ON GENERALIZED FERMAT EQUATIONS OF SIGNATURE $(p, p, 3)$

BY
KAROLINA KRAWCIÓW (Szczecin)

Abstract

This paper focuses on the Diophantine equation $x^{n}+p^{\alpha} y^{n}=M z^{3}$, with fixed α, p, and M. We prove that, under certain conditions on M, this equation has no non-trivial integer solutions if $n \geq \mathcal{F}\left(M, p^{\alpha}\right)$, where $\mathcal{F}\left(M, p^{\alpha}\right)$ is an effective constant. This generalizes Theorem 1.4 of the paper by Bennett, Vatsal and Yazdani [Compos. Math. 140 (2004), 1399-1416].

1. Introduction. Fix non-zero integers A, B, and C. For given positive integers p, q, r satisfying $1 / p+1 / q+1 / r<1$, the generalized Fermat equation

$$
\begin{equation*}
A x^{p}+B y^{q}=C z^{r} \tag{1.1}
\end{equation*}
$$

has only finitely many proper integer solutions 5]. The proof uses the famous Theorem of Faltings [6] (Mordell conjecture). Modern techniques coming from Galois representations and modular forms (methods of Frey-Hellegouarch curves and variants of Ribet's level-lowering theorem) allow one to give partial (sometimes complete) results concerning the set of solutions to (1.1), at least when (p, q, r) is of the type $(p, p, p),(p, p, 2),(p, p, 3),(4,4, p)$, $(3,3, p),(5,5, p)$ or $(2,4, p)$. For the first four signatures, the results are mostly of the type: there is no primitive integer solution in x, y, z if p is larger than some positive constant depending on A, B, and C (see, for instance, [7], [1], 4], [2], [3]).

In this article we generalize Theorem 1.4 from [2]. Such a possibility was pointed out by A. Dąbrowski (see [4, Remark to Lemma 3]).

Consider the Diophantine equation

$$
\begin{equation*}
x^{n}+p^{\alpha} y^{n}=M z^{3}, \tag{1.2}
\end{equation*}
$$

where n and p are prime numbers, M is a non-zero integer, and α is a nonnegative integer. We prove, under some assumptions on M and p, the existence of a positive constant $\mathcal{F}\left(M, p^{\alpha}\right)$ such that for all primes $n>\mathcal{F}\left(M, p^{\alpha}\right)$ the equation 1.2 has no solutions in non-zero coprime integers x, y and z. More precisely, we prove the following results. Let \tilde{M} denote the radical of M (the product of all prime divisors of M).

[^0]Theorem 1.1. Let n be a prime number, and let M be a non-zero cubefree integer, divisible by 3. If $n>\tilde{M}^{10 \tilde{M}^{2}}$, then the Diophantine equation

$$
x^{n}+y^{n}=M z^{3}
$$

has no non-trivial solutions in coprime integers x, y and z.
Fix odd primes p_{1}, \ldots, p_{k}; assume $3 \in\left\{p_{1}, \ldots, p_{k}\right\}$. Theorem 1.1 implies that the 2^{k+1} Diophantine equations

$$
x^{\alpha}-p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}} y^{3}= \pm 1 \quad\left(1 \leq \alpha_{i} \leq 2, i=1, \ldots, k\right)
$$

have only finitely many solutions in integers $y>1, \alpha>1$, and primes x. Let $P\left(p_{1}, \ldots, p_{k}\right)$ denote the finite set of primes x satisfying any of the above 2^{k+1} Diophantine equations. It should be clear that it is not easy to determine the set $P\left(p_{1}, \ldots, p_{k}\right)$. It can be checked (and is implicitly contained in [2]) that $P(3)=\{2,5\}$. Variants of Theorem 1.5 in [2] (plus some additional work) should give, in principle, an exact description of $P(3, q)$ for small primes q.

Theorem 1.2. Let $M=\prod_{i=1}^{k} p_{i}^{\gamma_{i}}$ be a positive cube-free integer, divisible by $3, \alpha$ a positive integer, and n a prime. If p is a prime such that $p \notin$ $P\left(p_{1}, \ldots, p_{k}\right)$ and $p \neq \prod_{i=1}^{k} p_{i}^{\alpha_{i}} s^{3} \pm 1\left(1 \leq \alpha_{i} \leq 2, i=1, \ldots, k\right)$ for any integer s, and if $n>(p \tilde{M})^{10 p \tilde{M}^{2}}$, then the Diophantine equation

$$
x^{n}+p^{\alpha} y^{n}=M z^{3}
$$

has no non-trivial solutions in coprime integers x, y, and z.
This result generalizes Theorem 1.4 from [2], where the authors considered $M=3^{\beta}$.
2. Proofs of Theorems 1.1 and 1.2. The proofs of Theorems 1.1 and 1.2 follow the same lines as the proofs of Theorems 1.1, 1.3 and 1.4 in [2], hence we only indicate the main steps. The new ingredients are Lemmas 2.1 and 2.2 below (they correspond to Proposition 6.1 in [2]).

Let us suppose that $n \geq 11$ and p are prime numbers, let $\alpha \geq 0$ be an integer smaller than n, and let M be a non-zero, cube-free integer, divisible by 3 . As in [2], we associate to the primitive solution (a, b, c) of (1.2) the elliptic curve

$$
E=E(a, b, c): y^{2}+3 M c x y+M^{2} p^{\alpha} b^{n} y=x^{3} .
$$

Let

$$
\rho_{n}^{E}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{n}\right)
$$

denote the corresponding mod n Galois representation on the n-torsion $E[n]$ of E. Write $M=3^{\gamma} \prod p_{i}^{\gamma_{i}}$. Via Lemma 3.4 of [2], this representation arises from a cuspidal newform f of weight 2 , trivial Nebentypus character, and level $N=3^{5} \prod p_{i}^{2}($ if $\alpha=0)$ or $N=3^{5} p \prod p_{i}^{2}($ if $\alpha>0)$.

If f has at least one non-rational Fourier coefficient, then (applying Theorem 2 in [8], and arguing as in [2] Section 7]) we obtain $n \leq \tilde{M}^{10 \tilde{M}^{2}}$ (if $\alpha=0$) or $n \leq(p \tilde{M})^{10 p \tilde{M}^{2}}$ (if $\alpha>0$).

If f has only rational Fourier coefficients, then it corresponds to an isogeny class of elliptic curves over \mathbb{Q} with conductor N. Now we argue as in [2], replacing Proposition 6.1 there by the following results.

Lemma 2.1. Let F be an elliptic curve defined over \mathbb{Q} with a rational 3torsion point and conductor $3^{5} \prod_{i=2}^{k} p_{i}^{2}$. Then F has complex multiplication by an order in $\mathbb{Q}(\sqrt{-3})$.

Lemma 2.2. If p and p_{2}, \ldots, p_{k} are primes such that $p \notin P\left(3, p_{2}, \ldots, p_{k}\right)$, and $p \neq 3^{\alpha_{1}} \prod_{i=2}^{k} p_{i}^{\alpha_{i}} s^{3} \pm 1\left(1 \leq \alpha_{i} \leq 2, i=1, \ldots, k\right)$ for any integer s, then there is no elliptic curve defined over \mathbb{Q} with a rational 3 -torsion point and conductor $3^{5} p \prod_{i=2}^{k} p_{i}^{2}$.

Proofs of Lemmas 2.1 and 2.2. Any elliptic curve defined over \mathbb{Q} with a rational 3 -torsion point is isomorphic to a curve given by the Weierstrass equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}
$$

where a_{1} and a_{3} are integers; we may assume $a_{3}>0$. We may (and will) further assume that if a prime q divides a_{1}, then q^{3} does not divide a_{3}, so the equation is minimal at q. One easily checks that

$$
c_{4}=a_{1}\left(a_{1}^{3}-24 a_{3}\right), \quad c_{6}=-a_{1}^{6}+36 a_{1}^{3} a_{3}-216 a_{3}^{2}, \quad \Delta_{F}=a_{3}^{3}\left(a_{1}^{3}-27 a_{3}\right) .
$$

The conductor N_{F} of the curve F equals $3^{5} p^{\epsilon} \prod_{i=2}^{k} p_{i}^{2}$, where $\epsilon \in\{0,1\}$. We rewrite

$$
a_{1}= \pm 3^{\alpha} p^{\alpha_{0}} \prod_{i=2}^{k} p_{i}^{\alpha_{i}} a, \quad a_{3}=3^{\beta} p^{\beta_{0}} \prod_{i=2}^{k} p_{i}^{\beta_{i}}, \quad \Delta_{F}= \pm 3^{\delta} p^{\delta_{0}} \prod_{i=2}^{k} p_{i}^{\delta_{i}} .
$$

Using [9, Tableau II], we obtain

$$
\left(v_{3}\left(c_{4}\right), v_{3}\left(c_{6}\right), v_{3}\left(\Delta_{F}\right)\right) \in\{(\geq 3,4,5),(\geq 4,5,7),(\geq 5,7,11),(\geq 6,8,13)\} .
$$

Comparing this with the definitions of c_{4}, c_{6} and Δ_{F} (given above), we deduce that the only possible values of (α, β, δ) are $(\geq 2,1,7)$ and $(\geq 2,2,11)$.

The elliptic curve F has bad additive reduction at 3 and at all primes p_{i}, $i=2, \ldots, k$, hence $3 \prod p_{i}$ divides both Δ_{E} and c_{4}. This implies that $3 \prod p_{i}$ divides a_{1} and a_{3} as well.

Suppose that $\epsilon=0$. Then the integer

$$
D=\frac{a_{1}^{3}}{27 a_{3}}-1= \pm 3^{3 \alpha-3-\beta} \prod_{i=2}^{k} p_{i}^{3 \alpha_{i}-\beta_{i}} a^{3}-1
$$

divides Δ_{F}. On the other hand it is coprime to Δ_{F}, so $D=-1$ and $a_{1}=0$. Therefore the curve F has j-invariant equal to 0 , and hence has complex multiplication by an order in $\mathbb{Q}(\sqrt{-3})$.

Suppose $\epsilon=1$. In this case F has bad multiplicative reduction at p. It is clear that p does not divide a_{1}, and either $p \mid a_{3}$ or $p \mid\left(a_{1}^{3}-27 a_{3}\right)$. In both cases we obtain

$$
p^{r} \pm 1=3^{3 \alpha-3-\beta} \prod_{i=2}^{k} p_{i}^{3 \alpha_{i}-\beta_{i}} a^{3}
$$

This completes the proofs of Lemmas 2.1 and 2.2 .
It is obvious that Lemma 2.2 implies Theorem 1.2. To prove Theorem 1.1 we apply Proposition 4.3 from [2].

Acknowledgements. The author would like to thank Prof. Andrzej Dąbrowski for inspiring suggestions and improvements to the preliminary version of this paper.

REFERENCES

[1] M. A. Bennett and J. Mulholland, On the diophantine equation $x^{n}+y^{n}=2^{\alpha} p z^{2}$, C. R. Math. Acad. Sci. Soc. R. Can. 28 (2006), 6-11.
[2] M. A. Bennett, V. Vatsal and S. Yazdani, Ternary diophantine equations of signature ($p, p, 3$), Compos. Math. 140 (2004), 1399-1416.
[3] A. Dąbrowski, On the integers represented by $x^{4}-y^{4}$, Bull. Austral. Math. Soc. 76 (2007), 133-136.
[4] -, On a class of generalized Fermat equations, ibid. 82 (2010), 505-510.
[5] H. Darmon and A. Granville, On the equations $z^{m}=F(x, y)$ and $A x^{p}+B y^{q}=C z^{r}$, Bull. London Math. Soc. 27 (1995), 513-543.
[6] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366; Erratum: 75 (1984), 381.
[7] A. Kraus, Majorations effectives pour l'équation de Fermat généralisée, Canad. J. Math. 49 (1997), 1139-1161.
[8] G. Martin, Dimensions of the spaces of cusp forms and newforms on $\Gamma_{0}(N)$ and $\Gamma_{1}(N)$, J. Number Theory 112 (2005), 298-331.
[9] I. Papadopoulos, Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle 2 et 3, J. Number Theory 44 (1993), 119-152.

Karolina Krawciów
Institute of Mathematics
University of Szczecin
70-451 Szczecin, Poland
E-mail: karolina.krawciow@wmf.univ.szczecin.pl

[^0]: 2010 Mathematics Subject Classification: Primary 11D41.
 Key words and phrases: Diophantine equation, elliptic curve.

