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ENDOMORPHISM RINGS OF
MAXIMAL RIGID OBJECTS IN CLUSTER TUBES

BY

DAGFINN F. VATNE (Trondheim)

Abstract. We describe the endomorphism rings of maximal rigid objects in the clus-
ter categories of tubes. Moreover, we show that they are gentle and have Gorenstein
dimension 1. We analyse their representation theory and prove that they are of finite
type. Finally, we study the relationship between the module category and the cluster tube
via the Hom-functor.

Introduction. Cluster categories were defined in [BMRRT] as tools for
categorification of Fomin—Zelevinsky cluster algebras [FZ]. They are defined
as the orbit categories of the derived category DP(H) of hereditary abelian
categories H by a certain autoequivalence.

In the situation where H is the category of finite-dimensional represen-
tations of a finite acyclic quiver, the cluster category has been subject to
intense investigation. In this case it has been shown that the cluster category
and the set of exceptional objects form a good model for the cluster algebra
associated with the same quiver.

In this paper we work with a cluster category C,, defined from a different
hereditary abelian category, namely the tube 7,,. This category is called the
cluster tube and has recently been studied in [BKLI, BKL2] and [BMYV].
Although this category is also a Hom-finite triangulated 2-Calabi—Yau cat-
egory, it does not enjoy all of the nice properties of cluster categories from
quivers. In particular, the maximal rigid (also called maximal exceptional)
objects do not satisfy the more restrictive definition of cluster-tilting objects.

Moreover, the Gabriel quivers of the endomorphism rings of maximal
rigid objects in the cluster tube have loops. Consequently, C,, with its max-
imal rigid objects does not carry a cluster structure in the sense of [BIRS].
The axioms for cluster structures can be modified, however, to apply also
to cluster tubes (see [BMV]).

The aim of the present paper is to study the endomorphism rings of
the maximal rigid objects. We will find a description in terms of quivers
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with relations. Like cluster-tilted algebras, the algebras we consider here
are Gorenstein of Gorenstein dimension 1, unless n = 2, in which case they
are self-injective. However, the proof (from [KR]) for cluster-tilted algebras
has no analogy in our setting. Instead, we use the fact that our algebras
are gentle, and apply the technique from [GR] to our quivers with relations
in order to prove the result. The properties of the algebras we study in
this paper are thus reminiscent of those of the algebras recently studied
in [ABCP]J.

Since the endomorphism rings are gentle, they are string algebras. We
use the theory of string- and band-modules to show that the endomorphism
rings are of finite type. One of the main results about cluster-tilted algebras,
which was proved in [BMRI], is the close connection between the module
category of the cluster-tilted algebra and the cluster category it arises from.
This connection is provided by the Hom-functor. In our situation, the Hom-
functor is not full, and therefore there is no analogous theorem. We will
nevertheless study the action of the Hom-functor on the objects, and in
particular show that it is dense. Indeed, when T is maximal rigid, we find
an explicit description of Home, (T', X) for every indecomposable X in C,,.

The paper is organised as follows: Section [I| contains the definition of
the cluster tube and a description of maximal rigid objects recalled from
[BMV]. In Section [2f we give a description of the endomorphism rings, while
in Section [3] we study the gentleness and Gorenstein dimension and give
some facts about indecomposable representations. Finally, in Section [4] we
describe the action of the Hom-functor.

Throughout the paper we will work over some field &k, which is assumed
to be algebraically closed. Modules over an algebra will always mean left
modules, and we will read paths in quivers from right to left.

1. Maximal rigid objects in cluster tubes. We start off by reviewing
some properties of cluster tubes. These categories have recently been studied
in [BKL1l BKL2] and [BMV], and more details can be found in these papers.

For any integer n > 2, let 7,, be a tube of rank n, that is, the category
of nilpotent representations of a cyclically oriented A, _1-quiver. It can also
be realised as the thick subcategory generated by a tube in the regular part
in the AR-quiver of a suitable tame hereditary algebra. All maps in this
category are linear combinations of finite compositions of irreducible maps,
and are subject to mesh relations in the AR-quiver.

The tube 7, is a hereditary abelian category, and following the construc-
tion introduced in [BMRRT], we form its cluster category, called the cluster
tube of rank n and denoted C,. This is by definition the orbit category ob-
tained from the bounded derived category D, = D?(7,) by the action of
the self-equivalence 77! o [1]. Here, [1] denotes the suspension functor of D,,,
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while 7 is the Auslander—Reiten translation. Unless the actual value of n is
important, we will usually suppress the subscript n in notation, and write 7,
D and C.

For a finite-dimensional hereditary algebra H, a theorem due to Keller
[K] guarantees that the associated cluster category Cy is triangulated with a
canonical triangulated structure inherited from the derived category. Keller’s
result is not directly applicable in our situation, since 7 has no tilting ob-
jects. Nevertheless, C, also inherits a triangulated structure from D,, (see
[BKL1] for a rigorous treatment of this).

The indecomposable objects of the cluster tube C are in bijection with
the indecomposables in 7 itself, and we will sometimes use the same symbol
to denote both an object in the tube 7 and its image in the cluster tube C.
The irreducible maps in C are the images of the irreducible maps in D, which
again are the shifts of the irreducible maps in the tube 7. So the AR-quiver
of C is isomorphic to the AR-quiver of 7.

For a given rank n, we will use a coordinate system on the indecom-
posable objects. Choose once and for all a quasisimple object and give it
coordinates (1,1). Now give the other quasisimples coordinates (g, 1) such
that 7(¢,1) = (¢—1, 1), where ¢ is reduced modulo the rank n. Then give the
remaining indecomposables coordinates (a,b) in such a way that there are
irreducible morphisms (a,b) — (a,b+1) for b > 1 and (a,b) — (a+1,b—1)
for b > 2. Throughout, the first coordinates will be reduced modulo n. See
Figure

(ab+1)
(a.b) (a+1.b)

(a+1,b-1)

(n—1,3) (n,3) (1,3)

N AN va

(n,2) (1,2) (a,2)

(LD @y —— - (a,1) (atl,]) —— —=mmmmmmmmmmmm -

Fig. 1. AR-quiver and coordinate system for 7,, and C,

The infinite sequence of irreducible maps
Riqi) = (a,7) = (a,i+1) = --- — (a,i +j) — -+~
is called a ray. Similarly, the infinite sequence
Copy=-—(@a=bi+b)—-—(a—1i+1)— (a,i)

is called a coray. Note that the sum of the coordinates is constant, modulo n,
for indecomposables located on the same coray.
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For an indecomposable object X = (a,4) where ¢ < n we will also need
the notion of the wing Wy determined by X. This is by definition the set
of indecomposables whose position in the tube is in the triangle with X on
top. We will call X the summit of Wx. In terms of coordinates, objects in
the wing W, ;) are (a',7') such that ¢’ > a and o’ + ¢ < a +i. The height
of Wx is the quasilength ql X.

Hom-spaces in C are given by the following lemma, proved in [BMV].

LEMMA 1.1. For X and Y indecomposable in C, we have
Home(X,Y) ~ Hom7(X,Y) II DHom7 (Y, 72X)
where D is the usual k-vector space duality Homy(—, k).

When X and Y are indecomposable, the maps in Hom¢ (X, Y') which are
images of maps in HomD(X, 7'_1?[1]) for X,Y in 7 will be called D-maps,
and those which are images of maps in 7 itself will be called 7-maps.
Since 7 is hereditary, all maps in C are linear combinations of maps of
these two kinds. The Hom-hammock of an indecomposable object (that is,
the support of Home (X, —)) is illustrated in Figure [2| Note that the two
components in the figure wrap around the tube and intersect. Moreover, if
b > n+1, then each component intersects itself, possibly with several layers,
and therefore there exist Hom-spaces of arbitrary finite dimension between
indecomposables.

(a-2,b) (a-1,b) (ab)

Fig. 2. The Hom-hammock of (a,b). There are 7-maps to indecomposables in the right
component, and D-maps to indecomposables in the left component.

So for indecomposable X and Y, the existence of a D-map X — Y is
equivalent to the existence of a T-map Y — 72X. The following lemma is
then easily verified:

LEMMA 1.2. Let X be an indecomposable object of C,,. Then there exists
a D-endomorphism of X if and only if gl X > n — 1.
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We will need the following lemma on the relationship between 7-maps
and D-maps:

LEMMA 1.3. For X, Y and Z indecomposable objects in Cy, we have the
following:

(i) Assume that 1 X < n and 1Y < n. If there are non-zero D-maps
Vxz X — Z and Vyz 1 Y — Z, and an irreducible map ixy :
X =Y, then pyz oixy = ¥xz up to multiplication by a non-zero
scalar.

(ii) Assume that 1 X < n. If there are non-zero D-maps ¥xy : X =Y
and Yxz : X — Z, and an irreducible map iyy 1 Y — Z, then
Vxz =1yz o Uxy, up to multiplication by a non-zero scalar.

REMARK 1.4. Note that by repeated application, the same applies to
compositions of irreducible maps, i.e. to all 7-maps, under the assumption
that the required Hom-spaces are non-zero for each indecomposable that the
composition factors through.

Proof of Lemma . (i) We lift the maps to the derived category D, and
denote by X, Y and Z the preimages of the objects in 7. Since X and Y
have quasilength < n, the space HOIIID()(: ,7 LA[1]) of D-maps is at most
one-dimensional for any indecomposable A € 7, and similarly for Y.

The aim is to show that the map

Homp (ixy, 7 ' Z[1]) : Homp(Y, 77 Z[1]) — Homp (X, 7' Z[1])
is surjective. We can view this as a map
iy Exth(V,7712) — Exth (X, 7712)
or, by duality and the AR-formula,
Homy (7' Z, rixy) : Homy (7' Z,7X) — Homy (171 Z,7Y),
which we now wish to show is injective. But this is clear from the structure

of the tube when the Hom-spaces are non-zero.
(ii) We need to show that the map

Homp (X, 7 Yy z[1]) : Homp (X, 7 1Y[1]) — Homp (X, 7 1 Z[1])
is surjective. As above, by duality this is equivalent to the map
Homy (7 Yiyz,7X) : Homy (7' Z,7X) — Hom7 ('Y, 7X)
being injective. But by the combinatorics of the tube, this is clearly an
isomorphism, since by assumption both spaces are 1-dimensional. =

Let 1 < h < n — 1, and choose some indecomposable X in 7, with
quasilength ql X = h. Let Aj be a linearly oriented quiver with underly-
ing graph the Dynkin diagram Aj. Then the category mod kA, of finitely
generated modules over the path algebra k:/fh is naturally equivalent to the
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subcategory adds Wy of 7,,. Embedding into D,, and projecting to C,, we
find that mod k’ffh embeds into the subcategory adde Wx of C,,. The image is
the subcategory addg Wy obtained by deleting the D-maps from adde Wy .
From now on, we will drop the subscript when we speak of an additive hull
as a set of objects, since there is a bijection between the objects of 7 and
those of C.

The triangulated category C is a 2-Calabi—Yau category, which in partic-
ular means that for any two objects X and Y, we have symmetric Ext-spaces:

Exts(X,Y) ~ DExt}(Y, X).

Two indecomposable objects X and Y will be called compatible if Ext}(X,Y)
= Ext} (Y, X) = 0. It is worth noticing that X and Y are compatible if and
only if ExtX-(X,Y) = Extl (Y, X) = 0.

In an abelian or triangulated category I, an object T is called rigid if
it satisfies Exty(7,7) = 0. If it is maximal with respect to this property,
that is, if Extp(T 11X, T 11 X) = 0 implies that X € add T, then it is called
mazximal rigid. The maximal rigid objects in the cluster tube C do not satisfy
the stronger condition of cluster tilting (see [BMV]).

The following description of the maximal rigid objects was given in
[BMV]:

PropoSITION 1.5. There is a natural bijection between the set of maxi-
mal rigid objects in C,, and the set

{tilting modules of kAn_1} x {1,...,n},

where A,_1 is a linearly oriented quiver with the Dynkin diagram A,_1 as
its underlying graph.

The proposition is a consequence of the following considerations, which
will be needed for the rest of the paper: All summands of a maximal rigid
object in C,, are concentrated in the wing Wy, determined by a top sum-
mand T7 with qlT; = n — 1. Now the claim follows from the embedding of
mod kA,_1 into addc Wr,, since it is easily seen that Extén (X,Y) for two in-

decomposables X and Y in Wy, vanishes if and only if both Extll€ 1 (X,Y)

~ o~ ~ ~ n—1" _
and ExtllC I 1(Y, X) vanish, where X and Y are the corresponding kA,,_1-
modules. Since there are n choices for the top summand, this provides the
bijection.

2. The endomorphism rings. With the description of the maximal
rigid objects of C presented in Section |1 we now proceed to determine their
endomorphism rings in terms of quivers and relations.

Let T be a maximal rigid object in the cluster tube C,, and let Mrp
denote the tilting kA,_1-module associated with T according to Proposi-
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tion Since the module category of a hereditary algebra H sits natu-
rally embedded in the cluster category Cp, we can think of the module
My as a cluster-tilting object in C4,, ,. The endomorphism ring, or cluster-
tilted algebra, I'r = Ende 4, (M7)°P can easily be found from the tilted
algebra I'r = End, ; ~ (M7)°P, by the results in [BRe], or more generally
in [ABS].

Every minimal relation on the quiver of a tilted algebra of type A is a
zero relation of length two. The quiver of the cluster-tilted algebra is then
obtained by inserting an arrow «, from the end vertex to the start vertex
of each defining relation path p. The relations for the cluster-tilted algebra
are, as prescribed by [BMR2], the compositions of any two arrows in any of
the 3-cycles formed by adding the new arrows.

We can now formulate the main theorem of this section.

THEOREM 2.1. Let T be a maximal rigid object in C,. Then the endo-
morphism ring Ap = Ende, (T')°P is isomorphic to the algebra kQ/I where

(a) Q is the quiver obtained from the quiver of I'r by adjoining a loop w
to the vertex corresponding to the projective-injective kA, _1-module;

(b) I is the ideal generated by the relations in Dr and in addition w?.

Before we can present the proof of the theorem, we need some consider-
ations on the combinatorial structure of maximal rigid objects.

We define a non-degenerate subwing triple (X;Y, Z) to be a triple X, Y, Z
of indecomposables in C with 3 < ql X < n — 1 such that if X = (a,b), then
Y =(a,¢c)and Z = (a+c+1,b—c—1) for some 1 < ¢ < b— 2. This means
that X is on the ray Ry and on the coray Cz, so in particular Wy and Wy
are contained in Wyx. Moreover, there is exactly one quasisimple (a + ¢, 1)
which is in Wy but not in Wy U Wz. See Figure 3| A degenerate subwing
triple (X;Y,Z) is a triple with 2 < ql X < n — 1 such that if X = (a,b),
then either Y = (a,b—1) and Z =0or Y =0 and Z = (a+ 1,0 — 1).
Note that any subwing triple (degenerate or non-degenerate) is determined
by the top indecomposable X and the unique quasisimple which is not in
any of the two subwings Wy or Wy.

LEMMA 2.2. Let (X;Y,Z) be a non-degenerate subwing triple. Let Y’ €
Wy and Z' € W.

(i) There are no T-maps Z' —Y".
(ii) There are no T-mapsY' — Z'.
(iii) There is a D-map Z' — Y' if and only if Z' is on the left edge
of Wz and Y’ is on the right edge of Wy. In this case, this map
factors through the D-map Z — Y.
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(iv) There is a D-map Y' — Z' if and only if Z' is on the right edge
of Wz and Y’ is on the left edge of Wy, and ql X =n — 1. In this
case, this map factors through the D-endomorphism of X.

a atc-1 a+c a+c+l a+b-

Fig. 3. Non-degenerate subwing triple (X;Y,Z). If X = (a,b) and Y = (a,c) with 1 <
c<b—2,thenZ=(a+c+1,b—c—1).

Proof. Claims (i) and (ii) are easily verified; one must keep in mind that
gl X <n — 1 by the definition of subwing triples.

Since the existence of a D-map Z' — Y’ is equivalent to the existence
of a T-map Y’ — 72Z', we see that the only way such a map can arise
is when Z’ is on the left edge of Wz, and Y’ is on the right edge of Wy-.
Now by Lemma and Remark this D-map factors through the ray

R . In particular, it factors as Z’ 2% 72 y1 yhere ¢z17 is the T-map
from Z’ to Z, and 1zy+ is the unique (up to multiplication with scalars)
D-map Z — Y'. Applying Lemma to ©¥zys, we find that it factors as

7Yy ryy Y’ where 1zy is the D-map from Z to Y and ¢yy is the
7-map from Y to Y. So claim (iii) holds.

For claim (iv), observe that since ql X < n — 1, a necessary condition for
the existence of a T-map Z’' — 72Y” is that ql X = n— 1. Moreover, Z’ must
be on the right edge of Wyx and Y’ must be on the left edge of Wx. Now
the claim is proved using a similar argument to that for (iii) and the fact
from Lemma [T.2] that if 1 X = n — 1 then X has a D-endomorphism. m

LEMMA 2.3. Let (X;Y,Z) be a subwing triple, and let W € Wx.

(1) Y and W are compatible if and only if W € Wy UWyz or W € Ry.
(ii) Z and W are compatible if and only if W € Wy UWy or W € Cy.

Proof. By the 2-Calabi—Yau property, we have symmetric Ext-groups,
S0 it is enough to check vanishing of Ext}(W,Y) and Ext} (W, Z). For this,
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we use the AR-formula
Exts(W,Y) ~ D Home (Y, 7W)

and similarly for Z. Then consider the intersection of the Hom-hammock of
Y with 7Wx. n

LEMMA 2.4. Let W = Wx be a wing in Cy, of height h < n, and let X
be a set of pairwise compatible indecomposable objects in W .

(i) X has at most h elements.
(ii) If X has less than h elements, there exists a set X of h pairwise
compatible indecomposable objects, containing X .
(i) If X has h elements, then X is an element of X.

Proof. The argument is essentially the same as for Proposition [I.5 and
the result follows from the theory of tilting modules applied to k:ffh—modules,
upon noting that the projective-injective indecomposable is a summand of
every tilting module.

LEMMA 2.5. Let T} be some indecomposable summand of a maximal
rigid object T = H?;ll T; in Cy.
(i) There are qlT}), indecomposable summands of T in Wr, .
(ii) Assume qlTy > 1. Then there is a subwing triple (Ty; Ty, Tyr) such
that Ty and Ty are either summands of T or zero, and all sum-
mands of T[T}, which are in Wr, are in Wr,, UWr,,,, with ql T}
summands in Wr,, and qlTy» summands in Wr,,, .

Proof. Given a rank n, we let T = ]_[?:_11 T; be a maximal rigid object
in C,,. We proceed by reverse induction on the quasilength of the summands
of T (that is, from summands of larger quasilength to summands of smaller
quasilength). This is OK, since there is a (unique) summand of maximal
quasilength.

In accordance with Proposition [L.5] consider the top summand 77 of T,
which has quasilength n — 1. Without loss of generality assume that this has
coordinates (1,n—1). Claim (i) holds for T} by the proof of Proposition [L.5]

Assume first that there are no summands of T" among the objects (1,1),
where i = 1,...,n—2. Then all n —2 summands of 7//T} are in W3 ,,_9). So
by Lemma the object (2, —2) must be a summand of 7. Hence in this
situation claim (ii) also holds, with the triple (77;0,(2,n — 2)). A similar
argument shows that none of the objects (i, — i), where 2 < i <n—1, are
summands if and only if (1,n — 2) is a summand, and thus (ii) holds with
(Ty; (1,7 — 2),0).

Suppose therefore that (1,n — 2) is not a summand, and that there is at
least one summand of 7" with coordinates (1,4), where 1 < i < n — 3. Let
T5 = (1,14g) be the one of these with highest quasilength (that is, maximal 7).
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Consider the subwing triple (71;T5, X) where X = (ig + 2,n — ip — 2). By
Lemma and the maximality of ig, all n — 2 summands of 7/7; must
be in Wy, U Wx. Then it follows from Lemma that there must be ig
summands in Wp, and n — ¢p — 2 summands in Wx and moreover that X
is indeed a summand of 7. We conclude that both claims (i) and (ii) hold
for the top summand.

Assume now that T} is some summand of T with ql Ty > 1, but not the
top summand. Let T; be a summand of T" of smallest quasilength with ql T; >
ql T}, such that T}, € Wr;. (Such a summand exists, since all summands are
in Wr,.) Then by induction, the claims hold for T}, and by the minimality
in the choice of T}, the subwing triple corresponding to T} is (Tj; Ty, Tj»)
where either T, or T} is T}, and the other one is also a summand. In any
case, since by the induction hypothesis claim (ii) holds for T}, there are ql T},
summands of 7" in Wr, , and so (i) holds for Tj.

Now that we know that there are ql T}, — 1 summands of T'/T}, in Wr, ,
we can prove that (ii) holds by the same arguments as for 77 above. »

A subwing triple (T; Ty, Tyr) such that Ty, Ty and Tj» are summands
of a maximal rigid object T" will be called a T-subwing triple.

With Lemma we have obtained a combinatorial description of the
maximal rigid objects as a system of subwing triples partially ordered by
inclusion. Note that for a maximal rigid T" with top summand 77 there is
a natural map from the objects in Wy, to the summands of 7' given by
sending an object X to the summand 7, with smallest quasilength such
that X € Wr,. The restriction of this map to the set of quasisimples is a
bijection. See Figure [dh below for an example. Also, we have the following:

LEMMA 2.6. Let T;,T; be summands of a maximal rigid T'. Then either
T, € Wry, or Tj € Wr,, or Wr, and Wr, have empty intersection.

Proof. Suppose T; ¢ Wr, and T; ¢ Wr,. Let Ty be a summand of T
such that both T; € Wy, and T € Wr,, and which has minimal quasilength
among summands with this property. There is some non-degenerate T-
subwing triple (Tk; Ty, Ty), and by Lemma the summands 7; and T}
must be in Wr,, UWr, ,,. Now by the minimality in the choice of T, we know
that 7; must be in Wr,, and T} in Wr,,, or vice versa. It follows that Wr,
and Wr, have empty intersection, since Wr,, and Wr,, have empty inter-
section. m

LEMMA 2.7. Let T; and T; be summands of a maximal rigid T. Then
the following are equivalent:

(a) There exists a non-zero T-map T; — Tj.
(b) Either Tj is on the ray R, or T; is on the coray Cr;.
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Proof. This follows from the observation that since T; and T} are Ext-
orthogonal, there is no map 7; — 77}. m

LEMMA 2.8. Let T be a maximal rigid object.

(i) If (T3;T;,Ty) is a non-degenerate T-subwing triple, there is a 7T -
map fj; : T; — T; and a T-map fi, : T; — T}, and these maps are
irreducible in adde T.

(ii) If (T3;1},0) is a degenerate T-subwing triple, there is a T-map fj; :
T; — T;, and it s irreducible in adde T'. A similar statement holds
for a degenerate T-subwing triple (T;;0,Ty).

(iii) There are no irreducible T-maps in addeT other than those de-
scribed in (1) and (ii).

(iv) If (T3; T}, Ty) is non-degenerate, the composition fi o fji is zero.

Proof. Claims (i) and (ii) are obvious, so consider summands T, T}, and
assume that there is a 7-map f;y : T, — T,. By Lemma either the
summand 7, must be on the ray Rp, or T, must be on the coray CTy.
Assume the former case, so T} is on the left edge of Wr,. We know from
Lemma that there is some T-subwing triple (7%; Ty, T,/), where T, must
necessarily be on the left edge of Wr. . (If it was on the right, it would violate
Lemma ) Then clearly f,, factors through the 7-map f,. : T, — T..
A similar argument can be given in the case where T} is on the coray Cr,
by considering a T-subwing triple (T,; Ty, Tyr), so (iii) holds as well.

Claim (iv) also follows from Lemma .

LEMMA 2.9. Let T;,T; be summands of a mazimal rigid T'. Then the
following are equivalent.

(a) There is a non-zero D-map T; — T).
(b) One of the following is satisfied:

(b') There is some non-degenerate T-subwing triple (Ty;T,,T.)
such that T; is on the left edge of Wr, and Tj is on the right
edge of Wr, .

(b") T; is on the left edge of W, and Tj is on the right edge of Wr,,
where T1 s the top summand.

Proof. Assume first that T; = 77, the top summand. Then there is a
D-map T; — T} if and only if T} is on the right edge of Wr,, which is a
special case of (b”). Similarly, if 7; = T, then there is a D-map T; — Tj if
and only if T; is on the left edge of Wr,. So under the assumption that at
least one of T;, T} is the top summand, the claim holds.

Consider therefore the case where neither 7; nor 7} is the top summand.
It is easily seen that if T; € Wr, or T; € Wr;, there can be no D-map
T; — Tj. So consider the summand 7). of minimal quasilength such that
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both T; and T; are in Wr,. By Lemma there is a T-subwing triple
(T; T, T.), and by the minimality of Ty, either T; € Wy, and T € Wr, or
the other way around. The claim now follows from Lemma .

We can now prove the main theorem.

Proof of Theorem[2.1] In the argument, we will implicitly use the fact
that for indecomposable objects X and Y with ql X,qlY < n — 1, there is
up to multiplication by scalars at most one 7-map and one D-map from X
toY.

Our task is to determine the quiver () and defining relations of Ap =
Ende(T)°P. First recall that the functor Home(7,—) : C — mod Az in-
duces an equivalence between adde 7' and the category P(Ar) of projective
Ap-modules. The vertices in @ are therefore in bijection with the inde-
composable summands of T, and the arrows correspond to maps which are
irreducible in add¢e T'.

No 7-map can factor through a D-map, so let us first consider the arrows
in @ coming from 7-maps and their relations, that is, the endomorphism
ring of 7" as an object in the subcategory addcT Wr,, where T is the top
summand of T'. By virtue of the equivalence of this category with the module
category mod k:/fn_l, we know that this will be the quiver with relations for
the tilted algebra I'r = Enda, , (Mp)°P.

By Lemma [2.8(i), for each non-degenerate T-subwing triple (Tj; T}, T))
there exist 7-maps fj; : T; — T; and fj;, : T; — T}, which are irreducible in
addc T" and hence correspond to arrows a;; : @ — j and ag; : K — 4 in Q.
Similarly, by Lemma (ii), for each degenerate T-subwing triple (73; 7}, 0)
there is an arrow «;; : @ — j, and for a T-subwing triple (7;;0,T},) there is
an arrow ag; : k — . Moreover, by Lemma (iii), these are the only arrows
in @) coming from 7-maps. Assuming that the triple is non-degenerate, by
Lemma (iv), the composition fj; o fj; is zero, and hence a;jay; is a zero
relation for the quiver.

It follows from Lemma 2.7 that there are no other minimal relations
on the arrows coming from 7-maps, since a path oy, i, - Q4 i, Qgi, such
that no «;,,,aj,_,4 comes from a composition f;;,_, o fi, 4, from a non-
degenerate T-subwing triple (7;,; T;,, ,, Tj,_, ) corresponds to a map following
a ray or a coray. So the above gives a description of the tilted algebra
I'r = Endy,, , (Mr)°P. See Figure b for an example.

Now consider the D-maps, and postpone for a moment the situation
with maps to or from the top summand 7T;. By Lemma (iii), for each
non-degenerate T-subwing triple (75; T}, T})) there is a D-map gy; : T, — 1.
We claim that this map is irreducible in add¢ T'. So assume that there exists
a summand T}, not isomorphic to T} or T}, and a D-map g,; : T, — Tj
such that fi; = guj © hxe Where hy, : Tj, — T Since the composition of two
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c) the cluster—tilted algebra d) the endomorphism algebra of T

Fig. 4. An n = 7 example of a maximal rigid object 7" and the associated algebras I'r,
FT and AT

D-maps is zero, hp, must be a 7-map. So by Lemma either T, is on
Ry, , or T}, is on Cr,. The former case contradicts Lemma since T}, is on
the right side of Wy, and on the left side of Wr, . The latter case contradicts
Lemma[2.2] since T} is on the right edge of Wr, . A similar argument shows
that we cannot have a factorisation gi; = hy; o gry Where hy; is a 7-map
and g, is a D-map.

Thus gy is irreducible and corresponds to an arrow Bj; : j — k in Q.

For the non-degenerate T-subwing triple (7;;7},T})), the composition
9kj © fi + T; — Tj is a D-map. We claim that it must be zero. Assume
therefore that there is a 7-map from Tj to 72T;. Then, since T sits on Ry,
and there is no 7-map T; — 7T; by the Ext-orthogonality of 7; and Tj,
there must be 7-maps from 7T to all indecomposables of quasilength gl 7T;,
except 71;. But this would require ql 7 = n—1, and this is impossible, since
qlT; < qlTy = n—1. We conclude that there is no D-map T; — T}, and the
composition is zero.

Similarly, the composition fj; o gr; : Ty — T is also zero, since there is
no 7-map from 7T; to 72T}. It follows that the paths agiBjr and Bjrai; are
zero relations on the quiver Q.

By Lemma there is a D-map hp, which is an endomorphism of the
top summand 77. This map must be irreducible in add¢ T, for the only
objects in Wy, to which there are maps from 7 are the ones on the right
edge of Wr,, but there are no maps from any of these to 7. Thus there is
a loop w at the vertex corresponding to the top summand.



76 D. F. VATNE

The composition hp, o h7, is zero, since any composition of two D-maps
is the image of a map 7 — 7 (2| in D, which must necessarily be zero since
T is hereditary. So w? is a zero relation on the quiver of Ar.

By Lemmas [2.2 and [2.9] there are no other irreducible D-maps between
summands of 7', and also no other minimal relations involving arrows from
D-maps: Let (3j; be an arrow corresponding to a D-map Ty — T} where
(T3; T, Ty,) is a non-degenerate subwing triangle. Then if vy - - -y Bxvf - -7}
is a path in ) such that v ---~; and 47 - - -/, do not traverse any relations,
then necessarily 1, ...,y are arrows coming from maps on the left edge of
Wr, and 77, ...,7; are arrows coming from the right edge of Wr,. Then
this path corresponds to a non-zero map by Lemma |2.9

We now see that the arrows 3., are in bijection with the zero relations
for the quiver of I'r, and complete the relation paths to oriented cycles,
so by |ABS] or [BRe| the arrows a;, and (., form the quiver of fT =
Ende, — (Mr)°P. Furthermore, the relations imposed on this quiver coincide

with the relations defining fT. _

So the quiver of Ap is obtained from the quiver of Iy by adjoining
the loop w at the vertex corresponding to the top summand, which again
corresponds to the projective-injective I'r-module. Also, the relations for
Ar are the relations for ' and in addition w? = 0. m

See Figure [ for an example of a maximal rigid object T" and the tilted
algebra I, the cluster-tilted algebra Iy and the endomorphism ring Arp.

An explicit description of the quivers for cluster-tilted algebras of type
A was given in [S], and also in [BV]. It can be deduced from the type A
cluster category model from [CCS|. They are exactly the quivers satisfying
the following;:

e all non-trivial minimal cycles are oriented and of length 3,

e any vertex has valency at most four,

e if a vertex has valency four, then two of its adjacent arrows belong to
one 3-cycle, and the other two belong to another 3-cycle,

e if a vertex has valency three, then two of its adjacent arrows belong
to a 3-cycle, and the third does not belong to any 3-cycle.

In the first condition, a cycle means a cycle in the underlying graph. A con-
necting vertex for such a quiver, as defined in [V], is a vertex which either
has valency one, or has valency two and is traversed by a 3-cycle.

Note that for the endomorphism ring Ar of a maximal rigid 7', the loop
vertex is connecting for the quiver of I'r. There is a sort of converse to
Theorem [2.1}, so we have a full description of the algebras which can arise:

PROPOSITION 2.10. Let I' be a cluster-tilted algebra of type A,_1, and
let ¢ be a connecting vertex for Q. Then there exists a mazimal Tigid object
T of Cy, such that Q. is obtained from Qf by adjoining a loop at c.
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Proof. We use induction on n. The claim is easily verified for small val-
ues. B

Given a cluster-tilted algebra I' of type A,_1, let Q be its quiver and
let ¢ be some connecting vertex of ). Then ¢ has valency 1 or 2 in Q.
Consider first the case where ¢ has valency 2. Then c is traversed by a 3-cycle
¢ — ¢1 — ¢ — cin Q. The quiver @ \ {c¢,c1 — ¢} has two disconnected
components 1 and @2, where ¢; is connecting for Q;. Also, Q; is the quiver
of some cluster-tilted algebra I'; of type Ay, where k; + ko =n — 2.

By induction we can assume that for each ¢ = 1, 2 there exists a maximal
rigid object T; in Cj, 41 such that the endomorphism ring of 7T; is obtained
from the quiver of I; by adjoining a loop at ¢;. Let M; be the corresponding
tilting k:/fki—module. We have a natural embedding of the module category
mod k:ffkl into the wing Wy ,), and of mod k:fﬂ€2 into W, 42,5,)- It is now
easily seen that the images of the indecomposable summands of M; and
M5 under these embeddings are all compatible, and that the direct sum of
these can be completed to a maximal rigid object T' by adding the object
(1,n —1). Then the quiver of T" is obtained from @ by adding a loop at c.

The case where ¢ has valency one in (@ is easier; one considers @ \ {c}
which is cluster-tilted of type A,_o, and uses induction as above. u

REMARK 2.11. There are in fact exactly n maximal rigid objects in C,
with the prescribed endomorphism algebra, and these form a 7-orbit.

3. Gentleness, Gorenstein dimension and indecomposable mod-
ules. In this section we show that the endomorphism rings under discussion
are gentle. We use this to determine their Gorenstein dimension.

A finite-dimensional algebra kQ/I where @ is a finite quiver is called
special biserial [SkW] if

(i) for all vertices v in @, there are at most two arrows starting at v
and at most two arrows ending at v,

(ii) for every arrow [ in @, there is at most one arrow o in @ with
Bay & I and at most one arrow v with v13 & 1.

A special biserial algebra kQ/I is gentle [ASKk] if moreover

(iii) I is generated by paths of length 2,

(iv) for every arrow (3 in @ there is at most one arrow ap such that Sas
is a path and Sas € I, and at most one arrow 7o such that 1 is
a path and 0 € I.

THEOREM 3.1. If T is a mazimal rigid object in the cluster tube C, then
the endomorphism ring Ende(T)P is gentle.

Proof. 1t follows from the description of cluster-tilted algebras of type A,
and Theorem that condition (i) is satisfied whenever v is not the loop
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vertex. If v is the loop vertex, the quiver generally looks locally like this:

v ©

N

0c -— > 9

where the relations are indicated by dashed lines and it may also happen
that one of the other two vertices pictured and consequently the adjacent
arrows are not there. We see that also for this vertex, (i) is satisfied.

As proved in [BV], any cluster-tilted algebra of type A is gentle, and
therefore if 3 is not an arrow incident with the loop vertex, (ii) and (iv) are
satisfied. If 3 is incident with the loop vertex, (ii) and (iv) follow from the
local description pictured above, with the observation that by the description
of the cluster-tilted algebras there are no minimal relations involving both
an arrow in the picture and an arrow outside the picture.

Moreover, by Theorem [2.] the ideal I is generated by paths of length
two, so (iii) is satisfied, and the algebra is gentle. m

It is known from [GR] that all gentle algebras are Gorenstein, that is,
a gentle algebra G has finite injective dimension both as a left and a right
G-module. This dimension is then called the Gorenstein dimension of G.

In order to prove the next result, we need to recall the main result of
[GR] in more detail. Let G = kQ/I be a gentle algebra. An arrow « in @ is
said to be gentle if there is no arrow ag such that cag is a non-zero element
of I. A critical path in Q is a path oy ---asaq such that a;11a4 € I for all
1=1,...,n—1.

THEOREM 3.2 (GeiB, Reiten [GR]). Let G = kQ/I be a gentle algebra,
and let n(G) be the supremum of the lengths of critical paths starting with
a gentle arrow. (n(G) is taken to be zero if there are no gentle arrows.)

(a) n(Q) is bounded by the number of arrows in Q.

(b) If n(G) > 0, then G is Gorenstein of Gorenstein dimension n(G).

(¢) If n(G) =0, then G is Gorenstein of Gorenstein dimension at most
one.

We can use this to find the Gorenstein dimension of our algebras:
PROPOSITION 3.3. Let T' be a maximal rigid object in C. If n = 2, the

Gorenstein dimension of Ap = Ende(T)°P is zero, and if n > 3, the Goren-
stein dimension is one.

Proof. By Theorem the algebra Ar is gentle, and we can apply
Theorem [3.2]
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If n = 2, then T has only one summand, and the endomorphism algebra
Ar is isomorphic to the self-injective algebra k[z]/(z?), so in this case the
Gorenstein dimension is zero.

Assume therefore that n > 3. The gentle arrows are exactly the arrows
which are not traversed by any minimal oriented cycle. (In particular, the
loop is not gentle.) But if « is any such arrow, then S« is a path for at most
one arrow 3, and Ba can never be a zero relation, since it is not a part of a
3-cycle. So if gentle arrows exist, the maximal length n(Ar) of critical paths
starting with gentle arrows is 1, and therefore the Gorenstein dimension of
Ar is also 1. If gentle arrows do not exist, we have n(Ar) = 0, and the
Gorenstein dimension is at most 1.

It remains to show that Ar cannot be self-injective for n > 3. For this,
consider the indecomposable projective associated with the loop vertex. It
is easily seen that it is not injective. m

Since Ap = End¢(T')°P is gentle, it is in particular a string algebra. We
will use this to show that A7 has finite representation type. For this, we will
recall some basic facts about representations of string algebras. More details
can be found e.g. in [BRi].

Let kQ/I be a string algebra. We consider words from the alphabet
formed by the arrows in ) and their formal inverses. Inverse words are
defined in the obvious way. For an inverted arrow o' we set the end vertex
e(a™!) equal to the start vertex s(a) of the original arrow and vice versa.
A word w = a4 - - - gy, where no two consecutive «; are inverses of each
other, is called a string if e(c;) = s(a;y1) for i = 1,...,t — 1 and moreover
no subword of w or its inverse is a zero relation. In addition, there is a trivial
string of length zero for each vertex of (). We say that the start and end
vertices of the «; which appear in the strings are the vertices traversed by
the string. For technical purposes, we also consider a unique zero (or empty)
string of length —1.

To any string ¢ = ay--- oy of length ¢ in @ there is associated an
indecomposable (¢ + 1)-dimensional representation M (o) of kQ/I given by
one-dimensional vector spaces in each vertex traversed by the string (with
multiplicity) and one-dimensional identity maps for each of the arrows (and
inverted arrows) appearing in 0. We have M(o1) ~ M(o2) if and only
if o1 = 09 or 01 = 0y L The kQ/I-modules given by such representa-
tions are called string modules. If there exist closed strings ;- - - agay (i.e.
strings starting and ending with the same vertex) such that powers of the
string are strings as well, there will also be infinite families of indecompos-
ables called band modules. The string modules and band modules constitute
a complete set of representatives of isoclasses of indecomposable modules
over kQ/I.
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Now we include some remarks on the strings in the quiver of Ap, which
will be useful in the proof of Theorem [3.8]and in Section 4l In what follows,
an arrow « that arises from an irreducible 7-map in add¢ T will be called a
T-arrow, and similarly an arrow that arises from a D-map will be called a
D-arrow.

Since the vertices of the quiver are in a natural bijection with the inde-
composable summands of T', we will transfer some terminology about the
summands to the vertices. So the quasilength of a vertex is the quasilength
of the corresponding summand, and vertices (also arrows, strings) are said
to be in a wing if the corresponding summands are in the wing.

LEMMA 3.4. Let (T;;T},Ty) be a non-degenerate T-subwing triple, and
aij, ag; and B the corresponding arrows. Then

(i) If ooapion is a string, then oy is not of the form oy = Bjr07.
(i) If o20yjor is a string, then og is not of the form oo = 03Bk

Analogous statements hold for the inverses of the arrows.

Proof. The assertions follow from the fact that ay;8;; and Bjra4; are
both zero relations. =

LEMMA 3.5.

(i) If B : i — j is a D-arrow, and o9f01 is a string, then oo is in the
wing of j and o1 is in the wing of i, and similarly for inverses of
D-arrows.

(ii) A string in the quiver of Ap contains at most one D-arrow or inverse

of such.

Proof. (i) Let 090301 be a string, where § : ¢ — j is a D-arrow corre-
sponding to a D-map ; : T — T;.

Suppose first that T; # Tj. Then there is a subwing triple (1};T;,Tj).
Now if the string oo which starts with j is the trivial string for vertex j, then
there is nothing to show, since j is definitely in the wing of itself. Assume
therefore that o9 has length at least one. Then o9 = ay - - - ajag, where ag
is either an arrow starting at j or the inverse of an arrow ending at j. By
Lemmawe know that ag cannot be the arrow o, : 7 — k which connects
j to the vertex k associated with Ty. Now the remaining possibilities for ag
are contained in the wing of j. By Lemma again, it follows that none of
the a; can be a D-arrow (or an inverse D-arrow). So o9 traverses vertices of
successively smaller quasilength and cannot return to j. Consequently, o3 is
in the wing of j.

If T; = Tj, then T; is the top summand and § is the loop, in which
case the claim follows from the fact that 32 is a zero relation, and a similar
argument to the above.
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The statement for o1 and ¢ is proved analogously, as also are the state-
ments for inverses of D-arrows.

(ii) This follows from (i). If ¢ By j and k %2 are two D-arrows, then
clearly (5 cannot be in the wing of 7 or 7 when at the same time 3; is in the
wing of k or [. So they cannot both appear in the same string. The same
holds if (at least) one of 51 and (33 is the inverse of a D-arrow. =

REMARK 3.6. It follows from this lemma that if ¢ is a closed string, then
either o is a trivial string, or o contains the loop as the only D-arrow.

LEMMA 3.7. In the following, we consider strings only up to orientation.

(i) The strings of length k — 1 in the quiver of Ap which do not con-
tain a D-arrow or inverse of such are in bijection with sequences
Ty -, Tyy, such that there are subwing triples (T;; ijﬂﬂ?;ﬂ) or
(ﬂj;j—‘{;+17n]’+l) fO’)”j = 17"'ak_ 1.

(ii) The strings in the quiver of Ap that do not contain a D-arrow or
inverse of such are in bijection with pairs T;,T; of summands of T

such that T; € WT]..

Proof. (i) Let o be a string without a D-arrow or an inverse D-arrow. If
o is trivial, the claim is obviously true, so assume ¢ has length > 1. Choose
T;, to be an indecomposable summand of T" which corresponds to a vertex
i1 traversed by o such that none of the other vertices traversed by o has
higher quasilength. Assume ql7;, > 1. Then there is some T-subwing triple
(Tiy; T, T}7). Let o = 4] — iy and o' : i1 — i} be the corresponding arrows.

Now since there are no D-arrows in o, and 7; has maximal quasilength
among the vertices traversed by o, the string ¢ must be of the form o = 090}
where o1, if it is non-trivial, is of the form oy = o0} or o1 = (/) Lo}, and
similarly o2 = 3’ or o9 = o3 (o)~ if it is non-trivial. So for o201 to be a
string, one of these has to be the trivial string associated with 41, since the
composition o/’ is zero.

So i1 is the start or end vertex of o, and the first arrow (or inverse arrow)
connects 41 to one of the vertices from the T-subwing triple with ¢; on top.
By repeating the process with the string o} or o3, we get the desired chain
of subwing triples.

(ii) Follows directly from (i). m

See Figure [p] for an example of strings in the quiver of Ap.

THEOREM 3.8. For a maximal rigid object T in C,, the endomorphism
ring Ar is of finite type, and the number of indecomposable representations is

1
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Fig. 5. The string d~'cba™!, where b is the only D-arrow, starts at the vertex correspond-
ing to T and ends at the vertex corresponding to T,. Note how a path like ec (or its
inverse) cannot be in a string, since it is a zero relation. Also, the path gf is not a string,
while both gwf and gw™ ' f are.

Proof. Let @ be the quiver of A7 and I the relation ideal. Moreover, let
[ denote the loop vertex, and w the loop itself. For a string o we will denote
the associated indecomposable representation by M (o).

First consider strings which do not involve the loop. These are in bi-
jection with ordered pairs of vertices: For each pair 7, j from Qo, let T3, 7T}
be the associated summands of T'. If T; € Wr, or vice versa, there is, as
in Lemma [3.7] a string without a D-arrow connecting ¢ and j. So suppose
this is not the case. Consider the (unique) summand 7} which is of mini-
mal quasilength such that T; and T are both in Wr,. Then there is some
T-subwing triple (Tj; T}, T;) where T; € Wy and T € WT; or the other way
around. Now use Lemma 3.7 again to find strings connecting i to the vertex
i’ associated with T} and j to the vertex j’ associated with 7. Now there is
a D-arrow [, : i’ — j'. Connecting the two strings by 3, yields the desired
string, and we can choose the orientation.

In particular, by Remark any non-loop string starting and ending at
the same vertex is a trivial string.

Denote by o(i, j) the unique non-loop string starting at i and ending at j,
so o(i,j)~! = o (j,1). For the corresponding indecomposable representations
we have isomorphisms M (o (i,7)) ~ M(o(j,4)). The simple representations
are the M(o(i,7)). The total number of representations corresponding to
non-loop strings is therefore

-1+ ("5 1) = e
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where the first term is the number of simple representations and the second
is the number of strings of length > 1 up to orientation.

Now for the strings passing through the loop. For each pair i, j of vertices,
there are two strings from ¢ to j passing through the loop w:

0,(i,5) = o(l, Hwo(i ), oy (i) = oll, o™ a(,1),
and these are all possible loop strings. We see that (o,,(i,7))™! = o (4,1),
so M(o,(i,7)) ~ M(o,(j,4)) for any choice of i, j, in particular for i = j.
We deduce that the indecomposable representations associated with loop
strings are in bijection with ordered pairs of vertices, and the number of
such representations is (n — 1)2.

These are all the strings. Since (by Remark and Lemma the
only closed strings are either trivial, w or of the form aca~"! for some arrow
(or inverse arrow) « and some string o, it follows that there are no band
modules. So the string modules we have presented form a complete set of
isomorphism classes of Ap-modules.

Summarising, we find that the total number of representations is

1 1
i(n2 —n)+ (n—-1)*= 5(3712 —5n+2). =

4. On the behaviour of the Hom-functor. For a cluster-tilted alge-
bra Cr = End¢,, (T')°P arising from the cluster category Cp of some hered-
itary algebra H, there is a close connection between the module category
of Cr and the cluster category itself. The main theorem from [BMRI] says
that the functor G = Homg,, (T, —) : Cy — mod Cr induces an equivalence

G :Cyx/add 7T = mod Cr.

In particular, the cluster-tilted algebra is of finite representation type if and
only if Cy has finitely many objects (which again happens if and only if H is
of finite type). By Theorem a similar result cannot hold for the cluster
tubes. The analogous argument fails because the Hom-functor is not full. In
this section, we will study some properties of this functor.

We introduce some notation. For any indecomposable object X in C,
let H(X) = H7(X)U HP(X) be the Hom-hammock of X, where H7 (X)
is the set of indecomposables to which X has 7-maps, and similarly for
HP(X). Also, consider the reverse Hom-hammock R(X) C indC, that is,
the support of Hom¢(—, X') among the indecomposables. Like the ordinary
Hom-hammock, this has a natural structure as the union of two components,
one denoted by R7 (X) containing the indecomposables that have non-zero
T-maps to X, and another one denoted by RP(X) containing those that
have D-maps to X. Note that by the description of the Hom-hammocks,
RT(X) = HP(r72X) and RP(X) = H7 (r72X). So the shape of R(X) is
similar to the shape of H(X) (Figure[2).
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For the remainder of this section, T' = H?;ll T; will be a maximal rigid
object in C,, and we assume that the top summand of T"is T} = (1,n — 1).
Clearly, by redefining the coordinates we can use the results for all maximal
rigid objects of C. As in the preceding sections, we will denote by Ar the
endomorphism ring Ay = End¢(T")°P.

We define F to be a certain set of indecomposable objects in C:

F={X=(a,b)|a+b<2n-—1}.

See Figure [0} The region F in the tube consists of the rigid part and in
addition a triangle of height n — 1 in the non-rigid part. (We have defined
wings only for rigid indecomposables, but we can think of F as the wing of
the object (1,2n — 2).)

Fig. 6. The set F in C4, below the dashed curve. T' is concentrated in the indicated wing.

The following claims are easily verified:

LEMMA 4.1. If X is an indecomposable in Wr,, then HZ (X)NF forms
one rectangle-shaped subgraph of the tube, and similarly for HP(X) N F.

LEMMA 4.2. Let x be either T or D. Then for an indecomposable X, the
set R*(X) contains a unique quasisimple ¢%, and a necessary condition for
an object Y to be in R*(X) is that ¢5 € Wy.

LEMMA 4.3. Let X € F. Then T} ¢ R(X) if and only if X € Wy,

We now want to assign to each indecomposable in F \ add 77T a uniquely
defined string in the quiver of Ap. In the main result of this section we will
show that the images under the Hom-functor are given by these strings. The
first step is to encode information about 7-maps and D-maps in separate
strings, which will be joined to one string at a later stage.

LEMMA 4.4. Let x be either T or D. For X € F we have the following:

(i) R(X)NaddT is empty if and only if X € add7T.
(ii) For any T-subwing triple (Tj;T;,T}), at most one of T and T}, can
be in R*(X).
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(iii) If R*(X)Nadd T is non-empty, there is a unique string in the quiver
of A traversing each of the vertices corresponding to the indecom-
posables in R*(X) NaddT exactly once (and no other vertexr) and
ending at the vertex corresponding to the summand in R*(X)Nadd T
of highest quasilength.

(iv) A string of the type in part (iii) contains no D-arrow (or inverse of

such).

Proof. (i) We need to show that Hom¢ (7, X) = 0 if and only if X €
add7T. If X € add 7T, then there are no non-zero maps from 7" to X since
T is rigid.

For the converse, assume that the intersection is empty. Using Lem-
ma we get ql X < n — 1. Moreover, we have

Exts(T, 771 X) = Home(T, X) = 0.

Since gl X < n — 1, the object X, and consequently 771X, is rigid. So
771X = T, for some i since T is maximal rigid, and we can conclude that
X €addrT.

(ii) We know that Wr, and Wy, are disjoint. The claim then follows
from Lemma

(iii) Assume R*(X)Nadd T is non-empty, and let T; and T}, be elements in
this set with minimal and maximal quasilength, respectively. By Lemma
the unique quasisimple g% which is in R*(X) is now in both Wy, and Wr, .
So in particular Wr, and Wr, have non-empty intersection, and therefore
by Lemma [2.6] we know that T; € Wy, . Also by Lemma [2.6] we see that T},
and 7} are uniquely determined. There is some T-subwing triple (1;; T}, T}"),
and it can easily be seen that if ¢§ were in WTl/, say, then T} would also be
in R*(X), which would violate the minimality condition on 7;. Thus 7; is
the summand of smallest quasilength such that ¢% is in the corresponding
wing. See Figure [7]

Also, for summands Ty we see that Ts € R*(X) if and only if Wy, C
Wr, € Wr, , again by Lemma and the maximality of T},. Now the desired
string is of the type described in Lemma oriented in the suitable way.

(iv) By (ii), a D-arrow associated with a non-degenerate T-subwing triple
(T3; Tj,T)) could not be traversed by a string of the type described in (iii).
Moreover, the loop is disallowed as well, since then the loop vertex would
be traversed twice, contrary to the condition in (iii). m

For an indecomposable X € F such that R*(X) NaddT is non-empty,
where x is either 7 or D, we denote the string in Lemma [£.4]iii) by o%. If
the intersection is empty, we define 0% to be the zero string. The next two
lemmas tell us that different objects in F \ add 77" can be distinguished by
their associated strings.
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Fig. 7. If T; and T} are the summands of T in R*(X) of lowest and highest quasilength,
respectively, then the entire rectangle indicated must be in R*(X).

LEMMA 4.5. Let X, Y € F\ addrT. If U)T( = 0'37; and o8 = ol then
X=Y.

Proof. We note first that for any indecomposable Z, the unique qua-
sisimple ¢% in R7(Z) determines the first coordinate of Z. Similarly, the
unique quasisimple ¢ in RP(Z) determines the sum of the coordinates of
Z modulo the rank n. So if the first coordinate of Z is known, the quasisimple
q? determines the second coordinate modulo n.

Let now X and Y be in F \ add 77" such that U)T( = a% and 0§ = oD.
We aim to show that X and Y must be equal.

By Lemma (i)7 at least one of 0% = o and 0§ = oF is non-zero.
Assume first that both are non-zero. We claim that q)T( = q% and q}? = qe .
As in the proof of Lemma (iii), we observe that if 7} is the T-summand
of smallest quasilength in R* (X), then q)7< is the unique quasisimple which
is in Wy, but not in the wing of any T-summand of smaller quasilength.
Since Tj is also the summand of smallest quasilength in R7 (Y), we must
have q)T( = q% . Similarly, we deduce that q}? = q? .

Thus X and Y have the same first coordinate, and the same second
coordinate modulo n. But since X and Y are in F, this means that unless X
and Y are equal, one of them is in Wy ,_o) and the other is in the non-rigid
part. If they are not equal, there is then a contradiction to Lemma [£.3} If X
is in W1 p—2) and Y is in the non-rigid part, then by Lemma Ty € R(Y)
but 71 ¢ R(X), which is impossible since we have assumed o3 = 0% and
O')D( = 0313. We conclude that if both U)T( = og # 0 and ag = J? # 0, then
X=Y.

Assume then that U)T( = ag # 0 and ag = O')? = 0, and furthermore that
X # Y. Then X and Y have the same first coordinate. Moreover, at least
one of X and Y must be in Wy ,,_9), since the only other possible positions

for an object Z € F such that Ug # 0 and 02 = 0 are on the coray Cin-1,n)-
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Suppose (without loss of generality) that X has smaller quasilength
than Y. So in particular, X is in Wy ,,_g). Let T}, be the object in RT(X)N
add T with highest quasilength. Since X € Wy ,_9), we have T}, # T1.
Therefore, there is some T-subwing triple (1,;T},T}), where T}, is neces-
sarily on the left side since R7 (X) contains whole corays, and so by the
maximality of T}, there can be no more summands of 7" on Cr;, .

Assume first that this triple is non-degenerate. Since RP(X) does not
contain any summands of 7', there is in particular no D-map T; — X. So
X is in H7(T},) but not in HP(T}). Moreover, we see that X ¢ H7Z(T,),
by the maximality of Tj,. So X must be on the coray C.qy. If the triple is
degenerate, then X must be on the right edge of Wr, , since T, ¢ R7 (X). In
any of these two cases, we get a contradiction: Since Y and X have the same
first coordinate, and Y has higher quasilength, T, must be in R (Y"). This
contradicts the equality of 0)7; and 037; , and so our assumption that X #Y
must be wrong. See Figure

Fig. 8. If ok =0l #0and 0% =02 =0, then X and Y have the same first coordinate.
If X is inside some non-degenerate T-subwing triple, then X must be on the coray CTT’;,

since otherwise T}, € R (X).
The situation where U)T( = 0'17/— =0 and U}? = 05 = 0 can be proved in a
similar manner. =»

The following lemma is used to show that if two different objects have
exactly one associated o7 - or oP-string, then the strings are different.

LEmMmA 4.6. If U)T( = 0312 #0, then 037/’ S MoMN-2€ro.

Proof. Suppose that a}é = 0312 % 0, and let T; be the summand in
RT(X)NaddT = RP(Y) Nadd T which has highest quasilength. We claim
that T; = T7. To see this, assume that ql7; < n — 1. Then there is some
(degenerate or non-degenerate) T-subwing triple (T; T3, T;) or (Ty; T}, T;).
Since R7 (X) contains whole corays, and RP(Y") contains whole rays, the
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summand 7}, must be in one of these two reverse Hom-hammocks. But this
contradicts our choice of T;. So T; = Tj.

Now observe that if Y is in F, and there is a D-map 177 — Y, then there
is also a 7-map 17 — Y, so in particular ag #0. u

We now show that if both strings associated with an indecomposable in
JF are non-zero, then there is a larger string containing both of them.

LEMMA 4.7. Let X € F. If both 0)7; and a)’% are non-zero, then there
1s a D-arrow Bx from the end vertex of J)T( to the end vertex of 0)7?. So in
particular, (02)_15XU)T< 1s a well-defined string.

Proof. We consider four cases, depending on the position of X in F.

The first case is when there is a D-map 77 — X. One readily verifies
that there is then also a T-map 77 — X, so in this case T} is in both R7 (X))
and RP(X), and the claim holds with the loop as Bx.

The second case is when there is a 7-map 77 — X, but no D-map from
Ty to X. This happens exactly when X is on the coray C(,_1 ), and in this
case there are no D-maps from any summands of 7' to X, so RP(X)Nadd T
is empty, and there is nothing to prove.

The third case is when X is located on the ray Ry, 1). Then there are
no 7-maps from T to X, so again there is nothing to prove.

The only remaining situation is when X is in the wing W ,_2). As in
the proof of Lemma let T}, be the summand in add TN R (X) of highest
quasilength. Since T}, # T, there is some T-subwing triple (Ty; Th, T},) with
T}, necessarily on the left, since R7 (X) contains whole corays. Assume first
that this triple is non-degenerate. Then, since T, € R7 (X) and T, ¢ R” (X)
by the maximality property of T}, we note the following about the position
of X:

e X € Wr,, but not on the right edge of Wr, , since then there would
be a 7-map T, — X;

o X & Wy, where Y is the object on CTlL which has an irreducible map
to T}, since then there would be no 7-map T}, — X;

e if X € Wr,, then it is on the right edge, since otherwise there would
be no 7-map T, — X.

Our aim is to show that 7} is in RP(X), and moreover that it is the summand
of T with highest quasilength appearing in RP(X).

With the above remarks about the position of X, we see that the only
allowed positions such that there is no D-map 7; — X are positions on the
coray C.ry. But if X were on this coray, then RP(X) N addT would be
empty, contrary to our hypothesis: Namely, assuming this position for X,
suppose there were some summand 7, € RP(X). An equivalent condition
to this (cf. Lemma is that there is a non-zero 7-map X — 72T}, which
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is again equivalent to the existence of a 7-map 7 'X — 7T}. But since
X € CTT;L N Wr,, we see that 7-1X is on the right edge of Wr,. So there
would be a non-zero 7-map T, — 771}, which is impossible since T, and Tj
are Ext-orthogonal.

So T} € RP(X). Let T, be the T-summand of highest quasilength which
appears in RP(X). Then, since both Wry and Wr, contain the quasisimple

g% from Lemma Lemmatells us that Ty € Wr,. But T} is in Wr, as
well, so by Lemma [2.6| again, either T, € Wr, or T,, € Wr,,. The former case
is not possible, since it would imply that 7, € RP(X), which is impossible
since X € Wr,. So the remaining possibility is that T. = T}, that is, T} is
the T-summand in RP(X) of highest quasilength.

By the description of the quiver of Ap in Section [2] there is a D-arrow
Bx associated with the non-degenerate T-subwing triple, from the vertex
corresponding to T}, to the vertex corresponding to T7. Since U)T( ends at the
vertex corresponding to T}, and (Jg)_l starts at the vertex corresponding
to T}, the string (0%)"18x0% is well-defined.

It remains to consider the case where the T-subwing triple (T,; T}, T}) is
degenerate, that is, 7; = 0. In this case, since T, ¢ R7(X), the only option
is that X is on the right edge of Wy, . But then RP(X) NaddT is empty:
If there were a D-map T; — X for some T-summand T}, then T, and Ty
would have an extension, as can be seen from an argument similar to the
above. =

By virtue of the preceding considerations, we can now associate to each
indecomposable object X € F\add 7T a unique indecomposable Ap-module
M (ox) where

0)7( if 0)1? is zero,
ox = UE if U)T( is zero,

(eR)'B8xa% if both 0% and 0¥ are non-zero.
We can now describe the action of the Hom-functor on objects in F.

THEOREM 4.8. Let T be a maximal rigid object of C, and Ap =
End¢(T)°P the endomorphism ring.

(1) Let X be an object in F \ add7T. Then the Ar-module Home (T, X)
is isomorphic to the string module M (o).

(2) The functor Home (T, —) provides a bijection between F\add 7T and
the set of isoclasses of indecomposable Ap-modules.

Proof. (1) By Lemma[4.4]i), the module is non-zero. Let ¢; be the idem-
potent of A7 corresponding to the vertex ¢, which in turn corresponds to
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the summand T; of T'. Then the vector space Home, (7', X') decomposes
n—1 n—1

Home, (T, X) = € e; Home, (T, X) @ Home, (T;, X) @ ix ®Viy),
=1 =1 =1

where each vector space @;x and ¥; x is at most 1-d1men81onal and is spanned

by a 7-map ¢;x : 1T; — X and a D-map ¢;x : 1; — X respectively, these

maps being zero if no non-zero such maps exist.

By the definition of 0; the Vertices for which @;x # 0 are exactly the
vertices that are traversed by ol - Similarly, the vertices for which ¥;x # 0
are the ones traversed by o% ¢~ In particular, there is an equality of dimension
vectors

dim(M (o)) = dim(Home, (T, X)).

We need to establish that the action of A7 on Home, (T, X) is the same
as the action on M (o).

Each map which is irreducible in adde T' corresponds to an arrow in the
quiver of Ap, and the arrow acts by composition with the irreducible map.
Unless both the start vertex and the end vertex of this arrow are vertices
in the support of Home, (T, X), clearly this map (equivalently, this arrow)
has a zero action on both the modules Hom¢ (7, X) and M(ox).

So we must show that each 7-arrow ¢ — j appearing in U)T( acts by an

isomorphism @;x — ®,x, and each 7-arrow 7 — j appearing in a)’% acts by
an isomorphism ¥;x — ¥;x, and finally that if 8x : 7 — j is defined, then

the action of this is given by an isomorphism ®;x — ¥;x

Our first goal is now to show that whenever i — j is a 7-arrow such
that « itself or o~ ! appears in oy, then the action of a is given by a pair
of linear transformations

o/:(PiX—ijX, a'/:LPiXHWjX

which are isomorphisms when their domains and codomains are both non-
zero. (And necessarily zero otherwise.) Let ¢;; : Tj — T; be the irreducible
T-map corresponding to . Then what we need is that if ¢;x and ¢;x are
both non-zero, then ¢;; - ¢ix = ¢;x 0 $j; = ¢jx up to a non-zero scalar, and
similarly that if ¥;x and v, x are both non-zero, then ¢;; - ¥ix = ¥ix o ¢j;
= 1 x. The first assertion is clearly true by the structure of the tube. The
second assertion holds by an application of Lemma [1.3|(i), and Remark [1.4]
where we use the fact that ¢; must be a comp081t10n of maps which are
irreducible in C7, and follows a ray or coray (along the edge of a wing), and
thus all the indecomposables that ¢;; factors through are also in RP(X).

Next let X be such that the D-arrow [Bx : ¢ — j is defined, and thus
appears in the string ox. Then we know that @;x and ¥,x are non-zero.
The action of Bx is given by composition with a D-map ¢;; : Tj — T;. We
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wish to show that (up to multiplication by a non-zero scalar) this action is
given by a linear transformation
(1)
By : Dix ®Uix — Pix OV
In other words, it sends ¢;x to v;x and annihilates v;x. The composition
pix o 1j; is clearly zero, as all compositions of two D-maps are.

Consider the image ¢;x o 1;; of ¢;x. We need the observation that the
T-map ¢;x does not factor through any indecomposable to which there is
no D-map from Tj. This holds since, by Lemma HP(T;) N F forms
a rectangle-shaped subgraph of the tube, and the map ¢;x cannot factor
through any indecomposable outside this subgraph. We can then conclude
from Lemma ii) and Remarkthat ¢ix oV = ¥ x, which is what we
wanted.

It remains to show that if there exists an arrow which connects two
vertices in the support of Home (7', X), but which does not appear in ox,
then the action of this arrow is zero on Home¢ (7, X). By Lemmas
and the only case to consider is when Bx is the loop vertex, and there
is a T-subwing triple (Tj; T}, Tx) such that T; € R7 (X) and T}, € RP(X) or
vice versa. Since the action of the arrow (G : j — k is given by composition
with the D-map vy : Ty — Tj, we only need to study the case where J)T(
traverses j and a)’% traverses k. So we need to show that ¢jx oty : Ty, — X
is zero.

But by examining the Hom-hammocks of T} and T}, we see that if there
is a 7-map T; — X and a D-map T}, — X, then either X is in Wr,, which
contradicts the fact that ¢ must be traversed by ox, or ¢;x factors through
objects on the coray C, 1). In the latter case, the composition must be zero,
since there are no D-maps from T} to any objects on this coray.

(2) Counting the number of elements of F, we find that it contains
n(n—1) objects with quasilength less than n, and 3n(n—1) with quasilength
n or more, that is, a total of %n(n— 1) elements. Since T has n—1 summands,
the cardinality of F \ add 77" is

3 1. 9

in(n —-1)—(n—-1)= 5(371 —5n+ 2),
which, by Theorem is also the number of indecomposables in mod A.
By Lemmas and if X and Y are different objects in F \ add T, then
ox # oy. It then follows from part (1) that Hom¢ (T, X) % Home(T,Y). So
Home (7T, —) provides a bijection. m

We now turn to the indecomposables which are not in F. It is easily seen
that Lemma [4.4(ii)(iv) holds also for indecomposables which are not in F.
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So we can define 0)7; and crg in this case as well. The following theorem now
completes the description of the action of Hom¢ (7', —) on objects.

THEOREM 4.9. Let X be an indecomposable object in C, where X & F.
Then we have the following:

(1) Home(T, X) =0 if and only if X = (n,kn — 1), where k > 2.
(2) If X is not of the type described in (1), then
Home (T, X) = M(c%) I M(oR)
where M (o) is the zero module if o is the zero string.

Proof. (1) When X ¢ F we know that Hom¢ (7, X) = 0 if and only if
Home (77, X) = 0. There are no 7-maps 77 — X if and only if X is on the
ray R, 1), that is, X = (n,t) for some ¢t > 1. Moreover, there are no D-maps
T1 — X if and only if X is on the coray C, ,_1). The indecomposables that
are in the intersection of Ry, 1) and C, ,_1) and outside F are exactly the
ones with coordinates (n,t) such that n+¢ =n +n — 1 mod n. The claim
follows.

(2) The proof of Theorem goes through, with the following exception,
which is exactly what is needed. The action of fx (which in this case is
always the loop, as we see from the argument for (1) above) is zero: The
T-map ¢1x : 11 — X factors through (at least) one object on the coray
Cnn—1)- We know that there are no D-maps from Tj to any object on
this coray. It then follows that the composition ¢1x o111, where 117 is the
D-endomorphism of 17, is a zero map. The result follows.
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