THE COMPOSITE OF IRREDUCIBLE MORPHISMS IN REGULAR COMPONENTS

BY
CLAUDIA CHAIO (Mar del Plata), MARÍA INÉS PLATZECK (Bahía Blanca) and SONIA TREPODE (Mar del Plata)

Abstract

We study when the composite of n irreducible morphisms between modules in a regular component of the Auslander-Reiten quiver is non-zero and lies in the $n+1$-th power of the radical \Re of the module category. We prove that in this case such a composite belongs to \Re^{∞}. We apply these results to characterize those string algebras having n irreducible morphisms between band modules such that their composite is a non-zero morphism in \Re^{n+1}.

The composite of n irreducible morphisms between indecomposable modules over a finite-dimensional k-algebra A, with k an algebraically closed field, belongs to \Re^{n}, the n-th power of the radical \Re of the module category. In general such a composite could be a non-zero morphism in \Re^{n+1} (see for instance [5]-[7]). We are interested to know when the composite of n irreducible morphisms is a non-zero morphism in \Re^{n+1}. The purpose of this work is to study this problem for irreducible morphisms between indecomposable modules in regular components of the Auslander-Reiten quiver Γ_{A} of $\bmod A$ of type $Z A_{\infty}$ or stable tubes.

The case where the irreducible morphisms belong to a left (or right) almost sectional path was considered in [6]. Here, we will consider morphisms in stable tubes or components of type $Z A_{\infty}$. We will prove that the existence of n irreducible morphisms with composite in \Re^{n+1} implies the existence of n such irreducible morphisms in a left or in a right almost sectional path. Precisely, we prove:

Theorem A. Let A be a finite-dimensional algebra over an algebraically closed field and Γ a stable tube or a component of Γ_{A} of type $Z A_{\infty}$. Then the following conditions are equivalent:
(a) There are an integer $n>1$ and irreducible morphisms h_{1}, \ldots, h_{n} between modules in Γ such that $h_{n} \ldots h_{1} \neq 0$ and $h_{n} \ldots h_{1} \in \Re^{n+1}$.

[^0](b) There are an integer $t \geq 1$ and a simple regular module W in Γ such that $\Re\left(W, \tau^{-t} W\right) \neq 0$.
(c) There are an integer $m>1$ and irreducible morphisms f_{1}, \ldots, f_{m} over a left (right) almost sectional path starting (ending) at a simple regular module W, such that $0 \neq f_{m} \ldots f_{1} \in \Re^{m+1}$.
In Section 3, we will apply the above result to characterize string algebras which contain n irreducible morphisms between indecomposable band modules whose composite is a non-zero morphism in \Re^{n+1}.

We will prove that if the composite of n irreducible morphisms belongs to a power of the radical greater than n, then it is in the infinite radical. Actually, we prove the following theorem:

Theorem B. Let A be a finite-dimensional algebra over an algebraically closed field and Γ a component of Γ_{A} of type $Z A_{\infty}$ or a stable tube. Let $h_{i}: X_{i} \rightarrow X_{i+1}$ be irreducible morphisms with $X_{i} \in \Gamma$ for $i=1, \ldots, n+1$. Then $0 \neq h_{n} \ldots h_{1} \in \Re^{n+1}\left(X_{1}, X_{n+1}\right)$ if and only if $0 \neq h_{n} \ldots h_{1} \in \Re^{\infty}\left(X_{1}, X_{n+1}\right)$.

The proof of Theorem B is given in Section 2. The notion of degree of an irreducible morphism, introduced by Liu in [11], is a very useful tool in the study of this problem, as shown in [5-7.

Recently a general solution to the problem of finding necessary and sufficient conditions for the existence of n irreducible morphisms with non-zero composite in \Re^{n+1} is given in [8], where the results are proven using covering techniques.

Here, we use a different technique, namely the concept of degree of an irreducible morphism. We think that this notion could help to solve the problem in the more general context of artin algebras.

1. Preliminaries. Throughout this paper, all algebras are finite-dimensional algebras over an algebraically closed field. For such an algebra A, we denote by $\bmod A$ the category of finitely generated left A-modules, and by ind A the full subcategory of $\bmod A$ consisting of one representative of each isomorphism class of indecomposable A-modules.

Let X be an indecomposable A-module. If X is not projective, we denote by $\alpha(X)$ the number of indecomposable summands of the middle term of the almost split sequence ending at X. Dually, if X is not injective, we denote by $\alpha^{\prime}(X)$ the number of indecomposable summands of the middle term of the almost split sequence starting at X.

We denote the radical of the module category $\bmod A$ by \Re_{A}, or just by \Re. We recall that, for $X, Y \in \bmod A$, we denote by $\Re_{A}(X, Y)$ the set of all the morphisms $f: X \rightarrow Y$ such that, for all $M \in \operatorname{ind} A$, each $h: M \rightarrow X$ and each $h^{\prime}: Y \rightarrow M$ the composite $h^{\prime} f h$ is not an isomorphism. In particular, when $X, Y \in \operatorname{ind} A$, then $\Re_{A}(X, Y)$ is the set of all the morphisms f :
$X \rightarrow Y$ which are not isomorphisms. Inductively, the powers of $\Re_{A}(X, Y)$ are defined. By $\Re_{A}^{\infty}(X, Y)$ we denote the intersection of all powers $\Re_{A}^{i}(X, Y)$, $i \geq 1$, of $\Re_{A}(X, Y)$.

We denote by Γ_{A} the Auslander-Reiten quiver of A and by τ the Auslan-der-Reiten translation DTr.

An arrow $\alpha: M \rightarrow N$ has valuation (a, b) if there is a minimal right almost split morphism $a M \oplus X \rightarrow N$ where M is not a summand of X, and a minimal left almost split morphism $M \rightarrow b N \oplus Y$ where N is not a summand of Y. If $a=b=1$ then we say that the arrow α has trivial valuation. A component Γ of Γ_{A} is said to have trivial valuation if all the arrows in Γ have trivial valuation.

A component Γ of Γ_{A} is said to satisfy the condition that $\alpha(\Gamma) \leq 2$ if $\alpha(X) \leq 2$ for every X in Γ.

For unexplained notions from representation theory we refer the reader to [2, 3, 13].

We recall the definition of left almost sectional path, given in [6]. Let $\xi: X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{n} \rightarrow X_{n+1}$ be a non-sectional path in Γ_{A} of length $n \geq 2$. We say that ξ is a left almost sectional path provided $X_{1} \rightarrow X_{2} \rightarrow$ $\cdots \rightarrow X_{n-1} \rightarrow X_{n}$ is sectional. Observe that if $\xi: X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{n} \rightarrow$ X_{n+1} is a left almost sectional path, then $\tau X_{n+1} \simeq X_{n-1}$.

Let $X \rightarrow Z$ be an arrow in a component Γ of Γ_{A}. Any path $X=Y_{0} \rightarrow$ $Y_{1} \rightarrow \cdots \rightarrow Y_{n}=Z$ in Γ of length $n \geq 2$ with $Y_{1} \neq Y_{n}$ and $Y_{0} \neq Y_{n-1}$ is called a bypass of the arrow $X \rightarrow Z$. If this path is sectional, then it is called a sectional bypass. Otherwise, it is called a non-sectional bypass (see [1]).

Let $f: X \rightarrow Y$ be an irreducible morphism in $\bmod A$, and assume that either X or Y is indecomposable. Following [11], we say that the left degree of f is infinite if for each positive integer n, for each $Z \in \bmod A$ and each morphism $g \in \Re^{n}(Z, X) \backslash \Re^{n+1}(Z, X)$, we have $f g \notin \Re^{n+2}(Z, Y)$. Otherwise, the left degree of f is the smallest positive integer m such that there exists a morphism $g \in \Re^{m}(Z, X) \backslash \Re^{m+1}(Z, X)$, for some $Z \in \bmod A$, such that $f g \in \Re^{m+2}(Z, Y)$. We denote the left degree of f by $d_{l}(f)$.

Dually, one defines the right degree $d_{r}(f)$ of f. We refer the reader to [9, 11, 12 for a detailed account on these degrees.
2. Regular components. In this section, we are going to look for necessary and sufficient conditions for the existence of n irreducible morphisms between modules in regular components of Γ_{A} of type $Z A_{\infty}$ or stable tubes, with non-zero composite in \Re^{n+1}.

In [6, Proposition 4.3], the case where the irreducible morphisms belong to a left almost sectional path is considered. Precisely, the following result is proven:

Proposition 2.1 ([6, Proposition 4.3]). Let A be a finite-dimensional algebra over an algebraically closed field. Let Γ be a component of Γ_{A} of type $Z A_{\infty}$ or a stable tube. For a natural number l the following conditions are equivalent:
(a) There exist irreducible morphisms f_{1}, \ldots, f_{l+1} over a left almost sectional path such that $f_{l+1} \ldots f_{2} \notin \Re^{l+1}$ and $0 \neq f_{l+1} \ldots f_{1} \in$ $\Re^{l+2}(W, Y)$, where W is a simple regular module and Y is the codomain of f_{l+1}.
(b) There exists a simple regular module W such that $\Re\left(W, \tau^{-r} W\right) \neq 0$ for some r with $1 \leq r \leq l$.

We are going to prove that the same characterization holds also when the irreducible morphisms do not belong to an almost sectional path. First, we study some properties of stable tubes and components of Γ_{A} of type $Z A_{\infty}$.

For standard components Γ of Γ_{A} we can always represent arrows of Γ by irreducible morphisms in $\bmod A$ satisfying the mesh relations. Although stable tubes are not always standard, and components of type $Z A_{\infty}$ are never standard, the following result along these lines can be proven:

Proposition 2.2. Let Γ be a component of Γ_{A} of type $Z A_{\infty}$ or a stable tube. Then there exist a configuration of almost split sequences with modules in Γ of the form

Proof. We start by considering vertices $M[i]$ in Γ, for i even, such that the graph

is a full and convex subquiver of Γ with $M[0]$ in the border of Γ.
For each arrow α_{i} we fix an irreducible morphism $f_{i}: N[i+1] \rightarrow M[i]$ in $\bmod A$, and we choose a morphism $f_{i+1}: N[i+1] \rightarrow M[i+2]$ such that $\left(f_{i}, f_{i+1}\right)^{t}: N[i+1] \rightarrow M[i] \oplus M[i+2]$ is a minimal left almost split morphism.

Let $g=\left(g_{i}, g_{i+1}\right): M[i] \oplus M[i+2] \rightarrow \tau^{-1} N[i+1]$ be the cokernel of f_{i}, so that we have an almost split sequence

$$
0 \rightarrow N[i+1] \xrightarrow{\left(f_{i}, f_{i+1}\right)^{t}} M[i] \oplus M[i+2] \xrightarrow{\left(g_{i}, g_{i+1}\right)} \tau^{-1} N[i+1] \rightarrow 0
$$

for each $i=0,2,4, \ldots$.
In order to iterate this procedure we only need $\left(g_{i+1}, g_{i+2}\right)$ to be a minimal left almost split morphism.

So far, we just know that both g_{i+1} and g_{i+2} are irreducible morphisms. Since Γ has trivial valuation, we obtain the desired result from our next lemma.

Lemma 2.3. Let $(f, g)^{t}: A \rightarrow B_{1} \oplus B_{2}$ be a left minimal almost split morphism with B_{1}, B_{2} indecomposable non-isomorphic A-modules, and let $\alpha \in k^{*}$ and $\mu \in \Re^{2}\left(A, B_{2}\right)$. Then the irreducible morphism $(f, \alpha g+\mu)^{t}$: $A \rightarrow B_{1} \oplus B_{2}$ is also left minimal almost split.

Proof. We may assume that $\alpha=1$ and $\mu \neq 0$. Since $(f, g)^{t}: A \rightarrow$ $B_{1} \oplus B_{2}$ is a left minimal almost split morphism and $\mu: A \rightarrow B_{2}$ is not an isomorphism, there is a morphism $h: B_{1} \oplus B_{2} \rightarrow B_{2}$ such that $\mu=$ $h(f, g)^{t}$. We write $h=\left(h_{1}, h_{2}\right)$, with $h_{i}: B_{i} \rightarrow B_{2}$ for $i=1,2$. Then $\mu=h_{1} f+h_{2} g$. We claim that $h_{2} \in \Re\left(B_{2}, B_{2}\right)$. In fact, since $h_{1}: B_{1} \rightarrow B_{2}$ is not an isomorphism, we have $h_{2} g=\mu-h_{1} f \in \Re^{2}\left(A, B_{2}\right)$. Thus h_{2} is not an isomorphism, because g is irreducible. Hence id $+h_{2}: B_{2} \rightarrow B_{2}$ is an isomorphism.

Let

$$
t=\left(\begin{array}{cc}
\mathrm{id} & 0 \\
h_{1} & \mathrm{id}+h_{2}
\end{array}\right): B_{1} \oplus B_{2} \rightarrow B_{1} \oplus B_{2} .
$$

Then $(f, g+\mu)^{t}=t(f, g)^{t}$. One can easily verify that t is an isomorphism,
with inverse

$$
\left(\begin{array}{cc}
\mathrm{id} & 0 \\
-\left(\mathrm{id}+h_{2}\right)^{-1} h_{1} & \left(\mathrm{id}+h_{2}\right)^{-1}
\end{array}\right)
$$

From this and the fact that $(f, g)^{t}$ is left minimal almost split it follows that $(f, g+\mu)^{t}$ is also left minimal almost split, proving the desired result.

Given a path $\nu: f_{n} \ldots f_{1}: X_{1} \rightarrow X_{n+1}$ with each $f_{i}: X_{i} \rightarrow X_{i+1}$ irreducible, we say that f_{n}, \ldots, f_{1} satisfy the mesh relations, or that ν is a path in the mesh, if $f_{n} \ldots f_{1}$ is a path of irreducible morphisms in the configuration of Proposition 2.2. Thus, morphisms in two paths in the mesh from X_{1} to X_{n+1} have the same composite.

Now, we will prove some useful lemmas.
Lemma 2.4. Let A be a finite-dimensional algebra over an algebraically closed field and Γ a component of Γ_{A} of type $Z A_{\infty}$ or a stable tube. Let $M, M^{\prime} \in \Gamma$ be such that there is a path of irreducible morphisms in the mesh of length m from M to M^{\prime} with zero composite. If $\Re^{m+1}\left(M, M^{\prime}\right) \neq 0$ then there are a simple regular module $W \in \Gamma$ and a positive integer r such that $\Re\left(W, \tau^{-r} W\right) \neq 0$.

Proof. Let γ be a path of irreducible morphisms of length m from M to M^{\prime} with zero composite. Then we can assume that there is a configuration of almost split sequences as follows:

with $n \geq 2$, and having at least an almost split sequence with indecomposable middle term. We will prove the result by induction on the sum $k+l$, assuming that M is in position $(1, k)$ of a ray and M^{\prime} is in position $(n-l+1, n)$ of a co-ray in Γ. We denote such a sum by $n(\gamma)$.

If $n(\gamma)=2$ then $k=l=1$ and the modules M and M^{\prime} are simple regular. Hence $M^{\prime}=\tau^{-1} M$ and $0 \neq \Re^{m+1}\left(M, M^{\prime}\right) \subset \Re\left(M, M^{\prime}\right)$, proving the result in this case.

Assume that $n(\gamma)>2$ and that the result holds for paths δ satisfying the hypothesis of the lemma, with $n(\delta)<n(\gamma)$. Consider $k>1, f_{1, k-1}$: $W_{1, k-1} \rightarrow W_{1, k}$ an irreducible morphism and $0 \neq \varphi \in \Re^{m+1}\left(M, M^{\prime}\right)$.

If $\theta=\varphi f_{1, k-1} \neq 0$ then $\theta \in \Re^{m+2}\left(W_{1, k-1}, M^{\prime}\right)$ and $n\left(\gamma f_{1, k-1}\right)=k-1+$ $l<n(\gamma)$. Since $\gamma f_{1, k-1}: W_{1, k-1} \rightarrow M^{\prime}$ is a path of irreducible morphisms of length $m+1$ with zero composite, by the inductive hypothesis there is a simple regular module satisfying the result.

Now, assume that $\theta=\varphi f_{1, k-1}=0$. Then the almost split sequence starting at $W_{1, k-1}$ is

$$
0 \rightarrow W_{1, k-1} \xrightarrow{f_{1, k-1}} W_{1, k} \xrightarrow{g_{1, k}} W_{2, k} \rightarrow 0
$$

if $k=2$, and

$$
0 \rightarrow W_{1, k-1} \xrightarrow{\left(f_{1, k-1}, g_{1, k-1}\right)^{t}} W_{1, k} \oplus W_{2, k-1} \xrightarrow{\left(g_{1, k}, f_{2, k-1}\right)} W_{2, k} \rightarrow 0
$$

if $k>2$. In the first case $\varphi f_{1, k-1}=0$, and in the second case

$$
(\varphi, 0)\left(f_{1, k-1}, g_{1, k-1}\right)^{t}=0
$$

In either case, there is a morphism $\varphi_{1}: W_{2, k} \rightarrow M$ such that $0 \neq \varphi=\varphi_{1} g_{1, k}$.
On the other hand, since $g_{1, k}$ belongs to a co-ray, we deduce from 9, Proposition 4.11] that $d_{r}\left(g_{1, k}\right)=\infty$. We conclude that $0 \neq \varphi_{1} \in \Re^{m}\left(W_{2, k}, M^{\prime}\right)$, since $\varphi \in \Re^{m+1}\left(M, M^{\prime}\right)$.

Finally, we have to prove that there is a path of $m-1$ irreducible morphisms from $W_{2, k}$ to M^{\prime} with zero composite. Since the path γ from M to M^{\prime} has zero composite, it is not sectional (see [10, Appendix]). Furthermore, since $\alpha(\Gamma) \leq 2$, we may assume that $\gamma=\gamma^{\prime} g_{1, k}$ where $\gamma^{\prime}: W_{2, k} \rightarrow M^{\prime}$ is a path of $m-1$ irreducible morphisms. Moreover, $\gamma^{\prime}=0$, because $g_{1, k}$ is an epimorphism. Since $n\left(\gamma^{\prime}\right)=k-1+l<n(\gamma)$ we can apply the inductive hypothesis to γ^{\prime} and conclude that there is a simple regular module satisfying the statement, proving the result in the case $k>1$.

If $k=1$ and $l>1$ the proof is analogous, analyzing separately the cases where $g_{n-l+1, n} \varphi=0$ and $g_{n-l+1, n} \varphi \neq 0$.

The next result is essential for our considerations. We are going to prove that the existence of n irreducible morphisms with composite in \Re^{n+1} implies the existence of a path of n irreducible morphisms through the same modules with zero composite. Even though this result follows from [8, Proposition 5.1], we will give an easier proof for our particular case, using the notion of degree of an irreducible morphism.

Lemma 2.5. Let A be a finite-dimensional algebra over an algebraically closed field and Γ a stable tube or a component of type $Z A_{\infty}$. Let h_{i} : $X_{i} \rightarrow X_{i+1}$ be irreducible morphisms for $i=1, \ldots, n$, with $X_{i} \in \Gamma$ for $i=1, \ldots, n+1$. If $0 \neq h_{n} \ldots h_{1} \in \Re^{n+1}$ then $f_{n} \ldots f_{1}=0$ for any choice of irreducible morphisms $f_{i}: X_{i} \rightarrow X_{i+1}$ satisfying the mesh relations.

Proof. Consider irreducible morphisms $f_{i}: X_{i} \rightarrow X_{i+1}$ satisfying the mesh relations of Γ. Since k is an algebraically closed field, we have $h_{i}=$ $\alpha_{i} f_{i}+\mu_{i}$ with $\alpha_{i} \in k^{*}$ and $\mu_{i} \in \Re^{2}\left(X_{i}, X_{i+1}\right)$ for each i. Then $h_{n} \ldots h_{1}=$ $\alpha f_{n} \ldots f_{1}+\mu$ with $\alpha \in k^{*}$ and $\mu \in \Re^{n+1}\left(X_{1}, X_{n+1}\right)$. Therefore, $f_{n} \ldots f_{1} \in$ $\Re^{n+1}\left(X_{1}, X_{n+1}\right)$. We assume that $f_{n} \ldots f_{1} \neq 0$. Then, modulo the mesh relations, $f_{n} \ldots f_{1}$ is equal to a path of irreducible morphisms $g_{n} \ldots g_{r+1} g_{r} \ldots g_{1}$, with g_{r}, \ldots, g_{1} in a co-ray of Γ and g_{n}, \ldots, g_{r+1} in a ray. Since g_{r}, \ldots, g_{1} belong to a co-ray, their right degree is ∞, by [9, Proposition 4.11].

Since $g_{n} \ldots g_{r+1} g_{r} \ldots g_{1} \in \Re^{n+1}\left(X_{1}, X_{n+1}\right)$ and $d_{r}\left(g_{1}\right)=\infty$, we deduce that $g_{n} \ldots g_{r+1} g_{r} \ldots g_{2} \in \Re^{n}$. Since g_{2}, \ldots, g_{r} also have infinite right degree we can iterate this argument and conclude that $g_{n} \ldots g_{r+1} \in \Re^{n+1-r}$, contradicting the fact that the morphisms g_{n}, \ldots, g_{r+1} belong to a sectional path, since they belong to the same ray (see [10, Appendix]). Then $f_{n} \ldots f_{1}=0$, proving the implication.

Now, we are in a position to prove one of the main results of this section, extending the characterization given in [6, Proposition 4.3].

Theorem 2.6. Let A be a finite-dimensional algebra over an algebraically closed field and Γ a stable tube or a component of Γ_{A} of type $Z A_{\infty}$. Then the following conditions are equivalent:
(a) There are an integer $n>1$ and irreducible morphisms h_{1}, \ldots, h_{n} between modules in Γ such that $h_{n} \ldots h_{1} \neq 0$ and $h_{n} \ldots h_{1} \in \Re^{n+1}$.
(b) There are an integer $t \geq 1$ and a simple regular module W in Γ such that $\Re\left(W, \tau^{-t} W\right) \neq 0$.
(c) There are an integer $m>1$ and irreducible morphisms f_{1}, \ldots, f_{m} over a left (right) almost sectional path starting (ending) at a simple regular module W such that $0 \neq f_{m} \ldots f_{1} \in \Re^{m+1}$.

Proof. Suppose that statement (a) holds. By Lemma 2.5, it follows that there are irreducible morphisms $f_{i}: Y_{i} \rightarrow Y_{i+1}$ with composite $f_{n} \ldots f_{1}=0$. Then (b) follows from Lemma 2.4 .

We get the converse by considering $n=l+1$ in [6, Proposition 4.3].
Finally, (b) implies (c) by [6, Proposition 4.3] and clearly (c) implies (a).
Applying the above theorem we get the following corollary for homogeneous tubes.

Corollary 2.7. Let A be a finite-dimensional algebra over an algebraically closed field. Let Γ be a homogeneous tube and W the simple regular module in Γ. The following conditions are equivalent:
(a) There are an integer $n>1$ and irreducible morphisms h_{1}, \ldots, h_{n} between modules in Γ such that $h_{n} \ldots h_{1} \neq 0$ and $h_{n} \ldots h_{1} \in \Re^{n+1}$.
(b) $\Re(W, W) \neq 0$.

Next, we will prove that a composite of irreducible morphisms h_{1}, \ldots, h_{n} between modules in components of type $Z A_{\infty}$ or in stable tubes is in \Re^{n+1} if and only if $h_{n} \ldots h_{1} \in \Re^{\infty}$. We start with a useful technical lemma.

Lemma 2.8. Let Γ be a stable tube or a component of type $Z A_{\infty}$. Suppose there is a zero path in the mesh $\eta: X \rightarrow Y$ of length n. Then:
(a) Each path in the mesh from X to Y of length greater than or equal to n is zero.
(b) Each path of irreducible morphisms from X to Y of length n is in \Re^{n+1}.

Proof. (a) is an easy consequence of the fact that paths in the mesh from X to Y of the same length coincide in $\bmod A$.
(b) Let η be the zero path $f_{n} \ldots f_{1}$, where $f_{i}: X_{i-1} \rightarrow X_{i}$ satisfy the mesh relations, let $f_{i}^{\prime}: X_{i-1} \rightarrow X_{i}$ be irreducible morphisms for $i=1, \ldots, n$, and set $X=X_{0}$ and $Y=X_{n}$. Since k is an algebraically closed field, we have $f_{i}^{\prime}=\alpha_{i} f_{i}+\mu_{i}$ with $\alpha_{i} \in k^{*}$ and $\mu_{i} \in \Re^{2}\left(X_{i-1}, X_{i}\right)$. Hence

$$
f_{n}^{\prime} \ldots f_{1}^{\prime}=\alpha_{n} \ldots \alpha_{1} f_{n} \ldots f_{1}+\sum_{i=1}^{t} \theta_{i}
$$

where $\theta_{i}: X \rightarrow Y$ is a composite of n morphisms in $\left\{f_{1}, \ldots, f_{n}, \mu_{1}, \ldots \mu_{n}\right\}$ with at least one of them in $\left\{\mu_{1}, \ldots \mu_{n}\right\}$. Therefore, each $\theta_{i} \in \Re^{n+1}(X, Y)$ and we conclude that $f_{n}^{\prime} \ldots f_{1}^{\prime} \in \Re^{n+1}(X, Y)$.

Theorem 2.9. Let A be a finite-dimensional algebra over an algebraically closed field and Γ be a component of Γ_{A} of type $Z A_{\infty}$ or a stable tube. If there is a zero path in the mesh from X to Y then any path of irreducible morphisms from X to Y of length n is in $\Re^{\infty}(X, Y)$.

Proof. Consider irreducible morphisms $f_{i}: X_{i-1} \rightarrow X_{i}$ and $f^{\prime i}: X_{i-1} \rightarrow$ X_{i} between indecomposable modules with $i=1, \ldots, n, X=X_{0}, Y=X_{n}$. Assume that $f_{n} \ldots f_{1}$ is a zero path in the mesh, and that $f_{n}^{\prime} \ldots f_{1}^{\prime} \in$ $\Re^{n+k}\left(X_{0}, X_{n}\right) \backslash \Re^{n+k+1}\left(X_{0}, X_{n}\right)$ for some $k \geq 0$. Then, by Lemma 2.8(b), we know that $k \geq 1$. Therefore, by [3, V, Proposition 7.4] there is a path $\delta: X_{0} \rightarrow X_{n}$ of $n+k$ irreducible morphisms whose composite does not belong to $\Re^{n+k+1}\left(X_{0}, X_{n}\right)$. Then there is also a path in the mesh $\eta: X_{0} \rightarrow X_{n}$ of length $n+k$ and by Lemma 2.8(a) we know that $\eta=0$. Applying now Lemma 2.8(b) to the path η we conclude that $\delta \in \Re^{n+k+1}\left(X_{0}, X_{n}\right)$, a contradiction to our assumption.

The following corollaries are immediate consequences of the above theorem.

Corollary 2.10. Let A be a finite-dimensional algebra over an algebraically closed field and Γ a component of Γ_{A} of type $Z A_{\infty}$ or a stable
tube. Let $h_{i}: X_{i} \rightarrow X_{i+1}$ be n irreducible morphisms with $X_{i} \in \Gamma$ for $i=1, \ldots, n$. Then $0 \neq h_{n} \ldots h_{1} \in \Re^{n+1}\left(X_{1}, X_{n+1}\right)$ if and only if $0 \neq h_{n} \ldots h_{1} \in$ $\Re^{\infty}\left(X_{1}, X_{n+1}\right)$.

Proof. Assume that there are n irreducible morphisms $h_{i}: X_{i} \rightarrow X_{i+1}$ such that $0 \neq h_{n} \ldots h_{1} \in \Re^{n+1}\left(X_{1}, X_{n+1}\right)$ and let $f_{i}: X_{i} \rightarrow X_{i+1}$ be irreducible morphisms satisfying the mesh relations. Then $f_{n} \ldots f_{1}=0$, and the result follows from the above theorem.

The converse is clear.
Corollary 2.11. Let A be a finite-dimensional algebra over an algebraically closed field and Γ a component of Γ_{A} of type $Z A_{\infty}$ or a stable tube. Given an integer $n>1$, there are no irreducible morphisms f_{1}, \ldots, f_{n} between modules in Γ such that $f_{n} \ldots f_{1} \in \Re^{n+1} \backslash \Re^{n+2}$.

Corollary 2.12. Let A be a finite-dimensional algebra over an algebraically closed field and Γ a standard stable tube. Then the composite $f_{n} \ldots f_{1}$ of n irreducible morphisms between modules in Γ belongs to \Re^{n+1} if and only if $f_{n} \ldots f_{1}=0$.

In [6], the composite of n irreducible morphisms in the border of a wing was studied, characterizing when such a composite belongs to the $n+1$-th power of the radical. In this section, we are going to apply these results in the particular case when the wing lies in a component of type $Z A_{\infty}$ or a stable tube.

We recall the definition of a wing in a connected component Γ of Γ_{A} (see [13], p. 127). A wing is a configuration of almost split sequences of the form

where $\alpha\left(W_{i, i}\right)=1$ for $i=2, \ldots, n$ and $\alpha^{\prime}\left(W_{1,1}\right)=1$.
The paths

$$
f: W_{1,1} \xrightarrow{f_{1,1}} W_{1,2} \xrightarrow{f_{1,2}} W_{1,3} \rightarrow \cdots \rightarrow W_{1, n-1} \xrightarrow{f_{1, n-1}} W_{1, n}
$$

and

$$
g: W_{1, n} \xrightarrow{g_{1, n}} W_{2, n} \xrightarrow{g_{2, n}} W_{3, n} \rightarrow \cdots \rightarrow W_{n-1, n} \xrightarrow{g_{n-1, n}} W_{n, n}
$$

corresponding respectively to the sectional path starting at $W_{1,1}$ and ending at $W_{1, n}$, and to the sectional path starting at $W_{1, n}$ and ending at $W_{n, n}$, are called the borders of the wing.

Proposition 2.13. Let A be a finite-dimensional algebra over an algebraically closed field. Consider a wing in a component Γ of type $Z A_{\infty}$ or in a stable tube. Let

$$
f: W_{1,1} \xrightarrow{f_{1,1}} W_{1,2} \xrightarrow{f_{1,2}} W_{1,3} \rightarrow \cdots \rightarrow W_{1, n-1} \xrightarrow{f_{1, n-1}} W_{1, n}
$$

and

$$
g: W_{1, n} \xrightarrow{g_{1, n}} W_{2, n} \xrightarrow{g_{2, n}} W_{3, n} \rightarrow \cdots \rightarrow W_{n-1, n} \xrightarrow{g_{n-1, n}} W_{n, n}
$$

be the borders of the wing, corresponding to the ray starting at $W_{1,1}$ and to the co-ray ending at $W_{n, n}$, respectively. The following conditions are equivalent:
(a) There exist irreducible morphisms $h_{1, j}: W_{1, j} \rightarrow W_{1, j+1}$ and $h_{j, n}^{\prime}$: $W_{j, n} \rightarrow W_{j+1, n}$, for $j=1, \ldots, n-1$, such that

$$
0 \neq h_{n-1, n}^{\prime} \ldots h_{1, n}^{\prime} h_{1, n-1} \ldots h_{1,1} \in \Re^{2 n-1}\left(W_{1,1}, W_{n, n}\right)
$$

(b) $\Re\left(W_{1,1}, W_{n, n}\right) \neq 0$.
(c) There exists a non-zero morphism $\varphi \in \Re^{2}\left(W_{1, n}, W_{1, n}\right)$ such that $g \varphi f \neq 0$ and $g \varphi f \in \Re^{\infty}\left(W_{1,1}, W_{n, n}\right)$.

Proof. (a) $\Rightarrow(\mathrm{b})$ is trivial.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$. By [6, Proposition 4.2], we know that there exists a non-zero morphism $\varphi \in \Re^{2}\left(W_{1, n}, W_{1, n}\right)$ such that $g \varphi f \neq 0$. Since $g f=0$ and $\varphi \in$ $\Re^{2}\left(W_{1, n}, W_{1, n}\right)$, Lemma 2.8 (b) yields $0 \neq g \varphi f \in \Re^{\infty}\left(W_{1,1}, W_{n, n}\right)$.

Finally we prove $(\mathrm{c}) \Rightarrow(\mathrm{a})$. Define the irreducible morphisms $h_{1, j}: W_{1, j} \rightarrow$ $W_{1, j+1}$ and $h_{i, n}^{\prime}: W_{i, n} \rightarrow W_{i+1, n}$ as follows: $h_{1, j}=f_{1, j}$ for $j=1, \ldots, n-2$, $h_{1, n-1}=\varphi f_{1, n-1}$ and $h_{j, n}^{\prime}=g_{j, n}$ for $j=1, \ldots, n-1$. Then their composite is non-zero and belongs to $\Re^{\infty}\left(W_{1,1}, W_{n, n}\right)$.
3. String algebras. In this section, we will apply the results proven in Section 2 to study when the composite of n irreducible morphisms between band modules over a string algebra is a non-zero morphism in \Re^{n+1}. First, we recall some necessary notions.

A finite-dimensional algebra $A=\left(k Q_{A}\right) / I_{A}$ is called a string algebra provided:
(S1) Any vertex of Q_{A} is the starting point of at most two arrows.
(S1') Any vertex of Q_{A} is the ending point of at most two arrows.
(S2) Given an arrow β of Q_{A}, there is at most one arrow γ with $s(\beta)=$ $e(\gamma)$ and $\beta \gamma \notin I_{A}$.
(S^{\prime}) Given an arrow β of Q_{A}, there is at most one arrow γ with $e(\beta)=$ $s(\gamma)$ and $\gamma \beta \notin I_{A}$.
(S3) The ideal I_{A} is generated by a set of paths of Q_{A}.
3.1. Band modules. Let $A=\left(k Q_{A}\right) / I_{A}$ be a string algebra. Given a walk ω in Q_{A}, when we write $w=c_{n} \ldots c_{1}$ we will always assume that c_{i} is an arrow or the inverse of an arrow, for $i=1, \ldots, n$.

We say that w is a reduced walk if it is a trivial path or if $w=c_{n} \ldots c_{1}$ with $c_{i+1} \neq c_{i}^{-1}$ for $i=1, \ldots, n-1$.

A string in A is either a trivial path $\epsilon_{v}, v \in Q_{0}$, or a reduced walk $C=c_{n} \ldots c_{1}$ of length $n \geq 1$ such that no subwalk $c_{i+t} \cdots c_{i+1} c_{i}$ or its inverse belongs to I_{A}.

Let W^{\prime} be the set of all strings C such that for each positive integer m, C^{m} is a reduced string and C cannot be written as a power of a string of shorter length. The strings in W^{\prime} are called reduced cycles. We observe that W^{\prime} is empty if there are no cycles in Q_{A}.

Let I, J be finite sets, and X_{i}, Y_{j} be k-vector spaces for $i \in I, j \in J$. Let $h_{i j}: X_{i} \rightarrow Y_{j}$ be morphisms for (i, j) in a subset D of $I \times J$. Consider the morphism $F=\left(f_{i j}\right): \bigoplus_{i \in I} X_{i} \rightarrow \bigoplus_{j \in J} Y_{j}$ defined as follows:

$$
f_{i j}= \begin{cases}h_{i j} & \text { if }(i, j) \in D \\ 0 & \text { otherwise }\end{cases}
$$

We will say that F is the direct sum of the morphisms $h_{i j}$.
Let $V=k^{d}$ and let $\varphi \in$ End V be given by the Jordan block $J_{d, \lambda}$, where $\lambda \in k^{*}$. To a fixed string $C=c_{n} \ldots c_{1} \in W^{\prime}$ and the morphism φ, we can assign an indecomposable module $M(C, \varphi)$, called a band module, as follows:

For $i=1, \ldots, n$ we define $V(i)=V$. For $i=1, \ldots, n-1$, let $f_{c_{i}}$ be the identity map from $V(i)$ to $V(i+1)$ if c_{i} is an arrow, and the identity map from $V(i+1)$ to $V(i)$ otherwise. Let $f_{c_{n}}$ be the k-linear map that sends $x \in V(n)$ to $\varphi(x) \in V(1)$ or $x \in V(1)$ to $\varphi^{-1}(x) \in V(n)$ according as c_{n} is an arrow or the inverse of an arrow, respectively.

The band module $M(C, \varphi)$ is defined as follows: Let v be a vertex in Q_{A}. If v is a vertex of one of the arrows c_{i} or c_{i}^{-1} involved in C, let $M(C, \varphi)_{v}$ be the direct sum of vector spaces $V(i)$ such that $s\left(c_{i}\right)=v$. Otherwise $M(C, \varphi)_{v}=0$.

For an arrow α in Q_{A}, if α appears in C then we define $M(C, \varphi)_{\alpha}$ as the direct sum of the maps $f_{c_{i}}$ such that $c_{i}=\alpha$ or $c_{i}=\alpha^{-1}$; in any other case we define $M(C, \varphi)_{\alpha}$ to be the zero map.

In this way we obtain a representation $M(C, \varphi)$ of Q_{A} that satisfies the relations in I_{A}. We refer to [4] for more details on this construction.

We recall from [4] that almost all the components of the AuslanderReiten quiver Γ_{A} of a string algebra A, except for a finite number of them, are of type $Z A_{\infty}^{\infty}$ or $Z A_{\infty} /\langle\tau\rangle$. Moreover, all the components of Γ_{A} having band modules are homogeneous tubes and those without border and having string modules are regular components of type $Z A_{\infty}^{\infty}$. In particular, band modules are in homogeneous tubes. Also the simple regular modules correspond to
$V=k$ with φ the left multiplication by λ. In this case we denote $M(C, \varphi)=$ $M(C, \lambda)$.

Given a string $C=c_{n} \ldots c_{1}$ in W^{\prime} consider a substring δ of C in one of the three situations illustrated below:

$$
-\cdots-\xrightarrow{\alpha} \delta \stackrel{\beta}{\leftarrow}-\cdots-, \quad \delta \stackrel{\beta}{\leftarrow}-\cdots-\xrightarrow{\alpha} \quad \text { or } \quad \stackrel{\beta}{\leftarrow}-\cdots-\xrightarrow{\alpha} \delta,
$$

where α and β are arrows, that is, such that $\beta^{-1} \delta \alpha$ is a substring of one of the strings $c_{n} \ldots c_{1}, c_{1} c_{n} \ldots c_{2}$ or $c_{n-1} \ldots c_{1} c_{2}$.

The string module $M(\delta)$ associated to a string δ has been defined in [4], considering the spaces $V(i)=k$ and the morphisms $f_{c_{i}}$ as the vertices and arrows corresponding to the support of δ. Next, we are going to prove that in this situation $M(\delta)$ is a submodule of the band module $M(C, \lambda)$, and dually that $M(\delta)$ is a quotient of the band module $M(C, \lambda)$ if the direction of the arrows α, β in the above description of δ is reversed.

Lemma 3.1. Given a string $C=c_{n} \ldots c_{1}$ in W^{\prime} and a substring δ of C, let $C^{\prime}=c_{1} c_{n} \ldots c_{2}$ and $C^{\prime \prime}=c_{n-1} \ldots c_{1} c_{2}$. Then:
(a) If $\beta^{-1} \delta \alpha$ is a substring of one of the strings C, C^{\prime} or $C^{\prime \prime}$ then $M(\delta)$ is a submodule of $M(C, \lambda)$.
(b) If $\beta \delta \alpha^{-1}$ is a substring of one of the strings C, C^{\prime} or $C^{\prime \prime}$ then $M(\delta)$ is a quotient of $M(C, \lambda)$.
In particular, if δ is the trivial string e_{i} then the simple S_{i} belongs to the socle of $M(C, \lambda)$ in case (a) and to its top in case (b).

Proof. We only prove (a) since (b) follows by duality. Let $C=c_{n} \ldots c_{1}$ and $\delta=c_{r+s} \ldots c_{r}$ with $r \geq 1, r+s \leq n$. Let $1 \leq i \leq n$ and $\lambda \in k^{*}$. Let $V(i)=k$ and $f_{c_{i}}$ be the vector spaces and the morphisms that define the band module $M(C, \lambda)$, respectively. For $1 \leq i \leq n+1$, we write

$$
W(i)=\left\{\begin{array}{ll}
k & \text { if } r \leq i \leq r+s+1, \\
0 & \text { otherwise }
\end{array} \quad g_{c_{i}}= \begin{cases}\operatorname{Id}_{k} & \text { if } r \leq i \leq r+s, \\
0 & \text { otherwise } .\end{cases}\right.
$$

We will define linear transformations $\varphi_{j}: W(j) \rightarrow V(j)$ for $j=1, \ldots, n$, and $\varphi_{n+1}: W(n+1) \rightarrow V(1)$ such that the diagrams

commute, for $i=i, \ldots, n-1$, where the horizontal lines stand for \rightarrow or \leftarrow according to the direction of the corresponding morphisms. Then an appropriate direct sum of the morphisms φ_{j} induces a morphism of representations $M(\delta) \rightarrow M(C, \lambda)$, which is injective if all the φ_{j} are. To define the morphisms φ_{j} we consider three cases.

CASE I: $\beta^{-1} \delta \alpha$ is a substring of C, that is, $1<r$ and $r+s<n$. Then $\alpha=c_{r-1}$ and $\beta^{-1}=c_{r+s+1}$. Let $1 \leq i \leq n$. We define $\varphi_{i}: W(i) \rightarrow V(i)$ as the identity from k to k if $r \leq i \leq r+s+1$ and as the zero morphism otherwise.

Let $\varphi_{n+1}: W(n+1) \rightarrow V(1)$ be the zero morphism. If $W(i)=W(i+1)$ $=k$ or if $W(i)=W(i+1)=0$, then the first diagram commutes. The other cases correspond to $i=r-1, i=r+s+1$. In the first case, $c_{i}=\alpha$ and both $g_{c_{i}}$ and φ_{i} have domain $W(r-1)=0$. In the second case $c_{i}=\beta^{-1}$, and then $g_{c_{i}}$ and φ_{i+1} have domain $W(r+s+2)=0$. In any case, both diagrams commute.

CASE II: $r+s=n$. Define $\varphi_{i}: W(i) \rightarrow V(i)$ as the identity from k to k if $r \leq i \leq r+s=n$ and as the zero map for $i<r$. Let $\varphi_{n+1}: W(n+1)=$ $k \rightarrow V(1)=k$ be multiplication by λ.

By the definition of φ_{n+1} the second diagram commutes, and it is not hard to prove that the first one also commutes.

Case III: $r=1$. This is analogous to Case I.

Since band modules over a string algebra are in homogeneous tubes, we may apply to them the results of the previous section. Thus in view of Corollary 2.7 to characterize the existence of a non-zero composite of n irreducible morphisms between indecomposable band modules in \Re^{n+1} we just study the existence of a simple regular band module X such that $\Re(X, X) \neq 0$.

Let γ be a cycle of Q_{A}, not necessarily oriented. We will also denote by γ one of the two walks obtained by going over the cycle γ once, conveniently chosen. We say that $\alpha_{s} \ldots \alpha_{2} \alpha_{1}$ is a subpath of γ if it is a path of Q_{A} whose arrows are arrows of γ.

Lemma 3.2. Let A be a connected string algebra and $X=M(C, \lambda) a$ simple regular band module of a homogeneous tube. If $\Re(X, X) \neq 0$ then Q_{A} has at least two cycles γ_{1} and γ_{2}, not necessarily oriented, such that the string C goes over both cycles.

Proof. We observe that since there exists a band module, Q_{A} has a cycle (not necessarily oriented). Assume that Q_{A} has a unique cycle. Since $C \in W^{\prime}$ the string goes over the cycle only once, and therefore the multiplicity of each composition factor of $X=M(C, \lambda)$ is one. Hence $\Re(X, X)=0$.

Thus, we only need to consider string algebras whose ordinary quiver has at least two cycles γ_{1} and γ_{2}, not necessarily oriented. We start by studying the case when these cycles share a unique vertex, i.

Lemma 3.3. Let A be a string algebra, where Q_{A} consists of two cycles γ_{1} and γ_{2}, not necessarily oriented, sharing a unique vertex, i. That is, Q_{A}
is of the form

The following conditions are equivalent:
(a) There is a string C such that $X=M(C, \lambda)$ satisfies $\Re(X, X) \neq 0$ for any $\lambda \neq 0$.
(b) One of the following conditions is satisfied:
$\left(\mathrm{b}_{1}\right)$ At the vertex i of Q_{A} we have the following situation:

where α_{1}, α_{n} are arrows of γ_{1} and β_{1}, β_{r} are arrows of γ_{2} such that:
(i) if $n>2$, the subpaths of γ_{1} are non-zero, except those containing $\alpha_{1} \alpha_{n}$,
(ii) if $r>2$, the subpaths of γ_{2} are non-zero, except those containing $\beta_{1} \beta_{r}$.
$\left(\mathrm{b}_{2}\right)$ At the vertex i of Q_{A} we have the following situation:

with $I_{A}=\left\langle\beta_{r} \alpha_{1}, \beta_{1} \alpha_{n}\right\rangle$ or $I_{A}=\left\langle\beta_{1} \alpha_{1}, \beta_{r} \alpha_{n}\right\rangle$.
Proof. Assume that (a) holds and (b) does not hold. First, suppose that at the vertex i of Q_{A} we have the following orientation of arrows:

Then at least three of the relations $\beta_{r} \alpha_{1}=0, \beta_{r} \alpha_{n}=0, \beta_{1} \alpha_{n}=0$ or $\beta_{1} \alpha_{1}=0$ are satisfied because A is a string algebra and (b_{2}) does not hold. Since (a) holds, there is a band module $X=M(C, \lambda)$ such that $\Re(X, X) \neq 0$, and then by Lemma 3.2 the string C must go over both cycles γ_{1} and γ_{2}. Since the subpaths of C are non-zero, no path of I_{A} is a subpath of C, since
otherwise C^{2} would not be a string. So I_{A} is generated by exactly three of the paths $\beta_{i} \alpha_{j}$.

If the relations in $\left(b_{1}\right)$ and $\left(b_{2}\right)$ are not those stated above, then it is not possible to find strings going over both cycles, and by Lemma 3.2 we get $\Re(X, X)=0$, contradicting (a). Thus (b) holds.

Now, we prove the converse. We are going to prove that if $\left(\mathrm{b}_{1}\right)$ or $\left(\mathrm{b}_{2}\right)$ holds then there is a string $C \in W^{\prime}$ such that the band module $X=M(C, \lambda)$ satisfies $\Re(X, X) \neq 0$.

CASE I: Assume that (b_{1}) holds and set $\gamma_{1}=\alpha_{n} \gamma_{1}^{\prime}$ and $\gamma_{2}^{-1}=\gamma_{2}^{\prime} \beta_{r}^{-1}$. Consider the string $C=\gamma_{2}^{-1} \gamma_{1}$. Then $C=\gamma_{2}^{\prime} \beta_{r}^{-1} i \alpha_{n} \gamma_{1}^{\prime}$, where i represents the trivial string at the vertex i. By Lemma 3.1 applied to the trivial string i, the simple S_{i} is in the socle of $X=M(C, \lambda)$.

Now, we write $\gamma_{1}=\gamma_{1}^{\prime \prime} \alpha_{1}$ and $\gamma_{2}^{-1}=\beta_{1}^{-1} \gamma_{2}^{\prime \prime}$. Since $C^{2}=\gamma_{2}^{-1} \gamma_{1} \gamma_{2}^{-1} \gamma_{1}=$ $\gamma_{2}^{-1} \gamma_{1}^{\prime \prime} \alpha_{1} i \beta_{1}^{-1} \gamma_{2}^{\prime \prime} \gamma_{1}$, we see that S_{i} is in the top of $M(C, \lambda)$, by applying the same lemma to i. Then S_{i} is a summand of top X and of socle X, therefore $\Re(X, X) \neq 0$.

Case II: Suppose that (b_{2}) holds and that $I_{A}=\left\langle\beta_{r} \alpha_{1}, \beta_{1} \alpha_{n}\right\rangle$. If we consider the string $C=\gamma_{2}^{-1} \gamma_{2}^{-1} \gamma_{1} \gamma_{1}$ with $\gamma_{1}=\alpha_{n} \gamma_{1}^{\prime} \alpha_{1}^{-1}$ and $\gamma_{2}^{-1}=\beta_{1}^{-1} \gamma_{2}^{\prime} \beta_{r}$, then $C=\beta_{1}^{-1} \gamma_{2}^{\prime} \beta_{r} i \beta_{1}^{-1} \gamma_{2}^{\prime} \beta_{r} \alpha_{n} \gamma_{1}^{\prime} \alpha_{1}^{-1} i \alpha_{n} \gamma_{1}^{\prime} \alpha_{1}^{-1}$. By Lemma 3.1 the simple S_{i} is in the socle and in the top of $X=M(C, \lambda)$.

Now, assume that (b_{2}) holds and that $I_{A}=\left\langle\beta_{1} \alpha_{1}, \beta_{r} \alpha_{n}\right\rangle$. If we consider the string $C=\gamma_{2} \gamma_{2} \gamma_{1} \gamma_{1}$, with $\gamma_{1}=\alpha_{n} \gamma_{1}^{\prime} \alpha_{1}^{-1}$ and $\gamma_{2}=\beta_{r}^{-1} \gamma_{2}^{\prime} \beta_{1}$, then $C=\beta_{r}^{-1} \gamma_{2}^{\prime} \beta_{1} i \beta_{r}^{-1} \gamma_{2}^{\prime} \beta_{1} \alpha_{n} \gamma_{1}^{\prime} \alpha_{1}^{-1} i \alpha_{n} \gamma_{1}^{\prime} \alpha_{1}^{-1}$ and by Lemma 3.1 the simple S_{i} is in the socle and in the top of $X=M(C, \lambda)$. Thus, in either case $\Re(X, X) \neq 0$, as desired.

Now, we are going to study algebras such that their quivers have two disjoint cycles, not necessarily oriented, joined by a quiver of type A_{n} :

More precisely:
Lemma 3.4. Let A be a string algebra such that Q_{A} is given by two cycles γ_{1} and γ_{2}, not necessarily oriented, joined by a quiver δ of type A_{n} having a unique vertex i in common with γ_{1} and a unique vertex j in γ_{2}. Then the following conditions are equivalent:
(a) There is a string C such that any band module $X=M(C, \lambda)$ with $\lambda \neq 0$ satisfies $\Re(X, X) \neq 0$.
(b) In Q_{A} we have the following situation:

with $I_{A}=\left\langle\alpha_{1} \alpha_{n}, \beta_{1} \beta_{r}\right\rangle$, where $\alpha_{1}, \alpha_{n} \in \gamma_{1}$ and $\beta_{1}, \beta_{r} \in \gamma_{2}$ are arrows, $\alpha_{1}=\alpha_{n}$ if γ_{1} is a loop and $\beta_{1}=\beta_{r}$ if γ_{2} is a loop.

Proof. (a) \Rightarrow (b). Assume that (a) holds and that (b) does not hold. First, suppose that we have the following orientations in γ_{1} :

We analyze only the case $(*)$, since $(* *)$ is dual. Since A is a string algebra, $\varepsilon_{1} \alpha_{n}=0$ or $\varepsilon_{1} \alpha_{1}=0$. In any case, there is no string $C \in W^{\prime}$. In fact, by Lemma 3.2 the string C must go over both cycles and then C^{2} is not a string.

In the cases where the orientation of γ_{2} is

a similar analysis shows there are no strings in W^{\prime} going over both cycles.
Assuming that the orientation is as described in (b), and that the ideal I_{A} is not generated by $\alpha_{1} \alpha_{n}$ and $\beta_{r} \beta_{1}$, we cannot find a string going over both cycles; this contradicts Lemma 3.2, proving (b).
$(\mathrm{b}) \Rightarrow(\mathrm{a})$. Suppose that Q_{A} and I_{A} are as stated in (b). We are going to prove that there is a string $C \in W^{\prime}$ such that the associated band module X contains a proper submodule X^{\prime} isomorphic to a quotient of X. Then we will have non-zero morphisms $X \rightarrow X^{\prime}$ and $X^{\prime} \rightarrow X$ (the projection and inclusion, respectively) such that their composite $X \rightarrow X^{\prime} \rightarrow X$ is a non-zero morphism in $\Re(X, X)$. Let δ be the walk starting at i. Write $\gamma_{1}=\gamma_{1}^{\prime} \alpha_{1}, \gamma_{2}=\gamma_{2}^{\prime} \beta_{1}$ and also $\gamma_{1}=\alpha_{n} \gamma_{1}^{\prime \prime}, \gamma_{2}=\beta_{r} \gamma_{2}^{\prime \prime}$ and consider the string $C=\delta^{-1} \gamma_{2}^{-1} \delta \gamma_{1}$. Then $C=\delta^{-1} \gamma_{2}^{\prime \prime-1} \beta_{r}^{-1} \delta \alpha_{n} \gamma_{1}^{\prime \prime}$. Applying Lemma 3.1 we conclude that $M(\delta)$ is a submodule of $X=M(C, \lambda)$.

On the other hand, if we consider the string $C=\delta^{-1} \beta_{1}^{-1} \gamma_{2}^{\prime-1} \delta \gamma_{1}^{\prime} \alpha_{1}$, then applying Lemma 3.1, we deduce that $M(\delta)=M\left(\delta^{-1}\right)$ is a quotient of $X=M(C, \lambda)$, as desired.

Now, we consider string algebras such that their quivers Q_{A} consist of two cycles γ_{1} and γ_{2}, not necessarily oriented, such that their intersection is a quiver of type A_{n}.

Lemma 3.5. Let A be a string algebra such that Q_{A} consists of two cycles γ_{1} and γ_{2}, not necessarily oriented, intersecting in a quiver δ of type A_{n}. The following conditions are equivalent:
(a) There is a string C such that the band module $X=M(C, \lambda)$ satisfies $\Re(X, X) \neq 0$ for each $\lambda \in k^{*}$.
(b) Either Q_{A} has the shape

and $I_{A}=\left\langle\alpha_{1} \beta_{1}, \beta_{r} \alpha_{n}\right\rangle$, or Q_{A} has the shape

and $I_{A}=\left\langle\alpha_{1} \beta_{1}, \alpha_{n} \beta_{r}\right\rangle$.
Proof. Assume that (a) holds but (b) does not. First, suppose that we have the following orientation of arrows at the vertex i :

Since A is a string algebra, we see that $\delta_{s} \alpha_{1}=0$ or $\delta_{s} \beta_{1}=0$. In any case, there is no string in $C \in W^{\prime}$, since $C^{2}=0$ or C^{2} is not a reduced string. The case

$$
\begin{array}{lll}
& i \\
\alpha_{1} & & \\
\swarrow & \uparrow \delta_{s} & \beta_{1} \\
\searrow
\end{array}
$$

is dual.
In case Q_{A} is as stated in (b), but the corresponding relations are not, it is not hard to see that it is not possible to go over both cycles, getting the implication.
(b) \Rightarrow (a). Assume that (1) holds. Consider the string $C=\gamma_{1}^{-1} \gamma_{2}$. Let X be the band module associated with C. We write $\gamma_{1}=\alpha_{1}^{-1} \gamma_{1}^{\prime} \delta$ and $\gamma_{2}=$ $\delta^{-1} \beta_{r}^{-1} \gamma_{2}^{\prime}$.

Then $C=\gamma_{1}^{-1} \gamma_{2}=\delta^{-1} \gamma_{1}^{\prime-1} \alpha_{1} \delta^{-1} \beta_{r}^{-1} \gamma_{2}^{\prime}$ and applying Lemma 3.1 we find that $M(\delta)=M\left(\delta^{-1}\right)$ is a quotient of X.

If we write $\gamma_{1}=\gamma_{1}^{\prime \prime} \alpha_{n}^{-1} \delta$ and $\gamma_{2}=\delta^{-1} \gamma_{2}^{\prime \prime} \beta_{1}^{-1}$, then we get

$$
C=\delta^{-1} \alpha_{n} \gamma_{1}^{\prime \prime-1} \delta^{-1} \gamma_{2}^{\prime \prime} \beta_{1}^{-1} .
$$

Applying Lemma 3.1 shows that $M(\delta)$ is a submodule of X. Since it is also a quotient of X, we see that $\Re(X, X) \neq 0$.

Assume that (2) holds. With a similar analysis and considering the string $C=\gamma_{1}^{-1} \gamma_{2} \gamma_{2} \gamma_{1}^{-1}$ we deduce that $M(\delta)$ is both a submodule and a quotient of X, proving the lemma.

Summarizing the above results we can state the following proposition:
Proposition 3.6. Let $A=k Q_{A} / I_{A}$ be a connected string algebra such that Q_{A} contains a subquiver, not necessarily full and convex, of the type described in Lemma 3.3, 3.4 or 3.5. Then, for each $\lambda \in k^{*}$, there is a simple regular band module X_{λ} in a homogeneous tube such that $\Re\left(X_{\lambda}, X_{\lambda}\right) \neq 0$ and $X_{\lambda} \neq X_{\mu}$ for $\lambda \neq \mu$.

Proof. Assume that Q_{A} contains a subquiver Q^{\prime} of one of the types described in Lemmas 3.3 3.5. By the lemmas there is a string C of $A^{\prime}=$ $k Q^{\prime} / I_{A} \cap k Q^{\prime}$ such that the band module $X_{\lambda}=M(C, \lambda)$ satisfies $\Re\left(X_{\lambda}, X_{\lambda}\right)$ $\neq 0$ for each $\lambda \in k^{*}$.

Then C is also a string of A and $M(C, \lambda)$ is a band A-module satisfying the required conditions.

The converse of the above proposition does not hold, as we show in our next example:

Example 3.7. Consider the string algebra given by the quiver

with the relations $\alpha_{1} \alpha_{7}=0, \alpha_{6} \alpha_{2}=0, \alpha_{4} \alpha_{7}=0, \alpha_{4} \alpha_{3}=0$ and $\alpha_{9} \alpha_{9}=0$. Then no subquiver of Q_{A} containing exactly two cycles satisfies the conditions stated in Lemma 3.3, 3.4 or 3.5. However, if X is the band module associated to the string $C=\alpha_{4}^{-1} \alpha_{5}^{-1} \alpha_{6} \alpha_{3}^{-1} \alpha_{7} \alpha_{8}^{-1} \alpha_{9} \alpha_{8} \alpha_{7}^{-1} \alpha_{3} \alpha_{2} \alpha_{1}$, then the
simple S_{1} is a direct summand of both the top and the socle of X ．Therefore， $\Re(X, X) \neq 0$ ．

Combining the last proposition and Theorem 2.6 we can state the main result of this section．

Theorem 3．8．Let $A=k Q_{A} / I_{A}$ be a connected string algebra．Then the following conditions are equivalent：
（a）There are n irreducible morphisms $h_{i}: X_{i} \rightarrow X_{i+1}$ with X_{i} band modules for $i=1, \ldots, n$ such that $h_{n} \ldots h_{1} \neq 0$ and $h_{n} \ldots h_{1} \in$ $\Re^{n+1}\left(X_{1}, X_{n+1}\right)$ ．
（b）There is a simple regular band module X_{1} in a homogeneous tube such that $\Re\left(X_{1}, X_{1}\right) \neq 0$ ．

Moreover，when Q_{A} contains at most two cycles，the above conditions are equivalent to：
（c）For each $\lambda \in k^{*}$ ，there is a simple regular band module X_{λ} in a homogeneous tube such that $\Re\left(X_{\lambda}, X_{\lambda}\right) \neq 0$ and $X_{\lambda} \neq X_{\mu}$ for $\lambda \neq \mu$ ．
（d）The quiver Q_{A} contains a subquiver，not necessarily full and convex， of the type described in Lemma 3．3，3．4 or 3．5．

Acknowledgements．The authors thankfully acknowledge partial sup－ port from CONICET，Universidad Nacional del Sur and Universidad Na－ cional de Mar del Plata，Argentina．The second and third authors are re－ searchers from CONICET，Argentina．

This work is part of the PhD＇s thesis of the first author，under the supervision of María Inés Platzeck and Sonia Trepode．

REFERENCES

［1］E．R．Alvares，C．Chaio and S．Trepode，Auslander－Reiten components with sec－ tional bypasses，Comm．Algebra 37 （2009），2213－2224．
［2］I．Assem，D．Simson and A．Skowroński，Elements of the Representation Theory of Associative Algebras，Vol．1，London Math．Soc．Student Texts 65，Cambridge Univ． Press， 2006.
［3］M．Auslander，I．Reiten and S．O．Smalø，Representation Theory of Artin Algebras， Cambridge Stud．Adv．Math．36，Cambridge Univ．Press， 1995.
［4］M．C．R．Butler and C．M．Ringel，Auslander－Reiten sequences with few middle terms and applications to string algebras，Comm．Algebra 15 （1987），145－179．
［5］C．Chaio，F．U．Coelho and S．Trepode，On the composite of two irreducible mor－ phisms in radical cube，J．Algebra 312 （2007），650－667．
［6］－，一，一，On the composite of irreducible morphisms in almost sectional paths， J．Pure Appl．Algebra 212 （2008），244－261．
［7］－，一，一，On the composite of three irreducible morphisms in the fourth power of the radical，Comm．Algebra，to appear．
[8] C. Chaio, P. Le Meur and S. Trepode, Degrees of irreducible morphisms and finiterepresentation type, J. London Math. Soc. (2011), to appear.
[9] C. Chaio, M. I. Platzeck and S. Trepode, On the degree of irreducible morphisms, J. Algebra 281 (2004), 200-224.
[10] K. Igusa and G. Todorov, A characterization of finite Auslander-Reiten quivers, ibid. 89 (1984), 148-177.
[11] S. Liu, Degrees of irreducible maps and the shapes of Auslander-Reiten quivers, J. London Math. Soc. (2) 45 (1992), 32-54.
[12] -, Shapes of connected components of the Auslander-Reiten quivers of Artin algebras, in: CMS Conf. Proc. 19, Amer. Math. Soc., 1996, 109-137.
[13] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.

Claudia Chaio, Sonia Trepode
Departamento de Matemática
Facultad de Ciencias Exactas y Naturales
Funes 3350
Universidad Nacional de Mar del Plata
7600 Mar del Plata, Argentina
María Inés Platzeck
Instituto de Matemática
Universidad Nacional del Sur
Av. Alem 1253
8000 Bahía Blanca, Argentina
E-mail: claudia.chaio@gmail.com
strepode@mdp.edu.ar

[^0]: 2010 Mathematics Subject Classification: 16G70, 16G20, 16E10.
 Key words and phrases: irreducible morphisms, radical, regular components.

