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Abstract. We study when the composite of n irreducible morphisms between mod-
ules in a regular component of the Auslander–Reiten quiver is non-zero and lies in the
n + 1-th power of the radical < of the module category. We prove that in this case such
a composite belongs to <∞. We apply these results to characterize those string algebras
having n irreducible morphisms between band modules such that their composite is a
non-zero morphism in <n+1.

The composite of n irreducible morphisms between indecomposable mod-
ules over a finite-dimensional k-algebra A, with k an algebraically closed
field, belongs to <n, the n-th power of the radical < of the module category.
In general such a composite could be a non-zero morphism in <n+1 (see
for instance [5]–[7]). We are interested to know when the composite of n
irreducible morphisms is a non-zero morphism in <n+1. The purpose of this
work is to study this problem for irreducible morphisms between indecom-
posable modules in regular components of the Auslander–Reiten quiver ΓA
of modA of type ZA∞ or stable tubes.

The case where the irreducible morphisms belong to a left (or right)
almost sectional path was considered in [6]. Here, we will consider morphisms
in stable tubes or components of type ZA∞. We will prove that the existence
of n irreducible morphisms with composite in <n+1 implies the existence of
n such irreducible morphisms in a left or in a right almost sectional path.
Precisely, we prove:

Theorem A. Let A be a finite-dimensional algebra over an algebraically
closed field and Γ a stable tube or a component of ΓA of type ZA∞. Then
the following conditions are equivalent:

(a) There are an integer n > 1 and irreducible morphisms h1, . . . , hn
between modules in Γ such that hn . . . h1 6= 0 and hn . . . h1 ∈ <n+1.
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(b) There are an integer t ≥ 1 and a simple regular module W in Γ such
that <(W, τ−tW ) 6= 0.

(c) There are an integer m > 1 and irreducible morphisms f1, . . . , fm
over a left (right) almost sectional path starting (ending) at a simple
regular module W , such that 0 6= fm . . . f1 ∈ <m+1.

In Section 3, we will apply the above result to characterize string al-
gebras which contain n irreducible morphisms between indecomposable band
modules whose composite is a non-zero morphism in <n+1.

We will prove that if the composite of n irreducible morphisms belongs
to a power of the radical greater than n, then it is in the infinite radical.
Actually, we prove the following theorem:

Theorem B. Let A be a finite-dimensional algebra over an algebraically
closed field and Γ a component of ΓA of type ZA∞ or a stable tube. Let
hi : Xi→Xi+1 be irreducible morphisms with Xi∈Γ for i=1, . . . , n+1. Then
0 6= hn . . . h1∈<n+1(X1, Xn+1) if and only if 0 6= hn . . . h1∈<∞(X1, Xn+1).

The proof of Theorem B is given in Section 2. The notion of degree of
an irreducible morphism, introduced by Liu in [11], is a very useful tool in
the study of this problem, as shown in [5]–[7].

Recently a general solution to the problem of finding necessary and suf-
ficient conditions for the existence of n irreducible morphisms with non-zero
composite in <n+1 is given in [8], where the results are proven using covering
techniques.

Here, we use a different technique, namely the concept of degree of an
irreducible morphism. We think that this notion could help to solve the
problem in the more general context of artin algebras.

1. Preliminaries. Throughout this paper, all algebras are finite-dimen-
sional algebras over an algebraically closed field. For such an algebra A, we
denote by modA the category of finitely generated left A-modules, and by
indA the full subcategory of modA consisting of one representative of each
isomorphism class of indecomposable A-modules.

Let X be an indecomposable A-module. If X is not projective, we denote
by α(X) the number of indecomposable summands of the middle term of the
almost split sequence ending at X. Dually, if X is not injective, we denote
by α′(X) the number of indecomposable summands of the middle term of
the almost split sequence starting at X.

We denote the radical of the module category modA by <A, or just by <.
We recall that, for X,Y ∈ modA, we denote by <A(X,Y ) the set of all the
morphisms f : X → Y such that, for all M ∈ indA, each h : M → X and
each h′ : Y → M the composite h′fh is not an isomorphism. In particular,
when X,Y ∈ indA, then <A(X,Y ) is the set of all the morphisms f :
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X → Y which are not isomorphisms. Inductively, the powers of <A(X,Y )
are defined. By <∞A (X,Y ) we denote the intersection of all powers <iA(X,Y ),
i ≥ 1, of <A(X,Y ).

We denote by ΓA the Auslander–Reiten quiver of A and by τ the Auslan-
der–Reiten translation DTr.

An arrow α : M → N has valuation (a, b) if there is a minimal right
almost split morphism aM ⊕ X → N where M is not a summand of X,
and a minimal left almost split morphism M → bN ⊕ Y where N is not
a summand of Y . If a = b = 1 then we say that the arrow α has trivial
valuation. A component Γ of ΓA is said to have trivial valuation if all the
arrows in Γ have trivial valuation.

A component Γ of ΓA is said to satisfy the condition that α(Γ ) ≤ 2 if
α(X) ≤ 2 for every X in Γ .

For unexplained notions from representation theory we refer the reader
to [2, 3, 13].

We recall the definition of left almost sectional path, given in [6]. Let
ξ : X1 → X2 → · · · → Xn → Xn+1 be a non-sectional path in ΓA of length
n ≥ 2. We say that ξ is a left almost sectional path provided X1 → X2 →
· · · → Xn−1 → Xn is sectional. Observe that if ξ : X1 → X2 → · · · → Xn →
Xn+1 is a left almost sectional path, then τXn+1 ' Xn−1.

Let X → Z be an arrow in a component Γ of ΓA. Any path X = Y0 →
Y1 → · · · → Yn = Z in Γ of length n ≥ 2 with Y1 6= Yn and Y0 6= Yn−1 is
called a bypass of the arrow X → Z. If this path is sectional, then it is called
a sectional bypass. Otherwise, it is called a non-sectional bypass (see [1]).

Let f : X → Y be an irreducible morphism in modA, and assume that
either X or Y is indecomposable. Following [11], we say that the left degree
of f is infinite if for each positive integer n, for each Z ∈ modA and each
morphism g ∈ <n(Z,X)\<n+1(Z,X), we have fg /∈ <n+2(Z, Y ). Otherwise,
the left degree of f is the smallest positive integer m such that there exists
a morphism g ∈ <m(Z,X) \ <m+1(Z,X), for some Z ∈ modA, such that
fg ∈ <m+2(Z, Y ). We denote the left degree of f by dl(f).

Dually, one defines the right degree dr(f) of f . We refer the reader to
[9, 11, 12] for a detailed account on these degrees.

2. Regular components. In this section, we are going to look for nec-
essary and sufficient conditions for the existence of n irreducible morphisms
between modules in regular components of ΓA of type ZA∞ or stable tubes,
with non-zero composite in <n+1.

In [6, Proposition 4.3], the case where the irreducible morphisms belong
to a left almost sectional path is considered. Precisely, the following result
is proven:
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Proposition 2.1 ([6, Proposition 4.3]). Let A be a finite-dimensional
algebra over an algebraically closed field. Let Γ be a component of ΓA of type
ZA∞ or a stable tube. For a natural number l the following conditions are
equivalent:

(a) There exist irreducible morphisms f1, . . . , fl+1 over a left almost
sectional path such that fl+1 . . . f2 /∈ <l+1 and 0 6= fl+1 . . . f1 ∈
<l+2(W,Y ), where W is a simple regular module and Y is the co-
domain of fl+1.

(b) There exists a simple regular module W such that <(W, τ−rW ) 6= 0
for some r with 1 ≤ r ≤ l.

We are going to prove that the same characterization holds also when the
irreducible morphisms do not belong to an almost sectional path. First, we
study some properties of stable tubes and components of ΓA of type ZA∞.

For standard components Γ of ΓA we can always represent arrows of Γ
by irreducible morphisms in modA satisfying the mesh relations. Although
stable tubes are not always standard, and components of type ZA∞ are
never standard, the following result along these lines can be proven:

Proposition 2.2. Let Γ be a component of ΓA of type ZA∞ or a stable
tube. Then there exist a configuration of almost split sequences with modules
in Γ of the form

· · · • • • •
↘ ↗ ↘ ↗ ↘ ↗ ↘
• • • • · · ·

↗ ↘ ↗ ↘ ↗ ↘ ↗
· · · • • • •

↘ ↗ ↘ ↗ ↘ ↗ ↘
• • • • · · ·

↗ ↘ ↗ ↘ ↗ ↘ ↗
· · · • • • •

↘ ↗ ↘ ↗ ↘ ↗ ↘
• • • • · · ·
...

...
...

Proof. We start by considering vertices M [i] in Γ , for i even, such that
the graph
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M [i]
αi

↗
βi

↘
N [i+ 1] τ−1N [i+ 1]

αi+1

↘
βi+1

↗
M [i+ 2]

is a full and convex subquiver of Γ with M [0] in the border of Γ .
For each arrow αi we fix an irreducible morphism fi : N [i + 1] → M [i]

in modA, and we choose a morphism fi+1 : N [i + 1] → M [i + 2] such
that (fi, fi+1)t : N [i + 1] → M [i] ⊕M [i + 2] is a minimal left almost split
morphism.

Let g = (gi, gi+1) : M [i]⊕M [i+ 2]→ τ−1N [i+ 1] be the cokernel of fi,
so that we have an almost split sequence

0→ N [i+ 1]
(fi,fi+1)t

−−−−−−→M [i]⊕M [i+ 2]
(gi,gi+1)−−−−−→ τ−1N [i+ 1]→ 0

for each i = 0, 2, 4, . . . .
In order to iterate this procedure we only need (gi+1, gi+2) to be a min-

imal left almost split morphism.
So far, we just know that both gi+1 and gi+2 are irreducible morphisms.

Since Γ has trivial valuation, we obtain the desired result from our next
lemma.

Lemma 2.3. Let (f, g)t : A → B1 ⊕ B2 be a left minimal almost split
morphism with B1, B2 indecomposable non-isomorphic A-modules, and let
α ∈ k∗ and µ ∈ <2(A,B2). Then the irreducible morphism (f, αg + µ)t :
A→ B1 ⊕B2 is also left minimal almost split.

Proof. We may assume that α = 1 and µ 6= 0. Since (f, g)t : A →
B1 ⊕ B2 is a left minimal almost split morphism and µ : A → B2 is not
an isomorphism, there is a morphism h : B1 ⊕ B2 → B2 such that µ =
h (f, g)t. We write h = (h1, h2), with hi : Bi → B2 for i = 1, 2. Then
µ = h1f + h2g. We claim that h2 ∈ <(B2, B2). In fact, since h1 : B1 → B2

is not an isomorphism, we have h2g = µ− h1f ∈ <2(A,B2). Thus h2 is not
an isomorphism, because g is irreducible. Hence id + h2 : B2 → B2 is an
isomorphism.

Let

t =
(

id 0
h1 id + h2

)
: B1 ⊕B2 → B1 ⊕B2.

Then (f, g + µ)t = t (f, g)t. One can easily verify that t is an isomorphism,
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with inverse (
id 0

−(id + h2)−1h1 (id + h2)−1

)
.

From this and the fact that (f, g)t is left minimal almost split it follows that
(f, g + µ)t is also left minimal almost split, proving the desired result.

Given a path ν : fn . . . f1 : X1 → Xn+1 with each fi : Xi → Xi+1

irreducible, we say that fn, . . . , f1 satisfy the mesh relations, or that ν is
a path in the mesh, if fn . . . f1 is a path of irreducible morphisms in the
configuration of Proposition 2.2. Thus, morphisms in two paths in the mesh
from X1 to Xn+1 have the same composite.

Now, we will prove some useful lemmas.

Lemma 2.4. Let A be a finite-dimensional algebra over an algebraically
closed field and Γ a component of ΓA of type ZA∞ or a stable tube. Let
M,M ′ ∈ Γ be such that there is a path of irreducible morphisms in the mesh
of length m from M to M ′ with zero composite. If <m+1(M,M ′) 6= 0 then
there are a simple regular module W ∈ Γ and a positive integer r such that
<(W, τ−rW ) 6= 0.

Proof. Let γ be a path of irreducible morphisms of length m from M to
M ′ with zero composite. Then we can assume that there is a configuration
of almost split sequences as follows:

M = W1,k

W2,k

•

•

•

•

Wk,k

•

•

W1,n

•

•

•

•

•

•

•

•
•

•
Wn−l+1,n = M ′

g1,k 77oo

f1,k
''OOO

77ooooo

77ooooo

''OOOO

''OOOO

g1,n

77oooo

77ooooo

77ooooo

''OOO
OO

77oooo

f1,n−1
''OOOO

77ooooo ''OOO
OO

77ooooo

''OOO
OO

77ooooo

gn−l,n

77ooo77ooooo

with n ≥ 2, and having at least an almost split sequence with indecom-
posable middle term. We will prove the result by induction on the sum
k + l, assuming that M is in position (1, k) of a ray and M ′ is in position
(n− l + 1, n) of a co-ray in Γ . We denote such a sum by n(γ).

If n(γ) = 2 then k = l = 1 and the modules M and M ′ are simple
regular. Hence M ′ = τ−1M and 0 6= <m+1(M,M ′) ⊂ <(M,M ′), proving
the result in this case.

Assume that n(γ) > 2 and that the result holds for paths δ satisfying
the hypothesis of the lemma, with n(δ) < n(γ). Consider k > 1, f1,k−1 :
W1,k−1 →W1,k an irreducible morphism and 0 6= ϕ ∈ <m+1(M,M ′).
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If θ = ϕf1,k−1 6= 0 then θ ∈ <m+2(W1,k−1,M
′) and n(γf1,k−1) = k− 1 +

l < n(γ). Since γf1,k−1 : W1,k−1 → M ′ is a path of irreducible morphisms
of length m+ 1 with zero composite, by the inductive hypothesis there is a
simple regular module satisfying the result.

Now, assume that θ = ϕf1,k−1 = 0. Then the almost split sequence
starting at W1,k−1 is

0→W1,k−1
f1,k−1−−−−→W1,k

g1,k−−→W2,k → 0

if k = 2, and

0→W1,k−1
(f1,k−1,g1,k−1)t

−−−−−−−−−−→W1,k ⊕W2,k−1
(g1,k,f2,k−1)
−−−−−−−−→W2,k → 0

if k > 2. In the first case ϕf1,k−1 = 0, and in the second case

(ϕ, 0)(f1,k−1, g1,k−1)t = 0.

In either case, there is a morphism ϕ1 : W2,k →M such that 0 6= ϕ = ϕ1g1,k.
On the other hand, since g1,k belongs to a co-ray, we deduce from [9,

Proposition 4.11] that dr(g1,k)=∞.We conclude that 0 6=ϕ1∈<m(W2,k,M
′),

since ϕ ∈ <m+1(M,M ′).
Finally, we have to prove that there is a path of m− 1 irreducible mor-

phisms from W2,k to M ′ with zero composite. Since the path γ from M to
M ′ has zero composite, it is not sectional (see [10, Appendix]). Furthermore,
since α(Γ ) ≤ 2, we may assume that γ = γ′g1,k where γ′ : W2,k → M ′ is a
path of m − 1 irreducible morphisms. Moreover, γ′ = 0, because g1,k is an
epimorphism. Since n(γ′) = k− 1 + l < n(γ) we can apply the inductive hy-
pothesis to γ′ and conclude that there is a simple regular module satisfying
the statement, proving the result in the case k > 1.

If k = 1 and l > 1 the proof is analogous, analyzing separately the cases
where gn−l+1,nϕ = 0 and gn−l+1,nϕ 6= 0.

The next result is essential for our considerations. We are going to prove
that the existence of n irreducible morphisms with composite in <n+1 implies
the existence of a path of n irreducible morphisms through the same modules
with zero composite. Even though this result follows from [8, Proposition
5.1], we will give an easier proof for our particular case, using the notion of
degree of an irreducible morphism.

Lemma 2.5. Let A be a finite-dimensional algebra over an algebraically
closed field and Γ a stable tube or a component of type ZA∞. Let hi :
Xi → Xi+1 be irreducible morphisms for i = 1, . . . , n, with Xi ∈ Γ for
i = 1, . . . , n+ 1. If 0 6= hn . . . h1 ∈ <n+1 then fn . . . f1 = 0 for any choice of
irreducible morphisms fi : Xi → Xi+1 satisfying the mesh relations.
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Proof. Consider irreducible morphisms fi : Xi → Xi+1 satisfying the
mesh relations of Γ . Since k is an algebraically closed field, we have hi =
αifi + µi with αi ∈ k∗ and µi ∈ <2(Xi, Xi+1) for each i. Then hn . . . h1 =
αfn . . . f1 + µ with α ∈ k∗ and µ ∈ <n+1(X1, Xn+1). Therefore, fn . . . f1 ∈
<n+1(X1, Xn+1). We assume that fn . . . f1 6= 0. Then, modulo the mesh rela-
tions, fn . . . f1 is equal to a path of irreducible morphisms gn . . . gr+1gr . . . g1,
with gr, . . . , g1 in a co-ray of Γ and gn, . . . , gr+1 in a ray. Since gr, . . . , g1
belong to a co-ray, their right degree is ∞, by [9, Proposition 4.11].

Since gn . . . gr+1gr . . . g1 ∈ <n+1(X1, Xn+1) and dr(g1) = ∞, we deduce
that gn . . . gr+1gr . . . g2 ∈ <n. Since g2, . . . , gr also have infinite right degree
we can iterate this argument and conclude that gn . . . gr+1 ∈ <n+1−r, contra-
dicting the fact that the morphisms gn, . . . , gr+1 belong to a sectional path,
since they belong to the same ray (see [10, Appendix]). Then fn . . . f1 = 0,
proving the implication.

Now, we are in a position to prove one of the main results of this section,
extending the characterization given in [6, Proposition 4.3].

Theorem 2.6. Let A be a finite-dimensional algebra over an algebraically
closed field and Γ a stable tube or a component of ΓA of type ZA∞. Then
the following conditions are equivalent:

(a) There are an integer n > 1 and irreducible morphisms h1, . . . , hn
between modules in Γ such that hn . . . h1 6= 0 and hn . . . h1 ∈ <n+1.

(b) There are an integer t ≥ 1 and a simple regular module W in Γ such
that <(W, τ−tW ) 6= 0.

(c) There are an integer m > 1 and irreducible morphisms f1, . . . , fm
over a left (right) almost sectional path starting (ending) at a simple
regular module W such that 0 6= fm . . . f1 ∈ <m+1.

Proof. Suppose that statement (a) holds. By Lemma 2.5, it follows that
there are irreducible morphisms fi : Yi → Yi+1 with composite fn . . . f1 = 0.
Then (b) follows from Lemma 2.4.

We get the converse by considering n = l + 1 in [6, Proposition 4.3].
Finally, (b) implies (c) by [6, Proposition 4.3] and clearly (c) implies (a).

Applying the above theorem we get the following corollary for homoge-
neous tubes.

Corollary 2.7. Let A be a finite-dimensional algebra over an alge-
braically closed field. Let Γ be a homogeneous tube and W the simple regular
module in Γ . The following conditions are equivalent:

(a) There are an integer n > 1 and irreducible morphisms h1, . . . , hn
between modules in Γ such that hn . . . h1 6= 0 and hn . . . h1 ∈ <n+1.

(b) <(W,W ) 6= 0.
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Next, we will prove that a composite of irreducible morphisms h1, . . . , hn
between modules in components of type ZA∞ or in stable tubes is in <n+1

if and only if hn . . . h1 ∈ <∞. We start with a useful technical lemma.

Lemma 2.8. Let Γ be a stable tube or a component of type ZA∞. Suppose
there is a zero path in the mesh η : X → Y of length n. Then:

(a) Each path in the mesh from X to Y of length greater than or equal
to n is zero.

(b) Each path of irreducible morphisms from X to Y of length n is
in <n+1.

Proof. (a) is an easy consequence of the fact that paths in the mesh from
X to Y of the same length coincide in modA.

(b) Let η be the zero path fn . . . f1, where fi : Xi−1 → Xi satisfy the
mesh relations, let f ′i : Xi−1 → Xi be irreducible morphisms for i = 1, . . . , n,
and set X = X0 and Y = Xn. Since k is an algebraically closed field, we
have f ′i = αifi + µi with αi ∈ k∗ and µi ∈ <2(Xi−1, Xi). Hence

f ′n . . . f
′
1 = αn . . . α1fn . . . f1 +

t∑
i=1

θi

where θi : X → Y is a composite of n morphisms in {f1, . . . , fn, µ1, . . . µn}
with at least one of them in {µ1, . . . µn}. Therefore, each θi ∈ <n+1(X,Y )
and we conclude that f ′n . . . f

′
1 ∈ <n+1(X,Y ).

Theorem 2.9. Let A be a finite-dimensional algebra over an algebraically
closed field and Γ be a component of ΓA of type ZA∞ or a stable tube. If
there is a zero path in the mesh from X to Y then any path of irreducible
morphisms from X to Y of length n is in <∞(X,Y ).

Proof. Consider irreducible morphisms fi : Xi−1 → Xi and f ′i : Xi−1 →
Xi between indecomposable modules with i = 1, . . . , n, X = X0, Y = Xn.
Assume that fn . . . f1 is a zero path in the mesh, and that f ′n . . . f

′
1 ∈

<n+k(X0, Xn) \ <n+k+1(X0, Xn) for some k ≥ 0. Then, by Lemma 2.8(b),
we know that k ≥ 1. Therefore, by [3, V, Proposition 7.4] there is a path
δ : X0 → Xn of n+ k irreducible morphisms whose composite does not be-
long to <n+k+1(X0, Xn). Then there is also a path in the mesh η : X0 → Xn

of length n + k and by Lemma 2.8(a) we know that η = 0. Applying now
Lemma 2.8(b) to the path η we conclude that δ ∈ <n+k+1(X0, Xn), a con-
tradiction to our assumption.

The following corollaries are immediate consequences of the above theo-
rem.

Corollary 2.10. Let A be a finite-dimensional algebra over an alge-
braically closed field and Γ a component of ΓA of type ZA∞ or a stable
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tube. Let hi : Xi → Xi+1 be n irreducible morphisms with Xi ∈ Γ for
i=1, . . . , n. Then 0 6=hn . . . h1∈<n+1(X1, Xn+1) if and only if 0 6=hn . . . h1∈
<∞(X1, Xn+1).

Proof. Assume that there are n irreducible morphisms hi : Xi → Xi+1

such that 0 6= hn . . . h1 ∈ <n+1(X1, Xn+1) and let fi : Xi → Xi+1 be
irreducible morphisms satisfying the mesh relations. Then fn . . . f1 = 0, and
the result follows from the above theorem.

The converse is clear.

Corollary 2.11. Let A be a finite-dimensional algebra over an alge-
braically closed field and Γ a component of ΓA of type ZA∞ or a stable
tube. Given an integer n > 1, there are no irreducible morphisms f1, . . . , fn
between modules in Γ such that fn . . . f1 ∈ <n+1 \ <n+2.

Corollary 2.12. Let A be a finite-dimensional algebra over an al-
gebraically closed field and Γ a standard stable tube. Then the composite
fn . . . f1 of n irreducible morphisms between modules in Γ belongs to <n+1

if and only if fn . . . f1 = 0.

In [6], the composite of n irreducible morphisms in the border of a wing
was studied, characterizing when such a composite belongs to the n + 1-th
power of the radical. In this section, we are going to apply these results in
the particular case when the wing lies in a component of type ZA∞ or a
stable tube.

We recall the definition of a wing in a connected component Γ of ΓA (see
[13], p. 127). A wing is a configuration of almost split sequences of the form

W1,1 . . . . . .W2,2 Wn−1,n−1Wn,n

@R �� @R . .
.
@R ��

W1,2 W2,3 W3,n−1 Wn−1,n

@R ��
. . . �� @R . .

.
W1,3 W2,n−1 W3,n. . . �� @R ��
W1,n−1 W2,n

@R ��
W1,n

where α(Wi,i) = 1 for i = 2, . . . , n and α′(W1,1) = 1.
The paths

f : W1,1
f1,1−−→W1,2

f1,2−−→W1,3 → · · · →W1,n−1
f1,n−1−−−−→W1,n

and
g : W1,n

g1,n−−→W2,n
g2,n−−→W3,n → · · · →Wn−1,n

gn−1,n−−−−→Wn,n

corresponding respectively to the sectional path starting at W1,1 and ending
at W1,n, and to the sectional path starting at W1,n and ending at Wn,n, are
called the borders of the wing.
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Proposition 2.13. Let A be a finite-dimensional algebra over an alge-
braically closed field. Consider a wing in a component Γ of type ZA∞ or in
a stable tube. Let

f : W1,1
f1,1−−→W1,2

f1,2−−→W1,3 → · · · →W1,n−1
f1,n−1−−−−→W1,n

and

g : W1,n
g1,n−−→W2,n

g2,n−−→W3,n → · · · →Wn−1,n
gn−1,n−−−−→Wn,n

be the borders of the wing, corresponding to the ray starting at W1,1 and to
the co-ray ending at Wn,n, respectively. The following conditions are equiv-
alent:

(a) There exist irreducible morphisms h1,j : W1,j → W1,j+1 and h′j,n :
Wj,n →Wj+1,n, for j = 1, . . . , n− 1, such that

0 6= h′n−1,n . . . h
′
1,nh1,n−1 . . . h1,1 ∈ <2n−1(W1,1,Wn,n).

(b) <(W1,1,Wn,n) 6= 0.
(c) There exists a non-zero morphism ϕ ∈ <2(W1,n,W1,n) such that

gϕf 6= 0 and gϕf ∈ <∞(W1,1,Wn,n).

Proof. (a)⇒(b) is trivial.
(b)⇒(c). By [6, Proposition 4.2], we know that there exists a non-zero

morphism ϕ ∈ <2(W1,n,W1,n) such that gϕf 6= 0. Since gf = 0 and ϕ ∈
<2(W1,n,W1,n), Lemma 2.8(b) yields 0 6= gϕf ∈ <∞(W1,1,Wn,n).

Finally we prove (c)⇒(a). Define the irreducible morphisms h1,j : W1,j →
W1,j+1 and h′i,n : Wi,n → Wi+1,n as follows: h1,j = f1,j for j = 1, . . . , n− 2,
h1,n−1 = ϕf1,n−1 and h′j,n = gj,n for j = 1, . . . , n− 1. Then their composite
is non-zero and belongs to <∞(W1,1,Wn,n).

3. String algebras. In this section, we will apply the results proven in
Section 2 to study when the composite of n irreducible morphisms between
band modules over a string algebra is a non-zero morphism in <n+1. First,
we recall some necessary notions.

A finite-dimensional algebra A = (kQA)/IA is called a string algebra
provided:

(S1) Any vertex of QA is the starting point of at most two arrows.
(S1′) Any vertex of QA is the ending point of at most two arrows.
(S2) Given an arrow β of QA, there is at most one arrow γ with s(β) =

e(γ) and βγ /∈ IA.
(S2′) Given an arrow β of QA, there is at most one arrow γ with e(β) =

s(γ) and γβ /∈ IA.
(S3) The ideal IA is generated by a set of paths of QA.
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3.1. Band modules. Let A = (kQA)/IA be a string algebra. Given a
walk ω in QA, when we write w = cn . . . c1 we will always assume that ci is
an arrow or the inverse of an arrow, for i = 1, . . . , n.

We say that w is a reduced walk if it is a trivial path or if w = cn . . . c1
with ci+1 6= c−1

i for i = 1, . . . , n− 1.
A string in A is either a trivial path εv, v ∈ Q0, or a reduced walk

C = cn . . . c1 of length n ≥ 1 such that no subwalk ci+t · · · ci+1ci or its
inverse belongs to IA.

Let W ′ be the set of all strings C such that for each positive integer m,
Cm is a reduced string and C cannot be written as a power of a string of
shorter length. The strings in W ′ are called reduced cycles. We observe that
W ′ is empty if there are no cycles in QA.

Let I, J be finite sets, and Xi, Yj be k-vector spaces for i ∈ I, j ∈ J . Let
hij : Xi → Yj be morphisms for (i, j) in a subset D of I × J . Consider the
morphism F = (fij) :

⊕
i∈I Xi →

⊕
j∈J Yj defined as follows:

fij =
{
hij if (i, j) ∈ D,
0 otherwise.

We will say that F is the direct sum of the morphisms hij .
Let V = kd and let ϕ ∈ EndV be given by the Jordan block Jd,λ, where

λ ∈ k∗. To a fixed string C = cn . . . c1 ∈ W ′ and the morphism ϕ, we can
assign an indecomposable module M(C,ϕ), called a band module, as follows:

For i = 1, . . . , n we define V (i) = V . For i = 1, . . . , n− 1, let fci be the
identity map from V (i) to V (i + 1) if ci is an arrow, and the identity map
from V (i + 1) to V (i) otherwise. Let fcn be the k-linear map that sends
x ∈ V (n) to ϕ(x) ∈ V (1) or x ∈ V (1) to ϕ−1(x) ∈ V (n) according as cn is
an arrow or the inverse of an arrow, respectively.

The band module M(C,ϕ) is defined as follows: Let v be a vertex in QA.
If v is a vertex of one of the arrows ci or c−1

i involved in C, let M(C,ϕ)v
be the direct sum of vector spaces V (i) such that s(ci) = v. Otherwise
M(C,ϕ)v = 0.

For an arrow α in QA, if α appears in C then we define M(C,ϕ)α as the
direct sum of the maps fci such that ci = α or ci = α−1; in any other case
we define M(C,ϕ)α to be the zero map.

In this way we obtain a representation M(C,ϕ) of QA that satisfies the
relations in IA. We refer to [4] for more details on this construction.

We recall from [4] that almost all the components of the Auslander–
Reiten quiver ΓA of a string algebraA, except for a finite number of them, are
of type ZA∞∞ or ZA∞/〈τ〉. Moreover, all the components of ΓA having band
modules are homogeneous tubes and those without border and having string
modules are regular components of type ZA∞∞. In particular, band modules
are in homogeneous tubes. Also the simple regular modules correspond to
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V = k with ϕ the left multiplication by λ. In this case we denote M(C,ϕ) =
M(C, λ).

Given a string C = cn . . . c1 in W ′ consider a substring δ of C in one of
the three situations illustrated below:

− · · ·− α→ δ
β← −· · ·−, δ

β← −· · ·− α→ or
β← −· · ·− α→ δ,

where α and β are arrows, that is, such that β−1δα is a substring of one of
the strings cn . . . c1, c1cn . . . c2 or cn−1 . . . c1c2.

The string module M(δ) associated to a string δ has been defined in [4],
considering the spaces V (i) = k and the morphisms fci as the vertices and
arrows corresponding to the support of δ. Next, we are going to prove that
in this situation M(δ) is a submodule of the band module M(C, λ), and
dually that M(δ) is a quotient of the band module M(C, λ) if the direction
of the arrows α, β in the above description of δ is reversed.

Lemma 3.1. Given a string C = cn . . . c1 in W ′ and a substring δ of C,
let C ′ = c1cn . . . c2 and C ′′ = cn−1 . . . c1c2. Then:

(a) If β−1δα is a substring of one of the strings C, C ′ or C ′′ then M(δ)
is a submodule of M(C, λ).

(b) If βδα−1 is a substring of one of the strings C, C ′ or C ′′ then M(δ)
is a quotient of M(C, λ).

In particular, if δ is the trivial string ei then the simple Si belongs to the
socle of M(C, λ) in case (a) and to its top in case (b).

Proof. We only prove (a) since (b) follows by duality. Let C = cn . . . c1
and δ = cr+s . . . cr with r ≥ 1, r + s ≤ n. Let 1 ≤ i ≤ n and λ ∈ k∗. Let
V (i) = k and fci be the vector spaces and the morphisms that define the
band module M(C, λ), respectively. For 1 ≤ i ≤ n+ 1, we write

W (i) =
{
k if r ≤ i ≤ r + s+ 1,
0 otherwise

gci =
{

Idk if r ≤ i ≤ r + s,
0 otherwise.

We will define linear transformations ϕj : W (j)→ V (j) for j = 1, . . . , n,
and ϕn+1 : W (n+ 1)→ V (1) such that the diagrams

V (i)
fci V (i+ 1)

ϕi ↑ ↑ϕi+1

W (i)
gci W (i+ 1)

and
V (n) fcn V (1)
ϕn ↑ ↑ϕn+1

W (n) gcn W (n+ 1)

commute, for i = i, . . . , n − 1, where the horizontal lines stand for → or
← according to the direction of the corresponding morphisms. Then an
appropriate direct sum of the morphisms ϕj induces a morphism of repre-
sentations M(δ) → M(C, λ), which is injective if all the ϕj are. To define
the morphisms ϕj we consider three cases.
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Case I: β−1δα is a substring of C, that is, 1 < r and r + s < n. Then
α = cr−1 and β−1 = cr+s+1. Let 1 ≤ i ≤ n. We define ϕi : W (i) → V (i)
as the identity from k to k if r ≤ i ≤ r + s + 1 and as the zero morphism
otherwise.

Let ϕn+1 : W (n+ 1)→ V (1) be the zero morphism. If W (i) = W (i+ 1)
= k or if W (i) = W (i+ 1) = 0, then the first diagram commutes. The other
cases correspond to i = r − 1, i = r + s + 1. In the first case, ci = α and
both gci and ϕi have domain W (r − 1) = 0. In the second case ci = β−1,
and then gci and ϕi+1 have domain W (r + s + 2) = 0. In any case, both
diagrams commute.

Case II: r+ s = n. Define ϕi : W (i)→ V (i) as the identity from k to k
if r ≤ i ≤ r + s = n and as the zero map for i < r. Let ϕn+1 : W (n+ 1) =
k → V (1) = k be multiplication by λ.

By the definition of ϕn+1 the second diagram commutes, and it is not
hard to prove that the first one also commutes.

Case III: r = 1. This is analogous to Case I.

Since band modules over a string algebra are in homogeneous tubes,
we may apply to them the results of the previous section. Thus in view
of Corollary 2.7 to characterize the existence of a non-zero composite of
n irreducible morphisms between indecomposable band modules in <n+1

we just study the existence of a simple regular band module X such that
<(X,X) 6= 0.

Let γ be a cycle of QA, not necessarily oriented. We will also denote by
γ one of the two walks obtained by going over the cycle γ once, conveniently
chosen. We say that αs . . . α2α1 is a subpath of γ if it is a path of QA whose
arrows are arrows of γ.

Lemma 3.2. Let A be a connected string algebra and X = M(C, λ) a
simple regular band module of a homogeneous tube. If <(X,X) 6= 0 then
QA has at least two cycles γ1 and γ2, not necessarily oriented, such that the
string C goes over both cycles.

Proof. We observe that since there exists a band module, QA has a cycle
(not necessarily oriented). Assume that QA has a unique cycle. Since C ∈W ′
the string goes over the cycle only once, and therefore the multiplicity of
each composition factor of X = M(C, λ) is one. Hence <(X,X) = 0.

Thus, we only need to consider string algebras whose ordinary quiver has
at least two cycles γ1 and γ2, not necessarily oriented. We start by studying
the case when these cycles share a unique vertex, i.

Lemma 3.3. Let A be a string algebra, where QA consists of two cycles
γ1 and γ2, not necessarily oriented, sharing a unique vertex, i. That is, QA
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is of the form

γ1 &%
'$

•i&%
'$

γ2

The following conditions are equivalent:

(a) There is a string C such that X = M(C, λ) satisfies <(X,X) 6= 0
for any λ 6= 0.

(b) One of the following conditions is satisfied:

(b1) At the vertex i of QA we have the following situation:
αn

↘
β1

↗
•i

α1

↙
βr

↖
where α1, αn are arrows of γ1 and β1, βr are arrows of γ2 such
that:

(i) if n > 2, the subpaths of γ1 are non-zero, except those con-
taining α1αn,

(ii) if r > 2, the subpaths of γ2 are non-zero, except those con-
taining β1βr.

(b2) At the vertex i of QA we have the following situation:
αn

↘
β1

↗
•i

α1

↗
βr

↘

with IA = 〈βrα1, β1αn〉 or IA = 〈β1α1, βrαn〉.
Proof. Assume that (a) holds and (b) does not hold. First, suppose that

at the vertex i of QA we have the following orientation of arrows:
αn

↘
β1

↗
•i

α1

↗
βr

↘
Then at least three of the relations βrα1 = 0, βrαn = 0, β1αn = 0 or
β1α1 = 0 are satisfied because A is a string algebra and (b2) does not hold.
Since (a) holds, there is a band moduleX = M(C, λ) such that <(X,X) 6= 0,
and then by Lemma 3.2 the string C must go over both cycles γ1 and γ2.
Since the subpaths of C are non-zero, no path of IA is a subpath of C, since
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otherwise C2 would not be a string. So IA is generated by exactly three of
the paths βiαj .

If the relations in (b1) and (b2) are not those stated above, then it is not
possible to find strings going over both cycles, and by Lemma 3.2 we get
<(X,X) = 0, contradicting (a). Thus (b) holds.

Now, we prove the converse. We are going to prove that if (b1) or (b2)
holds then there is a string C ∈W ′ such that the band module X = M(C, λ)
satisfies <(X,X) 6= 0.

Case I: Assume that (b1) holds and set γ1 = αnγ
′
1 and γ−1

2 = γ′2β
−1
r .

Consider the string C = γ−1
2 γ1. Then C = γ′2β

−1
r iαnγ

′
1, where i represents

the trivial string at the vertex i. By Lemma 3.1 applied to the trivial string i,
the simple Si is in the socle of X = M(C, λ).

Now, we write γ1 = γ′′1α1 and γ−1
2 = β−1

1 γ′′2 . Since C2 = γ−1
2 γ1γ

−1
2 γ1 =

γ−1
2 γ′′1α1iβ

−1
1 γ′′2γ1, we see that Si is in the top of M(C, λ), by applying the

same lemma to i. Then Si is a summand of topX and of socleX, therefore
<(X,X) 6= 0.

Case II: Suppose that (b2) holds and that IA = 〈βrα1, β1αn〉. If we
consider the string C = γ−1

2 γ−1
2 γ1γ1 with γ1 = αnγ

′
1α
−1
1 and γ−1

2 = β−1
1 γ′2βr,

then C = β−1
1 γ′2βriβ

−1
1 γ′2βrαnγ

′
1α
−1
1 iαnγ

′
1α
−1
1 . By Lemma 3.1 the simple Si

is in the socle and in the top of X = M(C, λ).
Now, assume that (b2) holds and that IA = 〈β1α1, βrαn〉. If we consider

the string C = γ2γ2γ1γ1, with γ1 = αnγ
′
1α
−1
1 and γ2 = β−1

r γ′2β1, then
C = β−1

r γ′2β1iβ
−1
r γ′2β1αnγ

′
1α
−1
1 iαnγ

′
1α
−1
1 and by Lemma 3.1 the simple Si is

in the socle and in the top ofX = M(C, λ). Thus, in either case <(X,X) 6= 0,
as desired.

Now, we are going to study algebras such that their quivers have two
disjoint cycles, not necessarily oriented, joined by a quiver of type An:

γ1 &%
'$

i • . . .δ

&%
'$

γ2•j

More precisely:

Lemma 3.4. Let A be a string algebra such that QA is given by two cycles
γ1 and γ2, not necessarily oriented, joined by a quiver δ of type An having
a unique vertex i in common with γ1 and a unique vertex j in γ2. Then the
following conditions are equivalent:

(a) There is a string C such that any band module X = M(C, λ) with
λ 6= 0 satisfies <(X,X) 6= 0.
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(b) In QA we have the following situation:
αn

↘
β1

↗
i

ε1
− δ· · ·

εs

− j
α1

↙
βr

↖
with IA = 〈α1αn, β1βr〉, where α1, αn ∈ γ1 and β1, βr ∈ γ2 are
arrows, α1 = αn if γ1 is a loop and β1 = βr if γ2 is a loop.

Proof. (a)⇒(b). Assume that (a) holds and that (b) does not hold. First,
suppose that we have the following orientations in γ1:

(∗)

αn

↘
i

ε1
−

α1

↗

or (∗∗)

αn

↖
i

ε1
−

α1

↙
We analyze only the case (∗), since (∗∗) is dual. Since A is a string algebra,
ε1αn = 0 or ε1α1 = 0. In any case, there is no string C ∈ W ′. In fact,
by Lemma 3.2 the string C must go over both cycles and then C2 is not a
string.

In the cases where the orientation of γ2 is
β1

↙
εs

− j
βr

↖

or

β1

↗
εs

− j
βr

↘

a similar analysis shows there are no strings in W ′ going over both cycles.
Assuming that the orientation is as described in (b), and that the ideal

IA is not generated by α1αn and βrβ1, we cannot find a string going over
both cycles; this contradicts Lemma 3.2, proving (b).

(b)⇒(a). Suppose that QA and IA are as stated in (b). We are going to
prove that there is a string C ∈ W ′ such that the associated band module
X contains a proper submodule X ′ isomorphic to a quotient of X. Then
we will have non-zero morphisms X → X ′ and X ′ → X (the projection
and inclusion, respectively) such that their composite X → X ′ → X is
a non-zero morphism in <(X,X). Let δ be the walk starting at i. Write
γ1 = γ′1α1, γ2 = γ′2β1 and also γ1 = αnγ

′′
1 , γ2 = βrγ

′′
2 and consider the

string C = δ−1γ−1
2 δγ1. Then C = δ−1γ′′−1

2 β−1
r δαnγ

′′
1 . Applying Lemma 3.1

we conclude that M(δ) is a submodule of X = M(C, λ).
On the other hand, if we consider the string C = δ−1β−1

1 γ′−1
2 δγ′1α1,

then applying Lemma 3.1, we deduce that M(δ) = M(δ−1) is a quotient of
X = M(C, λ), as desired.
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Now, we consider string algebras such that their quivers QA consist of
two cycles γ1 and γ2, not necessarily oriented, such that their intersection
is a quiver of type An.

Lemma 3.5. Let A be a string algebra such that QA consists of two cycles
γ1 and γ2, not necessarily oriented, intersecting in a quiver δ of type An.
The following conditions are equivalent:

(a) There is a string C such that the band module X = M(C, λ) satisfies
<(X,X) 6= 0 for each λ ∈ k∗.

(b) Either QA has the shape

(1) γ1

i
α1

↙ |
β1

↖
...

... δ
...γ2

αn

↘ |
βr

↗
j

and IA = 〈α1β1, βrαn〉, or QA has the shape

(2) γ1

i
α1

↙ |
β1

↖
...

... δ
...γ2

αn

↖ |
βr

↙
j

and IA = 〈α1β1, αnβr〉.
Proof. Assume that (a) holds but (b) does not. First, suppose that we

have the following orientation of arrows at the vertex i:
i

α1

↗ ↓ δs
β1

↖

Since A is a string algebra, we see that δsα1 = 0 or δsβ1 = 0. In any case,
there is no string in C ∈ W ′, since C2 = 0 or C2 is not a reduced string.
The case

i
α1

↙ ↑ δs
β1

↘
is dual.

In case QA is as stated in (b), but the corresponding relations are not,
it is not hard to see that it is not possible to go over both cycles, getting
the implication.



THE COMPOSITE OF IRREDUCIBLE MORPHISMS 45

(b)⇒(a). Assume that (1) holds. Consider the string C = γ−1
1 γ2. Let X

be the band module associated with C. We write γ1 = α−1
1 γ′1δ and γ2 =

δ−1β−1
r γ′2.

Then C = γ−1
1 γ2 = δ−1γ′−1

1 α1δ
−1β−1

r γ′2 and applying Lemma 3.1 we find
that M(δ) = M(δ−1) is a quotient of X.

If we write γ1 = γ′′1α
−1
n δ and γ2 = δ−1γ′′2β

−1
1 , then we get

C = δ−1αnγ
′′−1
1 δ−1γ′′2β

−1
1 .

Applying Lemma 3.1 shows that M(δ) is a submodule of X. Since it is also
a quotient of X, we see that <(X,X) 6= 0.

Assume that (2) holds. With a similar analysis and considering the string
C = γ−1

1 γ2γ2γ
−1
1 we deduce that M(δ) is both a submodule and a quotient

of X, proving the lemma.

Summarizing the above results we can state the following proposition:

Proposition 3.6. Let A = kQA/IA be a connected string algebra such
that QA contains a subquiver, not necessarily full and convex, of the type
described in Lemma 3.3, 3.4 or 3.5. Then, for each λ ∈ k∗, there is a simple
regular band module Xλ in a homogeneous tube such that <(Xλ, Xλ) 6= 0
and Xλ 6= Xµ for λ 6= µ.

Proof. Assume that QA contains a subquiver Q′ of one of the types
described in Lemmas 3.3–3.5. By the lemmas there is a string C of A′ =
kQ′/IA∩kQ′ such that the band module Xλ = M(C, λ) satisfies <(Xλ, Xλ)
6= 0 for each λ ∈ k∗.

Then C is also a string of A and M(C, λ) is a band A-module satisfying
the required conditions.

The converse of the above proposition does not hold, as we show in our
next example:

Example 3.7. Consider the string algebra given by the quiver

?•
5

α6

•
4α5

�?

@
@I
α1

•2
�
�	
α2

3 • -α3 1

α4

?

• -•�
6

α7 α8

&%
'$

α9•7
I

with the relations α1α7 = 0, α6α2 = 0, α4α7 = 0, α4α3 = 0 and α9α9 = 0.
Then no subquiver of QA containing exactly two cycles satisfies the condi-
tions stated in Lemma 3.3, 3.4 or 3.5. However, if X is the band module
associated to the string C = α−1

4 α−1
5 α6α

−1
3 α7α

−1
8 α9α8α

−1
7 α3α2α1, then the
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simple S1 is a direct summand of both the top and the socle of X. Therefore,
<(X,X) 6= 0.

Combining the last proposition and Theorem 2.6 we can state the main
result of this section.

Theorem 3.8. Let A = kQA/IA be a connected string algebra. Then the
following conditions are equivalent:

(a) There are n irreducible morphisms hi : Xi → Xi+1 with Xi band
modules for i = 1, . . . , n such that hn . . . h1 6= 0 and hn . . . h1 ∈
<n+1(X1, Xn+1).

(b) There is a simple regular band module X1 in a homogeneous tube
such that <(X1, X1) 6= 0.

Moreover, when QA contains at most two cycles, the above conditions are
equivalent to:

(c) For each λ ∈ k∗, there is a simple regular band module Xλ in a
homogeneous tube such that <(Xλ, Xλ) 6= 0 and Xλ 6= Xµ for λ 6= µ.

(d) The quiver QA contains a subquiver, not necessarily full and convex,
of the type described in Lemma 3.3, 3.4 or 3.5.
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