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Abstract. We present an alternative way of measuring the Gorenstein projective
(resp., injective) dimension of modules via a new type of complete projective (resp., in-
jective) resolutions. As an application, we easily recover well known theorems such as
the Auslander–Bridger formula. Our approach allows us to relate the Gorenstein global
dimension of a ring R to the cohomological invariants silp(R) and spli(R) introduced by
Gedrich and Gruenberg by proving that leftG-gldim(R) = max{leftsilp(R), leftspli(R)},
recovering a recent theorem of [I. Emmanouil, J. Algebra 372 (2012), 376–396]. Moreover,
this formula permits to recover the main theorem of [D. Bennis and N. Mahdou, Proc.
Amer. Math. Soc. 138 (2010), 461–465]. Furthermore, we prove that, in the setting of a
left and right Noetherian ring, the Gorenstein global dimension is left-right symmetric,
generalizing a theorem of Enochs and Jenda. Finally, using recent work of I. Emmanouil
and O. Talelli, we compute the Gorenstein global dimension for various types of rings such
as commutative ℵ0-Noetherian rings and group rings.

1. Introduction. Throughout this paper, R denotes an associative ring
with identity element. All modules, if not otherwise specified, are assumed
to be left R-modules. Also, for any R-module A, Z(A) denotes the set of all
zerodivisors of A.

Recall that Gorenstein projective (resp., injective) modules originate
from the classical notion of projective (resp., injective) modules, being im-
ages and kernels of the differentials of complete projective (resp., injective)
resolutions. Specifically, a module M is said to be Gorenstein projective
if there exists an exact sequence of projective modules, called a complete
projective resolution,

P := · · · → P2 → P1 → P0 → P−1 → P−2 → · · · ,

such that P remains exact after applying the functor HomR(−, P ) for each
projective module P and M := Im(P0 → P−1). Gorenstein injective mod-
ules are defined dually. These new concepts allow Enochs and Jenda [17] to
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introduce new (Gorenstein homological) dimensions in order to extend the
G-dimension defined by Auslander and Bridger in [1, 2]. It turns out, in par-
ticular, that these Gorenstein homological dimensions are refinements of the
classical dimensions of a module M , in the sense that GpdR(M) ≤ pdR(M)
and GidR(M) ≤ idR(M) with equality each time the corresponding clas-
sical homological dimension is finite. The reader is referred to [4, 6, 8, 10,
12, 17, 18, 20, 23, 30–33] for basics and recent investigations on Goren-
stein homological theory as well as some related themes to our subject.
Nevertheless, the finiteness of Gorenstein homological dimensions remains
one of the key problems of Gorenstein homological algebra (see the sur-
vey [11] and the introduction of [12] for a further discussion of this is-
sue). The problem was partly solved by Christensen, Frankild and Holm
[12]: If R has a dualizing complex, that is, if R is a homomorphic image
of a Gorenstein local ring, and M is an R-module, then GpdR(M) (resp.,
GidR(M)) is finite if and only if M belongs to A(R) (resp., B(R)), where
A(R) and B(R) stand for the Auslander class and the Bass class of R,
respectively.

The main purpose of this paper is to unify the study of modules of finite
Gorenstein homological dimensions. Specifically, we present an alternative
way of measuring the Gorenstein projective (resp., injective) dimension of
modules via a new type of complete projective (resp., injective) resolutions.
It is worth recalling that complete projective (resp., injective) resolutions
are at the heart of Gorenstein homological algebra. The images and kernels
of the differentials of such resolutions are called Gorenstein projective (resp.,
injective) modules. We introduce generalized Gorenstein projective modules
and generalized Gorenstein injective modules, and show that they inherit all
properties of corresponding Gorenstein homological modules. In accordance
with the new concepts, we introduce the generalized Gorenstein projective
dimension and generalized Gorenstein injective dimension of a module M ,
denoted, respectively, by GGpdR(M) and GGidR(M). In Section 2, we prove
that

GGpdR(M) = GpdR(M), GGidR(M) = GidR(M),

for each R-module M . This is mainly due to the fact that the category
GP(R) (resp., GI(R)) of Gorenstein projective (resp., injective) modules is
projectively resolving (resp., injectively resolving).

As an application, we easily recover known theorems of Gorenstein ho-
mological algebra such as the Auslander–Bridger formula and the main the-
orem of Bennis and Mahdou [7]. Moreover, we relate the Gorenstein global
dimension of a ring R to the cohomological invariants slip(R) and silp(R)
of R introduced by Gedrich and Gruenberg [21]. Recall that Bennis and
Mahdou [7] introduce the following invariants for a ring R:
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l-GPD(R) := sup{GpdR(M) : M is an R-module},
l-GID(R) := sup{GidR(M) : M is an R-module}.

The main theorem of [7] states that for an arbitrary ring R,

l-GPD(R) = l-GID(R).

This allows one to define the left Gorenstein global dimension of R, denoted
by l-G-gldim(R), to be this common value. Further, recall that in connection
with the existence of complete cohomological functors in the category of left
R-modules, Gedrich and Gruenberg [21] have defined the following invariants
for a given ring R:

l-spli(R) := sup{pdR(I) : I is an injective left module},
l-silp(R) := sup{idR(P ) : P is a projective left module}.

The relation between l-spli(R) and l-silp(R), as noted by Gedrich and Gru-
enberg, still remains unclear for a general ring R. These two invariants are
easily checked to be equal if they are both finite and Gedrich and Gruen-
berg asked whether the finiteness of one implies that of the other. A positive
answer to this latter question would prove a long-standing conjecture in rep-
resentation theory, the well known Gorenstein symmetry conjecture [3, con-
jecture 13], which states that idR(RR) = idR(RR) for any Artin algebra R.
This conjecture, as asserted by Beligiannis and Reiten [5], is equivalent to
l-silp(R) = l-spli(R) for any Artin algebra R. In this context, we recover
Bennis and Mahdou’s theorem as well as Emmanouil’s theorem [14, Theo-
rem 4.1] by proving that, for an arbitrary ring R,

l-GPD(R) = l-GID(R) = max{l-silp(R), l-spli(R)},
showing, in particular, via Theorem 3.10, that for any left and right Noethe-
rian ring R,

l-G-gldim(R) = r-G-gldim(R) =: G-gldim(R).

This last formula is the analog in Gorenstein homological algebra of the clas-
sical Auslander theorem stating that l-gldim(R) = r-gldim(R) for a left and
right Noetherian ring R [29, Corollary 9.23]. Also, it generalizes a result of
Enochs and Jenda [19, Theorem 12.3.1 and Corollary 12.3.2] establishing the
equality l-G-gldim(R) = r-G-gldim(R) in the restricted setting of Iwanaga–
Gorenstein rings. At the end of Section 3, using recent work of I. Emmanouil
and O. Talelli [14, 16], we compute the Gorenstein global dimension for vari-
ous types of rings such as commutative ℵ0-Noetherian rings and group rings.

2. Generalized Gorenstein projective and injective dimensions.
The goal of this section is to introduce and study Gorenstein n-projective
modules and Gorenstein n-injective modules over R.
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Definition 2.1. Let R be a ring.

(1) Let n ≥ 0 be an integer. An exact sequence of R-modules

E = · · · → E2
d2−→ E1

d1−→ E0
d0−→ E−1

d−1−−→ E−2 → · · ·

is called a complete n-projective resolution if {pdR(Ei) : i ∈ Z} is a bounded
set and Extk+1

R (Mi, P ) = 0 for each integer k ≥ n, each Mi := Im(di), each
integer i and each projective R-module P .

(2) Let n ≥ 0 be an integer. An R-module M is called a Gorenstein n-
projective R-module if M is a kernel or image of a differential of a complete
n-projective resolution.

(3) An R-module M is called a generalized Gorenstein projective R-
module if M is Gorenstein n-projective for some positive integer n.

(4) We define the generalized Gorenstein projective dimension of an R-
module M as follows:

GGpdR(M)=


sup{r : ExtrR(M,P ) 6= 0 for some projective R-module P}

if M is a generalized Gorenstein projective module,

+∞ otherwise.

Gorenstein n-injective R-modules, generalized Gorenstein injective R-
modules and generalized Gorenstein injective dimension are defined dually.

Remark 2.2. (1) LetR be a commutative ring and (x1, . . . , xn) be a regu-
larR-sequence. IfG is a Gorenstein projectiveR-module, thenG/(x1, . . . , xn)
is a Gorenstein n-projective R-module. This has a routine proof using Rees’s
theorem and its dual [28, Exercises 2 and 3, p. 155].

(2) Let M be an R-module. Then M is generalized Gorenstein projective
if and only if GGpdR(M) <∞.

(3) Each Gorenstein projective (resp., Gorenstein injective) module is
Gorenstein 0-projective (resp., Gorenstein 0-injective). In fact, we will see
next that these two notions coincide.

(4) Let n≥0 be an integer. Then any R-module M such that pdR(M)≤n
(resp., idR(M) ≤ n) is a Gorenstein n-projective (resp., Gorenstein n-
injective) R-module. Indeed, given an R-module M such that pdR(M) ≤ n,
it suffices to note that the exact sequence of R-modules 0 → M → M → 0
is a complete n-projective resolution and thus M is Gorenstein n-projective.

Proposition 2.3. Let M be an R-module and n ≥ 0 an integer. Then
the following assertions are equivalent:

(1) M is Gorenstein n-projective over R.
(2) There exists an exact sequence of R-modules

E = · · · → E2
d2−→ E1

d1−→ E0
d0−→ E−1

d−1−−→ E−2 → · · ·
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such that {pdR(Ei) : i ∈ Z} is a bounded set and Extk+1
R (Mi, Q) = 0

for each integer k ≥ n, each Mi := Im(di) and each R-module Q
with finite projective dimension.

Proof. (1)⇒(2). Assume that M is Gorenstein n-projective. Then there
exists an exact sequence of R-modules

E = · · · → E2
d2−→ E1

d1−→ E0
d0−→ E−1

d−1−−→ E−2 → · · ·
such that {pdR(Ei) : i ∈ Z} is a bounded set and Extk+1

R (Mi, P ) = 0 for each
integer k ≥ n, each Mi := Im(di) and each projective R-module P . Now,
let Q be an R-module of finite projective dimension r. We use induction
on r. By (1), the property is true when r = 0. Assume that r ≥ 1 and let
0 → H → P → Q → 0 be an exact sequence of R-modules such that P is
projective over R. Considering the next portion of its associated long exact
sequence yields, by inductive assumptions since pdR(H) = r − 1,

Extk+1
R (Mi, P ) = 0→ Extk+1

R (Mi, Q)→ Extk+2
R (Mi, H) = 0

for each integer k ≥ n and each integer i. Then Extk+1
R (Mi, Q) = 0 for each

integer k ≥ n and each integer i, establishing (2).
(2)⇒(1) is straightforward, completing the proof.

Next, we formulate one of the main theorems of this section. It states
that the generalized Gorenstein projective dimension and the Gorenstein
projective dimension coincide. Also, it highlights the relation between [12,
Lemma 2.13], which approximates a module of finite Gorenstein projective
dimension by a module of finite projective dimension, and our Gorenstein
n-projective modules.

Theorem 2.4. Let n ≥ 0 be an integer and M be an R-module. Then
the following statements are equivalent:

(1) GpdR(M) ≤ n.
(2) There exists an exact sequence of R-modules 0→M → E → G→ 0

such that pdR(E) ≤ n and G is a Gorenstein projective R-module.
(3) There exists an exact sequence of R-modules

E = · · · → E2
d2−→ E1

d1−→ E0
d0−→ E−1

d−1−−→ E−2 → · · ·
such that M = Im(d0), pdR(Ei) ≤ n and Extn+1

R (Mi, Q) = 0 for
each Mi := Im(di), each integer i, and each projective R-module Q.

(4) GGpdR(M) ≤ n.
(5) M is a Gorenstein n-projective module.

Consequently, GGpdR(M) = GpdR(M).

Proof. (1)⇔(2). This is straightforward by [12, Lemma 2.13], [23, The-
orem 2.20] and [23, Theorem 2.24].
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(2)⇒(3). If (2) holds, then GpdR(M) ≤ n, and thus Extk+1
R (M,P ) = 0

for each integer k ≥ n and each projective module P . Let · · · → P2 → P1 →
M → 0 be a projective resolution of M and let Mi := Im(Pi+1 → Pi) for
each integer i ≥ 1. Then it is readily checked that Extk+1

R (Mi, Q) = 0 for
each integer k ≥ n, each integer i ≥ 1, and each projective R-module Q.
Moreover, as G is Gorenstein projective, there exists an exact sequence
0 → G → P−1 → P−2 → · · · of R-modules such that each Pi is projective
over R and Extk+1

R (Mi, P ) = 0 for each Mi := Im(Pi → Pi−1) with i ≤ −1
an integer, each integer k ≥ 0 and each projective R-module P . Pasting the
above three resolutions yields the desired exact sequence

· · · → P2 → P1 → E → P−1 → P−2 → · · · .

(3)⇒(4)⇔(5) are straightforward.

(5)⇒(1). Assume that M is a Gorenstein n-projective R-module. Then
there exists a complete n-projective resolution

E = · · · → E2
d2−→ E1

d1−→ E0
d0−→ E−1

d−1−−→ E−2 → · · ·

such that M = Im(d0). Let Mi := Im(di) with M = M0 for each integer i.
Let r := sup{pdR(Ei) : i ∈ Z} and m := max{n, r}. By hypothesis, r and m
are positive integers. Fix an integer i and consider the short exact sequence
0→Mi+1 → Ei →Mi → 0 and the commutative diagram

0 0 0

↓ ↓ ↓
0 → M ′i+1 → Pi → M ′i → 0

↓ ↓ ↓
0 → Pi+1,m−1 → Pi+1,m−1 ⊕ Pi,m−1 → Pi,m−1 → 0

↓ ↓ ↓
...

...
...

↓ ↓ ↓
0 → Pi+1,0 → Pi+1,0 ⊕ Pi,0 → Pi,0 → 0

↓ ↓ ↓
0 → Mi+1 → Ei → Mi → 0

↓ ↓ ↓
0 0 0

where the Pi,j , Pi+1,j are projective modules. As pdR(Ei) ≤ m, Pi is a
projective R-module. Moreover, as n ≤ m and Mi,Mi+1 are Gorenstein
n-projective,
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Ext1R(M ′i+1, Q) = Extm+1
R (Mi+1, Q) = 0,

Ext1R(M ′i , Q) = Extm+1
R (Mi, Q) = 0,

for each projective module Q. It follows that the derived exact sequence

P = · · · → P2
d2−→ P1

d1−→ P0
d0−→ P−1

d−1−−→ P−2 → · · ·
is a complete projective resolution and thus each M ′i is Gorenstein projective
over R. Hence GpdR(M) ≤ m since 0 → M ′0 → P0,m−1 → P0,m−2 → · · · →
P0,0 → M0 = M → 0 is an exact sequence with M ′0 Gorenstein projective.
Therefore, by [23, Theorem 2.20],

GpdR(M)

= sup{k ∈ N : ExtkR(M,P ) 6= 0 for some projective R-module P} ≤ n,

as M is Gorenstein n-projective, completing the proof.

The following result simplifies the definition of a complete n-projective
resolution.

Corollary 2.5. Let n ≥ 0 be an integer and E = · · · → E2 → E1 →
E0 → E−1 → · · · be an exact sequence of R-modules with Mi := Im(Ei →
Ei−1), i ∈ Z. Then E is a complete n-projective resolution if and only if
pdR(Ei) ≤ n and Extn+1

R (Mi, P ) = 0 for each integer i ∈ Z and each
projective R-module P .

Proof. Assume that E is a complete n-projective resolution. Fix an in-
teger i and consider the short exact sequence 0 → Mi → Ei → Mi−1 → 0.
Note that pdR(Ei) = GpdR(Ei) ≤ max{GpdR(Mi), GpdR(Mi−1)}. Then,
by Theorem 2.4, pdR(Ei) ≤ n, as desired.

It is well known that to link the Gorenstein projective dimension of a
module M to the vanishing of the functor Ext, one has to assume finiteness
of GpdR(M) (see [23, Theorem 2.20]). In light of Theorem 2.4, which now
guarantees the equality GGpdR(M) = GpdR(M) for any module M , a new
interpretation of [23, Theorem 2.20] arises. In fact, it turns out that the
latter serves to compute the Gorenstein projective dimension of modules
emerging as images of complete n-projective resolutions, as is noted next.

Corollary 2.6. Let M be an R-module. If M is a generalized Goren-
stein projective module, then

GpdR(M)=sup{n∈N : ExtnR(M,P ) 6=0 for some projective R-module P}.
Assertion (2) of Theorem 2.4 makes it legitimate to introduce the fol-

lowing concept.

Definition 2.7. Let M be an R-module of finite Gorenstein projective
dimension. An R-module E is said to be a homological associate to M if
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E is of finite projective dimension and there exists an exact sequence 0 →
M → E → G→ 0 with G Gorenstein projective.

Homological associates for modules of finite Gorenstein injective dimen-
sion are defined dually. Next, we seek common properties shared by modules
of finite Gorenstein projective dimension and their homological associates.
Our investigation on homological associates sheds a new light on the strong
correlation between the Auslander–Buchsbaum and Auslander–Bridger for-
mulas. In fact, the latter turns out to be a consequence of the former. That
is the object of the theorem.

Remark 2.8. Let M be an R-module of finite Gorenstein projective
dimension. It is easy to check that if E is a homological associate to M ,
then pdR(E) = GpdR(M).

Theorem 2.9. Let R be a commutative Noetherian ring and M a finitely
generated nonzero R-module of finite Gorenstein projective dimension. Then:

(1) The module M admits a finitely generated homological associate E.
(2) Moreover, if R is local, then any finitely generated homological asso-

ciate E to M satisfies depth(E) = depth(M).

Proof. First, recall that if R is a commutative Noetherian local ring
such that depth(R) = 0 and if M is a finitely generated R-module, then
M+ := HomR(M,R) = 0 if and only if M = 0 [25, Lemma 4.1].

(1) Assume that GpdR(M) = n ∈ N. By [23, Remark 2.12 and Theorem
2.13], there exists an exact sequence of R-modules 0 → K → D → M → 0
such that D is a finitely Gorenstein projective module and K is a finitely
generated R-module with pdR(K) = n− 1. Thus, as R is Noetherian, there
exists a finitely generated projective R-module P and a finitely generated
Gorenstein projective R-module G such that the sequence 0 → D → P →
G → 0 is exact (see [22, Thereom 4.46]). Now, consider the pushout dia-
gram

0 0

↓ ↓
K = K

↓ ↓
0 → D → P → G → 0

↓ ↓ ‖
0 → M − → E → G → 0

↓ ↓
0 0
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Then E is finitely generated and pdR(E) ≤ 1 + pdR(K) ≤ n. Hence E is a
finitely generated homological associate to M , as desired.

(2) The argument uses induction on depth(R). Let E be a finitely gener-
ated homological associate to M and let 0→M → E → G→ 0 be an exact
sequence of R-modules such that G is a (finitely generated) Gorenstein pro-
jective R-module. Assume that depth(R) = 0. As E is finitely generated over
R and pdR(E) = GpdR(M) < ∞, we infer, by the Auslander–Buchsbaum
formula, that E is projective over R and depth(E) = 0, and thus M is
Gorenstein projective over R.

Assume by way of contradiction that depth(M) ≥ 1 and let x be a
nonunit element of R \ Z(M). Applying the functor HomR(−, R) to the

exact sequence 0→M
x−→M →M/xM → 0 yields the exact sequence

0→ (M/xM)+ →M+ x−→M+ → Ext1R(M/xM,R)→ 0.

A second application of HomR(−, R) gives the following sequence of R-
modules:

0→ Ext1R(M/xM,R)+ →M++ x−→M++.

Now, since M is Gorenstein projective, we get the exact sequence of R-
modules

0→ Ext1R(M/xM,R)+ →M
x−→M.

Hence Ext1R(M/xM,R)+ = 0, as x 6∈ Z(M), yielding Ext1R(M/xM,R) = 0
by (the above-mentioned) [25, Lemma 4.1]. Therefore 0 → (M/xM)+ →
M+ x−→ M+ → 0 is exact, so that M+ = xM+. As M is finitely generated
over R, and thus M+ is finitely generated over R, by Nakayama’s lemma,
we get M+ = 0, yielding M = 0, by [25, Lemma 4.1], which is absurd.

It follows that depth(M) = 0 = depth(E), as desired. Now, suppose
that depth(R) ≥ 1. If depth(M) = 0, then depth(E) = 0. Assume that
depth(M) ≥ 1. Hence, there exists a nonunit element x ∈ R \Z(M)∪Z(R).
As G is Gorenstein projective, thus a submodule of a projective module, we
get x 6∈ Z(G). It follows, by tensoring the above sequence by R/xR, that

0→M/xM → E/xE → G/xG→ 0

is an exact sequence of R/xR-modules with G/xG Gorenstein projective
over R/xR and pdR/xR(E/xE) = pdR(E) [28, Theorem E, p. 124] since
x 6∈ Z(E). Hence, as depth(R/xR) = depth(R)− 1, we get, by induction,

depthR/xR(M/xM) = depthR/xR(E/xE).

It follows that depth(M) = depth(E), completing the proof.

Theorem 2.9 allows us to give an alternative proof to the Auslander–
Bridger formula. Recall that this formula is the Gorenstein version of the
well-known Auslander–Buchsbaum equality [10, p. 13].
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Corollary 2.10 (Auslander–Bridger’s theorem). Let R be a local Noe-
therian ring. Let M be a nonzero finitely generated R-module such that
GpdR(M) <∞. Then

GpdR(M) + depth(M) = depth(R).

Proof. By Theorem 2.9, there exists a finitely generated homological
associate E to M which satisfies depth(M) = depth(E). Applying the
Auslander–Buchsbaum formula, we get pdR(E) + depth(E) = depth(R).
It follows that GpdR(M) + depth(M) = depth(R), as contended.

Note that, by definition, the images (or kernels) of the differentials of a
complete Gorenstein projective resolution are all Gorenstein projective, that
is, their Gorenstein projective dimension is zero. This is no longer the case
for a complete Gorenstein n-projective resolution (for some positive inte-
ger n) within which these images might have different Gorenstein projective
dimensions. So, it is legitimate to seek relations between the Gorenstein pro-
jective dimensions of the different differential images arising from a complete
n-projective resolution E = · · · → E2 → E1 → E0 → E−1 → E−2 → · · · .
This is the goal of the next result.

Theorem 2.11.

(1) Let 0→ N → E →M → 0 be an exact sequence of R-modules.

(a) If GpdR(N) > GpdR(E), then GpdR(M) > GpdR(E).
(b) If GpdR(M) > GpdR(E), then GpdR(M) = 1 + GpdR(N).

(2) Let n ≥ 0 be an integer and let

E = · · · → E2
d2−→ E1

d1−→ E0
d0−→ E−1

d−1−−→ E−2 → · · ·
be a complete n-projective resolution. Let Mi := Im(di) for each
integer i.

(a) For a fixed integer i, consider the short exact sequence

0→Mi+1 → Ei
di−→Mi → 0.

(i) If GpdR(Mi) ≤ pdR(Ei), then

max{GpdR(Mi),GpdR(Mi+1)} = pdR(Ei).

(ii) If GpdR(Mi)>pdR(Ei), then GpdR(Mi)=1+GpdR(Mi+1).

(b) sup{GpdR(Mi) : i ∈ Z} = sup{pdR(Ei) : i ∈ Z}.

Proof. (1) (a) Assume that GpdR(N) > GpdR(E). First, note that
GpdR(E) is finite and let r := GpdR(E). Then GpdR(M) and GpdR(N) are
simultaneously finite. Suppose that GpdR(N) is finite and, by way of contra-
diction, that GpdR(M) ≤ r. Considering the next portion of the associated
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long exact sequence

Extr+1
R (E,P ) = 0→ Extr+1

R (N,P )→ Extr+2
R (M,P ) = 0

yields Extr+1
R (N,P ) = 0 for each projective module P . Hence GpdR(N) ≤ r,

which is absurd. Therefore GpdR(M) > r as desired.
(b) Assume that GpdR(M) > GpdR(E). As noted above, GpdR(E) is

finite, and so let r := GpdR(E). Then GpdR(M) and GpdR(N) are simulta-
neously finite. Suppose that GpdR(M) =: m and GpdR(N) =: n are finite.
Hence, considering the long exact sequence associated to the above exact
sequence yields easily n ≤ m − 1 and m ≤ 1 + max{n, r}. If n < r, then
the following portion of the long exact sequence gives, for each projective
module P ,

ExtrR(N,P ) = 0→ Extr+1
R (M,P )→ Extr+1

R (E,P ) = 0,

so that Extr+1
R (M,P ) = 0 for each projective R-module P . Hence m ≤ r,

which is absurd. It follows that n ≥ r, yielding m = 1 + n, as desired.
(2) (a) (i) If GpdR(Mi) ≤ pdR(Ei), then, by (1)(a), GpdR(Mi+1) ≤

pdR(Ei), so that sup{GpdR(Mi), GpdR(Mi+1)} ≤ pdR(Ei). The inverse
inequality is easy.

(ii) Follows from (1)(b).
(b) Note that, by Theorem 2.4, the two terms are finite and less than n.

Also, as pdR(Ei) ≤ max{GpdR(Mi),GpdR(Mi+1)} for each integer i, we get

w := sup{pdR(Ei) : i ∈ Z} ≤ sup{GpdR(Mi) : i ∈ Z}.
Now, assume that sup{GpdR(Mi) : i ∈ Z} > w and let j be an integer such
that GpdR(Mj) > w. Then, in particular, GpdR(Mj) > pdR(Ej−1). Hence,
by (1)(a), GpdR(Mj−1) > pdR(Ej−1), so that, by (1)(b),

GpdR(Mj−1) = 1 + GpdR(Mj) > 1 + w.

Iterating the above process, one easily proves that, for each integer k ≤ j−1,

GpdR(Mk) > j − k + w.

It follows that sup{GpdR(Mi) : i ∈ Z} =∞, which is absurd.

The following corollary gives mild conditions for a module to be Goren-
stein projective.

Corollary 2.12. Let n ≥ 0 be an integer and let P = · · · → P2
d2−→

P1
d1−→ P0

d0−→ P−1
d−1−−→ P−2 → · · · be a complete n-projective resolution

such that each Pi is projective. Then P is a complete projective resolution.

Proof. Apply Theorem 2.11(2)(b).

Given a positive integer n, consider a complete n-projective resolution

E = · · · → E2
d2−→ E1

d1−→ E0
d0−→ E−1

d−1−−→ E−2 → · · · .
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By shifting and summing we get the periodic exact sequence

· · · ⊕di−−→
⊕
i∈Z

Ei
⊕di−−→

⊕
i∈Z

Ei
⊕di−−→

⊕
i∈Z

Ei
⊕di−−→ · · ·

It is easy to check that this sequence is a complete n-projective resolution
as well. This shows that any complete n-projective resolution is a direct
summand of such a periodic complete n-projective resolution.

The following result determines exactly the Gorenstein projective dimen-
sion of modules that emerge as images of such periodic exact sequences.

Corollary 2.13. Let n be a positive integer and

· · · d−→ E
d−→ E

d−→ E
d−→ E

d−→ · · ·
be a complete n-projective resolution. Let M := Im(d). Then

GpdR(M) = pdR(E).

Moreover, if fdR(M) <∞, then

GpdR(M) = pdR(M) = pdR(E).

Proof. The first statement is a direct consequence of Theorem 2.11(2)(b).
The second statement holds via [9, Theorem 2.3].

Next, we denote by

FFD(R) := sup{fdR(M) : M is an R-module of finite flat dimension}
the finitistic flat dimension of R.

Corollary 2.14. Let R be a ring. If FFD(R) < ∞ and if M is an
R-module such that fdR(M) <∞, then GpdR(M) = pdR(M).

Consequently, if wgldim(R) < ∞, then GpdR(M) = pdR(M) for each
R-module M .

Proof. Let M be an R-module such that fdR(M) < ∞. We are done
if GpdR(M) = ∞. Now assume that GpdR(M) =: n < ∞, that is, M is

Gorenstein n-projective. Let E = · · · → E2
d2−→ E1

d1−→ E0
d0−→ E−1

d−1−−→
E−2 → · · · be a complete n-projective resolution such that M = Im(d0).
Let Mi := Im(di) for each integer i with M = M0. It is easily seen that,
as fdR(M) < ∞, fdR(Mi) < ∞ for each integer i. Since FFD(R) < ∞, it
follows that fdR(

⊕
i∈ZMi) <∞. Considering the derived exact sequence

· · · →
⊕
i∈Z

Ei →
⊕
i∈Z

Ei →
⊕
i∈Z

Ei → · · ·

it follows, by Corollary 2.13, that

GpdR

(⊕
i∈Z

Mi

)
= pdR

(⊕
i∈Z

Mi

)
= pdR

(⊕
i∈Z

Ei

)
<∞,
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so that pdR(Mi) < ∞ for each integer i, and in particular GpdR(M) =
pdR(M), as desired.

Next, we record the dual results to Theorem 2.4 and Corollary 2.6 for
the Gorenstein injective dimension.

Theorem 2.15. Let n ≥ 0 be an integer and M be an R-module. Then
the following statements are equivalent:

(1) GidR(M) ≤ n.
(2) There exists an exact sequence of R-modules 0→ G→ E →M → 0

such that idR(E) ≤ n and G is a Gorenstein injective R-module.
(3) There exists an exact sequence of R-modules

E = · · · → E2
d2−→ E1

d1−→ E0
d0−→ E−1

d−1−−→ E−2 → · · ·

such that M = Im(d0), idR(Ei) ≤ n and Extn+1
R (I,Mi) = 0 for each

Mi := Im(di), each integer i, and each injective R-module I.
(4) GGidR(M) ≤ n.
(5) M is a Gorenstein n-injective module.

Consequently, GGidR(M) = GidR(M).

Corollary 2.16. Let n ≥ 0 be an integer and M an R-module. If M
is a generalized Gorenstein injective module, then

GidR(M) = sup{n ∈ N :ExtnR(I,M) 6= 0 for some injective R-module I}.

The following result highlights the close relation between the general-
ized Gorenstein projective modules and Gorenstein n-projective modules
(for some positive integer n), on the one hand, and the known Gorenstein
projective modules, on the other. More precisely, we give the corresponding
versions of Theorem 2.5, Corollary 2.11 and Proposition 2.18 of [23] for the
new invariants.

Theorem 2.17. Let n ≥ 0 be an integer. Then the class GGP(R) (resp.,
GnP(R)) of all generalized Gorenstein projective R-modules (resp., Goren-
stein n-projective R-modules) is projectively resolving. Furthermore GGP(R)
(resp., GnP(R)) is closed under arbitrary direct sums and under direct sum-
mands.

Proof. [23, Theorem 2.24] along with Theorem 2.4 prove that GGP(R) is
projectively resolving. Also, a direct proof shows that GGP(R) and GnP(R)
are stable under direct sums. Now, let 0→M ′ →M →M ′′ → 0 be an exact
sequence of R-modules with M ′′ Gorenstein n-projective. By [23, Theorem
2.24], GpdR(M) <∞ if and only if GpdR(M ′) <∞. Moreover, consider the
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next portion of the associated long exact sequence

Extn+i
R (M ′′, Q) = 0→ Extn+i

R (M,Q)→ Extn+i
R (M ′, Q)

→ Extn+i+1
R (M ′′, Q) = 0

for each projective R-module Q and each integer i ≥ 1. Then Extn+i
R (M,Q)

∼= Extn+i
R (M ′, Q) for each projective R-module Q and each integer i ≥ 1. It

follows, by Theorem 2.4, that M is Gorenstein n-projective if and only if so
is M ′. Hence GnP(R) is projectively resolving. Finally, the Eilenberg swindle
[23, Proposition 1.4] shows that GGP(R) and GnP(R) are both closed under
direct summands, as desired.

Proposition 2.18. Let n ≥ 0 be an integer and let 0 → K → G →
M → 0 be an exact sequence of R-modules, where G is a Gorenstein n-
projective module. Then either the three modules are Gorenstein n-projective,
or GpdR(M) = 1 + GpdR(K).

Proof. If M is Gorenstein n-projective, then, by Theorem 2.17, K is
Gorenstein n-projective. Now, assume that M is not Gorenstein n-projec-
tive. Then, by Theorem 2.4, GpdR(M) ≥ n + 1, so that, by Theorem
2.11(2)(b), GpdR(M) = 1 + GpdR(K), as desired.

Corollary 2.19. Let n ≥ 0 be an integer and let 0 → G′ → G →
M → 0 be an exact sequence of R-modules, where G′ and G are Gorenstein
n-projective modules and Extr+1

R (M,P ) = 0 for each projective module P
with r := max{GpdR(G′), GpdR(G)}. Then M is Gorenstein n-projective.

Proof. First, it is easy to check that Extk+1
R (M,P ) = 0 for each pro-

jective module P and each integer k ≥ r. Also, note that GpdR(M) < ∞.
Then, by [23, Theorem 2.20],

GpdR(M) = sup{k ∈N : ExtkR(M,P ) 6= 0 for some projective R-module P}.

Hence GpdR(M) ≤ r ≤ n, that is, M is Gorenstein n-projective, completing
the proof.

3. Gorenstein global dimension. This section is devoted to some ap-
plications of the results of Section 2. We give alternative and short proofs
of many known theorems such as the main theorems of [23] and the main
theorem of [7] concerning the Gorenstein global dimension. Also, we recover
a recent theorem of Emmanouil [15, Theorem 4.1] and compute the Goren-
stein global dimension for various types of rings such as ℵ0-Noetherian rings
and group rings.

Recall that a Gorenstein ring is a commutative Noetherian ring of finite
self-injective dimension. In the noncommutative setting, a ring R is defined
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to be Iwanaga–Gorenstein if it is left and right Noetherian and has finite
left and right injective dimensions [19, Definition 9.1.1].

First, we give an easy proof of a theorem of Holm [23, Theorem 2.28],
which equates the finitistic Gorenstein projective dimension FGPD(R) :=
sup{GpdR(M) : M is an R-module of finite Gorenstein projective dimension}
(resp., FGID(R) := sup{GidR(M) : M is an R-module of finite Gorenstein
injective dimension}) with the well known finitistic projective dimension
FPD(R) (resp., finitistic injective dimension FID(R)).

Theorem 3.1. Let R be a ring. Then

FGPD(R) = FPD(R), FGID(R) = FID(R).

Proof. Clearly, FPD(R) ≤ GFPD(R). Let M be an R-module such that
GpdR(M) < ∞. Then, by Theorem 2.4, M admits a homological asso-
ciate E, and thus pdR(E) = GpdR(M) < ∞. Hence Gpd(M) ≤ FPD(R),
so that GFPD(R) ≤ FPD(R) and equality holds.

In [10, Theorem 6.3.2], Christensen proved that if (R,m, k) is a com-
mutative local (Noetherian) Cohen–Macaulay ring with a dualizing module
such that GidR(R) <∞, then idR(R) <∞, that is, R is a Gorenstein ring.
The main theorem of [24], namely [24, Theorem 2.1], generalized this re-
sult by proving, in fact, that for an arbitrary ring R, if M is an R-module
such that pdR(M) < ∞, then GidR(M) = idR(M). Next, we recover con-
cisely this theorem as well as its dual [24, Theorem 2.2] for the Gorenstein
projective dimension.

First, it is worth noticing, as is pointed out in [12, Lemma 3.1], that if
G is a Gorenstein projective R-module and H is an R-module with n :=
idR(H) <∞, then Ext1R(G,H) = 0 since G is the nth syzygy of a projective
resolution of some module K.

Theorem 3.2. Let M be an R-module such that min{pdR(M), idR(M)}
<∞. Then

GpdR(M) = pdR(M), GidR(M) = idR(M).

Proof. It suffices to prove that GpdR(M) = pdR(M) since a similar
argument yields the second equality. If GpdR(M) =∞, the desired equality
easily holds. If idR(M) =∞, then pdR(M) = min{pdR(M), idR(M)} <∞,
yielding easily GpdR(M) = pdR(M). Now, assume that GpdR(M) = n <∞
and idR(M) <∞. Then, by Theorem 2.4, M admits a homological associate
E and thus there exists an exact sequence 0→M → E → G→ 0 such that
pdR(E) = n and G is Gorenstein projective. Hence, as idR(M) < ∞, we
have Ext1R(G,M) = 0. It follows that the above sequence splits and thus
pdR(M) ≤ n, yielding GpdR(M) = pdR(M), as desired.
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In [5], A. Beligiannis and I. Reiten define the following concepts for an
abelian category C with enough injective and projective objects:

spli(C) = sup{pd(I) : I is an injective object of C},
silp(C) = sup{id(P ) : P is a projective object of C}.

The abelian category C is said to be Gorenstein if spli(C) < ∞ and
silp(C) <∞ [5, Definition 2.1, p. 121].

Moreover, Beligiannis and Reiten [5] called a ring R a Gorenstein ring
if the category of left R-modules Mod(R) is a Gorenstein category, and
checked that this definition agrees with the usual definition of a Gorenstein
ring once restricted to left and right Noetherian rings.

On the other hand, recall that in [7], Bennis and Mahdou introduced the
following invariants for a ring R:

l-GPD(R) := sup{GpdR(M) : M is an R-module},
l-GID(R) := sup{GidR(M) : M is an R-module}.

In this context, they prove [7, Theorem 2.1] that for an arbitrary ring R,

l-GPD(R) = l-GID(R),

and define the left Gorenstein global dimension, denoted by l-G-gldim(R),
to be this common value. Our next theorem, Theorem 3.3, recovers this
result of [7] as well as a recent theorem of Emmanouil [15, Theorem 4.1].

Furthermore, given a ring R, one might consider the counterparts of the
cohomological invariants l-spli(R) and l-silp(R) in Gorenstein homological
algebra. The natural way to define these new invariants is the following:

l-G-spli(R) = sup{GpdR(M) : M is a Gorenstein injective R-module},
l-G-silp(R) = sup{GidR(M) : M is a Gorenstein projective R-module}.

It is obvious that l-spli(R) ≤ l-G-spli(R) and l-silp(R) ≤ l-G-silp(R) since
the projective dimension and Gorenstein projective dimension (resp., injec-
tive dimension and Gorenstein injective dimension) coincide for an injective
module I (resp., for a projective module P ). So, it is legitimate to wonder
if l-silp(R) = l-G-silp(R) and l-spli(R) = l-G-spli(R). The next theorem
and corollary shed more light on this issue as well as on the relations be-
tween these cohomological and Gorenstein cohomological invariants and the
Gorenstein global dimensions l-GPD(R) and l-GID(R).

Theorem 3.3. Given a ring R, the following are identical:

• l-GPD(R),
• l-GID(R),
• max{l-silp(R), l-spli(R)},
• max{l-G-silp(R), l-G-spli(R)}.
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Proof. We prove that l-GPD(R) = max{l-silp(R), l-spli(R)}. Let n ≥ 0
be an integer. Assume that l-GPD(R) ≤ n. Then GpdR(M) ≤ n for each
R-module M . Therefore, by [23, Theorem 2.20], Extn+1

R (M,P ) = 0 for each
R-module M and each projective module P . Hence idR(P ) ≤ n for each
projective R-module P , so that l-silp(R) ≤ n. Further, by Theorem 3.2,
pdR(I) = GpdR(I) ≤ l-GPD(R) ≤ n for each injective R-module I, yielding
l-spli(R) ≤ n. It follows that max{l-silp(R), l-spli(R)} ≤ n.

Now, assume that max{l-silp(R), l-spli(R)} ≤ n. Let M be an R-module.
Let · · · → P1 → P0 →M → 0 and 0→M → I0 → I1 → · · · be, respectively,
a projective resolution and injective resolution of M . Pasting these two
resolutions yields the exact sequence

E = · · · → P1 → P0 → I0 → I1 → · · ·
with Im(P0 → I0) = M . Note that pdR(Ij) ≤ l-spli(R) ≤ n for each integer
j ≥ 0. Let P be a projective R-module. Then idR(P ) ≤ l-silp(R) ≤ n,
so that Extn+1

R (N,P ) = 0 for each R-module N . It follows that E is a
complete n-projective resolution, and thus M is Gorenstein n-projective.
Hence, via Theorem 2.4, GpdR(M) ≤ n. Therefore l-GPD(R) ≤ n. This
establishes the claim. Now, as l-silp(R) ≤ l-G-silp(R) ≤ l-GPD(R) and
l-spli(R) ≤ l-G-spli(R) ≤ l-GPD(R), we get

l-GPD(R) = max{l-silp(R), l-spli(R)} = max{l-G-silp(R), l-G-spli(R)}.
Using a similar argument one easily proves that

l-GID(R) = max{l-silp(R), l-spli(R)},
as contended.

Corollary 3.4. Let R be an arbitrary ring.

(1) Either l-spli(R) = l-G-spli(R) or l-silp(R) = l-G-silp(R).
(2) If l-silp(R) = l-spli(R), then l-G-silp(R) = l-G-spli(R).
(3) If both l-G-silp(R) and l-G-spli(R) are finite, then l-G-silp(R) =

l-G-spli(R).

Proof. (1) and (2) are obvious since

l-silp(R) ≤ l-G-silp(R) ≤ l-G-gldim(R),

l-spli(R) ≤ l-G-spli(R) ≤ l-G-gldim(R),

l-G-gldim(R) = max{l-spli(R), l-silp(R)}.
(3) If both l-G-silp(R) and l-G-spli(R) are finite, then both l-silp(R) and

l-spli(R) are finite, so that l-silp(R) = l-spli(R) and the desired equality
follows from (2).

In view of the Beligiannis–Reiten definition of a (not necessarily Noethe-
rian) Gorenstein ring (see [5]), we get the following result.
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Corollary 3.5. A ring R is Gorenstein if and only if l-G-gldim(R)
<∞ and r-G-gldim(R) <∞.

Next, we compute the Gorenstein global dimension of various types of
rings. Recall that a left ℵ0-Noetherian ring is a ring all of whose left ideals
are countably generated.

Corollary 3.6. If R is an ℵ0-Noetherian ring which is isomorphic to
its opposite ring Rop, then

G-gldim(R) = silp(R) = idR(R(N))

where R(N) is the free R-module with an infinite countable basis.

In particular, if R is a commutative ℵ0-Noetherian ring, then

G-gldim(R) = silp(R) = idR(R(N)).

Proof. By [14, Corollary 3.7], spli(R) ≤ silp(R). Then, in view of The-
orem 3.3, G-gldim(R) = silp(R). Now, by [16, Corollary 3.2], silp(R) =
idR(R(N)), as desired.

Corollary 3.7. Let R be a commutative ℵ0-Noetherian ring and G be
a group. Then

G-gldim(RG) = silp(RG).

In particular,

G-gldim(ZG) = silp(ZG) = spli(ZG).

Proof. This follows from [14, Proposition 4.3 and Corollary 4.5] and
Theorem 3.3.

Corollary 3.8. If G is a finite group, then G-gldim(ZG) = 1.

Proof. Apply [14, Theorem 4.6] and Theorem 3.3.

Ikenaga [26] introduced the generalized cohomological dimension cd(G)
of a group G by defining cd(G) to be the supremum of all integers n for
which there exist a Z-free ZG-module M and a projective ZG-module P
such that ExtnZG(M,P ) 6= 0. An interesting recent theorem of Emmanouil
(see [14]) characterizes the finiteness of a group G in terms of cd(G) by
proving that a group G is finite if and only if cd(G) = 0 [14, Theorem 4.6].
The object of the next result is to link the cohomological invariant cd(G) to
the Gorenstein global dimension of ZG.

Corollary 3.9. Let G be a group. Then:

(1) cd(G) ≤ G-gldim(ZG) ≤ cd(G) + 1.

(2) If cd(G) ≤ 1, then G-gldim(ZG) = 1.

Proof. Apply [14, Corollary 4.7] and Corollary 3.7.



GORENSTEIN HOMOLOGICAL DIMENSIONS 189

Next, we envisage to transfer to Gorenstein homological theory a classical
theorem due to Auslander stating that the left and right global dimensions
coincide for a left and right Noetherian ring R [29, Corollary 9.23]. In effect,
we prove that, when R is left and right Noetherian, the left Gorenstein global
dimension and right Gorenstein global dimension coincide, generalizing a
theorem of Enochs and Jenda [19, Theorem 12.3.1 and Corollary 12.3.2],
who established the equality in the restricted setting of Iwanaga–Gorenstein
rings.

Recall that l-sfli(R) := sup{fdR(I) : I is an injective left R-module}
and the (left) Gorenstein weak global dimension of R is the invariant l-G-
wgldim(R) := sup{GfdR(M) : M is a left R-module}.

Theorem 3.10. The following are identical for a left and right Noethe-
rian ring R:

• l-G-gldim(R),
• r-G-gldim(R),
• l-G-wgldim(R),
• r-G-wgldim(R),
• max{l-silp(R), l-spli(R)},
• max{r-silp(R), r-spli(R)},
• max{l-silp(R), r-silp(R)},
• max{l-spli(R), r-spli(R)},
• max{l-sfli(R), r-sfli(R)},
• max{idR(RR), idR(RR)}.
First, we prove the following lemma.

Lemma 3.11. Let R be a left Noetherian ring. Then

l-silp(R) ≤ l-G-wgldim(R).

Proof. Given an R-module K, we denote by K∗ the Pontryagin dual
HomZ(K,Q/Z) of K. Let n≥0 be an integer and assume that l-G-wgldim(R)
≤ n. Let P be a projective left R-module and M be a finitely generated left
R-module. Then, by [29, Theorem 9.51],

TorRn+1(P
∗,M) ∼= Extn+1

R (M,P )∗.

As GfdR(M) ≤ l-G-wgldim(R) ≤ n, we get TorRn+1(P
∗,M) = 0 since

P ∗ is an injective right R-module. Hence Extn+1
R (M,P )∗ = 0, yielding

Extn+1
R (M,P ) = 0 for each finitely generated left R-module M and each

projective left R-module P . It follows that idR(P ) ≤ n for each projec-
tive left R-module P , and thus l-silp(R) ≤ n, establishing the desired re-
sult.

Proof of Theorem 3.10. By [19, Proposition 9.1.2], idR(P ) ≤ idR(RR)
for each projective left R-module P . Then l-silp(R) ≤ idR(RR) ≤ l-silp(R),
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yielding the equality l-silp(R) = idR(RR). Similarly, we get r-silp(R) =
idR(RR). Also, by [27, Proposition 1] or [13, Corollary 3.9], id(RR)=r-sfli(R)
and id(RR) = l-sfli(R). Therefore

max{l-sfli(R), r-sfli(R)} = max{idR(RR), idR(RR)}.

Moreover, l-sfli(R) = idR(RR) ≤ l-spli(R). It follows that

max{idR(RR), idR(RR)} ≤ max{l-silp(R), l-spli(R)}.

Now, suppose that max{idR(RR), idR(RR)} =: n <∞. Then l-sfli(R) =
idR(RR) <∞, so that, by [14, Proposition 3.3 and Lemma 3.5],

l-spli(R) ≤ l-silp(R) = idR(RR) ≤ n.

Hence max{l-silp(R), l-spli(R)} ≤ n. Consequently, by Theorem 3.3,

max{idR(RR), idR(RR)} = max{l-silp(R), l-spli(R)} = l-G-gldim(R).

A similar argument yields

r-G-gldim(R) = max{idR(RR), idR(RR)} = max{r-silp(R), r-spli(R)},

proving that

l-G-gldim(R) = r-G-gldim(R) = max{idR(RR), idR(RR)}.

Let I be an injective left R-module. Assume that GfdR(I) = n < ∞.
Then, by [12, Lemma 2.15], there exists an exact sequence of left R-modules
0→ I → E → G→ 0 such that fdR(E) = n and G is Gorenstein flat over R.
Since I is injective, this sequence splits, so that I is a direct summand of E.
Hence fdR(I) ≤ n. It follows that GfdR(I) = fdR(I) for each injective left
R-module. Therefore,

l-sfli(R) = max{fdR(I) : I is an injective left R-module}
= max{GfdR(I) : I is an injective left R-module}
≤ l-G-wgldim(R),

and similarly r-sfli(R) ≤ r-G-wgldim(R). Now, if l-sfli(R) <∞, then, by [14,
Proposition 3.3 and Lemma 3.5] and Lemma 3.11,

l-spli(R) ≤ l-silp(R) ≤ l-G-wgldim(R),

and thus, by Theorem 3.3, l-G-gldim(R) ≤ l-G-wgldim(R). Also, if l-sfli(R)
= ∞, then, as l-sfli(R) ≤ l-G-wgldim(R), we get l-G-wgldim(R) = ∞. It
follows that

l-G-gldim(R) ≤ l-G-wgldim(R).

Further, since, by [23, Proposition 3.11],

GfdR(M) = GidR(M∗) ≤ r-G-gldim(R) = l-G-gldim(R)



GORENSTEIN HOMOLOGICAL DIMENSIONS 191

for each left R-module M , we have l-G-wgldim(R) ≤ l-G-gldim(R). Conse-
quently,

l-G-wgldim(R) = l-G-gldim(R)

and, via a similar argument, r-G-wgldim(R) = r-G-gldim(R). This com-
pletes the proof.

Definition 3.12. If R is a left and right Noetherian ring, then, we
denote by G-gldim(R) (resp., G-wgldim(R)) the common value l-G-gldim(R)
= r-G-gldim(R) (resp., l-G-wgldim(R) = r-G-wgldim(R)).

Our final result is a regularity-like theorem for Iwanaga–Gorenstein rings.
In effect, a well known theorem of Serre states that a Noetherian local ring
R is regular if and only if gldim(R) < ∞ [29, Theorem 9.58]. The analog
of this theorem for Iwanaga–Gorenstein rings is established in [19, Theorem
12.3.1]. Next, we recover this result via Theorem 3.10 and express it in terms
of the finiteness of the Gorenstein global dimension.

Corollary 3.13. Let R be a left and right Noetherian ring. The fol-
lowing assertions are equivalent.

(1) R is Iwanaga–Gorenstein;
(2) G-gldim(R) <∞;
(3) G-wgldim(R) <∞.

Moreover, if R is Gorenstein, then idR(R) = G-gldim(R) = G-wgldim(R).
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