0 s
−ahE(s) ds/s <∞ (cf. [5]).

From (3.10) we get (3.8) since αE > 0 implies the boundedness of Q,
while the monotonicity of tδf∗∗(t), Q and ρE give the needed estimate from
below.

By induction, we will now prove (3.8) for all k > 2, provided αE >
(k − 2)/n. Let hk(t) = t−k/nδf∗∗(t). If (3.8) is true for some j > 2 with
αE > (j − 2)/n, then by (2.1) and (2.6),

ρE(hj+1) . ρE(t−(j−1)/n|D2f |∗∗(t)) = ρE(t−(j−1)/nQ(δ|D2f |∗∗(t))),
and if (j − 1)/n < αE then by (3.11),

ρE(t−(j−1)/nQ(δ|D2f |∗∗(t))) . ρE(t−(j−1)/nδ|D2f |∗∗(t)) . ρE(|Dj+1f |∗).
Hence

ρE(hj+1) . ρE(|Dj+1f |∗), αE > (j − 1)/n.

Thus (3.8) is proved. Finally, since f∗∗ = Thk, hk(t) = t−k/nδf∗∗(t), we get
from (3.1) and (3.8) the estimate (1.9).
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3.2. Optimal norms. Here we give a characterization of the optimal
domain and optimal target norms. Before constructing an optimal target
norm, it is convenient first to prove an embedding in a target set that is
rearrangement invariant but may not be a linear space [4], [19], [3]. We put
for brevity Nd,3 := Nd,1 ∪Nd,2 and let Nt,3 be the subset of Nt consisting of
all norms satisfying the Minkowski inequality.

Definition 3.3. For a given domain norm ρE ∈ Nd,3, we define a re-
arrangement invariant target set GE (not necessarily a linear space) by the
condition

(3.12) ρGE (f∗) <∞, where ρGE (g) := ρE(t−k/n(g∗∗(t)− g∗(t))).
Theorem 3.4. If ρE ∈ Nd,3, then

(3.13) ρGE (f∗) . ρE(|Dkf |∗).
This embedding is proved in [22] under the condition k < 1+nαE , n > 1,

if E is a rearrangement invariant Banach function space as in [5].

Proof. Let first βE < 1. Then the relation (3.13) for k = 1 or k = 2
follows immediately from (2.1). If k > 2, from Lemma 2.2 we derive

ρGE (f∗) . ρE

(
t(2−k)/n

∞�

t

u(k−2)/n|Dkf |∗∗(u)
du

u

)
.

Since (k − 2)/n < αE , we can apply (3.11) and (1.3), which gives (3.13). If
βE = 1, then (3.13) coincides with (3.8).

We can define an optimal target norm by using Theorem 3.4. Namely,
we have to take the linear and rearrangement invariant hull of the func-
tional ρGE .

Definition 3.5. By definition, the linear and rearrangement invariant
hull is the norm

(3.14) ρl(g) := inf
∑

ρGE (gj), gj ∈ L,

where the infimum is taken with respect to all finite sums: g∗∗ ≤
∑
g∗∗j .

Proposition 3.6. If ρE ∈ Nd,3, then ρl is a K-monotone and rear-
rangement invariant norm, the couple ρE , ρl is admissible and ρl is optimal,
i.e. ρl ≈ ρG(E).

Proof. The first two properties follow directly from the definition of ρl,
while admissibility is a consequence of (3.13). To prove that ρl is an optimal
target norm, let ρG ∈ Nt be such that the couple ρE , ρG is admissible. Then
by the results of the previous subsection we have ρG(Tg) . ρE(g) for all
g ∈M. On the other hand, (2.6) gives

(3.15) f∗∗(t) = Thk(t), hk(u) := u−k/nδf∗∗(u).



12 I. AHMED AND G. E. KARADZHOV

Hence
ρG(f∗∗) . ρE(hk) = ρGE (f∗).

If f∗∗ ≤
∑
g∗∗j as in the definition of ρl, then

ρG(f∗) ≤
∑

ρG(g∗∗j ) .
∑

ρGE (gj),

therefore, taking the infimum, we get ρG(f∗) . ρl(f∗). This finishes the
proof.

We can define an equivalent norm by using the results of the previous
subsection, which will be useful below.

Proposition 3.7. If ρE ∈ Nd,3 then the monotone norm

(3.16) ρ(g) := inf{ρE(h) : g ≤ Th, h ∈M}
is equivalent to the norm ρl, i.e. ρ(g∗) ≈ ρl(g∗) for all g ∈ L. Thus ρ is
an optimal target norm, i.e. ρ ≈ ρG(E) and αG(E) ≥ αE − k/n, βG(E) ≤
βE − k/n. In addition,

(3.17) E ↪→ L1 + Λ1(tk/n) implies G(E) ↪→ Λ1(t1−k/n) + L∞.

Proof. Let g∗∗ ≤
∑
g∗∗j . We can write

g∗∗j = Thj , hj := t−k/nδg∗∗j ,

hence
g∗ ≤ g∗∗ ≤ Th, h =

∑
hj .

This means that ρ(g∗) ≤ ρE(h) ≤
∑
ρE(hj) =

∑
ρGE (gj) and taking the

infimum we conclude that ρ(g∗) ≤ ρl(g) = ρl(g∗).
For the reverse, if g∗ ≤ Th then using the fact that the couple ρE , ρl is

admissible, we have ρl(g∗) ≤ ρl(Th) . ρE(h). Hence, taking the infimum we
obtain ρl(g∗) . ρ(g∗).

To prove (3.17) let f ∈ G(E). Then f∗ ≤ Th, h ∈ M and using also
(3.17) we get

	1
0 t
−k/nf∗(t) dt . ρE(h). It remains to take the infimum with

respect to h and use the equivalence (see for example [6])
1�

0

t−k/nf∗(t) dt ≈ ‖f‖Λ1(t1−k/n)+L∞ .

If ρG ∈ Nt,1 we can construct an optimal domain norm in the class Nd,1.

Theorem 3.8. Let ρG ∈ Nt,1 be rearrangement invariant. Then the
couple ρE(G), ρG, where ρE(G)(g) = ρG(Tg∗∗), is optimal in the class Nd,1,
Nt,1. The norm in the optimal domain space E(G) is given by ‖f‖E(G) :=
ρG(Tf∗∗).

Proof. The norm ρE(G) is K-monotone, rearrangement invariant, sat-
isfies the Minkowski inequality and its upper Boyd index is smaller than
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k/n + βG < 1, while its lower Boyd index is greater than k/n. Hence
ρE(G) ∈ Nd,1. In particular, ρE(G)(g) ≈ ρG(Tg∗). If ρE , ρG is an admis-
sible couple, then ρG(Tg∗) . ρE(g∗). Therefore ρE(G)(g∗) . ρE(g∗). This
proves the optimality of the domain norm ρE(G) in Nd,1.

It remains to check that ρG is an optimal target norm. To this end
we need to prove that ρ(g∗) . ρG(g∗), where ρ is defined by (3.16). Since
g∗∗ = Th with h(t) = t−k/nδg∗∗(t) ∈M, we can write

ρ(g∗) ≤ ρE(G)(h) = ρG(Th∗∗).

Since h∗ . Qh, we have h∗∗ = Ph∗ . QPh, therefore Th∗∗ . TQ(Ph) .
T (Ph). Also T (Ph) ≈ Th+ tk/nPh and Ph ≤ h∗∗. Therefore,

ρ(g∗) . ρG(Th) + ρG(tk/nh∗∗).

Consider the norm h 7→ ρG(tk/nh∗∗(t)). It is K-monotone and its upper
Boyd index is k/n+ βG < 1, hence

ρ(g∗) . ρG(Th) + ρG(tk/nh∗(t)).

Since h(t) ≤ t−k/ng∗∗(t) we have h∗(t) ≤ t−k/ng∗∗, thus ρG(tk/nh∗(t)) ≤
ρG(g∗∗). Therefore

ρ(g∗) . ρG(g∗∗) ≈ ρG(g∗).

The proof is complete.

Now we give some examples.

Example 3.9. Consider the space G = Λ1
0(v) and let βG < 1 − k/n.

This is true in the particular case when v is slowly varying, since then
αG = βG = 0. Using Theorem 3.8, we can construct the optimal couple E,G,
where ρE(g) = ρG(Tg∗∗) =

	∞
0 tk/nw(t)g∗∗(t) dt/t and w(t) =

	t
0 v(s) ds/s.

Hence E = Λ1(tk/nw) = Γ 1(tk/nw). Also αE = βE = k/n if v is slowly
varying.

Example 3.10. If G = C0 consists of all bounded functions such that
f∗(∞) = 0 and ρG(g) = g∗(0) = g∗∗(0). Then αG = βG = 0 and ρE(G)(g) ≈	∞
0 tk/ng∗∗(t) dt/t, i.e. E = Λ1(tk/n) = Γ 1(tk/n) and the couple E,G is opti-

mal.

Example 3.11. Let G = Λ∞0 (v) with βG < 1− k/n and let

ρE(g) = sup v(t)
∞�

t

sk/ng∗∗(s) ds/s.

Then by Theorem 3.8, the couple E,G is optimal and βE < 1. In particular,
this is true if v is slowly varying since then αG = βG = 0 and αE = βE =
k/n < 1.
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Example 3.12. Let G be as in the previous example. Since

ρE(g) ≤ sup tk/nw(t)g∗∗(t),
1
v(t)

=
∞�

t

1
w(s)

ds

s
,

it follows that the couple E1 = Γ∞(tk/nw), G = Λ∞0 (v) is admissible. Let w
be slowly varying. In order to prove that ρG is optimal, take any g ∈ L, and
define h from tk/nw(t)h(t) = sup0<s≤t v(s)g∗(s). Then tk/nw(t)h(t) ≤ ρG(g),
therefore tk/nw(t)h∗(t) . ρG(g), whence ρE1(h) . ρG(g). On the other hand

Th(t) =
∞�

t

sup
0<s≤u

v(s)g∗(s)
1

w(u)
du/u ≥ sup

0<s≤t
v(s)g∗(s)

1
v(t)

≥ g∗(t).

Hence ρ(g∗) ≤ ρE1(h) . ρG(g), therefore ρG is optimal. But the couple
ρE1 , ρG is not optimal. Indeed, suppose otherwise, i.e. ρE ≈ ρE1 . Then
ρG(Tg) & ρE1(g) for all nonnegative and decreasing g. To contradict this
inequality, we choose w(t) = (1− log t)3 if 0 < t < 1 and w(t) = (1 + log t)2

for t > 1. Then v(t) ≈ 1 for 0 < t < 1/2. Let h(t) = tk/ng(t) = (1− log t)−2

if 0 < t < 1. Then Tg ≈ 1 for 0 < t < 1/2. Since w(t)h(t) = 1 − log t,
v(t)Tg(t) ≈ 1 for 0 < t < 1/2, we get a contradiction.

3.3. Subcritical case. Here we suppose that k/n < αE .

Theorem 3.13. Let ρE ∈ Nd,3. Then we define an optimal target norm
ρG(E) by

(3.18) ρG(E)(g) := ρE(t−k/ng).

Moreover, the couple ρE , ρG(E) is optimal and βG(E) = βE − k/n, αG(E) =
αE − k/n.

Proof. Optimality of the target norm (3.18) is known [22] for rearrange-
ment invariant Banach function spaces as in [5]. According to our previous
results, the couple ρE , ρG(E) is admissible if

ρE

(
t−k/n

∞�

t

sk/ng(s) ds/s
)

. ρE(g), g ∈M.

But this follows from (3.11) since k/n < αE . Further, let ρE , ρG be an
admissible couple. Then, as before,

ρG(g∗) ≤ ρG(g∗∗) = ρG(T (t−k/nδg∗∗)) . ρE(t−k/ng∗∗(t)).

Now consider the norm g 7→ ρE(t−k/ng∗∗). Since its upper Boyd index
equals βE − k/n, it follows that this index is smaller than one, hence the
above gives ρG(g∗) . ρE(t−k/ng∗(t)) = ρG(E)(g∗). This proves the optimality
of the target norm (3.18).
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Finally, the couple ρE , ρG(E) is optimal, since for any admissible couple
ρF , ρG(E), we have ρG(E)(Tg) . ρF (g) for all g ∈M0. Then

ρF (g) & ρG(E)(t
k/ng) ≈ ρE(g).

Consider some examples.

Example 3.14. The couple E = Λq(tw), G = Λq0(t1−k/nw), where 1 ≤
q < ∞, k < n, tq−1[w(t)]q is nonincreasing and such that k/n < αE , is
optimal. Indeed, ρE := ρtw,q is K-monotone. It remains to apply Theorem
3.13. In particular, this is true if q = 1 and in addition w is slowly varying,
since then αE = βE = 1.

Example 3.15. The couple E = Γ q(w), G = Λq0(t−k/nw), where k/n
< αE and βE < 1, is optimal.

Example 3.16. Consider the Γ space E = Γ q(tw), where k < n, 1 < q
≤ ∞, w is a slowly varying weight and ρE := ρtw,q,Γ . In this case αE =
βE = 1 and Theorem 3.13 shows that

ρG(E)(g) =
(∞�

0

[tw(t)]q([s−k/ng(s)]∗∗(t))q
dt

t

)1/q

,

hence the space G(E) is smaller than Γ q0 (t1−k/nw).

If the target norm is from the class Nt,2 := {ρG ∈ Nt,1 : αG > 0}, then
we can simplify the formula for the optimal domain norm constructed in
Theorem 3.8.

Theorem 3.17. Let ρG ∈ Nt,2 be rearrangement invariant and define
the norm ρE by

(3.19) ρE(g) = ρG(tk/ng∗∗(t)).

Then the couple ρE , ρG is optimal in the class Nd,1, Nt,2.

Proof. According to Theorem 3.8 we only have to prove that

ρG(tk/ng∗∗) ≈ ρG(Tg∗∗), g ∈ L.
This follows from Tg(t) & tk/ng(t) for all g ∈M and from

ρG(Tg) . ρG(tk/ng(t)), g ∈M, provided αG > 0

(see (3.11)).

3.4. Critical case. Here we are going to use real interpolation for
normed spaces, similarly to [11], [10]. First we recall some basic definitions.
Let (A0, A1) be a couple of normed spaces (see [6], [7]) and let

K(t, f) = K(t, f ;A0, A1) = inf
f=f0+f1

[‖f0‖A0
+ t ‖f1‖A1

], f ∈ A0 +A1,



16 I. AHMED AND G. E. KARADZHOV

be the K-functional of Peetre (see [6]). By definition, the K-interpolation
space AΦ = (A0, A1)Φ has the norm

‖f‖AΦ = ‖K(t, f)‖Φ ,
where Φ is a normed function space with a monotone norm on (0,∞) with
the Lebesgue measure and such that min{1, t} ∈ Φ. Then (see [7])

A0 ∩A1 ↪→ AΦ ↪→ A0 +A1.

Now we construct the needed couples of Muckenhoupt weights. Suppose

(3.20) b is nondecreasing, slowly varying on (0,∞) with b(t2) ≈ b(t)
and

(3.21) (1 + log t)−1−εb(t), t > 1, is increasing for some ε > 0.

Let

(3.22) c(t) =
b(t)

1 + |log t|
.

Then

(3.23)
∞�

t

1
b(s)

ds/s .
1
c(t)

, t > 0.

Indeed, if 0 < t < 1 we can write
∞�

t

1
b(u)

du

u
=

1�

t

1
b(u)

du

u
+
∞�

1

(1 + log u)−1−ε

b(u)(1 + log u)−1−ε
du

u
.

Using the monotonicity properties (3.20), (3.21) and c(t) . 1 for 0 < t < 1,
we get (3.23). The case t > 1 is analogous, but simpler.

Theorem 3.18. Let H be a rearrangement invariant space on (0,∞)
with the Lebesgue measure, with a K-monotone rearrangement invariant
norm ρH that satisfies the Minkowski inequality, and let βH < 1. Let b, c be
given by (3.20)–(3.22). Let ρE be defined by

(3.24) ρE(g) := ρF (tk/nb(t)g∗∗(t)), k < n,

set

(3.25) F := (L1
∗, L

∞
∗ )H(1/t),

and suppose H(1/t) has the norm ‖g‖H(1/t) := ρH(g(t)/t). Then the optimal
target norm is given by

(3.26) ρG(E)(g) := ρF (gc).

Moreover, E ↪→ L1 + Λ1(tk/n) and G(E) ↪→ Λ1(t1−k/n) + L∞.

Proof. We denote by Lr∗(v), 1 ≤ r ≤ ∞, v a positive weight, the weighted
Lebesgue space on (0,∞) with the Haar measure dµ = dt/t and norm
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‖g‖Lr∗(v) :=
(∞�

0

|g(t)v(t)|r dt/t
)1/r

.

We write Lr∗ when v = 1.
Let Lrv be the weighted Lebesgue space on (0,∞) with the Lebesgue

measure and norm

‖g‖Lrv :=
(∞�

0

|g(t)v(t)|r dt
)1/r

.

Then the operator T defined by (3.2) is bounded in the following couple of
spaces:

(3.27) T : L1
∗(t

k/nb(t))→ L∞b and T : L∞∗ (tk/nb(t))→ L∞c ,

where b, c are given by (3.20), (3.22), since they satisfy (3.23).
Define F by (3.25). It is well known ([6]) that

(3.28) ρF (g) = ρH(g∗∗µ ) ≈ ρH(g∗µ),

where g∗∗µ (t) = t−1
	t
0 g
∗
µ(s) ds. The equivalence in (3.28) is true because

βH < 1.
By interpolation,

(3.29) T : E1 → G1,

where

(3.30) E1 := (L1
∗(t

k/nb(t)), L∞∗ (tk/nb(t)))H(1/t), G1 := (L∞b , L
∞
c )H(1/t).

Denote the norm in E1 by ρ1 and let ρE(g) = ρ1(g∗∗). We have

(3.31) ρE(g) = ρF (tk/nb(t)g∗∗(t)) = ρH((tk/nb(t)g∗∗(t))∗∗µ ).

Hence ρE is rearrangement invariant, K-monotone norm with both Boyd
indices equal to k/n < 1 (here we are using the fact that b is slowly varying).
Therefore

(3.32) ρE(g) ≈ ρF (tk/nb(t)g∗(t)) ≈ ρH((tk/nb(t)g∗(t))∗∗µ ).

Since ρH satisfies the Minkowski inequality, so does ρE . Now we prove the
property

(3.33)
1�

0

h(t) dt+
∞�

1

tk/n−1h(t) dt . ρE(h), h ∈M0,

which implies the embedding E ↪→ L1 +Λ1(tk/n). To prove (3.33), we notice
that

L1
∗(t

k/nb) ↪→ L1 + L1(tk/n−1), L∞∗ (tk/nb) ↪→ L1 + L1(tk/n−1),

whence using ρE(h) = ρ1(h∗∗) & ρ1(h) for h ∈M0 and (3.30) we get (3.33).
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Now we characterize the space G1. Since (see [6])

K(t, g;L∞b , L
∞
c ) = tK(1/t, g;L∞c , L

∞
b ) = t sup

s
|g(s)|min(c(s), b(s)/t),

we get the formula

(3.34) ρG1(g) = ρH(hg), hg(u) := sup
s
|g(s)|min(c(s), b(s)/u).

Also, since L∞b ↪→ L∞c it follows that hg(u) ≈ sup |g(s)|c(s) if 0 < u < 1.
Let

(3.35) Hg(t) := hg(1 + |log t|), 0 < t <∞.
Then (Hg)∗µ(t) ≤ hg(t/2), hence by (3.28) and (3.34),

(3.36) ρF (Hg) . ρG1(g).

Note that Hg & gc, hence, if we define the norm ρG(g) := ρF (gc), we get
the relation

(3.37) ρG(Tg) . ρG1(Tg) . ρE(g), g ∈M.

Since βE < 1 Theorem 3.1 shows that the couple ρE , ρG is admissible.
Now we want to prove that ρG is an optimal target norm. It is sufficient

to see that

(3.38) ρG(g) ≈ ρ(g), g ∈ L, g decreasing,

where ρ is defined by (3.16); and since the norm ρ is optimal, we need only
prove that ρ(g) . ρG(g), g ∈ L, g decreasing. To this end first for any
such g we construct an h ∈ M such that g . Th and ρE(h) . ρG(g).
Let tk/nb(t)h1(t) = g1(t), where g1(t) = g∗∗(t2/e)c(t2) for 0 < t < 1 and
g1(t) = g∗∗(

√
t/e)c(

√
t) if t > 1. Note that h1 ≈ h∗1. Then ρE(h1) ≈

ρF (tk/nb(t)h∗1(t)) ≈ ρF (gc) = ρG(g). On the other hand, for 0 < t < 1,

Th1(t) ≥

√
te�

t

g(s2/e)
c(s2)
b(s)

ds/s ≥ g(t)A(t) & g(t),

since

A(t) =

√
te�

t

c(s2)
b(s)

ds/s ≈

√
te�

t

1
1 + |log s|

ds/s & 1.

Similarly, for t > 1 we obtain

Th1(t) ≥
et2�

t

g(
√
s/e)

1
1 + log s

ds/s & g(t).

Thus Th1 & g and ρE(h1) ≈ ρG(g), therefore we can find h ≈ h1 with the
required properties. Then by the definition of ρ we get ρ(g) . ρG(g).

Finally, from (3.33) and Proposition 3.7 the embedding G(E) ↪→
Λ(t1−k/n) + L∞ follows.
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Example 3.19. Let G = Λq0(c), 1 < q < ∞, E = Γ q(tk/nb(t)), where b
is slowly varying on (0,∞), b(t2) ≈ b(t), b(t) . (1 + |log t|)c(t) and(t�

0

[c(s)]q ds/s
)1/q(∞�

t

[b(s)]−r ds/s
)1/r

. 1, 1/q + 1/r = 1.

Then the couple E,G is admissible and using the same argument as above,
we see that G is an optimal target space. In particular, we can take b(t) = 1,
0 < t < 1 and b(t) = (1 + log t)2, t > 1. Then c(t) = (1− log t)−1, 0 < t < 1
and c(t) = 1 + log t, t > 1. But we cannot take b(t) = 1 for all t > 0.
This means that the Lebesgue space Ln/k is not allowed as a domain. It is
not embedded in L1 +Λ1(tk/n). This contrasts with the well known limiting
embedding

1�

0

(
f∗(t)

1− log t

)n/k dt
t

.
1�

0

(|Dkf |∗(t))n/k dt, f ∈ C∞0 (Ω),

where Ω is a bounded domain in Rn (see [16]). Of course, by Theorem 3.4
(see also [22]) we have the optimal embedding in the rearrangement invariant
nonlinear set:

∞�

0

(δf∗∗(t))n/k
dt

t
.
∞�

0

(|Dkf |∗(t))n/k dt.
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