on sums of POWERS of the positive integers

ву

A. SCHINZEL (Warszawa)

Abstract. The pairs (k, m) are studied such that for every positive integer n we have $1^{k}+2^{k}+\cdots+n^{k} \mid 1^{k m}+2^{k m}+\cdots+n^{k m}$.
W. Bednarek asked in a letter for a characterization of pairs $\langle k, m\rangle$ of positive integers such that for every positive integer n,

$$
\begin{equation*}
1^{k}+2^{k}+\ldots+n^{k} \mid 1^{k m}+2^{k m}+\ldots+n^{k m} \tag{1}
\end{equation*}
$$

The following theorem contains a partial answer with the help of Bernoulli numbers B_{n}. Recall that

$$
B_{0}=1, \quad B_{1}=-\frac{1}{2}, \quad B_{2}=\frac{1}{6}, \quad B_{4}=-\frac{1}{30}, \quad B_{2 l+1}=0
$$

and the Bernoulli polynomial $\sum_{l=0}^{n}\binom{n}{l} B_{l} x^{n-l}$ is denoted by $B_{n}(x)$. We shall prove

ThEOREM 1. If the divisibility (1) holds for every positive integer n, then m is odd and
(2) $\quad B_{k m} / B_{k} \in \mathbb{Z}$ for k even, $m B_{k m-1} / B_{k-1} \in \mathbb{Z}$ for k odd ≥ 3.

The condition is sufficient for $k \leq 3$, but insufficient for $k=4$ and infinitely many m.

In fact we propose
Conjecture. For $k>3$ the divisibility (1) holds for every positive integer n only for $m=1$.

To support this conjecture we shall prove
THEOREM 2. For $k=4, n \equiv 58966743\left(\bmod 5^{6} \cdot 11251^{2}\right)$ the divisibility (1) holds only for $m=1$.

THEOREM 3. For $m=n=3$ the divisibility (1) holds only for $k \leq 3$.
Lemma 1. For all positive integers k and n,

$$
1^{k}+\cdots+(n-1)^{k}=: S_{k}(n)=\frac{1}{k+1}\left(B_{k+1}(n)-B_{k+1}\right)
$$

[^0]Proof. See [1, Chapter V, §6, Theorem 3].
Lemma 2. If $P, Q \in \mathbb{Q}[x]$ and $P(n) / Q(n) \in \mathbb{Z}$ for all sufficiently large integers n then $r(x)=P(x) / Q(x)$ is an integer-valued polynomial.

Proof. We may assume that $P, Q \in \mathbb{Z}[x]$ and $D(x)=(P(x), Q(x))_{\mathbb{Z}}$, $P=D P_{1}, Q=D Q_{1}, P_{1}, Q_{1} \in \mathbb{Z}[x],\left(P_{1}, Q_{1}\right)=1$ and $P_{1}(n) / Q_{1}(n) \in \mathbb{Z}$ for $n>n_{1}$. Let R be the resultant of P_{1}, Q_{1}. We have $R=A P_{1}+B Q_{1}$, where $A, B \in \mathbb{Z}[x]$. If $\operatorname{deg} Q_{1}>0$, then $\left|Q_{1}(n)\right|>|R|$ for $n>n_{2}$. Choosing $n>$ $\max \left\{n_{1}, n_{2}\right\}$ we infer that $Q(n) \mid R$, which is impossible. Thus $\operatorname{deg} Q_{1}=0$, $r \in \mathbb{Q}[x]$. Suppose that $r\left(n_{0}\right) \in \mathbb{Z}$ and let $Q\left(n_{0}\right)=q, P\left(n_{0}\right)=p \not \equiv 0(\bmod q)$. For $n>n_{1}, n \equiv n_{0}(\bmod q)$, we have $P(n) \equiv p(\bmod q), Q(n) \equiv 0(\bmod q)$, so that $P_{1}(n) / Q_{1}(n) \notin \mathbb{Z}$, a contradiction.

Lemma 3. If $3^{\nu} \| 2 N$, where $N=n, n+1$ or $n+1 / 2$ and $\nu \geq 1$, then for every positive integer m,

$$
\begin{equation*}
3^{\nu-1} \mid S_{2 m}(n+1) . \tag{3}
\end{equation*}
$$

Proof. Let $3^{\mu} \| m$. We distinguish two cases: $\nu \leq \mu+2$ and $\nu>\mu+2$. In the former case, for every integer i,

$$
i^{2 m} \equiv \begin{cases}1\left(\bmod 3^{\mu+1}\right) & \text { if } i \not \equiv 0(\bmod 3), \\ 0\left(\bmod 3^{\mu+1}\right) & \text { if } i \equiv 0(\bmod 3) .\end{cases}
$$

Hence

$$
S_{2 m}(n+1) \equiv\left\lceil\frac{2 n}{3}\right\rceil=\frac{2 N}{3}\left(\bmod 3^{\mu+1}\right)
$$

and (3) holds.
In the latter case, for every integer $i \not \equiv 0(\bmod 3)$ there exists just one integer $j \equiv 1\left(\bmod 3^{\mu+1}\right), 0<j<3^{\nu}$, such that

$$
\begin{equation*}
i^{2 m} \equiv j\left(\bmod 3^{\nu}\right) . \tag{4}
\end{equation*}
$$

To every $j \equiv 1\left(\bmod 3^{\mu+1}\right), 0<j<3^{\nu}$, there correspond $2 \cdot 3^{\mu-\nu} N$ values of $i \not \equiv 0(\bmod 3), 1 \leq i \leq n$, satisfying (4). Hence

$$
\sum_{\substack{i=1 \\ i \neq 0(\bmod 3)}}^{n} i^{2 m} \equiv 2 \cdot 3^{\mu-\nu} N \sum_{\substack{j \equiv 1\left(\bmod 3^{\mu+1}\right) \\ 0<j<3^{\nu}}} j\left(\bmod 3^{\nu}\right)
$$

However,

$$
\sum_{\substack{j \equiv 1\left(\bmod 3^{\mu+1}\right) \\ 0<j<3^{\nu}}} j=3^{\nu-\mu-1}+\frac{3^{\nu}\left(3^{\nu-\mu-1}-1\right)}{2} \equiv 3^{\nu-\mu-1}\left(\bmod 3^{\nu}\right)
$$

thus

$$
\sum_{\substack{i=1 \\ i \neq 0 \\(\bmod 3)}}^{n} i^{2 m} \equiv 2 \frac{N}{3}\left(\bmod 3^{\nu}\right), \quad \sum_{\substack{i=1 \\ i \neq 0(\bmod 3)}}^{n} i^{2 m} \equiv 0\left(\bmod 3^{\nu-1}\right)
$$

Similarly for $k<\nu-\mu-2$,

$$
\sum_{\substack{i=1 \\ i \neq 0 \\\lfloor\bmod 3)}}^{\left\lfloor n / 3^{k}\right\rfloor} i^{2 m}=\sum_{\substack{i=1 \\ i \neq 0(\bmod 3)}}^{\left\lfloor N / 3^{k}\right\rfloor} i^{2 m} \equiv 2 \frac{N}{3^{k+1}}\left(\bmod 3^{\nu-k}\right)
$$

thus

$$
3^{2 k m} \sum_{\substack{i=1 \\ i \neq 0(\bmod 3)}}^{\left\lfloor n / 3^{k}\right\rfloor} i^{2 m} \equiv 0\left(\bmod 3^{\nu-1}\right)
$$

and

$$
\begin{equation*}
\sum_{\substack{\left.i=1 \\ \bmod 3^{\nu-\mu-2}\right)}}^{n} i^{2 m} \equiv 0\left(\bmod 3^{\nu-1}\right) \tag{5}
\end{equation*}
$$

However, if $i \equiv 0\left(\bmod 3^{\nu-\mu-2}\right)$ and $\nu-\mu-2>0$, then since

$$
2 m(\nu-\mu-2) \geq 2 \cdot 3^{\mu}(\nu-\mu-2) \geq \nu-1
$$

we have $i^{2 m} \equiv 0\left(\bmod 3^{\nu-1}\right)$ and (5) implies (3).
Lemma 4. If $2^{\nu} \| N$, where $N=n$ or $n+1$ and $\nu \geq 1$, then for every positive integer $r>2$,

$$
\begin{equation*}
2^{\nu-1} \mid S_{2 r}(n+1) \tag{6}
\end{equation*}
$$

REmARK. The lemma is also true for $r \leq 2$, but this will not be needed in what follows.

Proof. Let $2^{\rho} \| r$. We distinguish two cases: $\nu \leq \rho+4$ and $\nu>\rho+4$.
In the former case, for every integer i,

$$
i^{2 r} \equiv \begin{cases}1\left(\bmod 2^{\rho+3}\right) & \text { if } i \equiv 1(\bmod 2) \\ 0\left(\bmod 2^{\rho+3}\right) & \text { if } i \equiv 0(\bmod 2)\end{cases}
$$

(here we use $r>1$). Hence

$$
S_{2 r}(n+1) \equiv\left\lceil\frac{n}{2}\right\rceil=\frac{N}{2}\left(\bmod 2^{\rho+3}\right)
$$

and (6) follows.
In the latter case, for every integer $i \equiv 1(\bmod 2)$ there exists just one integer $j \equiv 1\left(\bmod 2^{\rho+3}\right), 0<j<2^{\nu}$, such that

$$
i^{2 r} \equiv j\left(\bmod 2^{\nu}\right)
$$

To every $j \equiv 1\left(\bmod 2^{\rho+3}\right), 0<j<2^{\nu}$, there correspond $2^{\rho+2-\nu} N$ values of $i \equiv 1(\bmod 2), 1 \leq i \leq n$. Hence

$$
\sum_{\substack{i=1 \\ i \equiv 1(\bmod 2)}}^{n} i^{2 r} \equiv 2^{\rho+2-\nu} N \sum_{\substack{j \equiv 1(\bmod 2 \rho+3) \\ 0<j<2^{\nu}}} j\left(\bmod 2^{\nu}\right) .
$$

However,

$$
\sum_{\substack{j \equiv 1\left(\bmod 2^{\rho+3}\right) \\ 0<j<2^{\nu}}} j=2^{\nu-\rho-3}+\frac{2^{\nu}\left(2^{\nu-\rho-3}-1\right)}{2} \equiv 2^{\nu-\rho-3}\left(\bmod 2^{\nu-1}\right),
$$

thus

$$
\sum_{\substack{i=1 \\ i \equiv 1(\bmod 2)}}^{n} i^{2 \nu} \equiv \frac{N}{2} \equiv 0\left(\bmod 2^{\nu-1}\right) .
$$

Similarly, for $k<\nu-\rho-4$,

$$
\sum_{\substack{i=1 \\ i \equiv 1(\bmod 2)}}^{\left\lfloor n / 2^{k}\right\rfloor} i^{2 r}=\sum_{\substack{i=1 \\ i \equiv 1(\bmod 2)}}^{N / 2^{k}} i^{2 r} \equiv 0\left(\bmod 2^{\nu-1-k}\right),
$$

thus

$$
2^{2 k r} \sum_{i=1}^{\left\lfloor n / 2^{k}\right\rfloor} i^{2 r} \equiv 0\left(\bmod 2^{\nu-1}\right)
$$

and

$$
\begin{equation*}
\sum_{\substack{\left.i=1 \\ \bmod 2^{\nu-\rho-4}\right)}}^{n} i^{2 r} \equiv 0\left(\bmod 2^{\nu-1}\right) . \tag{7}
\end{equation*}
$$

However, if $i \equiv 0\left(\bmod 2^{\nu-\rho-4}\right)$ and $\nu-\rho-4>0$, then since $r>2$,

$$
2 r(\nu-\rho-4) \geq \max \left\{2^{\rho+1}, 6\right\}(\nu-\rho-4) \geq \nu-1,
$$

we have $i^{2 r} \equiv 0\left(\bmod 2^{\nu-1}\right)$ and (7) implies (6).
Lemma 5. If a prime p satisfies $p-1 \nmid k$, then p does not divide the denominator of B_{k}. If $p-1 \mid k$, then p occurs in the denominator of B_{k} in the first power only.

Proof. This is the von Staudt theorem, see [1, Chapter V, §6, Theorem 4].

Proof of Theorem 1. Necessity. Since (1) holds for $n=2$ we obtain $m \equiv 1$ $(\bmod 2)$. Consider now k even. By Lemma 1 we have

$$
S_{k}(n)=\frac{1}{k+1} B_{k+1}(n), \quad S_{k+1}(n)=\frac{1}{k m+1} B_{k m+1}(n),
$$

hence, for all integers $n>1, B_{k+1}(n)>0$ and

$$
\frac{k+1}{k m+1} \frac{B_{k m+1}(n)}{B_{k+1}(n)} \in \mathbb{Z}
$$

By Lemma 2 ,

$$
r(x)=\frac{k+1}{k m+1} \frac{B_{k m+1}(x)}{B_{k+1}(x)}
$$

is an integer-valued polynomial and, since $r(0)=B_{k m} / B_{k}$, 22) follows.
Consider next $k \geq 3$ odd. By Lemma 1 we have
$S_{k}(n)=\frac{1}{k+1}\left(B_{k+1}(n)-B_{k+1}\right), \quad S_{k m}(n)=\frac{1}{k m+1}\left(B_{k m+1}(n)-B_{k m+1}\right)$,
hence, for all integers $n>1, B_{k+1}(n)>B_{k+1}$ and

$$
\frac{k+1}{k m+1} \frac{B_{k m+1}(n)-B_{k m+1}}{B_{k+1}(n)-B_{k+1}} \in \mathbb{Z} .
$$

By Lemma 2 ,

$$
r(x)=\frac{k+1}{k m+1} \frac{B_{k m+1}(x)-B_{k m+1}}{B_{k+1}(x)-B_{k+1}}
$$

is an integer-valued polynomial and, since $r(0)=m B_{k m-1} / B_{k-1}$, (2) follows.
Sufficiency. We consider separately $k=1,2,3$.
$k=1$. If $m \equiv 1(\bmod 2)$, then for $n>0$,

$$
i^{m}+(n-i)^{m} \equiv 0(\bmod n),
$$

hence

$$
2 S_{m}(n) \equiv 0(\bmod n) \quad \text { and also } \quad 2 S_{m}(n+1) \equiv 0(\bmod n) .
$$

Thus

$$
\begin{equation*}
\left.\frac{n}{(n, 2)} \right\rvert\, S_{m}(n+1) . \tag{8}
\end{equation*}
$$

Similarly

$$
i^{m}+(n+1-i)^{m} \equiv 0(\bmod n+1) \quad(1 \leq i \leq n),
$$

thus

$$
2 S_{m}(n+1) \equiv 0(\bmod n+1)
$$

and

$$
\begin{equation*}
\left.\frac{n+1}{(n+1,2)} \right\rvert\, S_{m}(n+1) \tag{9}
\end{equation*}
$$

It follows from (8) and (9) that

$$
\left.S_{1}(n+1)=\frac{n(n+1)}{2}=\frac{n}{(n, 2)} \cdot \frac{n+1}{(n+1,2)} \right\rvert\, S_{m}(n+1) .
$$

$\underline{k=2}$. Let $\varepsilon=0$ or 1 or $\frac{1}{2}$. Then

$$
2(n+\varepsilon)=2^{\alpha_{\varepsilon}} \prod_{p>2} p^{e_{p \varepsilon}}
$$

where $p>2$ is a prime. Put

$$
g_{\varepsilon} \equiv\left\{\begin{array}{l}
5(\bmod 8) \tag{10}\\
g_{p}(\bmod p) \quad \text { if } p>2 \text { and } e_{p \varepsilon}>0
\end{array}\right.
$$

where g_{p} is a primitive root $\bmod p$.
For every positive $i<n+\varepsilon$ we have

$$
g_{e} i \equiv \pm j(\bmod 2(n+\varepsilon))
$$

where $0<j<n+\varepsilon$; here j and the sign are uniquely determined. It follows that

$$
g_{\varepsilon}^{2 m} i^{2 m} \equiv j^{2 m}(\bmod 4(n+\varepsilon))
$$

and, since to different i correspond different j,

$$
\begin{gathered}
g_{\varepsilon}^{2 m} S_{2 m}(\lceil n+\varepsilon\rceil) \equiv S_{2 m}(\lceil n+\varepsilon\rceil)(\bmod 4(n+\varepsilon)), \\
4(n+\varepsilon) \mid\left(g_{\varepsilon}^{2 m}-1\right) S_{2 m}(\lceil n+\varepsilon\rceil) .
\end{gathered}
$$

However, by (2) and Lemma 5, and since $B_{2}=\frac{1}{6}$, for every prime p we have either $p-1 \nmid 2 m$ or $p \leq 3$. Therefore, by (10),

$$
\left(g_{\varepsilon}^{2 m}-1,4(n+\varepsilon)\right)=2(2 n+2 \varepsilon, 4) 3^{\beta_{\varepsilon}}, \quad \beta_{\varepsilon} \leq e_{3 \varepsilon}
$$

thus for $\varepsilon=0,1$,

$$
\left.\frac{n+\varepsilon}{(n+\varepsilon, 2) 3^{\beta_{\varepsilon}}} \right\rvert\, S_{2 m(n+\varepsilon)},
$$

while for $\varepsilon=\frac{1}{2}$,

$$
\left.\frac{2 n+1}{3^{\beta_{\varepsilon}}} \right\rvert\, S_{2 m}(n+1)
$$

If $e_{3 \varepsilon}>0$, by Lemma 3 we have

$$
3^{e_{3 \varepsilon}-1} \mid S_{2 m}(n+1)
$$

thus for $\varepsilon=0,1$,

$$
\left.\frac{n+\varepsilon}{(n+\varepsilon, 6)} \right\rvert\, S_{2 m}(n+1)
$$

while for $\varepsilon=\frac{1}{2}$,

$$
\left.\frac{2 n+1}{(2 n+1,3)} \right\rvert\, S_{2 m}(n+1)
$$

It follows that

$$
\begin{align*}
& \frac{n}{(n, 6)}\left|S_{2 m}(n+1), \quad \frac{n+1}{(n+1,6)}\right| S_{2 m}(n+1) \\
& \left.\frac{2 n+1}{(2 n+1,3)} \right\rvert\, S_{2 m}(n+1) \tag{11}
\end{align*}
$$

hence

$$
\left.S_{2}(n+1)=\frac{n(n+1)(2 n+1)}{6}=\frac{n}{(n, 6)} \frac{n+1}{(n+1,6)} \frac{2 n+1}{(2 n+1,3)} \right\rvert\, S_{2 m}(n+1)
$$

$\underline{k=3}$. For $m=1$ the condition (2) is clearly sufficient. Thus we assume $m \geq 3,3 m-1=2 r, r \geq 4$. Let $\varepsilon=0$ or 1 , and

$$
n+\varepsilon=2^{\alpha_{2+\varepsilon}} \prod_{p>2} p^{e_{p, 2+\varepsilon}}
$$

where $p>2$ is a prime. Put

$$
h_{\varepsilon} \equiv\left\{\begin{array}{l}
5(\bmod 8) \tag{12}\\
g_{p^{r}}\left(\bmod p^{r}\right) \quad \text { if } p>2 \text { and } e_{p, 2+\varepsilon}>0
\end{array}\right.
$$

where $g_{p^{r}}$ is a primitive root $\bmod p^{r}$.
For every positive $i<n+\varepsilon$ we have

$$
h_{\varepsilon} i \equiv j(\bmod n+\varepsilon),
$$

where $0<j<n+\varepsilon$. It follows that

$$
h_{\varepsilon}^{2 r} i^{2 r} \equiv j^{2 r}(\bmod n+\varepsilon),
$$

and, since to different i correspond different j,

$$
\begin{gathered}
h_{\varepsilon}^{2 r} S_{2 r}(n+\varepsilon) \equiv S_{2 r}(n+\varepsilon)(\bmod n+\varepsilon), \\
n+\varepsilon \mid\left(h_{\varepsilon}^{2 r}-1\right) S_{2 r}(n+\varepsilon) .
\end{gathered}
$$

However, by (2) and Lemma 5, and since $B_{2}=\frac{1}{6}$, for every prime p we have either $p-1 \nmid 2 r$ or $p \mid 6 m$. By (12),

$$
\left(n+\varepsilon, h_{\varepsilon}^{2 r}-1\right)=2^{\beta_{2+\varepsilon}} \prod_{\substack{p|3 m \\ p-1| 2 r}} p^{\min \left\{e_{p, 2+\varepsilon}, 1\right\}}=: 2^{\beta_{2+\varepsilon}} \Pi_{\varepsilon},
$$

thus

$$
\left.\frac{n+\varepsilon}{2^{\beta_{2+\varepsilon}}\left(n+\varepsilon, \Pi_{\varepsilon}\right)} \right\rvert\, S_{2 r}(n+\varepsilon), \quad \beta_{2+\varepsilon} \leq \alpha_{2+\varepsilon}
$$

If $\alpha_{2+\varepsilon}>0$, by Lemma 4 we have

$$
2^{\alpha_{2+\varepsilon}-1} \mid S_{2 r}(n+1)
$$

thus in any case

$$
\begin{equation*}
\left.\frac{n+\varepsilon}{\left(n+\varepsilon, 2 \Pi_{\varepsilon}\right)} \right\rvert\, S_{2 r}(n+1) . \tag{13}
\end{equation*}
$$

Now, for every integer i,

$$
i^{3 m}+(n+\varepsilon-i)^{3 m} \equiv 3 m(n+\varepsilon) i^{2 r}\left(\bmod (n+\varepsilon)^{2}\right)
$$

hence for every positive integer n,

$$
2 S_{3 m}(n+\varepsilon) \equiv 3 m(n+\varepsilon) S_{2 r}(n+\varepsilon)\left(\bmod (n+\varepsilon)^{2}\right)
$$

and by 13 ,

$$
\begin{equation*}
\left.\frac{(n+\varepsilon)^{2}}{\left((n+\varepsilon)^{2}, 4\right)} \right\rvert\, S_{3 m}(n+1) \tag{14}
\end{equation*}
$$

It follows that

$$
\left.\frac{n^{2}}{\left(n^{2}, 4\right)} \right\rvert\, S_{3 m}(n+1) \quad \text { and } \left.\quad \frac{(n+1)^{2}}{\left((n+1)^{2}, 4\right)} \right\rvert\, S_{3 m}(n+1)
$$

hence

$$
\left.S_{3}(n+1)=\frac{n^{2}(n+1)^{2}}{4} \right\rvert\, S_{3 m}(n+1)
$$

Insufficiency. Take m to be a prime $\equiv 17(\bmod 30)$. The condition (2) is fulfilled, since $B_{4 m} / B_{4}=-30 B_{4 m} \in \mathbb{Z}$. Indeed, by Lemma 5 $B_{4 m}$ has in the denominator only the first powers of primes p such that $p-1 \mid 4 m$. The divisibility gives $p=2,3,5,2 m+1$ or $4 m+1$. Now, $2 \cdot 3 \cdot 5=30$, $2 m+1$ is divisible by 5 and $4 m+1$ by 3 . It follows from Theorem 2 that $S_{4}(n+1) \nmid S_{4 m}(n+1)$ for a positive integer n.

Lemma 6. If p is a prime, $k^{\prime} \equiv k \not \equiv 0(\bmod p-1)$ and $n^{\prime} \equiv n(\bmod p)$, then

$$
S_{k^{\prime}}\left(n^{\prime}\right) \equiv S_{k}(n)(\bmod p)
$$

Proof. This follows from the well-known congruence

$$
1^{k}+\cdots+(p-1)^{k} \equiv 0(\bmod p)
$$

provided $k \not \equiv 0(\bmod p-1)($ see $[2, ~ p .95])$, and from the Fermat theorem.
Lemma 7. If $p>2$ is a prime, $k \geq \alpha>1, k^{\prime} \geq \alpha, k \not \equiv 0(\bmod p(p-1))$, $k^{\prime} \equiv k\left(\bmod p^{\alpha-1}(p-1)\right)$ and $n^{\prime} \equiv n\left(\bmod p^{\alpha+1}\right)$, then

$$
\begin{equation*}
S_{k^{\prime}}\left(n^{\prime}\right) \equiv S_{k}(n)\left(\bmod p^{\alpha}\right) \tag{15}
\end{equation*}
$$

Proof. Let g be a primitive root modulo $p^{\alpha+1}$. The transformation $i \mapsto g i$ $\left(\bmod p^{\alpha+1}\right)$ maps the set of residues modulo $p^{\alpha+1}$ onto itself. Hence

$$
g^{k}\left(S_{k}\left(n^{\prime}\right)-S_{k}(n)\right) \equiv S_{k}\left(n^{\prime}\right)-S_{k}(n)\left(\bmod p^{\alpha+1}\right)
$$

thus

$$
\left(g^{k}-1\right)\left(S_{k}\left(n^{\prime}\right)-S_{k}(n)\right) \equiv 0\left(\bmod p^{\alpha+1}\right)
$$

and, since by the assumption on $k,\left(g^{k}-1, p^{2}\right)=p$, we obtain

$$
S_{k}\left(n^{\prime}\right) \equiv S_{k}(n)\left(\bmod p^{\alpha}\right)
$$

The congruence 15 now follows by Euler's theorem.

Lemma 8. If $n \equiv 58966743\left(\bmod 11251^{2}\right)$, then

$$
S_{4 m}(n+1) \equiv 0(\bmod 11251)
$$

only if $m \equiv 1(\bmod 5625)$.
Proof. The number $p=11251$ is a prime and

$$
n \equiv 252(\bmod p), \quad\left\lfloor\frac{n}{p}\right\rfloor \equiv 5241(\bmod p) .
$$

If $4 m \equiv 0(\bmod p-1)$, then

$$
S_{4 m}(n+1) \equiv n-\left\lfloor\frac{n}{p}\right\rfloor \equiv-4989 \not \equiv 0(\bmod p)
$$

If $4 m \not \equiv 0(\bmod p-1)$, it suffices by Lemma 6 to verify the congruence $S_{4 m}(252) \equiv 0(\bmod p)$ for m in the interval $[1,11249]$. The verification has been performed by J. Browkin.

Lemma 9. If $n \equiv 58966743\left(\bmod 5^{6}\right)$, then

$$
S_{4 m}(n+1) \equiv 0\left(\bmod 5^{5}\right)
$$

only if $m=1$ or $m \equiv 501(\bmod 625)$.
Proof. We have $58966743 \equiv 13618\left(\bmod 5^{6}\right)$. If $m \equiv 0(\bmod 5)$, then

$$
S_{4 m}(n+1) \equiv n-\left\lfloor\frac{n}{5}\right\rfloor \equiv 13618-2723=10895 \not \equiv 0(\bmod 25) .
$$

If $m \not \equiv 0(\bmod 5)$, it suffices by Lemma 7 to verify the congruence $S_{4 m}(13619) \equiv 0\left(\bmod 5^{5}\right)$ for m in the interval $[1,626]$. The verification has been performed by J. Browkin.

Proof of Theorem 2. Since for $n \equiv 58966743\left(\bmod 55^{6} \cdot 11251^{2}\right)$ we have

$$
S_{4}(n+1) \equiv 0\left(\bmod 5^{5} \cdot 11251\right)
$$

the theorem follows from Lemmas 8 and 9
Lemma 10. For every positive integer k,

$$
\begin{align*}
\left(2^{k}, 1+2^{k}+3^{k}\right) & \leq 4 \tag{16}\\
\left(3^{k+1}, 1+2^{k}+3^{k}\right) & \leq 3 k \tag{17}
\end{align*}
$$

Proof. We have $3^{k} \equiv 1(\bmod 4)$ for k even and $3^{k} \equiv 3(\bmod 8)$ for k odd, which implies (16). Further

$$
\operatorname{ord}_{3}\left(1+2^{k}\right)= \begin{cases}0 & \text { for } k \text { even, } \\ \operatorname{ord}_{3} k+1 & \text { for } k \text { odd }\end{cases}
$$

which implies (17).
Proof of Theorem 图. We have

$$
1+2^{3 k}+3^{3 k}-2^{k} \cdot 3^{k+1}=\left(1+2^{k}+3^{k}\right)\left(1+2^{2 k}+3^{2 k}-2^{k}-3^{k}-6^{k}\right),
$$

thus if (1) holds, then

$$
\begin{equation*}
1+2^{k}+3^{k} \mid 2^{k} \cdot 3^{k+1} \tag{18}
\end{equation*}
$$

By (16) and 17), $\left(2^{k} \cdot 3^{k+1}, 1+2^{k}+3^{k}\right) \leq 12 k$, thus by (18),

$$
1+2^{k}+3^{k} \leq 12 k
$$

which implies $k \leq 3$.
Acknowledgments. Thanks are due to Prof. J. Browkin, for the computation on which Lemmas 8 and 9 are based, and for pointing out a mistake in the former formulation of Lemma 7

REFERENCES

[1] I. Z. Borevič and I. R. Šafarevič, Number Theory, Academic Press, 1966.
[2] L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chelsea, 1952.
A. Schinzel

Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-956 Warszawa, Poland
E-mail: schinzel@impan.pl

[^0]: 2010 Mathematics Subject Classification: Primary 11B57.
 Key words and phrases: Bernoulli numbers, Bernoulli poynomials.

