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Abstract. We describe the structure of finite-dimensional algebras of domestic rep-
resentation type over an algebraically closed field whose Auslander–Reiten quiver consists
of generalized standard and semiregular components. Moreover, we prove that this class
of algebras contains all special biserial algebras whose Auslander–Reiten quiver consists
of semiregular components.

1. Introduction and the main results. Throughout the paper, by an
algebra we mean a basic, indecomposable finite-dimensional K-algebra over
an algebraically closed field K. For an algebra A, we denote by modA the
category of finite-dimensional (over K) right A-modules and by indA the
full subcategory of modA formed by the indecomposable modules. It follows
from general theory that every algebra A is isomorphic to a bound quiver
algebra KQ/I, where Q = QA is a finite connected quiver, called the Gabriel
quiver of A, and I is an admissible ideal in the path algebra KQ of Q over K
[3, Chapter II]. Moreover, for A = KQ/I, the category modA is equivalent
to the category repK(Q, I) of finite-dimensional representations of Q over K
bound by I [3, Chapter III].

The Jacobson radical radA of modA is the ideal generated by all non-
invertible homomorphisms between modules in indA, and the infinite radical
rad∞A of modA is the intersection of all powers radiA, i ≥ 1, of radA. By a
result of Auslander [5], rad∞A = 0 if and only if A is of finite representation
type, that is, indA admits a finite number of pairwise non-isomorphic mod-
ules (see also [28] for an alternative proof of this result). On the other hand,
if A is of infinite representation type then (rad∞A )2 6= 0, by a result proved
in [10].

From the remarkable Tame and Wild Theorem of Drozd [16] (see also
[13]) the class of finite-dimensional algebras over an algebraically closed
field K may be divided into two disjoint classes. The first class, called the
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tame algebras, consists of algebras for which the indecomposable modules
occur in each dimension in a finite number of discrete and a finite num-
ber of one-parameter families. The second class is formed by the wild alge-
bras whose representation theory comprises the representation theories of all
finite-dimensional algebras over K. Accordingly, we may realistically hope to
classify the indecomposable finite-dimensional modules only for tame alge-
bras. More precisely, a finite-dimensional K-algebra A over an algebraically
closed field K is called tame if, for any dimension d, there exist a finite
number of K[x]-A-bimodules Mi, 1 ≤ i ≤ nd, which are free of finite rank
as left modules over the polynomial algebra K[x] in one variable, and all
but finitely many isomorphism classes of indecomposable right A-modules
of dimension d are of the form K[x]/(x − λ) ⊗K[x] Mi for some λ ∈ K and
some i. Moreover, let µA(d) be the least number of K[x]-A-bimodules sat-
isfying the above condition for d. Then A is said to be domestic if there
exists a positive integer m such that µA(d) ≤ m for any d ≥ 1 (see [14],
[35]). Examples of domestic algebras are tilted algebras of Euclidean type.
On the other hand, tubular algebras (in the sense of [36, Section 5]) are tame
non-domestic algebras (see [40, Lemma 3.6]).

An important combinatorial and homological invariant of an algebra A is
its Auslander–Reiten quiver ΓA whose vertices are the isomorphism classes
of modules in indA, the arrows correspond to the irreducible maps between
modules in indA, and we have the Auslander–Reiten translations τA = DTr
and τ−1A = TrD related to almost split sequences in modA (see [3, Chap-
ter IV] for details). We do not distinguish between a module in indA and
the corresponding vertex of ΓA.

By a component of ΓA we mean a connected component of the transla-
tion quiver ΓA. Following [41], a component C of ΓA is said to be generalized
standard if rad∞A (X,Y ) = 0 for all modules X and Y in C. A component C of
ΓA is called regular if C contains neither a projective module nor an injective
module, and semiregular if C does not contain both a projective and an injec-
tive module. The shapes of regular and semiregular components of ΓA have
been described by Liu in [30], [31] and Zhang (regular components) in [49].

An algebra A is said to be of semiregular type if all components in ΓA are
semiregular. This class of algebras consists of algebras of infinite representa-
tion type and contains the following classes of algebras: hereditary algebras of
infinite representation type [34], [36], [38], [39], tilted algebras with semireg-
ular connecting components [3], [36], [39], tubular algebras [36], canonical
algebras [36], and quasitilted algebras of canonical type [12], [29], [45]. It
would be interesting to find a description of all algebras of semiregular type.
We refer the reader to the recent article [8] providing a complete description
of all algebras of semiregular type for which the cycles of indecomposable
finite-dimensional modules are finite.
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A fundamental role in the current representation theory is played by qu-
asitilted algebras, introduced by Happel, Reiten and Smalø in [26]. It is the
class of algebras of the form A = EndH(T ), where T is a tilting object in
a hereditary abelian K-category H. It was shown in [26] that an algebra
A is quasitilted if and only if A is of global dimension at most two and
each module in indA has projective dimension at most one or injective di-
mension at most one. Besides tilted algebras, which are the endomorphism
algebras of tilting modules over hereditary algebras, an important class of
quasitilted algebras is formed by the quasitilted algebras of canonical type.
Following [29], an algebra A is called quasitilted of canonical type provided
A = EndH(T ) for a tilting object in a hereditary K-category H whose de-
rived category Db(H) (of bounded complexes over H) is equivalent, as a
triangulated category, to the derived category Db(modΛ) of the module cat-
egory of a canonical algebra Λ (introduced in [36]). Then Db(modA) and
Db(modΛ) are also derived equivalent (see [29, Section 3]). It was shown in
[29] that an algebra A is quasitilted of canonical type if and only if A is a
semiregular branch enlargement of a concealed canonical algebra. Further,
it was shown in [45, Theorem A] that A is a tame quasitilted algebra if and
only if A is tame tilted or a tame semiregular branch enlargement of a tame
concealed algebra. In particular, this implies that every tame quasitilted al-
gebra is a tilted algebra or a quasitilted algebra of canonical type. Finally,
Happel [25] proved that this is the case for an arbitrary quasitilted algebra.

LetC be a tame concealed algebra, that is, an algebra of the formEndH(T ),
where T is a tilting module from the additive category of the postprojective
component of a hereditary algebra H of Euclidean type. Then ΓC consists of
a postprojective component PC , a preinjective component QC , and a family
T C = (T Cλ )λ∈P1(K) of pairwise orthogonal generalized standard stable tubes
separating PC from QC (see [36], [38]). By a semiregular branch enlargement
of C we mean an algebra of the form

B =

D M 0

0 C D(N)

0 0 E

 ,
where

B(r) =

[
D M

0 C

]
and B(l) =

[
C D(N)

0 E

]
,

with D(N) = HomK(N,K), are respectively a tubular extension of C and
a tubular coextension of C in the sense of [36, (4.7)] (see also [39, Chapter
XV]), and no tube in T C admits both a direct summand of M and a direct
summand of N (see [29], [45]). Then B is a quasitilted algebra of canonical
type, and B(r) and B(l) are called the right part and the left part of B,
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respectively. Moreover, following [45], B is said to be a tame semiregular
branch enlargement of C if B(r) and B(l) are tame algebras, that is, tilted
algebras of Euclidean type or tubular algebras. Finally, B is said to be a
domestic semiregular branch enlargement of C if B(r) and B(l) are domestic
algebras, equivalently, tilted algebras of Euclidean type.

The following theorem is the first main result of the paper.

Theorem A. Let A be an algebra. The following statements are equiv-
alent:

(i) A is a domestic quasitilted algebra of canonical type.
(ii) A is a domestic semiregular branch enlargement of a tame concealed

algebra.
(iii) A is an algebra of semiregular type and (rad∞A )3 = 0.
(iv) A is an algebra of semiregular type, all components in ΓA are gen-

eralized standard, and all but finitely many of them are stable tubes
of rank one.

A prominent role in the representation theory of tame algebras is played
by special biserial algebras introduced in [47]. Recall that an algebra A is
called special biserial if A is isomorphic to a bound quiver algebra KQ/I,
where the bound quiver (Q, I) satisfies the following conditions:

(SB1) The number of arrows in Q with a prescribed source or target is
at most two.

(SB2) For any arrow α in Q, there is at most one arrow β and one arrow
γ such that αβ and γα are not in I.

Moreover, if the ideal I is generated only by paths of Q, then A is said to be a
string algebra [9]. Further, following [4], a special biserial algebra A = KQ/I
is said to be a gentle algebra if the following conditions are satisfied:

(G1) The ideal I is generated by a set of paths in Q of length 2.
(G2) For any arrow α in Q, there is at most one arrow ξ and one arrow

η such that αξ and ηα belong to I.

Important classes of special biserial algebras are provided by iterated
tilted algebras of Dynkin type An [2], iterated tilted algebras of Euclidean
type Ãn [4], biserial algebras of finite representation type [47], algebras whose
indecomposable modules all have multiplicity-free composition factors [32],
blocks of group algebras with cyclic and dihedral defect groups (see [1],
[17]), selfinjective algebras of Dynkin type An and Euclidean type Ãn (see
[46]), biserial selfinjective algebras having simply connected Galois coverings
[33], as well as algebras appearing in the Gelfand–Ponomarev classification
of singular Harish-Chandra modules over the Lorentz group [22], algebras
appearing in the classification of restricted Lie algebras, or more generally
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infinitesimal group schemes, with tame principal block in odd characteristic
(see [19], [20]). We also mention that the special biserial algebras form a
distinguished class of tame algebras whose representation theory is rather
well understood (see [9], [15], [18], [21], [33], [37], [47], [48]).

For positive integers p and q, we denote by Ãp,q the quiver
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and call its path algebra KÃp,q the canonical algebra of type Ãp,q. Further,
by a gentle semiregular branch enlargement of a hereditary algebra of Eu-
clidean type Ãm we mean a gentle algebra which is a semiregular branch
enlargement of a hereditary algebra of Euclidean type Ãm. Recall also that,
for an algebra A, the invariant α(A) is the largest possible number of inde-
composable summands in the middle of any almost split sequence in modA.
It is known that α(A) ≤ 2 for any string algebra (see [9], [47]).

The following theorem is the second main result of the paper.

Theorem B. Let A be an algebra. The following statements are equiva-
lent:

(i) A is a special biserial algebra of semiregular type.
(ii) A is a quasitilted algebra of canonical type Ãp,q for some positive

integers p and q.
(iii) A is a gentle semiregular branch enlargement of a hereditary algebra

of type Ãm for some positive integer m.
(iv) A satisfies the following conditions:

(a) α(A) ≤ 2.
(b) Every component of ΓA is generalized standard and semiregular.
(c) All but at most four components of ΓA are stable tubes of rank

one.

The paper is organized as follows. In Section 2 we give a sufficient condi-
tion for a gentle algebra to have a non-semiregular Auslander–Reiten compo-
nent. Section 3 is devoted to presenting some facts on algebras of semiregular
type for which all Auslander–Reiten components are generalized standard.
These results are used in Section 4, where we give the proof of Theorem A.
In Section 5 we consider special biserial algebras of semiregular type and give
the proof of Theorem B. The aim of the final Section 6 is to present examples
illustrating the necessity of some assumptions of Theorems A and B.
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2. Non-semiregular Auslander–Reiten components of gentle al-
gebras. The aim of this section is to give a construction of non-semiregular
Auslander–Reiten components of gentle algebras.

Let us recall some basic notions connected with a bound quiver (Q, I) of
an algebra A = KQ/I. For a given arrow α in (Q, I), by s(α) we denote its
source and by t(α) its end. Moreover, by α−1 we denote the formal inverse
of α and set s(α−1) = t(α) and t(α−1) = s(α). With each vertex x in (Q, I)
we associate a trivial walk (walk of length 0) denoted by εx. By a non-trivial
walk in (Q, I) we mean a sequence ω = α1 . . . αn, where αi is an arrow or the
inverse of an arrow in (Q, I) and t(αi) = s(αi+1) for any i ∈ {1, . . . , n− 1}.
In this case we say that ω has length n, and we put s(ω) = s(α1) and
t(ω) = t(αn). A walk α1 . . . αn is called a path if all αi are arrows.

Assume now that A = KQ/I is a string algebra. A non-zero walk ω in
(Q, I) is a walk which does not contain any subpath v such that v or v−1
belongs to I. We note that trivial walks are non-zero walks. Further, by a
zero-path we mean every element of I, and by a zero-relation an element of I
for which no proper subpath belongs to I. It is well known that the class
of indecomposable modules over a string algebra A divides into two classes:
string modules and band modules (see [9], [48]). We study the string modules
in indA, which are modules uniquely determined by non-zero walks in (Q, I).
For a non-zero walk ω in (Q, I), we denote by X(ω) the string module in
indA attached to it. We refer the reader to [9] and [48] for details.

Following Butler and Ringel [9], we say that a non-zero walk ω in (Q, I)
starts in a deep or starts on a peak if there are no arrows γ such that γ−1ω
or γω is a non-zero walk, respectively. A non-zero walk ω is said to end in
a deep or end on a peak if there are no arrows δ such that ωδ or ωδ−1 is a
non-zero walk, respectively. Moreover, in [9, Section 3], it is shown that for
a string algebra A = KQ/I the Auslander–Reiten sequences in modA with
one middle term have the following form:

0→ X(δ1 . . . δm)→ X(δ1 . . . δmβ
−1γ1 . . . γn)→ X(γ1 . . . γn)→ 0

for a non-zero walk δ1 . . . δmβ−1γ1 . . . γn in (Q, I) which ends in a deep and
starts on a peak, where δk, γl and β are arrows. Observe that, using the above
notation, the indecomposable projective module P (x) in modA at the vertex
x can be described as the string module X(w−1u) for some paths w, u such
that s(w) = s(u) = x and w−1u starts and ends in a deep. Dually, the
indecomposable injective module I(x) in modA at the vertex x is the string
module of the formX(wu−1), where w, u are paths such that t(w) = t(u) = x
and wu−1 starts and ends on a peak. The simple module in modA at the
vertex x will be denoted by S(x).

In [27] Huard and Liu gave a characterization of quasitilted string al-
gebras in terms of non-existence of some special walks in (Q, I). Namely,
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a walk ω is called a sequential pair of zero-relations in (Q, I) if ω contains
exactly two zero-relations and they point in the same direction in ω. Clearly,
ω is a sequential pair of zero-relations if and only if ω−1 is a sequential pair
of zero-relations. The following equivalence holds [27, Theorem 2.6].

Theorem 2.1. Let A = KQ/I be a string algebra. Then A is quasitilted
if and only if there is no sequential pair of zero-relations in (Q, I).

Let now A = KQ/I be a gentle algebra. Assume ω is a sequential pair of
zero-relations in (Q, I) of the form z1ω

′z2 for a non-zero walk ω′ and walks
z1, z2 of length 2 such that either z1, z2 ∈ I or z−11 , z−12 ∈ I. Then we say
that ω is a minimal sequential pair of zero-relations if, for any arrow γ in
(Q, I) and a subwalk ω′′ of ω′, none of the walks z1ω′′γ, z1ω′′γ−1, γω′′z2,
γ−1ω′′z2 forms a sequential pair of zero-relations.

Recall that, for an indecomposable non-projective module Z in a module
category modA, the invariant α(Z) is the number m of indecomposable
direct summands in the middle of an Auslander–Reiten sequence

0→ X →
m⊕
i=1

Yi → Z → 0

with the right term Z (see [6], [9], [32], [47], [48] for some results involving
this invariant).

The following proposition describes a sufficient condition for a gentle
algebra to have a non-semiregular Auslander–Reiten component.

Proposition 2.2. Let A = KQ/I be a gentle algebra and β1β2ωα1α2

be a minimal sequential pair of zero-relations for zero-relations β1β2 and
α1α2 in (Q, I). Let M be the indecomposable direct summand of the quotient
module I(t(α2))/soc I(t(α2)) of the indecomposable injective module I(t(α2))
such that soc(M) = S(s(α2)), and N be the indecomposable direct summand
of the radical radP (s(β1)) of the indecomposable projective module P (s(β1))
with top(N) = S(t(β1)). Then there exists a positive integer m such that
M = τmA N and α(τ iAN) = 1 for any i ∈ {0, 1, . . . ,m− 1}.

Proof. We start with the case when the zero-relations α1α2 and β1β2
in β1β2ωα1α2 overlap, that is, we have a path β1β2α2 where β2 = α1 and
β1β2 ∈ I and β2α2 ∈ I. Consider the indecomposable injective module
I(t(α2)) at the vertex t(α2). Then the quotient module I(t(α2))/soc I(t(α2))
contains a unique indecomposable direct summand M = X(w) such that w
starts on a peak and soc(M) = S(s(α2)). Hence, we have the following
Auslander–Reiten sequence in modA:

0→M → X(wβ−12 u)→ N → 0

for N = X(u), where the path u ends in a deep and starts at s(β2). Since
s(β2) = t(β1) and u ends in a deep, X(u) is a direct summand of the radical
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radP (s(β1)) of the indecomposable projective module at the vertex s(β1).
Clearly, M = τAN and α(τAN) = 1.

Assume now β1β2ωα1α2 is a minimal sequential pair of zero-relations for
some walk ω in (Q, I). For the purpose of this proof we shall consider the
formal inverse of β1β2ωα1α2, that is, the sequential pair of zero-relations
of the form α−12 α−11 ω−1β−12 β−11 . Observe that α−12 α−11 ω−1β−12 β−11 is also a
minimal sequential pair of zero-relations in (Q, I).

Let ω−1 = q−10 p1q
−1
1 . . . prq

−1
r be such that pi, qj are paths (q0, qr possibly

trivial). Then we may visualize α−12 α−11 ω−1β−12 β−11 as follows:
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Note that each pi ends in a deep. Indeed, if this is not the case, then there
is an arrow γ in (Q, I) such that piγ is a non-zero path. But then qiγ
is a zero-path since t(pi) = t(qi) for any i ∈ {1, . . . , r} and A is gentle.
Hence, we obtain a contradiction with the minimality of α−12 α−11 ω−1β−12 β−11 .
Analogously, we show that each pi starts on a peak. Assume now that
qi = c1,ic2,i . . . cni,i for some arrows cl,i and i ∈ {0, 1, . . . , r}. Again, by
the choice of α−12 α−11 ω−1β−12 β−11 , for l ∈ {2, . . . , ni − 1}, each c−1l,i ends in
a deep and starts on a peak. Hence, we have in modA Auslander–Reiten
sequences

(1) 0→ S(t(cl,i))→ X(c−1l,i )→ S(s(cl,i))→ 0.

Moreover, using the same arguments for n0 > 1, we find that

(2) 0→ S(t(cn0,0))→ X(c−1n0,0
)→ S(s(cn0,0))→ 0

is also an Auslander–Reiten sequence in modA. Analogously, for nr > 1,
there is in modA an Auslander–Reiten sequence

(3) 0→ S(t(c1,r))→ X(c−11,r)→ S(s(c1,r))→ 0.

Further, for any i ∈ {1, . . . , r},

(4) 0→ X(pi)→ X(pic
−1
ni,i

)→ S(s(cni,i))→ 0

is an Auslander–Reiten sequence in modA. Moreover, for i ∈ {0, . . . , r− 1},
there are in modA Auslander–Reiten sequences

(5) 0→ S(t(c1,i))→ X(c−11,i pi+1)→ X(pi+1)→ 0.
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Since s(cni,i) = t(cni−1,i) and s(c2,i) = t(c1,i), using (1)–(5), we conclude
that there is a positive integer k such that S(t(cn0,0)) = τkAS(s(c1,r)) and
α(τ iAS(s(c1,r))) = 1 for i ∈ {0, . . . , k − 1}. Hence, for all i ∈ {1, . . . , r}, the
modules X(pi) are in the same τA-orbit in ΓA.

Consider now the indecomposable injective module I(t(α2)) in modA
at the vertex t(α2). Then the quotient module I(t(α2))/soc I(t(α2)) has a
unique indecomposable direct summand M with soc(M) = S(s(α2)), and
M = X(w) for some path w which starts on a peak and ends in t(α1) =
s(α2). Then we have in modA an Auslander–Reiten sequence

(6) 0→M → X(wα−11 )→ S(t(cn0,0))→ 0,

since τ−1A M 6= S(t(cn0,0)) implies that α−12 α−11 ω−1β−12 β−11 is not minimal.
Moreover, for the indecomposable projective module P (s(β1)) in modA at
the vertex s(β1), its radical radP (s(β1)) has a unique indecomposable direct
summand N with top(N) = S(t(β1)), and N = X(u) for some path u
ending in a deep and starting at t(β1) = s(β2). Again, by the choice of
α−12 α−11 ω−1β−12 β−11 , β−12 starts on a peak, and since S(s(c1,r)) = S(t(β2)),
we have in modA an Auslander–Reiten sequence

(7) 0→ S(s(c1,r))→ X(β−12 u)→ N → 0.

Summing up, combining the Auslander–Reiten sequences (1)–(7) and taking
m = k + 2, we have M = τmA N and α(τ iAN) = 1 for i ∈ {0, 1, . . . ,m− 1}.

3. Algebras with generalized standard semiregular components.
In this section we prove several results needed in the proof of Theorem A.

Proposition 3.1. Let A be an algebra such that ΓA consists of general-
ized standard semiregular components. Then the following statements hold:

(i) A is a tame algebra.
(ii) Every component in ΓA has one of the forms: a postprojective compo-

nent of Euclidean type, a preinjective component of Euclidean type,
a ray tube, or a coray tube.

Proof. (i) Since every component in ΓA is generalized standard, we have
rad∞A (X,X) = 0 for any module X in indA. Then it follows from [44, Propo-
sition 3.3] that A is a tame algebra.

The statement (ii) follows from (i) and [41, Corollary 3.10].

Proposition 3.2. Let A be an algebra such that ΓA consists of general-
ized standard semiregular components. Moreover, let B be a quotient algebra
of A and T a stable tube of ΓB. Then the following statements hold:

(i) There is a semiregular tube Γ (T ) in ΓA containing all modules of T .
(ii) If Γ (T ) is a ray tube, then all rays of T are rays of Γ (T ).
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(iii) If Γ (T ) is a coray tube, then all corays of T are corays of Γ (T ).
(iv) If Γ (T ) is a stable tube, then Γ (T ) = T .
Proof. (i) Let r be the rank of T and E1, . . . , Er the family of modules

lying on the mouth of T such that τBEi+1 = Ei for any i ∈ {1, . . . , r}, where
we set Er+1 = E1. Then we have in T rays

Ei = Ei[1]→ Ei[2]→ · · ·
and corays

· · · → [2]Ei → [1]Ei = Ei

with Ei[j] = [j]Ei+j−1 for i∈{1, . . . , r}, j∈N+ = {1, 2, . . .}. In particular, we
have in modB irreducible monomorphisms fi,j : Ei[j]→ Ei[j + 1] and irre-
ducible epimorphisms gi,j : [j+1]Ei → [j]Ei for all i∈{1, . . . , r} and j∈N+.

Letm be a non-negative integer and i∈{1, . . . , r}. Observe thatEi[mr+1]
= [mr + 1]Ei (see [38, Lemma X.1.4]). Consider the irreducible monomor-
phisms fi,j : Ei[j] → Ei[j + 1] and the irreducible epimorphisms gi,j :
[j + 1]Ei → [j]Ei for all j ∈ {1, . . . ,mr}. Then we have the composed
monomorphism

f
(m)
i = fi,mr . . . fi,1 : Ei[1]→ Ei[mr + 1]

and the composed epimorphism

g
(m)
i = gi,1 . . . gi,mr : [mr + 1]Ei → [1]Ei,

and so a non-zero homomorphism h
(m)
i =f

(m)
i g

(m)
i ∈ radEndB(Ei[mr + 1]),

because Ei[mr+1] = [mr + 1]Ei and Ei[1] = [1]Ei. Since EndA(Ei[mr+1])

= EndB(Ei[mr + 1]), we conclude that h(m)
i belongs to radA(Ei[mr + 1],

Ei[mr + 1]) = radEndA(Ei[mr + 1]). On the other hand, since every com-
ponent of ΓA is generalized standard, we have rad∞A (Ei[mr+1], Ei[mr+1])

= 0. Hence h(m)
i /∈ rad∞A (Ei[mr + 1], Ei[mr + 1]). But then we conclude

that fi,j /∈ rad∞A (Ei[j], Ei[j + 1]) and gi,j /∈ rad∞A ([j + 1]Ei, [j]Ei) for any
j ∈ {1, . . . ,mr}. This shows that all the modules Ei[k] and [k]Ei, for k ∈
{1, . . . ,mr,mr + 1}, belong to the same component of ΓA as the module
Ei[1] = [1]Ei.

Observe also that, for any i ∈ {1, . . . , r}, we have Ei[2] = [2]Ei+1,
because τBEi+1 = Ei. Hence all the modules Ei[k], for i ∈ {1, . . . , r},
k ∈ {1, . . . ,mr + 1}, belong to the same component of ΓA. Therefore, since
m is an arbitrary non-negative integer, all the indecomposable modules of
the stable tube T of ΓB belong to a component Γ (T ) of ΓA. Finally, every
indecomposable module in T has infinitely many predecessors and infinitely
many successors in indB, and hence in indA, and consequently Γ (T ) is nei-
ther a postprojective nor a preinjective component of ΓA. Hence, applying
Proposition 3.1, we infer that Γ (T ) is a semiregular tube.
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(ii) Assume that Γ (T ) is a ray tube. It is well known that, for any ray

X1 → X2 → · · ·
in Γ (T ), all irreducible homomorphisms uk : Xk → Xk+1, k ∈ N+, in
modA are monomorphisms. Hence, if a module Xt, with t ≥ 2, of such a
ray is an indecomposable B-module of the form Ei[j] for some i ∈ {1, . . . , r}
and j ∈ N+, then all the modules X1, . . . , Xt are B-modules and there are
irreducible monomorphisms uk : Xk → Xk+1 in modA, and hence in modB,
and consequently t = j and X1 = Ei[1], X2 = Ei[2], . . . , Xt = Xj = Ei[j].
This shows that every ray of T is a ray of Γ (T ).

The proof of (iii) is dual to the proof of (ii), and uses the fact that the
irreducible homomorphisms corresponding to arrows of a coray in a coray
tube of ΓA are epimorphisms.

The statement (iv) is an obvious consequence of (ii) and (iii).

Corollary 3.3. Let A be an algebra such that every component in ΓA
is generalized standard and semiregular. Assume A admits a tubular quotient
algebra B. Then ΓA contains infinitely many stable tubes of rank at least two.

Proof. As described by Ringel (see [36, Chapter 5]), we have

ΓB = P(B) ∪ T B0 ∪
( ⋃
q∈Q+

T Bq
)
∪ T B∞ ∪Q(B),

where Q+ is the set of positive rational numbers, P(B) is a postprojective
component of Euclidean type,Q(B) is a preinjective component of Euclidean
type, T B0 is a family T B0,λ, λ ∈ P1(K), of pairwise orthogonal generalized
standard ray tubes containing at least one indecomposable projective B-
module, T B∞ is a family T B∞,λ, λ ∈ P1(K), of pairwise orthogonal generalized
standard coray tubes containing at least one indecomposable injective B-
module, and each T Bq , for q ∈ Q+, is a family T Bq,λ, λ ∈ P1(K), of pairwise
orthogonal generalized standard stable tubes of one of the tubular types
(2, 2, 2, 2), (3, 3, 3), (2, 4, 4) or (2, 3, 6). In particular, ΓB contains infinitely
many stable tubes of rank at least two. Then the statement follows from
Proposition 3.2(i), (iv).

Lemma 3.4. Let A be an algebra and C be a semiregular tube in ΓA.
Then, for all but finitely many indecomposable modules X in C, we have
dimK EndA(X) ≥ 2.

Proof. We give the proof for a ray tube C, since the case of a coray tube
is similar.

Assume that C is a ray tube and r is the number of rays in C. For a module
X in C, we denote by ΩX the maximal sectional path in C which starts at
X and does not lie on a ray, and by ΣX the maximal sectional path in C
which lies on a ray and ends in X. Then, for all but finitely many modules
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X in C, ΩX is a path of length at least r, and hence ΩX and ΣX contain a
module Z such that the subpath of ΩX starting at X and ending in Z is of
non-zero length. From a result of Bautista and Smalø [7], we know that the
composition f of irreducible morphisms lying on a sectional subpath of ΩX
starting atX and ending in Z is non-zero. Denote by g the composition of the
irreducible monomorphisms lying on the sectional subpath of ΣX starting at
Z and ending in X. Since g is a monomorphism, gf is non-zero and belongs
to radEndA(X). This shows that dimK EndA(X) ≥ 2.

Lemma 3.5. Let A be an algebra and Λ a quotient algebra of A. Then
for any module M in indΛ the following statements hold:

(i) τΛM is a submodule of τAM .
(ii) τ−1Λ M is a factor module of τ−1A M .

Proof. See [3, Lemma VIII.5.2] and its dual version.

Proposition 3.6. Let A be an algebra such that ΓA consists of general-
ized standard semiregular components and all but finitely many of them are
stable tubes of rank one. Moreover, let C be a tame concealed quotient algebra
of A. Then the following statements hold:

(i) There is a postprojective component P(C) of Euclidean type in ΓA
containing all modules of the unique postprojective component PC
of ΓC .

(ii) There is a preinjective component Q(C) of Euclidean type in ΓA con-
taining all modules of the unique preinjective component QC of ΓC .

Proof. It follows from Proposition 3.1 that A is a tame algebra and every
component in ΓA has one of the following forms: a postprojective component
of Euclidean type, a preinjective component of Euclidean type, a ray tube,
or a coray tube.

(i) Consider now the postprojective component PC of ΓC . Since C is a
quotient algebra of A, all indecomposable modules of PC are indecomposable
modules inmodA. We will show that there exists a postprojective component
P(C) of ΓA containing all modules of PC . Suppose that this is not true. Since
every postprojective component in ΓA contains a projective module and is
closed under predecessors in indA, we conclude that all but finitely many
indecomposable modules in PC do not belong to postprojective components
of ΓA. Further, since every module in a preinjective component of ΓA has
only finitely many successors in indA, no module from PC belongs to a
preinjective component of ΓA. Therefore, all but finitely many modules from
PC lie in ray or coray tubes of ΓA. On the other hand, for any module X in
PC we have EndA(X) = EndC(X) ∼= K. Then applying Lemma 3.4 and the
assumption on ΓA, we conclude that all but finitely many indecomposable
modules of PC lie on the mouth of stable tubes of rank one of ΓA (see also [38,
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Corollary X.2.7]). Summing up, there exists an indecomposable moduleM in
PC such that the pairwise non-isomorphic indecomposable modules τ−sC M ,
s ∈ N, lie on the mouth of pairwise different stable tubes of rank one in ΓA.
Take a non-negative integer s. Then τ−1A (τ−sC M) = τ−sC M . Now Lemma
3.5(ii) implies that there is an epimorphism τ−1A (τ−sC M)→ τ−1C (τ−sC M), and
hence an epimorphism τ−sC M → τ−s−1C M , which is a proper epimorphism,
because τ−sC M and τ−s−1CM are non-isomorphic. Therefore, we obtain an
infinite sequence of proper epimorphisms

M → τ−1C M → τ−2C M → · · · ,
a contradiction. This completes the proof of (i).

The proof of (ii) is similar.
Proposition 3.7. Let A be an algebra such that ΓA consists of general-

ized standard semiregular components. Moreover, let C be a tame concealed
quotient algebra of A and T C = (T Cλ )λ∈P1(K) the family of all stable tubes
of ΓC . Then the following statements hold:

(i) For each λ ∈ P1(K), there is a unique semiregular tube T Aλ (C) in
ΓA containing all modules of the stable tube T Cλ .

(ii) For any λ ∈ P1(K) with T Aλ (C) being a stable tube, we have T Aλ (C)
= T Cλ .

(iii) The quotient algebra B(C) = A/annA(T A(C)) of A by the annihi-
lator of the family T A(C) = (T Aλ (C))λ∈P1(K) of semiregular tubes
of ΓA is a tame semiregular branch enlargement of C.

(iv) The semiregular tubes T Aλ (C), λ ∈ P1(K), are pairwise orthogonal
and generalized standard.

Proof. It follows from Proposition 3.2(i) that, for each λ ∈ P1(K), there
exists a semiregular tube T Aλ (C) in ΓA containing all modules of T Cλ . Sup-
pose T Aλ (C) = T Aµ (C) for some λ 6= µ in P1(K). Since T Aλ (C) = T Aµ (C)

contains all indecomposable modules of T Cλ and T Cµ , we conclude that there
are indecomposable modules X in T Cλ and Y in T Cµ , and sectional paths of
irreducible homomorphisms in modA between indecomposable modules of
T Aλ (C) of the forms

X = X0
f1−→ X1

f2−→ · · · fs−→ Xs = Z,

corresponding to the arrows of a coray of T Aλ (C), and

Z = Yr
gr−→ Yr−1

gr−1−−−→ · · · g1−→ Y0 = Y,

corresponding to arrows of a ray in T Aλ (C). Moreover, g1, . . . , gr are mono-
morphisms if T Aλ (C) is a ray tube, and f1, . . . , fs are epimorphisms if T Aλ (C)
is a coray tube. Since the composition of irreducible homomorphisms forming
a sectional path is non-zero [7], we conclude that g1 . . . grfs . . . f1 is a non-zero
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homomorphism in HomA(X,Y ) = HomC(X,Y ), and this contradicts the
fact that the stable tubes T Cλ and T Cµ are orthogonal. Therefore, T Aλ (C) 6=
T Aµ (C) for λ 6= µ in P1(K). This shows (i). The statement (ii) follows from
Proposition 3.2(iv).

(iii) Applying [39, Theorems XV.3.9, XV.4.3 and XV.4.4], we conclude
that there is a branch extension B(C)(r) of C such that B(C)(r) is a quotient
algebra of B(C) and all ray tubes of T A(C) are ray tubes of ΓB(C)(r) , and
there is a branch coextension B(C)(l) of C such that B(C)(l) is a quotient
algebra of B(C) and all coray tubes of T A(C) are coray tubes of ΓB(C)(l) .
Since T A(C) is a family of semiregular tubes in ΓB(C), we find that B(C)

is a semiregular branch enlargement of C with the right part B(C)(r) and
the left part B(C)(l). Moreover, since A is a tame algebra, by Proposition
3.1 the quotient algebras B(C)(r) and B(C)(l) of A are also tame algebras.
Therefore, B(C) is a tame semiregular branch enlargement of C.

The statement (iv) follows from the fact that B(C) = A/annA(T A(C))
is a semiregular branch enlargement of a tame concealed algebra and from
[39, Theorems XV.4.3 and XV.4.4].

4. Proof of Theorem A. The equivalence (i)⇔(ii) follows from [45,
Theorem A, Corollary B] and [29, Theorem 3.4]. Further, (ii)⇔(iii) has been
proved in [11, Theorem]. The implication (ii)⇒(iv) is a direct consequence
of [45, Theorem A, Corollaries B and C]. Therefore, it remains to prove that
(iv) implies (ii).

Assume A satisfies (iv). Proposition 3.1 implies that A is a tame algebra
and each component in ΓA has one of the forms: a postprojective component
of Euclidean type, a preinjective component of Euclidean type, a ray tube, or
a coray tube. Further, since every component of ΓA is generalized standard,
it follows from [42, Corollary 4.4] that there is a tame concealed algebra C
which is a quotient algebra of A. Applying now Propositions 3.6 and 3.7, we
conclude that the Auslander–Reiten quiver ΓA contains:
• a postprojective component PA(C) of Euclidean type containing all

modules of the postprojective component PC of ΓC ;
• a preinjective component QA(C) of Euclidean type containing all mod-

ules of the preinjective component QC of ΓC ;
• a family T A(C) = (T Aλ (C))λ∈P1(K) of pairwise orthogonal general-

ized standard semiregular tubes such that, for any λ ∈ P1(K), T Aλ (C)
contains all modules of the stable tube T Cλ from the family T C =
(T Cλ )λ∈P1(K) of all stable tubes of ΓC .

Moreover, the quotient algebra B(C) = A/annA(T A(C)) is a tame semiregu-
lar branch enlargement of the tame concealed algebra C, and clearly T A(C)
is a family of pairwise orthogonal generalized standard semiregular tubes
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in ΓB(C). Since all but finitely many components of ΓA are stable tubes of
rank one, Corollary 3.3 implies that A, and hence B(C), has no tubular
quotient algebra. Therefore, the left part B(C)(l) and the right part B(C)(r)

of B(C) are tilted algebras of Euclidean type, and consequently B(C) is a
domestic semiregular branch enlargement of C. In particular, we conclude
from [29, Theorem 3.4] and [39, Theorems XVII.4.3, XVII.4.4, XVII.5.1 and
XVII.5.2] that ΓB(C) has a disjoint union decomposition

ΓB(C) = PB(C) ∪ T B(C) ∪QB(C),

where T B(C) = T A(C), PB(C) is a postprojective component of Euclidean
type containing all modules of the postprojective component PC of ΓC , and
QB(C) is a preinjective component of Euclidean type containing all inde-
composable modules of the preinjective component QC of ΓC . On the other
hand, it follows from [39, Theorem XVII.5.1] that B(l) = A/annA(P(C)) is a
tilted algebra of Euclidean type having all indecomposable projective mod-
ules in the postprojective component P(C), and hence a domestic branch
coextension of a tame concealed algebra C(l). Moreover, P(C) contains all
modules of the postprojective component PC(l) of ΓC(l) . Since P(C) con-
tains all modules of PC , and the coray tubes of T B(C) are coray tubes of
ΓA, we conclude that C(l) = C, B(l) = B(C)(l), and P(C) = PB(C) (see also
[43, Propositions 2.2 and 2.3]). Similarly, we prove that QB(C) = Q(C) and
B(r) = A/annA(Q(C)) coincides with B(C)(r). Summing up, ΓB(C) has a
disjoint union decomposition

ΓB(C) = P(C) ∪ T A(C) ∪Q(C),
and hence consists of components of ΓA.

We claim that A = B(C). Since all indecomposable projective B(C)-
modules and all indecomposable injective B(C)-modules are A-modules, it is
enough to show that the quivers QA and QB(C) have the same set of vertices.
Clearly, the number of vertices of QA is greater than or equal to the number
of vertices of QB(C), because B(C) is a quotient algebra of A. Suppose QA
has more vertices than QB(C). Then, since A is an indecomposable algebra,
there exist vertices x in QA and y in QB(C), with x not in QB(C), connected
in QA by an arrow α.

Assume first that y = s(α) and x = t(α). Then the indecomposable
projective A-module PA(y) at the vertex y has radical radPA(y) which is
not a B(C)-module, because the simple A-module SA(x) at x is a direct
summand of the top of radPA(y). But then PA(y) is not a B(C)-module,
which contradicts the facts that y belongs to QB(C) and all indecomposable
projective B(C)-modules are A-modules.

Assume now that x = s(α) and y = t(α). Then the indecomposable
injective A-module IA(y) at y has socle factor IA(y)/soc IA(y) which is not a
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B(C)-module, because the simple A-module SA(x) at x is a direct summand
of the socle of IA(y)/soc IA(y). But then IA(y) is not a B(C)-module, which
contradicts the fact that all indecomposable injective B(C)-modules are A-
modules. Therefore, indeed A = B(C), and A is a domestic semiregular
branch enlargement of the tame concealed algebra C. This shows that (iv)
implies (ii).

5. Proof of Theorem B. We start with the following observation.

Lemma 5.1. Let A be a special biserial algebra of semiregular type. Then
A is a gentle algebra.

Proof. Let A = KQ/I be a special biserial algebra of semiregular type.
Since, for a special biserial algebra which is not a string algebra, there ex-
ists at least one indecomposable projective-injective module (see [47], [48]),
we may assume that A = KQ/I is a string algebra. Assume now that
α1ωα2 is a zero-relation for some arrows α1, α2 and a non-trivial path ω
in Q. Then X(ω) is a direct summand of the radical radP (s(α1)) of the
projective module P (s(α1)) and a direct summand of the quotient module
I(t(α2))/soc I(t(α2)) of the injective module I(t(α2)), and then P (s(α1))
and I(t(α2)) belong to the same component of ΓA, a contradiction.

Therefore, ω is trivial and I is generated by paths of length 2. Assume
that Q contains a subquiver of the form

•d

•c

•a •b

α

β1 β2

where α, β1, β2 are distinct arrows and β1α, β2α ∈ I. Then S(c) is a direct
summand of I(d)/soc I(d) for the injective module I(d). On the other hand,
S(c) is also a direct summand of radP (a) or radP (b) for the projective
modules P (a) and P (b). Indeed, if α is the only arrow in Q which starts at
the vertex c, then S(c) is a direct summand of radP (a) and radP (b). If there
exists an arrow δ 6= α such that s(δ) = c, then the claim is an immediate
consequence of the condition (SB2), because then β1δ ∈ I or β2δ ∈ I. Dually,
there are no arrows α in Q such that αβ1, αβ2 ∈ I for distinct arrows β1, β2
such that t(α) = s(β1) = s(β2). Hence (Q, I) satisfies the conditions (G1)
and (G2), which means that A = KQ/I is a gentle algebra.

Proposition 5.2. Let A be a special biserial algebra of semiregular type.
Then A is a gentle semiregular branch enlargement of a hereditary algebra
of type Ãm for some positive integer m.
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Proof. It follows from Lemma 5.1 that A is a gentle algebra KQ/I.
Proposition 2.2 implies that there is no sequential pair of zero-relations in
(Q, I). Hence, by Theorem 2.1, A is a quasitilted algebra. Since A is tame,
we conclude from [45, Theorem A] that A is a tame tilted algebra or a tame
semiregular branch enlargement of a tame concealed algebra.

Assume A is a tilted algebra, and let A = EndH(T ) for a multiplicity-free
tilting module T in the module category modH of a hereditary algebra H.
By general theory, the images of the indecomposable injective modules in
modH via the functor HomH(T,−) : modH → modA form a section ∆T

of the connecting component CT of ΓA determined by T (see [3, Proposition
VIII.3.5]). Moreover, CT is an acyclic and generalized standard component of
ΓA (see [38, Proposition X.3.2]). Further, since CT is a semiregular component
of ΓA and A is a tame algebra, applying [41, Corollary 3.10], we conclude that
CT is either a postprojective component of Euclidean type or a preinjective
component of Euclidean type. Moreover, since α(A) ≤ 2, we deduce that
∆T is a quiver whose underlying graph is Ãr for some positive integer r.
Therefore, A is a representation-infinite tilted algebra of Euclidean type Ãr,
and so a branch coextension or a branch extension of a hereditary algebra
H∗ of Euclidean type Ãs for some positive integer s ≤ r (see [39, Theorem
XVII.5.1]).

Summing up, A is a gentle semiregular branch enlargement of a tame
concealed algebra C of type Ãm, which is in fact a hereditary algebra of type
Ãm for some positive integer m, by the well known classification of tame
concealed algebras (see [38, Section XIV.4]).

We observe that Proposition 5.2 provides the proof of the implication
(i)⇒(iii) of Theorem B.

Assume now that A is a gentle semiregular branch enlargement of a
hereditary algebra H of type Ãm for some positive integer m. Then ΓA has
the disjoint union decomposition

ΓA = PA ∪ T A ∪QA,

where PA is a postprojective component of a Euclidean type Ãs, QA is a
preinjective component of a Euclidean type Ãt, for some positive integers
s and t, T A = (T Aλ )λ∈P1(K) is a family of generalized standard semiregular
tubes, and all but at most two tubes in T A are stable tubes of rank one.
This shows that A satisfies the conditions (a), (b), (c) of (iv). Conversely,
assume that A satisfies (a)–(c). Then it follows from Theorem A that A
is a domestic semiregular branch enlargement of a tame concealed algebra
C and α(A) ≤ 2. Since the left part A(l) and the right part A(r) of A are
tilted algebras of Euclidean type, we conclude that ΓA has the disjoint union
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decomposition
ΓA = PA ∪ T A ∪QA,

where PA is a postprojective component of a Euclidean type ∆(l) consisting
of indecomposable postprojective A(l)-modules, QA is a preinjective com-
ponent of a Euclidean type ∆(r) consisting of indecomposable preinjective
A(r)-modules, and T A = (T Aλ )λ∈P1(K) is a family of generalized standard
semiregular tubes. Further, the assumption α(A) ≤ 2 forces ∆(l) and ∆(r)

to be Euclidean graphs Ãs and Ãt for some positive integers s and t, respec-
tively. Then it follows from the classification of tame concealed algebras (see
[38, Section XIV.4]) that C is a hereditary algebra of Euclidean type Ãm for
a positive integer m. Finally, the assumption (c) implies that at most two
stable tubes of ΓC have been used in the semiregular branch enlargement of
C leading to A. Altogether this implies that A is a gentle semiregular branch
enlargement of C, which is a hereditary algebra of type Ãm. We conclude
that the statements (iii) and (iv) are equivalent.

Clearly, (iii) implies (i). Therefore, it remains to show that (ii) and (iii)
are equivalent.

Following [36, (4.1)], a module T in a module categorymodA is said to be
tilting (respectively, cotilting) provided pdA T ≤ 1 (respectively, idA T ≤ 1),
Ext1A(T, T ) = 0, and T is a direct sum of n pairwise non-isomorphic indecom-
posable modules, with n being the rank of the Grothendieck group K0(A)
of A. Then two algebras A and B are said to be tilting-cotilting equivalent
if there exists a sequence of algebras A = A0, A1, . . . , Am, Am+1 = B and
a sequence of modules T (i) in modAi, with i ∈ {0, 1, . . . ,m}, such that
Ai+1 = EndAi(T

(i)) and T (i) is either a tilting or a cotilting module. It fol-
lows from [23, Corollary 1.7] that, for two tilting-cotilting equivalent algebras
A and B, their derived categories Db(modA) and Db(modB) are equivalent
as triangulated categories. Moreover, by [24, Theorem 4.9], for an algebra A
of finite global dimension, Db(modA) is equivalent, as a triangulated cate-
gory, to the stable module category mod Â of the repetitive algebra Â of A.

Assume now that A is a quasitilted algebra of canonical type Ãp,q for
some positive integers p and q. Then Db(modA) is equivalent, as a triangu-
lated category, to Db(modHp,q) of the hereditary algebra Hp,q = KÃp,q, and
consequently the stable module categories mod Â and mod Ĥp,q are equiva-
lent. Applying [4, Theorem (A)] and [29, Theorem 3.4] we conclude that A is
a gentle semiregular branch enlargement of a hereditary algebra of Euclidean
type Ãm for some positive integer m. Hence (ii) implies (iii).

Assume finally that A is a gentle semiregular branch enlargement of a
hereditary algebra of Euclidean type Ãm for some positive integer m. Then,
applying [4, Theorem (A)] again, we conclude thatA is tilting-cotilting equiv-
alent to a hereditary algebra H = K∆ for a quiver ∆ whose underlying
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graph is Ãn for some positive integer n ≥ m. In particular, Db(modA) and
Db(modH) are equivalent as triangulated categories. Consider the hereditary
algebra Hp,q = KÃp,q, where p is the number of clockwise oriented arrows in
∆ and q is the number of counterclockwise oriented arrows in ∆. Then it is
well known that H can be obtained from Hp,q by a finite sequence of APR-
tilting modules (see [3, Sections VI.2, VII.5 and Lemma VIII.1.8]), and hence
H and Hp,q are tilting-cotilting equivalent. This implies that there exists a
triangle equivalence of the derived categories Db(modH) and Db(modHp,q).
Therefore, Db(modA) and Db(modHp,q) are equivalent as triangulated cat-
egories. Since A is a quasitilted algebra of canonical type, we conclude that
A is a quasitilted algebra of canonical type Ãp,q. This shows that (iii) im-
plies (ii).

6. Examples. The aim of this section is to present some examples il-
lustrating the above considerations.

Example 6.1. Let A = KQ/I be the following bound quiver algebra
given by the quiver Q:
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where I is the ideal in the path algebra KQ generated by the paths ωβ, ξη,
γν, µ%, δκ, ϕψ of length two. Observe that A is a gentle algebra. Consider
the path algebra H = K∆ of the full subquiver ∆ of Q given by the vertices
1, 2, 3, 4, 5, 6 and the arrows α, β, γ, σ, %, δ. Then H is a hereditary algebra of
Euclidean type Ã5, and the family T H = (T Hλ )λ∈P1(K) of stable tubes in ΓH
consists of one stable tube T H0 of rank two having the string modules X(αβ)
and X(σ%) on the mouth, one stable tube T∞ of rank four whose mouth
consists of the simple modules S(2), S(5) and the string modules X(γ) and
X(δ), and the remaining stable tubes T Hλ , λ ∈ K \{0}, all of rank one. Then
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A is a gentle semiregular branch enlargement of H whose left part A(l) and
right part A(r) can be described as follows:

• A(l) = KQ(l)/I(l), whereQ(l) is the full subquiver ofQ given by the ver-
tices 1, 2, 3, 4, 5, 6, 13, 14, 15, 16 and the arrows α, β, γ, σ, %, δ, ν, κ, ϕ, ψ,
and I(l) is the ideal in the path algebra KQ(l) of Q(l) generated by the
paths γν, δκ, ϕψ;
• A(r) = KQ(r)/I(r), where Q(r) is the full subquiver of Q given by the

vertices 1, 2, 3, . . . , 10, 11, 12 and the arrowsα, β, γ, σ, %, δ, ω, ξ, η, µ, π, θ,
and I(r) is the ideal in the path algebra KQ(r) of Q(r) generated by the
paths ωβ, ξη, µ%.

Then ΓA has a disjoint union decomposition

ΓA = PA ∪ T A ∪QA,
where

• PA is a postprojective component of Euclidean type Ã9, containing the
indecomposable projective modules P (1), P (2), P (3), P (4), P (5), P (6),
P (13), P (14), P (15), P (16);
• QA is a preinjective component of Euclidean type Ã11, containing

the indecomposable injective modules I(1), I(2), I(3), I(4), I(5), I(6),
I(7), I(8), I(9), I(10), I(11), I(12);
• T A = (T Aλ )λ∈P1(K) is a family of generalized standard semiregular

tubes, where T Aλ = T Hλ for λ ∈ K \ {0}, T A0 is a coray tube with
six corays and containing the indecomposable injective modules I(13),
I(14), I(15), I(16), and T A∞ is a ray tube with ten rays and containing
the indecomposable projective modules P (7), P (8), P (9), P (10), P (11),
P (12).

Moreover, applying arguments from [4, Section 2], one can show that A is
tilting-cotilting equivalent to the hereditary algebraKÃ10,6 and consequently
A is a quasitilted algebra of canonical type Ã10,6.

Example 6.2. Let A = KQ/I, where Q is the quiver

•
5

�
δ

•��
α

β

•
3 4

@
@I

�
�	

•1

2•

γ

σ

and I is the ideal in KQ generated by the paths αγ, βσ and the difference
of paths δα − δβ. A simple checking shows that A is not a special biserial
algebra, and hence A is not a gentle algebra. Let H be the Kronecker algebra
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K∆ of the subquiver ∆ of Q given by the vertices 3, 4 and the arrows α, β.
Then A is a domestic semiregular branch enlargement of H invoking three
pairwise different stable tubes in the family T H = (T Hλ )λ∈P1(K) of stable
tubes of rank one in ΓH (see [38, Section XI.4] for the description of T H).
We have a disjoint union decomposition

ΓA = PA ∪ T A ∪QA,
where

• PA is a postprojective component of Euclidean type Ã3, containing
the indecomposable projective modules P (1), P (2), P (3), P (4);
• QA is a preinjective component of Euclidean type Ã2, containing the

indecomposable injective modules I(3), I(4), I(5);
• T A = (T Aλ )λ∈P1(K) is a family of generalized standard semiregular

tubes, where T Aλ = T Hλ for λ ∈ P1(K) \ {0, 1,∞}, T A∞ is a coray tube
with two corays and containing the indecomposable injective module
I(1), T A0 is a coray tube with two corays and containing the indecom-
posable injective module I(2), and T A1 is a ray tube with two rays and
containing the indecomposable projective module P (5).

We note that α(A) ≤ 2, every component in ΓA is semiregular and gen-
eralized standard, and all but five components of ΓA are stable tubes of rank
one. This shows that the condition (c) in the statement (iv) of Theorem B
is necessary.

Example 6.3. Let a ∈ K \ {0, 1} and A(a) = KQ/I(a) be the bound
quiver algebra given by the following quiver Q:
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where I(a) is the ideal in the path algebra KQ of Q generated by the ele-
ments ξα − %σ, ξγ − %β, δα − ησ, δγ − aηβ. Then A = A(a) is a tubular
algebra of tubular type (2, 2, 2, 2), which is a tubular (branch) extension of
the hereditary algebra H0 = K∆0 and a tubular (branch) coextension of the
hereditary algebra H∞ = KQ∞, where ∆0 is the quiver given by the vertices
1, 2, 3, 4 and the arrows α, β, γ, σ, and ∆∞ is the quiver given by the vertices
3, 4, 5, 6 and the arrows ξ, η, %, δ (see [36, Section 5] for the general theory of
tubular algebras). Moreover,

ΓA = PA0 ∪ T A0 ∪
( ⋃
q∈Q+

T Aq
)
∪ T A∞ ∪QA∞,
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where Q+ is the set of positive rational numbers and

• PA0 is the postprojective component PH0 of ΓH0 of type Ã3, containing
the indecomposable projective modules P (1), P (2), P (3), P (4);
• QA∞ is the preinjective component QH∞ of ΓH∞ of type Ã3, containing

the indecomposable injective modules I(3), I(4), I(5), I(6);
• T A0 is a family (T A0,λ)λ∈P1(K) of pairwise orthogonal generalized stan-

dard ray tubes, containing two stable tubes of rank two from ΓH0 ,
two ray tubes with two rays containing the indecomposable projective
modules P (5), P (6), and the remaining ray tubes being stable tubes of
rank one;
• T A∞ is a family (T A∞,λ)λ∈P1(K) of pairwise orthogonal generalized stan-

dard coray tubes, containing two stable tubes of rank two from ΓH∞ ,
two coray tubes with two corays containing the indecomposable injec-
tive modules I(1), I(2), and the remaining coray tubes being stable
tubes of rank one;
• for each q ∈ Q+, T Aq is a family (T Aq,λ)λ∈P1(K) of pairwise orthogonal

generalized standard stable tubes of tubular type (2, 2, 2, 2).

In particular, A is an algebra of semiregular type, with α(A) ≤ 2 and all
components in ΓA generalized standard. On the other hand, for each q ∈ Q+,
the family T Aq contains four stable tubes of rank two. Hence, ΓA admits
infinitely many generalized standard stable tubes of rank two. We note thatA
is a tame non-domestic quasitilted algebra of canonical type (see [40, Lemma
3.6]). This shows that the requirement in the statement (iv) of Theorem A
that all but finitely many components of ΓA are stable tubes of rank one is
necessary.
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