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ENDOMORPHISM RINGS OF
MAXIMAL RIGID OBJECTS IN CLUSTER TUBES

BY

DAGFINN F. VATNE (Trondheim)

Abstract. We describe the endomorphism rings of maximal rigid objects in the clus-
ter categories of tubes. Moreover, we show that they are gentle and have Gorenstein
dimension 1. We analyse their representation theory and prove that they are of finite
type. Finally, we study the relationship between the module category and the cluster tube
via the Hom-functor.

Introduction. Cluster categories were defined in [BMRRT] as tools for
categorification of Fomin–Zelevinsky cluster algebras [FZ]. They are defined
as the orbit categories of the derived category Db(H) of hereditary abelian
categories H by a certain autoequivalence.

In the situation where H is the category of finite-dimensional represen-
tations of a finite acyclic quiver, the cluster category has been subject to
intense investigation. In this case it has been shown that the cluster category
and the set of exceptional objects form a good model for the cluster algebra
associated with the same quiver.

In this paper we work with a cluster category Cn defined from a different
hereditary abelian category, namely the tube Tn. This category is called the
cluster tube and has recently been studied in [BKL1, BKL2] and [BMV].
Although this category is also a Hom-finite triangulated 2-Calabi–Yau cat-
egory, it does not enjoy all of the nice properties of cluster categories from
quivers. In particular, the maximal rigid (also called maximal exceptional)
objects do not satisfy the more restrictive definition of cluster-tilting objects.

Moreover, the Gabriel quivers of the endomorphism rings of maximal
rigid objects in the cluster tube have loops. Consequently, Cn with its max-
imal rigid objects does not carry a cluster structure in the sense of [BIRS].
The axioms for cluster structures can be modified, however, to apply also
to cluster tubes (see [BMV]).

The aim of the present paper is to study the endomorphism rings of
the maximal rigid objects. We will find a description in terms of quivers
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with relations. Like cluster-tilted algebras, the algebras we consider here
are Gorenstein of Gorenstein dimension 1, unless n = 2, in which case they
are self-injective. However, the proof (from [KR]) for cluster-tilted algebras
has no analogy in our setting. Instead, we use the fact that our algebras
are gentle, and apply the technique from [GR] to our quivers with relations
in order to prove the result. The properties of the algebras we study in
this paper are thus reminiscent of those of the algebras recently studied
in [ABCP].

Since the endomorphism rings are gentle, they are string algebras. We
use the theory of string- and band-modules to show that the endomorphism
rings are of finite type. One of the main results about cluster-tilted algebras,
which was proved in [BMR1], is the close connection between the module
category of the cluster-tilted algebra and the cluster category it arises from.
This connection is provided by the Hom-functor. In our situation, the Hom-
functor is not full, and therefore there is no analogous theorem. We will
nevertheless study the action of the Hom-functor on the objects, and in
particular show that it is dense. Indeed, when T is maximal rigid, we find
an explicit description of HomCn(T,X) for every indecomposable X in Cn.

The paper is organised as follows: Section 1 contains the definition of
the cluster tube and a description of maximal rigid objects recalled from
[BMV]. In Section 2 we give a description of the endomorphism rings, while
in Section 3 we study the gentleness and Gorenstein dimension and give
some facts about indecomposable representations. Finally, in Section 4 we
describe the action of the Hom-functor.

Throughout the paper we will work over some field k, which is assumed
to be algebraically closed. Modules over an algebra will always mean left
modules, and we will read paths in quivers from right to left.

1. Maximal rigid objects in cluster tubes. We start off by reviewing
some properties of cluster tubes. These categories have recently been studied
in [BKL1, BKL2] and [BMV], and more details can be found in these papers.

For any integer n ≥ 2, let Tn be a tube of rank n, that is, the category
of nilpotent representations of a cyclically oriented Ãn−1-quiver. It can also
be realised as the thick subcategory generated by a tube in the regular part
in the AR-quiver of a suitable tame hereditary algebra. All maps in this
category are linear combinations of finite compositions of irreducible maps,
and are subject to mesh relations in the AR-quiver.

The tube Tn is a hereditary abelian category, and following the construc-
tion introduced in [BMRRT], we form its cluster category, called the cluster
tube of rank n and denoted Cn. This is by definition the orbit category ob-
tained from the bounded derived category Dn = Db(Tn) by the action of
the self-equivalence τ−1 ◦ [1]. Here, [1] denotes the suspension functor of Dn,
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while τ is the Auslander–Reiten translation. Unless the actual value of n is
important, we will usually suppress the subscript n in notation, and write T ,
D and C.

For a finite-dimensional hereditary algebra H, a theorem due to Keller
[K] guarantees that the associated cluster category CH is triangulated with a
canonical triangulated structure inherited from the derived category. Keller’s
result is not directly applicable in our situation, since T has no tilting ob-
jects. Nevertheless, Cn also inherits a triangulated structure from Dn (see
[BKL1] for a rigorous treatment of this).

The indecomposable objects of the cluster tube C are in bijection with
the indecomposables in T itself, and we will sometimes use the same symbol
to denote both an object in the tube T and its image in the cluster tube C.
The irreducible maps in C are the images of the irreducible maps in D, which
again are the shifts of the irreducible maps in the tube T . So the AR-quiver
of C is isomorphic to the AR-quiver of T .

For a given rank n, we will use a coordinate system on the indecom-
posable objects. Choose once and for all a quasisimple object and give it
coordinates (1, 1). Now give the other quasisimples coordinates (q, 1) such
that τ(q, 1) = (q−1, 1), where q is reduced modulo the rank n. Then give the
remaining indecomposables coordinates (a, b) in such a way that there are
irreducible morphisms (a, b)→ (a, b+ 1) for b ≥ 1 and (a, b)→ (a+ 1, b− 1)
for b ≥ 2. Throughout, the first coordinates will be reduced modulo n. See
Figure 1.

(n,1) (1,1) (2,1)

(n,2) (1,2)

(n−1,3) (n,3) (1,3)

(a,1)

(a,2)

(a+1,1)

(a,b) (a+1,b)

(a+1,b−1)

(a,b+1)

Fig. 1. AR-quiver and coordinate system for Tn and Cn

The infinite sequence of irreducible maps

R(a,i) = (a, i)→ (a, i+ 1)→ · · · → (a, i+ j)→ · · ·
is called a ray. Similarly, the infinite sequence

C(a,i) = · · · → (a− b, i+ b)→ · · · → (a− 1, i+ 1)→ (a, i)

is called a coray. Note that the sum of the coordinates is constant, modulo n,
for indecomposables located on the same coray.
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For an indecomposable object X = (a, i) where i < n we will also need
the notion of the wing WX determined by X. This is by definition the set
of indecomposables whose position in the tube is in the triangle with X on
top. We will call X the summit of WX . In terms of coordinates, objects in
the wing W(a,i) are (a′, i′) such that a′ ≥ a and a′ + i′ ≤ a + i. The height
of WX is the quasilength qlX.

Hom-spaces in C are given by the following lemma, proved in [BMV].

Lemma 1.1. For X and Y indecomposable in C, we have

HomC(X,Y ) ' HomT (X,Y )qDHomT (Y, τ2X)

where D is the usual k-vector space duality Homk(−, k).

When X and Y are indecomposable, the maps in HomC(X,Y ) which are
images of maps in HomD(X̂, τ−1Ŷ [1]) for X̂, Ŷ in T will be called D-maps,
and those which are images of maps in T itself will be called T -maps.
Since T is hereditary, all maps in C are linear combinations of maps of
these two kinds. The Hom-hammock of an indecomposable object (that is,
the support of HomC(X,−)) is illustrated in Figure 2. Note that the two
components in the figure wrap around the tube and intersect. Moreover, if
b ≥ n+1, then each component intersects itself, possibly with several layers,
and therefore there exist Hom-spaces of arbitrary finite dimension between
indecomposables.

(a,b)(a−1,b)(a−2,b)

Fig. 2. The Hom-hammock of (a, b). There are T -maps to indecomposables in the right
component, and D-maps to indecomposables in the left component.

So for indecomposable X and Y , the existence of a D-map X → Y is
equivalent to the existence of a T -map Y → τ2X. The following lemma is
then easily verified:

Lemma 1.2. Let X be an indecomposable object of Cn. Then there exists
a D-endomorphism of X if and only if qlX ≥ n− 1.
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We will need the following lemma on the relationship between T -maps
and D-maps:

Lemma 1.3. For X, Y and Z indecomposable objects in Cn, we have the
following:

(i) Assume that qlX ≤ n and qlY ≤ n. If there are non-zero D-maps
ψXZ : X → Z and ψY Z : Y → Z, and an irreducible map iXY :
X → Y , then ψY Z ◦ iXY = ψXZ up to multiplication by a non-zero
scalar.

(ii) Assume that qlX ≤ n. If there are non-zero D-maps ψXY : X → Y
and ψXZ : X → Z, and an irreducible map iY Z : Y → Z, then
ψXZ = iY Z ◦ ψXY , up to multiplication by a non-zero scalar.

Remark 1.4. Note that by repeated application, the same applies to
compositions of irreducible maps, i.e. to all T -maps, under the assumption
that the required Hom-spaces are non-zero for each indecomposable that the
composition factors through.

Proof of Lemma 1.3. (i) We lift the maps to the derived category D, and
denote by X̂, Ŷ and Ẑ the preimages of the objects in T . Since X and Y

have quasilength ≤ n, the space HomD(X̂, τ−1Â[1]) of D-maps is at most
one-dimensional for any indecomposable Â ∈ T , and similarly for Y .

The aim is to show that the map

HomD(iXY , τ−1Ẑ[1]) : HomD(Ŷ , τ−1Ẑ[1])→ HomD(X̂, τ−1Ẑ[1])

is surjective. We can view this as a map

i∗XY : Ext1T (Ŷ , τ−1Ẑ)→ Ext1T (X̂, τ−1Ẑ)

or, by duality and the AR-formula,

HomT (τ−1Ẑ, τ iXY ) : HomT (τ−1Ẑ, τX̂)→ HomT (τ−1Ẑ, τ Ŷ ),

which we now wish to show is injective. But this is clear from the structure
of the tube when the Hom-spaces are non-zero.

(ii) We need to show that the map

HomD(X̂, τ−1iY Z [1]) : HomD(X̂, τ−1Ŷ [1])→ HomD(X̂, τ−1Ẑ[1])

is surjective. As above, by duality this is equivalent to the map

HomT (τ−1iY Z , τX̂) : HomT (τ−1Ẑ, τX̂)→ HomT (τ−1Ŷ , τX̂)

being injective. But by the combinatorics of the tube, this is clearly an
isomorphism, since by assumption both spaces are 1-dimensional.

Let 1 ≤ h ≤ n − 1, and choose some indecomposable X in Tn with
quasilength qlX = h. Let ~Ah be a linearly oriented quiver with underly-
ing graph the Dynkin diagram Ah. Then the category mod k ~Ah of finitely
generated modules over the path algebra k ~Ah is naturally equivalent to the
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subcategory addT WX of Tn. Embedding into Dn and projecting to Cn we
find that mod k ~Ah embeds into the subcategory addCWX of Cn. The image is
the subcategory addTC WX obtained by deleting the D-maps from addCWX .
From now on, we will drop the subscript when we speak of an additive hull
as a set of objects, since there is a bijection between the objects of T and
those of C.

The triangulated category C is a 2-Calabi–Yau category, which in partic-
ular means that for any two objectsX and Y , we have symmetric Ext-spaces:

Ext1C(X,Y ) ' DExt1C(Y,X).

Two indecomposable objectsX and Y will be called compatible if Ext1C(X,Y )
= Ext1C(Y,X) = 0. It is worth noticing that X and Y are compatible if and
only if Ext1T (X,Y ) = Ext1T (Y,X) = 0.

In an abelian or triangulated category K, an object T is called rigid if
it satisfies Ext1K(T, T ) = 0. If it is maximal with respect to this property,
that is, if Ext1K(T qX,T qX) = 0 implies that X ∈ addT , then it is called
maximal rigid. The maximal rigid objects in the cluster tube C do not satisfy
the stronger condition of cluster tilting (see [BMV]).

The following description of the maximal rigid objects was given in
[BMV]:

Proposition 1.5. There is a natural bijection between the set of maxi-
mal rigid objects in Cn and the set

{tilting modules of k ~An−1} × {1, . . . , n},

where ~An−1 is a linearly oriented quiver with the Dynkin diagram An−1 as
its underlying graph.

The proposition is a consequence of the following considerations, which
will be needed for the rest of the paper: All summands of a maximal rigid
object in Cn are concentrated in the wing WT1 determined by a top sum-
mand T1 with qlT1 = n− 1. Now the claim follows from the embedding of
mod k ~An−1 into addCWT1 , since it is easily seen that Ext1Cn(X,Y ) for two in-
decomposables X and Y inWT1 vanishes if and only if both Ext1

k ~An−1
(X̃, Ỹ )

and Ext1
k ~An−1

(Ỹ , X̃) vanish, where X̃ and Ỹ are the corresponding k ~An−1-
modules. Since there are n choices for the top summand, this provides the
bijection.

2. The endomorphism rings. With the description of the maximal
rigid objects of C presented in Section 1, we now proceed to determine their
endomorphism rings in terms of quivers and relations.

Let T be a maximal rigid object in the cluster tube Cn, and let MT

denote the tilting k ~An−1-module associated with T according to Proposi-
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tion 1.5. Since the module category of a hereditary algebra H sits natu-
rally embedded in the cluster category CH , we can think of the module
MT as a cluster-tilting object in CAn−1 . The endomorphism ring, or cluster-
tilted algebra, Γ̃T = EndCAn−1

(MT )op can easily be found from the tilted
algebra ΓT = Endk ~An−1

(MT )op, by the results in [BRe], or more generally
in [ABS].

Every minimal relation on the quiver of a tilted algebra of type A is a
zero relation of length two. The quiver of the cluster-tilted algebra is then
obtained by inserting an arrow αρ from the end vertex to the start vertex
of each defining relation path ρ. The relations for the cluster-tilted algebra
are, as prescribed by [BMR2], the compositions of any two arrows in any of
the 3-cycles formed by adding the new arrows.

We can now formulate the main theorem of this section.

Theorem 2.1. Let T be a maximal rigid object in Cn. Then the endo-
morphism ring ΛT = EndCn(T )op is isomorphic to the algebra kQ/I where

(a) Q is the quiver obtained from the quiver of Γ̃T by adjoining a loop ω
to the vertex corresponding to the projective-injective k ~An−1-module;

(b) I is the ideal generated by the relations in Γ̃T and in addition ω2.

Before we can present the proof of the theorem, we need some consider-
ations on the combinatorial structure of maximal rigid objects.

We define a non-degenerate subwing triple (X;Y,Z) to be a triple X,Y, Z
of indecomposables in C with 3 ≤ qlX ≤ n− 1 such that if X = (a, b), then
Y = (a, c) and Z = (a+ c+ 1, b− c− 1) for some 1 ≤ c ≤ b− 2. This means
that X is on the ray RY and on the coray CZ , so in particularWY and WZ

are contained in WX . Moreover, there is exactly one quasisimple (a + c, 1)
which is in WX but not in WY ∪WZ . See Figure 3. A degenerate subwing
triple (X;Y, Z) is a triple with 2 ≤ qlX ≤ n − 1 such that if X = (a, b),
then either Y = (a, b − 1) and Z = 0 or Y = 0 and Z = (a + 1, b − 1).
Note that any subwing triple (degenerate or non-degenerate) is determined
by the top indecomposable X and the unique quasisimple which is not in
any of the two subwings WY or WZ .

Lemma 2.2. Let (X;Y,Z) be a non-degenerate subwing triple. Let Y ′ ∈
WY and Z ′ ∈ WZ .

(i) There are no T -maps Z ′ → Y ′.
(ii) There are no T -maps Y ′ → Z ′.
(iii) There is a D-map Z ′ → Y ′ if and only if Z ′ is on the left edge

of WZ and Y ′ is on the right edge of WZ . In this case, this map
factors through the D-map Z → Y .
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(iv) There is a D-map Y ′ → Z ′ if and only if Z ′ is on the right edge
of WZ and Y ′ is on the left edge of WY , and qlX = n− 1. In this
case, this map factors through the D-endomorphism of X.

X

Y

Z

a+c−1a a+c a+c+1 a+b−1

Fig. 3. Non-degenerate subwing triple (X;Y,Z). If X = (a, b) and Y = (a, c) with 1 ≤
c ≤ b− 2, then Z = (a+ c+ 1, b− c− 1).

Proof. Claims (i) and (ii) are easily verified; one must keep in mind that
qlX ≤ n− 1 by the definition of subwing triples.

Since the existence of a D-map Z ′ → Y ′ is equivalent to the existence
of a T -map Y ′ → τ2Z ′, we see that the only way such a map can arise
is when Z ′ is on the left edge of WZ , and Y ′ is on the right edge of WY .
Now by Lemma 1.3 and Remark 1.4, this D-map factors through the ray

RZ′ . In particular, it factors as Z ′
φZ′Z−→ Z

ψZY ′−→ Y ′ where φZ′Z is the T -map
from Z ′ to Z, and ψZY ′ is the unique (up to multiplication with scalars)
D-map Z → Y ′. Applying Lemma 1.3 to ψZY ′ , we find that it factors as

Z
ψZY−→ Y

φY Y ′−→ Y ′, where ψZY is the D-map from Z to Y and φY Y ′ is the
T -map from Y to Y ′. So claim (iii) holds.

For claim (iv), observe that since qlX ≤ n−1, a necessary condition for
the existence of a T -map Z ′ → τ2Y ′ is that qlX = n−1. Moreover, Z ′ must
be on the right edge of WX and Y ′ must be on the left edge of WX . Now
the claim is proved using a similar argument to that for (iii) and the fact
from Lemma 1.2 that if qlX = n− 1 then X has a D-endomorphism.

Lemma 2.3. Let (X;Y, Z) be a subwing triple, and let W ∈ WX .

(i) Y and W are compatible if and only if W ∈ WY ∪WZ or W ∈ RY .
(ii) Z and W are compatible if and only if W ∈ WY ∪WZ or W ∈ CZ .

Proof. By the 2-Calabi–Yau property, we have symmetric Ext-groups,
so it is enough to check vanishing of Ext1C(W,Y ) and Ext1C(W,Z). For this,
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we use the AR-formula

Ext1C(W,Y ) ' DHomC(Y, τW )

and similarly for Z. Then consider the intersection of the Hom-hammock of
Y with τWX .

Lemma 2.4. Let W = WX be a wing in Cn of height h < n, and let X
be a set of pairwise compatible indecomposable objects in W.

(i) X has at most h elements.
(ii) If X has less than h elements, there exists a set X̃ of h pairwise

compatible indecomposable objects, containing X .
(iii) If X has h elements, then X is an element of X .

Proof. The argument is essentially the same as for Proposition 1.5, and
the result follows from the theory of tilting modules applied to k ~Ah-modules,
upon noting that the projective-injective indecomposable is a summand of
every tilting module.

Lemma 2.5. Let Tk be some indecomposable summand of a maximal
rigid object T =

∐n−1
i=1 Ti in Cn.

(i) There are qlTk indecomposable summands of T in WTk .
(ii) Assume qlTk > 1. Then there is a subwing triple (Tk;Tk′ , Tk′′) such

that Tk′ and Tk′′ are either summands of T or zero, and all sum-
mands of T/Tk which are in WTk are in WTk′ ∪ WTk′′ , with qlTk′
summands in WTk′ and qlTk′′ summands in WTk′′ .

Proof. Given a rank n, we let T =
∐n−1
i=1 Ti be a maximal rigid object

in Cn. We proceed by reverse induction on the quasilength of the summands
of T (that is, from summands of larger quasilength to summands of smaller
quasilength). This is OK, since there is a (unique) summand of maximal
quasilength.

In accordance with Proposition 1.5, consider the top summand T1 of T ,
which has quasilength n−1. Without loss of generality assume that this has
coordinates (1, n−1). Claim (i) holds for T1 by the proof of Proposition 1.5.

Assume first that there are no summands of T among the objects (1, i),
where i = 1, . . . , n−2. Then all n−2 summands of T/T1 are inW(2,n−2). So
by Lemma 2.4, the object (2, n− 2) must be a summand of T . Hence in this
situation claim (ii) also holds, with the triple (T1; 0, (2, n − 2)). A similar
argument shows that none of the objects (i, n− i), where 2 ≤ i ≤ n− 1, are
summands if and only if (1, n − 2) is a summand, and thus (ii) holds with
(T1; (1, n− 2), 0).

Suppose therefore that (1, n− 2) is not a summand, and that there is at
least one summand of T with coordinates (1, i), where 1 ≤ i ≤ n − 3. Let
T2 = (1, i0) be the one of these with highest quasilength (that is, maximal i).
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Consider the subwing triple (T1;T2, X) where X = (i0 + 2, n − i0 − 2). By
Lemma 2.3 and the maximality of i0, all n − 2 summands of T/T1 must
be in WT1 ∪ WX . Then it follows from Lemma 2.4 that there must be i0
summands in WT1 and n − i0 − 2 summands in WX and moreover that X
is indeed a summand of T . We conclude that both claims (i) and (ii) hold
for the top summand.

Assume now that Tk is some summand of T with qlTk > 1, but not the
top summand. Let Tj be a summand of T of smallest quasilength with qlTj >
qlTk such that Tk ∈ WTj . (Such a summand exists, since all summands are
in WT1 .) Then by induction, the claims hold for Tj , and by the minimality
in the choice of Tj , the subwing triple corresponding to Tj is (Tj ;Tj′ , Tj′′)
where either Tj′ or Tj′′ is Tk, and the other one is also a summand. In any
case, since by the induction hypothesis claim (ii) holds for Tj , there are qlTk
summands of T in WTk , and so (i) holds for Tk.

Now that we know that there are qlTk − 1 summands of T/Tk in WTk ,
we can prove that (ii) holds by the same arguments as for T1 above.

A subwing triple (Tk;Tk′ , Tk′′) such that Tk, Tk′ and Tk′′ are summands
of a maximal rigid object T will be called a T -subwing triple.

With Lemma 2.5 we have obtained a combinatorial description of the
maximal rigid objects as a system of subwing triples partially ordered by
inclusion. Note that for a maximal rigid T with top summand T1 there is
a natural map from the objects in WT1 to the summands of T given by
sending an object X to the summand Tx with smallest quasilength such
that X ∈ WTx . The restriction of this map to the set of quasisimples is a
bijection. See Figure 4a below for an example. Also, we have the following:

Lemma 2.6. Let Ti, Tj be summands of a maximal rigid T . Then either
Ti ∈ WTj , or Tj ∈ WTi, or WTi and WTj have empty intersection.

Proof. Suppose Ti 6∈ WTj and Tj 6∈ WTi . Let Tk be a summand of T
such that both Ti ∈ WTk and Tj ∈ WTk , and which has minimal quasilength
among summands with this property. There is some non-degenerate T -
subwing triple (Tk;Tk′ , Tk′′), and by Lemma 2.5, the summands Ti and Tj
must be inWTk′ ∪WTk′′ . Now by the minimality in the choice of Tk, we know
that Ti must be in WTk′ and Tj in WTk′′ or vice versa. It follows that WTi

and WTj have empty intersection, since WTk′ and WTk′′ have empty inter-
section.

Lemma 2.7. Let Ti and Tj be summands of a maximal rigid T . Then
the following are equivalent:

(a) There exists a non-zero T -map Ti → Tj.
(b) Either Tj is on the ray RTi or Ti is on the coray CTj .
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Proof. This follows from the observation that since Ti and Tj are Ext-
orthogonal, there is no map Ti → τTj .

Lemma 2.8. Let T be a maximal rigid object.

(i) If (Ti;Tj , Tk) is a non-degenerate T -subwing triple, there is a T -
map fji : Tj → Ti and a T -map fik : Ti → Tk, and these maps are
irreducible in addC T .

(ii) If (Ti;Tj , 0) is a degenerate T -subwing triple, there is a T -map fji :
Tj → Ti, and it is irreducible in addC T . A similar statement holds
for a degenerate T -subwing triple (Ti; 0, Tk).

(iii) There are no irreducible T -maps in addC T other than those de-
scribed in (i) and (ii).

(iv) If (Ti;Tj , Tk) is non-degenerate, the composition fik ◦ fji is zero.

Proof. Claims (i) and (ii) are obvious, so consider summands Tx, Ty and
assume that there is a T -map fxy : Tx → Ty. By Lemma 2.7, either the
summand Ty must be on the ray RTx or Tx must be on the coray CTy .
Assume the former case, so Tx is on the left edge of WTy . We know from
Lemma 2.5 that there is some T -subwing triple (Tz;Tx, Tx′), where Tx must
necessarily be on the left edge ofWTz . (If it was on the right, it would violate
Lemma 2.6.) Then clearly fxy factors through the T -map fxz : Tx → Tz.
A similar argument can be given in the case where Tx is on the coray CTy

by considering a T -subwing triple (Tx;Tx′ , Tx′′), so (iii) holds as well.
Claim (iv) also follows from Lemma 2.7.

Lemma 2.9. Let Ti, Tj be summands of a maximal rigid T . Then the
following are equivalent.

(a) There is a non-zero D-map Ti → Tj.
(b) One of the following is satisfied:

(b′) There is some non-degenerate T -subwing triple (Tx;Ty, Tz)
such that Ti is on the left edge of WTz and Tj is on the right
edge of WTy .

(b′′) Ti is on the left edge ofWT1 and Tj is on the right edge ofWT1,
where T1 is the top summand.

Proof. Assume first that Ti = T1, the top summand. Then there is a
D-map Ti → Tj if and only if Tj is on the right edge of WT1 , which is a
special case of (b′′). Similarly, if Tj = T1, then there is a D-map Ti → Tj if
and only if Ti is on the left edge of WT1 . So under the assumption that at
least one of Ti, Tj is the top summand, the claim holds.

Consider therefore the case where neither Ti nor Tj is the top summand.
It is easily seen that if Tj ∈ WTi or Ti ∈ WTj , there can be no D-map
Ti → Tj . So consider the summand Tx of minimal quasilength such that
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both Ti and Tj are in WTx . By Lemma 2.5 there is a T -subwing triple
(Tx;Ty, Tz), and by the minimality of Tx, either Ti ∈ WTy and Tj ∈ WTz or
the other way around. The claim now follows from Lemma 2.2.

We can now prove the main theorem.

Proof of Theorem 2.1. In the argument, we will implicitly use the fact
that for indecomposable objects X and Y with qlX, qlY ≤ n − 1, there is
up to multiplication by scalars at most one T -map and one D-map from X
to Y .

Our task is to determine the quiver Q and defining relations of ΛT =
EndC(T )op. First recall that the functor HomC(T,−) : C → modΛT in-
duces an equivalence between addC T and the category P(ΛT ) of projective
ΛT -modules. The vertices in Q are therefore in bijection with the inde-
composable summands of T , and the arrows correspond to maps which are
irreducible in addC T .

No T -map can factor through a D-map, so let us first consider the arrows
in Q coming from T -maps and their relations, that is, the endomorphism
ring of T as an object in the subcategory addTC WT1 , where T1 is the top
summand of T . By virtue of the equivalence of this category with the module
category mod k ~An−1, we know that this will be the quiver with relations for
the tilted algebra ΓT = EndAn−1(MT )op.

By Lemma 2.8(i), for each non-degenerate T -subwing triple (Ti;Tj , Tk)
there exist T -maps fji : Tj → Ti and fik : Ti → Tk which are irreducible in
addC T and hence correspond to arrows αij : i → j and αki : k → i in Q.
Similarly, by Lemma 2.8(ii), for each degenerate T -subwing triple (Ti;Tj , 0)
there is an arrow αij : i → j, and for a T -subwing triple (Ti; 0, Tk) there is
an arrow αki : k → i. Moreover, by Lemma 2.8(iii), these are the only arrows
in Q coming from T -maps. Assuming that the triple is non-degenerate, by
Lemma 2.8(iv), the composition fik ◦ fji is zero, and hence αijαki is a zero
relation for the quiver.

It follows from Lemma 2.7 that there are no other minimal relations
on the arrows coming from T -maps, since a path αik−1ik · · ·αi1i2αi0i1 such
that no αilil+1

αil−1il comes from a composition filil−1
◦ fil+1il from a non-

degenerate T -subwing triple (Til ;Til+1
, Til−1

) corresponds to a map following
a ray or a coray. So the above gives a description of the tilted algebra
ΓT = EndAn−1(MT )op. See Figure 4b for an example.

Now consider the D-maps, and postpone for a moment the situation
with maps to or from the top summand T1. By Lemma 2.2(iii), for each
non-degenerate T -subwing triple (Ti;Tj , Tk) there is a D-map gkj : Tk → Tj .
We claim that this map is irreducible in addC T . So assume that there exists
a summand Tx, not isomorphic to Tk or Tj , and a D-map gxj : Tx → Tj
such that fkj = gxj ◦hkx where hkx : Tk → Tx. Since the composition of two
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b) the tilted algebra

c) the cluster−tilted algebra

a) the indecomposable summands and the corresponding subwings

d) the endomorphism algebra of T

Fig. 4. An n = 7 example of a maximal rigid object T and the associated algebras ΓT ,eΓT and ΛT

D-maps is zero, hkx must be a T -map. So by Lemma 2.7, either Tx is on
RTk , or Tk is on CTx . The former case contradicts Lemma 2.6, since Tk is on
the right side ofWTi and on the left side ofWTx . The latter case contradicts
Lemma 2.2, since Tx is on the right edge of WTk . A similar argument shows
that we cannot have a factorisation gkj = hyj ◦ gky where hyj is a T -map
and gky is a D-map.

Thus gkj is irreducible and corresponds to an arrow βjk : j → k in Q.
For the non-degenerate T -subwing triple (Ti;Tj , Tk), the composition

gkj ◦ fik : Ti → Tj is a D-map. We claim that it must be zero. Assume
therefore that there is a T -map from Tj to τ2Ti. Then, since Ti sits on RTj

and there is no T -map Tj → τTi by the Ext-orthogonality of Ti and Tj ,
there must be T -maps from Tj to all indecomposables of quasilength qlTi,
except τTi. But this would require qlTj = n−1, and this is impossible, since
qlTj < qlT1 = n− 1. We conclude that there is no D-map Ti → Tj , and the
composition is zero.

Similarly, the composition fji ◦ gkj : Tk → Ti is also zero, since there is
no T -map from Ti to τ2Tk. It follows that the paths αkiβjk and βjkαij are
zero relations on the quiver Q.

By Lemma 1.2, there is a D-map hT1 which is an endomorphism of the
top summand T1. This map must be irreducible in addC T , for the only
objects in WT1 to which there are maps from T1 are the ones on the right
edge of WT1 , but there are no maps from any of these to T1. Thus there is
a loop ω at the vertex corresponding to the top summand.
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The composition hT1 ◦ hT1 is zero, since any composition of two D-maps
is the image of a map T → T [2] in D, which must necessarily be zero since
T is hereditary. So ω2 is a zero relation on the quiver of ΛT .

By Lemmas 2.2 and 2.9, there are no other irreducible D-maps between
summands of T , and also no other minimal relations involving arrows from
D-maps: Let βjk be an arrow corresponding to a D-map Tk → Tj where
(Ti;Tj , Tk) is a non-degenerate subwing triangle. Then if γ1 · · · γlβjkγ∗1 · · · γ∗l′
is a path in Q such that γ1 · · · γl and γ∗1 · · · γ∗l′ do not traverse any relations,
then necessarily γ1, . . . , γl are arrows coming from maps on the left edge of
WTk and γ∗1 , . . . , γ

∗
l′ are arrows coming from the right edge of WTj . Then

this path corresponds to a non-zero map by Lemma 2.9.
We now see that the arrows βxy are in bijection with the zero relations

for the quiver of ΓT , and complete the relation paths to oriented cycles,
so by [ABS] or [BRe] the arrows αzw and βxy form the quiver of Γ̃T =
EndCAn−1

(MT )op. Furthermore, the relations imposed on this quiver coincide

with the relations defining Γ̃T .
So the quiver of ΛT is obtained from the quiver of Γ̃T by adjoining

the loop ω at the vertex corresponding to the top summand, which again
corresponds to the projective-injective ΓT -module. Also, the relations for
ΛT are the relations for Γ̃T and in addition ω2 = 0.

See Figure 4 for an example of a maximal rigid object T and the tilted
algebra ΓT , the cluster-tilted algebra Γ̃T and the endomorphism ring ΛT .

An explicit description of the quivers for cluster-tilted algebras of type
A was given in [S], and also in [BV]. It can be deduced from the type A
cluster category model from [CCS]. They are exactly the quivers satisfying
the following:
• all non-trivial minimal cycles are oriented and of length 3,
• any vertex has valency at most four,
• if a vertex has valency four, then two of its adjacent arrows belong to

one 3-cycle, and the other two belong to another 3-cycle,
• if a vertex has valency three, then two of its adjacent arrows belong

to a 3-cycle, and the third does not belong to any 3-cycle.

In the first condition, a cycle means a cycle in the underlying graph. A con-
necting vertex for such a quiver, as defined in [V], is a vertex which either
has valency one, or has valency two and is traversed by a 3-cycle.

Note that for the endomorphism ring ΛT of a maximal rigid T , the loop
vertex is connecting for the quiver of Γ̃T . There is a sort of converse to
Theorem 2.1, so we have a full description of the algebras which can arise:

Proposition 2.10. Let Γ̃ be a cluster-tilted algebra of type An−1, and
let c be a connecting vertex for Q eΓ . Then there exists a maximal rigid object
T of Cn such that QΛT is obtained from Q eΓ by adjoining a loop at c.
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Proof. We use induction on n. The claim is easily verified for small val-
ues.

Given a cluster-tilted algebra Γ̃ of type An−1, let Q be its quiver and
let c be some connecting vertex of Q. Then c has valency 1 or 2 in Q.
Consider first the case where c has valency 2. Then c is traversed by a 3-cycle
c → c1 → c2 → c in Q. The quiver Q \ {c, c1 → c2} has two disconnected
components Q1 and Q2, where ci is connecting for Qi. Also, Qi is the quiver
of some cluster-tilted algebra Γ̃i of type Aki , where k1 + k2 = n− 2.

By induction we can assume that for each i = 1, 2 there exists a maximal
rigid object Ti in Cki+1 such that the endomorphism ring of Ti is obtained
from the quiver of Γ̃i by adjoining a loop at ci. Let Mi be the corresponding
tilting k ~Aki-module. We have a natural embedding of the module category
mod k ~Ak1 into the wing W(1,k1), and of mod k ~Ak2 into W(k1+2,k2). It is now
easily seen that the images of the indecomposable summands of M1 and
M2 under these embeddings are all compatible, and that the direct sum of
these can be completed to a maximal rigid object T by adding the object
(1, n− 1). Then the quiver of T is obtained from Q by adding a loop at c.

The case where c has valency one in Q is easier; one considers Q \ {c}
which is cluster-tilted of type An−2, and uses induction as above.

Remark 2.11. There are in fact exactly n maximal rigid objects in Cn
with the prescribed endomorphism algebra, and these form a τ -orbit.

3. Gentleness, Gorenstein dimension and indecomposable mod-
ules. In this section we show that the endomorphism rings under discussion
are gentle. We use this to determine their Gorenstein dimension.

A finite-dimensional algebra kQ/I where Q is a finite quiver is called
special biserial [SkW] if

(i) for all vertices v in Q, there are at most two arrows starting at v
and at most two arrows ending at v,

(ii) for every arrow β in Q, there is at most one arrow α1 in Q with
βα1 6∈ I and at most one arrow γ1 with γ1β 6∈ I.

A special biserial algebra kQ/I is gentle [ASk] if moreover

(iii) I is generated by paths of length 2,
(iv) for every arrow β in Q there is at most one arrow α2 such that βα2

is a path and βα2 ∈ I, and at most one arrow γ2 such that γ2β is
a path and γ2β ∈ I.

Theorem 3.1. If T is a maximal rigid object in the cluster tube C, then
the endomorphism ring EndC(T )op is gentle.

Proof. It follows from the description of cluster-tilted algebras of type A,
and Theorem 2.1, that condition (i) is satisfied whenever v is not the loop
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vertex. If v is the loop vertex, the quiver generally looks locally like this:

v

where the relations are indicated by dashed lines and it may also happen
that one of the other two vertices pictured and consequently the adjacent
arrows are not there. We see that also for this vertex, (i) is satisfied.

As proved in [BV], any cluster-tilted algebra of type A is gentle, and
therefore if β is not an arrow incident with the loop vertex, (ii) and (iv) are
satisfied. If β is incident with the loop vertex, (ii) and (iv) follow from the
local description pictured above, with the observation that by the description
of the cluster-tilted algebras there are no minimal relations involving both
an arrow in the picture and an arrow outside the picture.

Moreover, by Theorem 2.1, the ideal I is generated by paths of length
two, so (iii) is satisfied, and the algebra is gentle.

It is known from [GR] that all gentle algebras are Gorenstein, that is,
a gentle algebra G has finite injective dimension both as a left and a right
G-module. This dimension is then called the Gorenstein dimension of G.

In order to prove the next result, we need to recall the main result of
[GR] in more detail. Let G = kQ/I be a gentle algebra. An arrow α in Q is
said to be gentle if there is no arrow α0 such that αα0 is a non-zero element
of I. A critical path in Q is a path αt · · ·α2α1 such that αi+1αi ∈ I for all
i = 1, . . . , n− 1.

Theorem 3.2 (Geiß, Reiten [GR]). Let G = kQ/I be a gentle algebra,
and let n(G) be the supremum of the lengths of critical paths starting with
a gentle arrow. (n(G) is taken to be zero if there are no gentle arrows.)

(a) n(G) is bounded by the number of arrows in Q.
(b) If n(G) > 0, then G is Gorenstein of Gorenstein dimension n(G).
(c) If n(G) = 0, then G is Gorenstein of Gorenstein dimension at most

one.

We can use this to find the Gorenstein dimension of our algebras:

Proposition 3.3. Let T be a maximal rigid object in C. If n = 2, the
Gorenstein dimension of ΛT = EndC(T )op is zero, and if n ≥ 3, the Goren-
stein dimension is one.

Proof. By Theorem 3.1, the algebra ΛT is gentle, and we can apply
Theorem 3.2.
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If n = 2, then T has only one summand, and the endomorphism algebra
ΛT is isomorphic to the self-injective algebra k[x]/(x2), so in this case the
Gorenstein dimension is zero.

Assume therefore that n ≥ 3. The gentle arrows are exactly the arrows
which are not traversed by any minimal oriented cycle. (In particular, the
loop is not gentle.) But if α is any such arrow, then βα is a path for at most
one arrow β, and βα can never be a zero relation, since it is not a part of a
3-cycle. So if gentle arrows exist, the maximal length n(ΛT ) of critical paths
starting with gentle arrows is 1, and therefore the Gorenstein dimension of
ΛT is also 1. If gentle arrows do not exist, we have n(ΛT ) = 0, and the
Gorenstein dimension is at most 1.

It remains to show that ΛT cannot be self-injective for n ≥ 3. For this,
consider the indecomposable projective associated with the loop vertex. It
is easily seen that it is not injective.

Since ΛT = EndC(T )op is gentle, it is in particular a string algebra. We
will use this to show that ΛT has finite representation type. For this, we will
recall some basic facts about representations of string algebras. More details
can be found e.g. in [BRi].

Let kQ/I be a string algebra. We consider words from the alphabet
formed by the arrows in Q and their formal inverses. Inverse words are
defined in the obvious way. For an inverted arrow α−1 we set the end vertex
e(α−1) equal to the start vertex s(α) of the original arrow and vice versa.
A word w = αt · · ·α2α1, where no two consecutive αi are inverses of each
other, is called a string if e(αi) = s(αi+1) for i = 1, . . . , t− 1 and moreover
no subword of w or its inverse is a zero relation. In addition, there is a trivial
string of length zero for each vertex of Q. We say that the start and end
vertices of the αi which appear in the strings are the vertices traversed by
the string. For technical purposes, we also consider a unique zero (or empty)
string of length −1.

To any string σ = αt · · ·α2α1 of length t in Q there is associated an
indecomposable (t+ 1)-dimensional representation M(σ) of kQ/I given by
one-dimensional vector spaces in each vertex traversed by the string (with
multiplicity) and one-dimensional identity maps for each of the arrows (and
inverted arrows) appearing in σ. We have M(σ1) ' M(σ2) if and only
if σ1 = σ2 or σ1 = σ−1

2 . The kQ/I-modules given by such representa-
tions are called string modules. If there exist closed strings αt · · ·α2α1 (i.e.
strings starting and ending with the same vertex) such that powers of the
string are strings as well, there will also be infinite families of indecompos-
ables called band modules. The string modules and band modules constitute
a complete set of representatives of isoclasses of indecomposable modules
over kQ/I.
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Now we include some remarks on the strings in the quiver of ΛT , which
will be useful in the proof of Theorem 3.8 and in Section 4. In what follows,
an arrow α that arises from an irreducible T -map in addC T will be called a
T -arrow , and similarly an arrow that arises from a D-map will be called a
D-arrow .

Since the vertices of the quiver are in a natural bijection with the inde-
composable summands of T , we will transfer some terminology about the
summands to the vertices. So the quasilength of a vertex is the quasilength
of the corresponding summand, and vertices (also arrows, strings) are said
to be in a wing if the corresponding summands are in the wing.

Lemma 3.4. Let (Ti;Tj , Tk) be a non-degenerate T -subwing triple, and
αij , αki and βjk the corresponding arrows. Then

(i) If σ2αkiσ1 is a string, then σ1 is not of the form σ1 = βjkσ
∗
1.

(ii) If σ2αijσ1 is a string, then σ2 is not of the form σ2 = σ∗2βjk.

Analogous statements hold for the inverses of the arrows.

Proof. The assertions follow from the fact that αkiβjk and βjkαij are
both zero relations.

Lemma 3.5.

(i) If β : i → j is a D-arrow, and σ2βσ1 is a string, then σ2 is in the
wing of j and σ1 is in the wing of i, and similarly for inverses of
D-arrows.

(ii) A string in the quiver of ΛT contains at most one D-arrow or inverse
of such.

Proof. (i) Let σ2βσ1 be a string, where β : i → j is a D-arrow corre-
sponding to a D-map ψji : Tj → Ti.

Suppose first that Ti 6= Tj . Then there is a subwing triple (Tk;Ti, Tj).
Now if the string σ2 which starts with j is the trivial string for vertex j, then
there is nothing to show, since j is definitely in the wing of itself. Assume
therefore that σ2 has length at least one. Then σ2 = ak · · · a1a0, where a0

is either an arrow starting at j or the inverse of an arrow ending at j. By
Lemma 3.4 we know that a0 cannot be the arrow αjk : j → k which connects
j to the vertex k associated with Tk. Now the remaining possibilities for a0

are contained in the wing of j. By Lemma 3.4 again, it follows that none of
the ai can be a D-arrow (or an inverse D-arrow). So σ2 traverses vertices of
successively smaller quasilength and cannot return to j. Consequently, σ2 is
in the wing of j.

If Ti = Tj , then Ti is the top summand and β is the loop, in which
case the claim follows from the fact that β2 is a zero relation, and a similar
argument to the above.
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The statement for σ1 and i is proved analogously, as also are the state-
ments for inverses of D-arrows.

(ii) This follows from (i). If i
β1→ j and k

β2→ l are two D-arrows, then
clearly β2 cannot be in the wing of i or j when at the same time β1 is in the
wing of k or l. So they cannot both appear in the same string. The same
holds if (at least) one of β1 and β2 is the inverse of a D-arrow.

Remark 3.6. It follows from this lemma that if σ is a closed string, then
either σ is a trivial string, or σ contains the loop as the only D-arrow.

Lemma 3.7. In the following, we consider strings only up to orientation.

(i) The strings of length k − 1 in the quiver of ΛT which do not con-
tain a D-arrow or inverse of such are in bijection with sequences
Ti1 , . . . , Tik such that there are subwing triples (Tij ;Tij+1 , T

∗
ij+1

) or
(Tij ;T

∗
ij+1

, Tij+1) for j = 1, . . . , k − 1.
(ii) The strings in the quiver of ΛT that do not contain a D-arrow or

inverse of such are in bijection with pairs Ti, Tj of summands of T
such that Ti ∈ WTj .

Proof. (i) Let σ be a string without a D-arrow or an inverse D-arrow. If
σ is trivial, the claim is obviously true, so assume σ has length ≥ 1. Choose
Ti1 to be an indecomposable summand of T which corresponds to a vertex
i1 traversed by σ such that none of the other vertices traversed by σ has
higher quasilength. Assume qlTi1 > 1. Then there is some T -subwing triple
(Ti1 ;T ′i1 , T

′′
i1

). Let α′′ : i′′1 → i1 and α′ : i1 → i′1 be the corresponding arrows.
Now since there are no D-arrows in σ, and i1 has maximal quasilength

among the vertices traversed by σ, the string σ must be of the form σ = σ2σ1

where σ1, if it is non-trivial, is of the form σ1 = α′′σ∗1 or σ1 = (α′)−1σ∗1, and
similarly σ2 = σ∗2α

′ or σ2 = σ∗2(α′′)−1 if it is non-trivial. So for σ2σ1 to be a
string, one of these has to be the trivial string associated with i1, since the
composition α′α′′ is zero.

So i1 is the start or end vertex of σ, and the first arrow (or inverse arrow)
connects i1 to one of the vertices from the T -subwing triple with i1 on top.
By repeating the process with the string σ∗1 or σ∗2, we get the desired chain
of subwing triples.

(ii) Follows directly from (i).

See Figure 5 for an example of strings in the quiver of ΛT .

Theorem 3.8. For a maximal rigid object T in Cn, the endomorphism
ring ΛT is of finite type, and the number of indecomposable representations is

1
2

(3n2 − 5n+ 2).
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T

T
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b

d

c

e

fg
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Fig. 5. The string d−1cba−1, where b is the only D-arrow, starts at the vertex correspond-
ing to Tx and ends at the vertex corresponding to Ty. Note how a path like ec (or its
inverse) cannot be in a string, since it is a zero relation. Also, the path gf is not a string,
while both gωf and gω−1f are.

Proof. Let Q be the quiver of ΛT and I the relation ideal. Moreover, let
l denote the loop vertex, and ω the loop itself. For a string σ we will denote
the associated indecomposable representation by M(σ).

First consider strings which do not involve the loop. These are in bi-
jection with ordered pairs of vertices: For each pair i, j from Q0, let Ti, Tj
be the associated summands of T . If Ti ∈ WTj or vice versa, there is, as
in Lemma 3.7, a string without a D-arrow connecting i and j. So suppose
this is not the case. Consider the (unique) summand Tk which is of mini-
mal quasilength such that Ti and Tj are both in WTk . Then there is some
T -subwing triple (Tk;T ′i , T

′
j) where Ti ∈ WT ′i

and Tj ∈ WT ′j
or the other way

around. Now use Lemma 3.7 again to find strings connecting i to the vertex
i′ associated with T ′i and j to the vertex j′ associated with T ′j . Now there is
a D-arrow β′ij : i′ → j′. Connecting the two strings by β′ij yields the desired
string, and we can choose the orientation.

In particular, by Remark 3.6, any non-loop string starting and ending at
the same vertex is a trivial string.

Denote by σ(i, j) the unique non-loop string starting at i and ending at j,
so σ(i, j)−1 = σ(j, i). For the corresponding indecomposable representations
we have isomorphisms M(σ(i, j)) ' M(σ(j, i)). The simple representations
are the M(σ(i, i)). The total number of representations corresponding to
non-loop strings is therefore

(n− 1) +
(
n− 1

2

)
=

1
2

(n2 − n),
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where the first term is the number of simple representations and the second
is the number of strings of length ≥ 1 up to orientation.

Now for the strings passing through the loop. For each pair i, j of vertices,
there are two strings from i to j passing through the loop ω:

σω(i, j) = σ(l, j)ωσ(i, l), σ−ω (i, j) = σ(l, j)ω−1σ(i, l),

and these are all possible loop strings. We see that (σω(i, j))−1 = σ−ω (j, i),
so M(σω(i, j)) ' M(σ−ω (j, i)) for any choice of i, j, in particular for i = j.
We deduce that the indecomposable representations associated with loop
strings are in bijection with ordered pairs of vertices, and the number of
such representations is (n− 1)2.

These are all the strings. Since (by Remark 3.6 and Lemma 3.7) the
only closed strings are either trivial, ω or of the form ασα−1 for some arrow
(or inverse arrow) α and some string σ, it follows that there are no band
modules. So the string modules we have presented form a complete set of
isomorphism classes of ΛT -modules.

Summarising, we find that the total number of representations is
1
2

(n2 − n) + (n− 1)2 =
1
2

(3n2 − 5n+ 2).

4. On the behaviour of the Hom-functor. For a cluster-tilted alge-
bra CT = EndCH (T )op arising from the cluster category CH of some hered-
itary algebra H, there is a close connection between the module category
of CT and the cluster category itself. The main theorem from [BMR1] says
that the functor G = HomCH (T,−) : CH → modCT induces an equivalence

Ḡ : CH/add τT ∼→ modCT .

In particular, the cluster-tilted algebra is of finite representation type if and
only if CH has finitely many objects (which again happens if and only if H is
of finite type). By Theorem 3.8, a similar result cannot hold for the cluster
tubes. The analogous argument fails because the Hom-functor is not full. In
this section, we will study some properties of this functor.

We introduce some notation. For any indecomposable object X in C,
let H(X) = HT (X) ∪ HD(X) be the Hom-hammock of X, where HT (X)
is the set of indecomposables to which X has T -maps, and similarly for
HD(X). Also, consider the reverse Hom-hammock R(X) ⊂ ind C, that is,
the support of HomC(−, X) among the indecomposables. Like the ordinary
Hom-hammock, this has a natural structure as the union of two components,
one denoted by RT (X) containing the indecomposables that have non-zero
T -maps to X, and another one denoted by RD(X) containing those that
have D-maps to X. Note that by the description of the Hom-hammocks,
RT (X) = HD(τ−2X) and RD(X) = HT (τ−2X). So the shape of R(X) is
similar to the shape of H(X) (Figure 2).
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For the remainder of this section, T =
∐n−1
i=1 Ti will be a maximal rigid

object in Cn, and we assume that the top summand of T is T1 = (1, n− 1).
Clearly, by redefining the coordinates we can use the results for all maximal
rigid objects of C. As in the preceding sections, we will denote by ΛT the
endomorphism ring ΛT = EndC(T )op.

We define F to be a certain set of indecomposable objects in C:

F = {X = (a, b) | a+ b ≤ 2n− 1}.

See Figure 6. The region F in the tube consists of the rigid part and in
addition a triangle of height n − 1 in the non-rigid part. (We have defined
wings only for rigid indecomposables, but we can think of F as the wing of
the object (1, 2n− 2).)

Fig. 6. The set F in C4, below the dashed curve. T is concentrated in the indicated wing.

The following claims are easily verified:

Lemma 4.1. If X is an indecomposable in WT1, then HT (X)∩F forms
one rectangle-shaped subgraph of the tube, and similarly for HD(X) ∩ F .

Lemma 4.2. Let ∗ be either T or D. Then for an indecomposable X, the
set R∗(X) contains a unique quasisimple q∗X , and a necessary condition for
an object Y to be in R∗(X) is that q∗X ∈ WY .

Lemma 4.3. Let X ∈ F . Then T1 6∈ R(X) if and only if X ∈ WτT1.

We now want to assign to each indecomposable in F \add τT a uniquely
defined string in the quiver of ΛT . In the main result of this section we will
show that the images under the Hom-functor are given by these strings. The
first step is to encode information about T -maps and D-maps in separate
strings, which will be joined to one string at a later stage.

Lemma 4.4. Let ∗ be either T or D. For X ∈ F we have the following:

(i) R(X) ∩ addT is empty if and only if X ∈ add τT .
(ii) For any T -subwing triple (Ti;Tj , Tk), at most one of Tj and Tk can

be in R∗(X).
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(iii) If R∗(X)∩addT is non-empty, there is a unique string in the quiver
of ΛT traversing each of the vertices corresponding to the indecom-
posables in R∗(X) ∩ addT exactly once (and no other vertex) and
ending at the vertex corresponding to the summand in R∗(X)∩addT
of highest quasilength.

(iv) A string of the type in part (iii) contains no D-arrow (or inverse of
such).

Proof. (i) We need to show that HomC(T,X) = 0 if and only if X ∈
add τT . If X ∈ add τT , then there are no non-zero maps from T to X since
T is rigid.

For the converse, assume that the intersection is empty. Using Lem-
ma 4.3, we get qlX ≤ n− 1. Moreover, we have

Ext1C(T, τ
−1X) = HomC(T,X) = 0.

Since qlX ≤ n − 1, the object X, and consequently τ−1X, is rigid. So
τ−1X = Ti for some i since T is maximal rigid, and we can conclude that
X ∈ add τT .

(ii) We know that WTj and WTk are disjoint. The claim then follows
from Lemma 4.2.

(iii) Assume R∗(X)∩addT is non-empty, and let Tl and Th be elements in
this set with minimal and maximal quasilength, respectively. By Lemma 4.2,
the unique quasisimple q∗X which is in R∗(X) is now in both WTl and WTh .
So in particular WTl and WTh have non-empty intersection, and therefore
by Lemma 2.6 we know that Tl ∈ WTh . Also by Lemma 2.6 we see that Th
and Tl are uniquely determined. There is some T -subwing triple (Tl;T ′l , T

′′
l ),

and it can easily be seen that if q∗X were in WT ′l
, say, then T ′l would also be

in R∗(X), which would violate the minimality condition on Tl. Thus Tl is
the summand of smallest quasilength such that q∗X is in the corresponding
wing. See Figure 7.

Also, for summands Ts we see that Ts ∈ R∗(X) if and only if WTl ⊆
WTs ⊆ WTh , again by Lemma 2.6 and the maximality of Th. Now the desired
string is of the type described in Lemma 3.7, oriented in the suitable way.

(iv) By (ii), a D-arrow associated with a non-degenerate T -subwing triple
(Ti;Tj , Tk) could not be traversed by a string of the type described in (iii).
Moreover, the loop is disallowed as well, since then the loop vertex would
be traversed twice, contrary to the condition in (iii).

For an indecomposable X ∈ F such that R∗(X) ∩ addT is non-empty,
where ∗ is either T or D, we denote the string in Lemma 4.4(iii) by σ∗X . If
the intersection is empty, we define σ∗X to be the zero string. The next two
lemmas tell us that different objects in F \ add τT can be distinguished by
their associated strings.
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Fig. 7. If Tl and Th are the summands of T in R∗(X) of lowest and highest quasilength,
respectively, then the entire rectangle indicated must be in R∗(X).

Lemma 4.5. Let X,Y ∈ F \ add τT . If σTX = σTY and σDX = σDY , then
X = Y .

Proof. We note first that for any indecomposable Z, the unique qua-
sisimple qTZ in RT (Z) determines the first coordinate of Z. Similarly, the
unique quasisimple qDZ in RD(Z) determines the sum of the coordinates of
Z modulo the rank n. So if the first coordinate of Z is known, the quasisimple
qDZ determines the second coordinate modulo n.

Let now X and Y be in F \ add τT such that σTX = σTY and σDX = σDY .
We aim to show that X and Y must be equal.

By Lemma 4.4(i), at least one of σTX = σTY and σDX = σDY is non-zero.
Assume first that both are non-zero. We claim that qTX = qTY and qDX = qDY .
As in the proof of Lemma 4.4(iii), we observe that if Tl is the T -summand
of smallest quasilength in RT (X), then qTX is the unique quasisimple which
is in WTl but not in the wing of any T -summand of smaller quasilength.
Since Tl is also the summand of smallest quasilength in RT (Y ), we must
have qTX = qTY . Similarly, we deduce that qDX = qDY .

Thus X and Y have the same first coordinate, and the same second
coordinate modulo n. But since X and Y are in F , this means that unless X
and Y are equal, one of them is inW(1,n−2) and the other is in the non-rigid
part. If they are not equal, there is then a contradiction to Lemma 4.3: If X
is inW(1,n−2) and Y is in the non-rigid part, then by Lemma 4.3, T1 ∈ R(Y )
but T1 6∈ R(X), which is impossible since we have assumed σTX = σTY and
σDX = σDY . We conclude that if both σTX = σTY 6= 0 and σDX = σDY 6= 0, then
X = Y .

Assume then that σTX = σTY 6= 0 and σDX = σDY = 0, and furthermore that
X 6= Y . Then X and Y have the same first coordinate. Moreover, at least
one of X and Y must be in W(1,n−2), since the only other possible positions
for an object Z ∈ F such that σTZ 6= 0 and σDZ = 0 are on the coray C(n−1,n).
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Suppose (without loss of generality) that X has smaller quasilength
than Y . So in particular, X is in W(1,n−2). Let Th be the object in RT (X)∩
addT with highest quasilength. Since X ∈ W(1,n−2), we have Th 6= T1.
Therefore, there is some T -subwing triple (Ta;Th, T ′h), where Th is neces-
sarily on the left side since RT (X) contains whole corays, and so by the
maximality of Th, there can be no more summands of T on CTh .

Assume first that this triple is non-degenerate. Since RD(X) does not
contain any summands of T , there is in particular no D-map T ′h → X. So
X is in HT (Th) but not in HD(T ′h). Moreover, we see that X 6∈ HT (Ta),
by the maximality of Th. So X must be on the coray CτT ′h

. If the triple is
degenerate, then X must be on the right edge ofWTh , since Ta 6∈ RT (X). In
any of these two cases, we get a contradiction: Since Y and X have the same
first coordinate, and Y has higher quasilength, Ta must be in RT (Y ). This
contradicts the equality of σTX and σTY , and so our assumption that X 6= Y
must be wrong. See Figure 8.

T

X h

Th

a

Y

T’

Fig. 8. If σTX = σTY 6= 0 and σDX = σDY = 0, then X and Y have the same first coordinate.
If X is inside some non-degenerate T -subwing triple, then X must be on the coray CτT ′

h
,

since otherwise T ′h ∈ RD(X).

The situation where σTX = σTY = 0 and σDX = σDY 6= 0 can be proved in a
similar manner.

The following lemma is used to show that if two different objects have
exactly one associated σT - or σD-string, then the strings are different.

Lemma 4.6. If σTX = σDY 6= 0, then σTY is non-zero.

Proof. Suppose that σTX = σDY 6= 0, and let Ti be the summand in
RT (X) ∩ addT = RD(Y ) ∩ addT which has highest quasilength. We claim
that Ti = T1. To see this, assume that qlTi < n − 1. Then there is some
(degenerate or non-degenerate) T -subwing triple (Tk;Ti, T ∗i ) or (Tk;T ∗i , Ti).
Since RT (X) contains whole corays, and RD(Y ) contains whole rays, the
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summand Tk must be in one of these two reverse Hom-hammocks. But this
contradicts our choice of Ti. So Ti = T1.

Now observe that if Y is in F , and there is a D-map T1 → Y , then there
is also a T -map T1 → Y , so in particular σTY 6= 0.

We now show that if both strings associated with an indecomposable in
F are non-zero, then there is a larger string containing both of them.

Lemma 4.7. Let X ∈ F . If both σTX and σDX are non-zero, then there
is a D-arrow βX from the end vertex of σTX to the end vertex of σDX . So in
particular, (σDX)−1βXσ

T
X is a well-defined string.

Proof. We consider four cases, depending on the position of X in F .
The first case is when there is a D-map T1 → X. One readily verifies

that there is then also a T -map T1 → X, so in this case T1 is in both RT (X)
and RD(X), and the claim holds with the loop as βX .

The second case is when there is a T -map T1 → X, but no D-map from
T1 to X. This happens exactly when X is on the coray C(n−1,n), and in this
case there are no D-maps from any summands of T to X, so RD(X)∩addT
is empty, and there is nothing to prove.

The third case is when X is located on the ray R(n,1). Then there are
no T -maps from T to X, so again there is nothing to prove.

The only remaining situation is when X is in the wing W(1,n−2). As in
the proof of Lemma 4.5, let Th be the summand in addT ∩RT (X) of highest
quasilength. Since Th 6= T1, there is some T -subwing triple (Ta;Th, T ′h) with
Th necessarily on the left, since RT (X) contains whole corays. Assume first
that this triple is non-degenerate. Then, since Th ∈ RT (X) and Ta 6∈ RT (X)
by the maximality property of Th, we note the following about the position
of X:

• X ∈ WTa , but not on the right edge of WTa , since then there would
be a T -map Ta → X;
• X 6∈ WY , where Y is the object on CT ′h

which has an irreducible map
to T ′h, since then there would be no T -map Th → X;
• if X ∈ WTh , then it is on the right edge, since otherwise there would

be no T -map Th → X.

Our aim is to show that T ′h is inRD(X), and moreover that it is the summand
of T with highest quasilength appearing in RD(X).

With the above remarks about the position of X, we see that the only
allowed positions such that there is no D-map T ′h → X are positions on the
coray CτT ′h

. But if X were on this coray, then RD(X) ∩ addT would be
empty, contrary to our hypothesis: Namely, assuming this position for X,
suppose there were some summand Tb ∈ RD(X). An equivalent condition
to this (cf. Lemma 1.1) is that there is a non-zero T -map X → τ2Tb, which



ENDOMORPHISM RINGS 89

is again equivalent to the existence of a T -map τ−1X → τTb. But since
X ∈ CτT ′h

∩ WTa , we see that τ−1X is on the right edge of WTa . So there
would be a non-zero T -map Ta → τTb, which is impossible since Ta and Tb
are Ext-orthogonal.

So T ′h ∈ RD(X). Let Tc be the T -summand of highest quasilength which
appears in RD(X). Then, since both WT ′h

and WTc contain the quasisimple
qDX from Lemma 4.2, Lemma 2.6 tells us that T ′h ∈ WTc . But T ′h is inWTa as
well, so by Lemma 2.6 again, either Ta ∈ WTc or Tc ∈ WTa . The former case
is not possible, since it would imply that Ta ∈ RD(X), which is impossible
since X ∈ WTa . So the remaining possibility is that Tc = T ′h, that is, T ′h is
the T -summand in RD(X) of highest quasilength.

By the description of the quiver of ΛT in Section 2, there is a D-arrow
βX associated with the non-degenerate T -subwing triple, from the vertex
corresponding to Th to the vertex corresponding to T ′h. Since σTX ends at the
vertex corresponding to Th, and (σDX)−1 starts at the vertex corresponding
to T ′h, the string (σDX)−1βXσ

T
X is well-defined.

It remains to consider the case where the T -subwing triple (Ta;Th, T ′h) is
degenerate, that is, T ′h = 0. In this case, since Ta 6∈ RT (X), the only option
is that X is on the right edge of WTh . But then RD(X) ∩ addT is empty:
If there were a D-map Td → X for some T -summand Td, then Ta and Td
would have an extension, as can be seen from an argument similar to the
above.

By virtue of the preceding considerations, we can now associate to each
indecomposable object X ∈ F\add τT a unique indecomposable ΛT -module
M(σX) where

σX =


σTX if σDX is zero,
σDX if σTX is zero,
(σDX)−1βXσ

T
X if both σTX and σDX are non-zero.

We can now describe the action of the Hom-functor on objects in F .

Theorem 4.8. Let T be a maximal rigid object of C, and ΛT =
EndC(T )op the endomorphism ring.

(1) Let X be an object in F \ add τT . Then the ΛT -module HomC(T,X)
is isomorphic to the string module M(σX).

(2) The functor HomC(T,−) provides a bijection between F \add τT and
the set of isoclasses of indecomposable ΛT -modules.

Proof. (1) By Lemma 4.4(i), the module is non-zero. Let ei be the idem-
potent of ΛT corresponding to the vertex i, which in turn corresponds to
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the summand Ti of T . Then the vector space HomCT (T,X) decomposes

HomCT (T,X) =
n−1⊕
i=1

ei HomCT (T,X) =
n−1⊕
i=1

HomCT (Ti, X) =
n−1⊕
i=1

(ΦiX ⊕ ΨiY ),

where each vector space ΦiX and ΨiX is at most 1-dimensional and is spanned
by a T -map φiX : Ti → X and a D-map ψiX : Ti → X respectively, these
maps being zero if no non-zero such maps exist.

By the definition of σTX , the vertices for which ΦiX 6= 0 are exactly the
vertices that are traversed by σTX . Similarly, the vertices for which ΨiX 6= 0
are the ones traversed by σDX . In particular, there is an equality of dimension
vectors

dim(M(σX)) = dim(HomCT (T,X)).

We need to establish that the action of ΛT on HomCT (T,X) is the same
as the action on M(σX).

Each map which is irreducible in addC T corresponds to an arrow in the
quiver of ΛT , and the arrow acts by composition with the irreducible map.
Unless both the start vertex and the end vertex of this arrow are vertices
in the support of HomCT (T,X), clearly this map (equivalently, this arrow)
has a zero action on both the modules HomC(T,X) and M(σX).

So we must show that each T -arrow i → j appearing in σTX acts by an
isomorphism ΦiX → ΦjX , and each T -arrow i→ j appearing in σDX acts by
an isomorphism ΨiX → ΨjX , and finally that if βX : i → j is defined, then
the action of this is given by an isomorphism ΦiX → ΨjX .

Our first goal is now to show that whenever i α→ j is a T -arrow such
that α itself or α−1 appears in σX , then the action of α is given by a pair
of linear transformations

α′ : ΦiX → ΦjX , α′′ : ΨiX → ΨjX

which are isomorphisms when their domains and codomains are both non-
zero. (And necessarily zero otherwise.) Let φji : Tj → Ti be the irreducible
T -map corresponding to α. Then what we need is that if φjX and φiX are
both non-zero, then φji ·φiX = φiX ◦φji = φjX up to a non-zero scalar, and
similarly that if ψiX and ψjX are both non-zero, then φji · ψiX = ψiX ◦ φji
= ψjX . The first assertion is clearly true by the structure of the tube. The
second assertion holds by an application of Lemma 1.3(i), and Remark 1.4,
where we use the fact that φji must be a composition of maps which are
irreducible in CT , and follows a ray or coray (along the edge of a wing), and
thus all the indecomposables that φji factors through are also in RD(X).

Next let X be such that the D-arrow βX : i → j is defined, and thus
appears in the string σX . Then we know that ΦiX and ΨjX are non-zero.
The action of βX is given by composition with a D-map ψji : Tj → Ti. We
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wish to show that (up to multiplication by a non-zero scalar) this action is
given by a linear transformation

β′X : ΦiX ⊕ ΨiX

(
0
1

0
0

)
−−−→ ΦjX ⊕ ΨjX .

In other words, it sends φiX to ψjX and annihilates ψiX . The composition
ψiX ◦ ψji is clearly zero, as all compositions of two D-maps are.

Consider the image φiX ◦ ψji of φiX . We need the observation that the
T -map φiX does not factor through any indecomposable to which there is
no D-map from Tj . This holds since, by Lemma 4.1, HD(Tj) ∩ F forms
a rectangle-shaped subgraph of the tube, and the map φiX cannot factor
through any indecomposable outside this subgraph. We can then conclude
from Lemma 1.3(ii) and Remark 1.4 that φiX ◦ψji = ψjX , which is what we
wanted.

It remains to show that if there exists an arrow which connects two
vertices in the support of HomC(T,X), but which does not appear in σX ,
then the action of this arrow is zero on HomC(T,X). By Lemmas 3.7, 4.4
and 4.7 the only case to consider is when βX is the loop vertex, and there
is a T -subwing triple (Ti;Tj , Tk) such that Tj ∈ RT (X) and Tk ∈ RD(X) or
vice versa. Since the action of the arrow β : j → k is given by composition
with the D-map ψkj : Tk → Tj , we only need to study the case where σTX
traverses j and σDX traverses k. So we need to show that φjX ◦ψkj : Tk → X
is zero.

But by examining the Hom-hammocks of Tj and Tk, we see that if there
is a T -map Tj → X and a D-map Tk → X, then either X is in WTi , which
contradicts the fact that i must be traversed by σX , or φiX factors through
objects on the coray C(n,1). In the latter case, the composition must be zero,
since there are no D-maps from Tk to any objects on this coray.

(2) Counting the number of elements of F , we find that it contains
n(n−1) objects with quasilength less than n, and 1

2n(n−1) with quasilength
n or more, that is, a total of 3

2n(n−1) elements. Since T has n−1 summands,
the cardinality of F \ add τT is

3
2
n(n− 1)− (n− 1) =

1
2

(3n2 − 5n+ 2),

which, by Theorem 3.8, is also the number of indecomposables in modΛT .
By Lemmas 4.5 and 4.6, if X and Y are different objects in F \ addT , then
σX 6= σY . It then follows from part (1) that HomC(T,X) 6' HomC(T, Y ). So
HomC(T,−) provides a bijection.

We now turn to the indecomposables which are not in F . It is easily seen
that Lemma 4.4(ii)–(iv) holds also for indecomposables which are not in F .
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So we can define σTX and σDX in this case as well. The following theorem now
completes the description of the action of HomC(T,−) on objects.

Theorem 4.9. Let X be an indecomposable object in C, where X 6∈ F .
Then we have the following:

(1) HomC(T,X) = 0 if and only if X = (n, kn− 1), where k ≥ 2.
(2) If X is not of the type described in (1), then

HomC(T,X) = M(σTX)qM(σDX)

where M(σ) is the zero module if σ is the zero string.

Proof. (1) When X 6∈ F we know that HomC(T,X) = 0 if and only if
HomC(T1, X) = 0. There are no T -maps T1 → X if and only if X is on the
ray R(n,1), that is, X = (n, t) for some t ≥ 1. Moreover, there are no D-maps
T1 → X if and only if X is on the coray C(n,n−1). The indecomposables that
are in the intersection of R(n,1) and C(n,n−1) and outside F are exactly the
ones with coordinates (n, t) such that n + t ≡ n + n − 1 mod n. The claim
follows.

(2) The proof of Theorem 4.8 goes through, with the following exception,
which is exactly what is needed. The action of βX (which in this case is
always the loop, as we see from the argument for (1) above) is zero: The
T -map φ1X : T1 → X factors through (at least) one object on the coray
C(n,n−1). We know that there are no D-maps from T1 to any object on
this coray. It then follows that the composition φ1X ◦ ψ11, where ψ11 is the
D-endomorphism of T1, is a zero map. The result follows.
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[ABS] I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras as trivial exten-
sions, Bull. London Math. Soc. 40 (2008), 151–162.
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