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ON GENERALIZED FERMAT EQUATIONS OF SIGNATURE (p, p, 3)

BY

KAROLINA KRAWCIÓW (Szczecin)

Abstract. This paper focuses on the Diophantine equation xn + pαyn = Mz3, with
fixed α, p, and M . We prove that, under certain conditions on M , this equation has no
non-trivial integer solutions if n ≥ F(M,pα), where F(M,pα) is an effective constant. This
generalizes Theorem 1.4 of the paper by Bennett, Vatsal and Yazdani [Compos. Math.
140 (2004), 1399–1416].

1. Introduction. Fix non-zero integers A, B, and C. For given positive
integers p, q, r satisfying 1/p+1/q+1/r < 1, the generalized Fermat equation

(1.1) Axp +Byq = Czr

has only finitely many proper integer solutions [5]. The proof uses the fa-
mous Theorem of Faltings [6] (Mordell conjecture). Modern techniques com-
ing from Galois representations and modular forms (methods of Frey–Helle-
gouarch curves and variants of Ribet’s level-lowering theorem) allow one to
give partial (sometimes complete) results concerning the set of solutions to
(1.1), at least when (p, q, r) is of the type (p, p, p), (p, p, 2), (p, p, 3), (4, 4, p),
(3, 3, p), (5, 5, p) or (2, 4, p). For the first four signatures, the results are
mostly of the type: there is no primitive integer solution in x, y, z if p
is larger than some positive constant depending on A, B, and C (see, for
instance, [7], [1], [4], [2], [3]).

In this article we generalize Theorem 1.4 from [2]. Such a possibility was
pointed out by A. Dąbrowski (see [4, Remark to Lemma 3]).

Consider the Diophantine equation

(1.2) xn + pαyn = Mz3,

where n and p are prime numbers, M is a non-zero integer, and α is a non-
negative integer. We prove, under some assumptions on M and p, the exis-
tence of a positive constant F(M,pα) such that for all primes n > F(M,pα)
the equation (1.2) has no solutions in non-zero coprime integers x, y and z.
More precisely, we prove the following results. Let M̃ denote the radical ofM
(the product of all prime divisors of M).
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Theorem 1.1. Let n be a prime number, and let M be a non-zero cube-
free integer, divisible by 3. If n > M̃10M̃2, then the Diophantine equation

xn + yn = Mz3

has no non-trivial solutions in coprime integers x, y and z.

Fix odd primes p1, . . . , pk; assume 3 ∈ {p1, . . . , pk}. Theorem 1.1 implies
that the 2k+1 Diophantine equations

xα − pα1
1 . . . pαkk y3 = ±1 (1 ≤ αi ≤ 2, i = 1, . . . , k)

have only finitely many solutions in integers y > 1, α > 1, and primes x. Let
P (p1, . . . , pk) denote the finite set of primes x satisfying any of the above 2k+1

Diophantine equations. It should be clear that it is not easy to determine the
set P (p1, . . . , pk). It can be checked (and is implicitly contained in [2]) that
P (3) = {2, 5}. Variants of Theorem 1.5 in [2] (plus some additional work)
should give, in principle, an exact description of P (3, q) for small primes q.

Theorem 1.2. LetM =
∏k
i=1 p

γi
i be a positive cube-free integer, divisible

by 3, α a positive integer, and n a prime. If p is a prime such that p /∈
P (p1, . . . , pk) and p 6=

∏k
i=1 p

αi
i s

3 ± 1 (1 ≤ αi ≤ 2, i = 1, . . . , k) for any
integer s, and if n > (pM̃)10pM̃2, then the Diophantine equation

xn + pαyn = Mz3

has no non-trivial solutions in coprime integers x, y, and z.

This result generalizes Theorem 1.4 from [2], where the authors consid-
ered M = 3β .

2. Proofs of Theorems 1.1 and 1.2. The proofs of Theorems 1.1 and
1.2 follow the same lines as the proofs of Theorems 1.1, 1.3 and 1.4 in [2],
hence we only indicate the main steps. The new ingredients are Lemmas 2.1
and 2.2 below (they correspond to Proposition 6.1 in [2]).

Let us suppose that n ≥ 11 and p are prime numbers, let α ≥ 0 be an
integer smaller than n, and let M be a non-zero, cube-free integer, divisible
by 3. As in [2], we associate to the primitive solution (a, b, c) of (1.2) the
elliptic curve

E = E(a, b, c) : y2 + 3Mcxy +M2pαbny = x3.

Let
ρEn : Gal(Q/Q)→ GL2(Fn)

denote the corresponding mod n Galois representation on the n-torsion E[n]
of E. Write M = 3γ

∏
pγii . Via Lemma 3.4 of [2], this representation arises

from a cuspidal newform f of weight 2, trivial Nebentypus character, and
level N = 35

∏
p2
i (if α = 0) or N = 35p

∏
p2
i (if α > 0).
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If f has at least one non-rational Fourier coefficient, then (applying The-
orem 2 in [8], and arguing as in [2, Section 7]) we obtain n ≤ M̃10M̃2 (if
α = 0) or n ≤ (pM̃)10pM̃2 (if α > 0).

If f has only rational Fourier coefficients, then it corresponds to an
isogeny class of elliptic curves over Q with conductor N . Now we argue
as in [2], replacing Proposition 6.1 there by the following results.

Lemma 2.1. Let F be an elliptic curve defined over Q with a rational 3-
torsion point and conductor 35

∏k
i=2 p

2
i . Then F has complex multiplication

by an order in Q(
√
−3).

Lemma 2.2. If p and p2, . . . , pk are primes such that p /∈ P (3, p2, . . . , pk),
and p 6= 3α1

∏k
i=2 p

αi
i s

3± 1 (1 ≤ αi ≤ 2, i = 1, . . . , k) for any integer s, then
there is no elliptic curve defined over Q with a rational 3-torsion point and
conductor 35p

∏k
i=2 p

2
i .

Proofs of Lemmas 2.1 and 2.2. Any elliptic curve defined over Q with
a rational 3-torsion point is isomorphic to a curve given by the Weierstrass
equation

y2 + a1xy + a3y = x3,

where a1 and a3 are integers; we may assume a3 > 0. We may (and will)
further assume that if a prime q divides a1, then q3 does not divide a3, so
the equation is minimal at q. One easily checks that

c4 = a1(a3
1 − 24a3), c6 = −a6

1 + 36a3
1a3 − 216a2

3, ∆F = a3
3(a

3
1 − 27a3).

The conductor NF of the curve F equals 35pε
∏k
i=2 p

2
i , where ε ∈ {0, 1}. We

rewrite

a1 = ±3αpα0

k∏
i=2

pαii a, a3 = 3βpβ0

k∏
i=2

pβii , ∆F = ±3δpδ0
k∏
i=2

pδii .

Using [9, Tableau II], we obtain

(v3(c4), v3(c6), v3(∆F )) ∈ {(≥3, 4, 5), (≥4, 5, 7), (≥5, 7, 11), (≥6, 8, 13)}.

Comparing this with the definitions of c4, c6 and ∆F (given above), we
deduce that the only possible values of (α, β, δ) are (≥2, 1, 7) and (≥2, 2, 11).

The elliptic curve F has bad additive reduction at 3 and at all primes pi,
i = 2, . . . , k, hence 3

∏
pi divides both ∆E and c4. This implies that 3

∏
pi

divides a1 and a3 as well.
Suppose that ε = 0. Then the integer

D =
a3

1

27a3
− 1 = ±33α−3−β

k∏
i=2

p3αi−βi
i a3 − 1
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divides ∆F . On the other hand it is coprime to ∆F , so D = −1 and a1 = 0.
Therefore the curve F has j-invariant equal to 0, and hence has complex
multiplication by an order in Q(

√
−3).

Suppose ε = 1. In this case F has bad multiplicative reduction at p. It is
clear that p does not divide a1, and either p | a3 or p | (a3

1 − 27a3). In both
cases we obtain

pr ± 1 = 33α−3−β
k∏
i=2

p3αi−βi
i a3.

This completes the proofs of Lemmas 2.1 and 2.2.
It is obvious that Lemma 2.2 implies Theorem 1.2. To prove Theorem

1.1 we apply Proposition 4.3 from [2].
Acknowledgements. The author would like to thank Prof. Andrzej

Dąbrowski for inspiring suggestions and improvements to the preliminary
version of this paper.
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