QUIVER BIALGEBRAS AND MONOIDAL CATEGORIES

BY
HUA-LIN HUANG (Jinan) and BLAS TORRECILLAS (Almería)

Abstract

We study bialgebra structures on quiver coalgebras and monoidal structures on the categories of locally nilpotent and locally finite quiver representations. It is shown that the path coalgebra of an arbitrary quiver admits natural bialgebra structures. This endows the category of locally nilpotent and locally finite representations of an arbitrary quiver with natural monoidal structures from bialgebras. We also obtain theorems of Gabriel type for pointed bialgebras and hereditary finite pointed monoidal categories.

1. Introduction. This paper is devoted to the study of natural bialgebra structures on the path coalgebra of an arbitrary quiver and monoidal structures on the category of its locally nilpotent and locally finite representations. A further purpose is to establish a quiver setting for general pointed bialgebras and pointed monoidal categories.

Our original motivation is to extend the Hopf quiver theory [4, 7, 8, 12 , [13, 25, 31 to the setting of generalized Hopf structures. As bialgebras are a fundamental generalization of Hopf algebras, we naturally start our study from this case. The basic problem is to determine what kind of quivers can give rise to bialgebra structures on their associated path algebras or coalgebras.

It turns out that the path coalgebra of an arbitrary quiver admits natural bialgebra structures (see Theorem 3.2). This seems a bit surprising at first sight by comparison with the Hopf case given in [8], where Cibils and Rosso showed that the path coalgebra of a quiver Q admits a Hopf algebra structure if and only if Q is a Hopf quiver, which is very special. Bialgebra structures on general pointed coalgebras are also considered via quivers thanks to the Gabriel type theorem for coalgebras (see [3, 5]). Similar to the Hopf case obtained in [31], we give a Gabriel type theorem for general pointed bialgebras (see Proposition 3.3).

Another motivation comes from finite monoidal categories which are a natural generalization of finite tensor categories [10]. To the best of our knowledge, not much is known about the construction and classification of finite monoidal categories which are not tensor categories, i.e., rigid monoidal

[^0]categories [9]. By taking advantage of the well-developed quiver representation theory, the quiver presentation of a pointed bialgebra B can help us to investigate the monoidal category of right B-comodules. Accordingly, some classification results of pointed monoidal categories are obtained (see Proposition 4.1 and Corollary 4.2).

Bialgebra structures on the path coalgebra of a quiver Q induce monoidal structures on the category $\operatorname{Rep}^{\ln l f}(Q)$ of locally nilpotent and locally finite representations of Q. These monoidal structures are also expected to be useful for the studying of the category $\operatorname{Rep}^{\ln l f}(Q)$ itself. For example, the tensor product of quiver representations naturally leads to the ClebschGordan problem, i.e., the decomposition of the tensor product of any two representations into indecomposable summands, and the computation of the representation ring of $\operatorname{Rep}^{\ln l f}(Q)$, etc. Note that the tensor product given here is different from the vertex-wise and arrow-wise tensor product used in [14, 15, 18, 19, which in general is not from the bialgebra, and therefore should provide different information for the categories of quiver representations. This interesting problem is the third motivation and will be treated in the future.

We remark that a standard dual process will give rise to natural bialgebra structures on the path algebra and monoidal structures on the category of representations of a finite quiver. We prefer the path coalgebraic approach as it is more convenient for exposition and, more importantly, allows infinite quivers.

Throughout, we work over a field \mathbb{k}. Vector spaces, algebras, coalgebras, bialgebras, linear mappings, and unadorned \otimes are over \mathbb{k}. The readers are referred to [24, 30] for general information about coalgebras and bialgebras, and to [1, [28, 29] for quivers and their applications to (co)algebras and representation theory.
2. Quivers, representations and path coalgebras. As preparation, in this section we recall some basic notions and facts about quivers, representations and path coalgebras.

A quiver is a directed graph. More precisely, a quiver is a quadruple $Q=\left(Q_{0}, Q_{1}, s, t\right)$, where Q_{0} is the set of vertices, Q_{1} is the set of arrows, and $s, t: Q_{1} \rightarrow Q_{0}$ are two maps assigning to each arrow respectively the source and the target. Note that in this paper the sets Q_{0} and Q_{1} are allowed to be infinite. If Q_{0} and Q_{1} are finite, then we say Q is a finite quiver. For $a \in Q_{1}$, we write $a: s(a) \rightarrow t(a)$. A vertex is, by convention, said to be a trivial path of length 0 . We also write $s(g)=g=t(g)$ for each $g \in Q_{0}$. The length of an arrow is set to be 1 . In general, a non-trivial path of length $n(\geq 1)$ is a concatenation of arrows of the form $p=a_{n} \cdots a_{1}$ with $s\left(a_{i+1}\right)=t\left(a_{i}\right)$ for $i=1, \ldots, n-1$. By Q_{n} we denote the set of paths of length n. A quiver
is said to be acyclic if it has no cyclic paths, i.e. non-trivial paths with identical starting and ending vertices.

Let Q be a quiver and $\mathbb{k} Q$ the associated path space which is the \mathbb{k}-span of its paths. There is a natural coalgebra structure on $\mathbb{k} Q$ with comultiplication as split of paths. Namely, for a trivial path g, set $\Delta(g)=g \otimes g$ and $\varepsilon(g)=1$; for a non-trivial path $p=a_{n} \cdots a_{1}$, set

$$
\Delta(p)=t\left(a_{n}\right) \otimes p+\sum_{i=1}^{n-1} a_{n} \cdots a_{i+1} \otimes a_{i} \cdots a_{1}+p \otimes s\left(a_{1}\right)
$$

and $\varepsilon(p)=0$. This is the path coalgebra of the quiver Q.
There exists on $\mathbb{k} Q$ an intuitive length gradation $\mathbb{k} Q=\bigoplus_{n \geq 0} \mathbb{k} Q_{n}$, compatible with the comultiplication Δ. It is clear that the path coalgebra $\mathbb{k} Q$ is pointed, and the set $G(\mathbb{k} Q)$ of group-like elements is Q_{0}. Moreover, the coradical filtration of $\mathfrak{k} Q$ is

$$
\mathfrak{k} Q_{0} \subseteq \mathbb{k} Q_{0} \oplus \mathbb{k} Q_{1} \subseteq \mathbb{k} Q_{0} \oplus \mathbb{k} Q_{1} \oplus \mathbb{k} Q_{2} \subseteq \cdots
$$

therefore it is coradically graded in the sense of Chin-Musson [5].
The path coalgebra is exactly the dual notion of the path algebra of a quiver, which is certainly more familiar. Dual to the freeness of path algebras, path coalgebras are cofree. Precisely, for an arbitrary quiver Q, the vector space $\mathbb{k} Q_{0}$ is a subcoalgebra of $\mathbb{k} Q$, and over the vector space $\mathbb{k}_{k} Q_{1}$ there is an induced $\mathbb{k} Q_{0}$-bicomodule structure via

$$
\delta_{L}(a)=t(a) \otimes a, \quad \delta_{R}(a)=a \otimes s(a)
$$

for each $a \in Q_{1}$; the path coalgebra has another presentation as the so-called cotensor coalgebra (see, e.g., [31, 32])

$$
\mathrm{CoT}_{\mathfrak{k} Q_{0}}\left(\mathbb{k} Q_{1}\right)=\mathbb{k} Q_{0} \oplus \mathbb{k} Q_{1} \oplus \mathbb{k} Q_{1} \square \mathbb{k} Q_{1} \oplus \cdots
$$

and hence enjoys the following
Universal Mapping Property. Let $f: C \rightarrow \mathbb{k} Q$ be a coalgebra map, $\pi_{n}: \mathbb{k} Q \rightarrow \mathbb{k} Q_{n}$ the canonical projection and set $f_{n}:=\pi_{n} \circ f: C \rightarrow \mathbb{k} Q_{n}$ for each $n \geq 0$. Then f_{0} is a coalgebra map; f_{1} is a $\mathbb{k} Q_{0}$-bicomodule map, where the $\mathbb{k} Q_{0}$-bicomodule structure on C is induced by f_{0}; and for each $n \geq 2, f_{n}$ can be written as $f_{1}^{\otimes n} \circ \Delta_{C}^{(n-1)}$, where $\Delta_{C}^{(n-1)}$ is the $(n-1)$-iterated action of the comultiplication of C. Conversely, given a coalgebra map $f_{0}: C \rightarrow \mathbb{k} Q_{0}$ and a $\mathbb{k} Q_{0}$-bicomodule map $f_{1}: C \rightarrow \mathbb{k} Q_{1}$, set $f_{n}=f_{1}^{\otimes n} \circ \Delta_{C}^{(n-1)}$ for each $n \geq 2$. Then as long as $f:=\sum_{n>0} f_{n}$ is well-defined, it is the unique coalgebra map $f: C \rightarrow \mathbb{k} Q$ such that $\bar{f}_{0}=\pi_{0} \circ f$ and $f_{1}=\pi_{1} \circ f$.

Let Q be a quiver. A representation of Q is a collection

$$
V=\left(V_{g}, V_{a}\right)_{g \in Q_{0}, a \in Q_{1}}
$$

consisting of a vector space V_{g} for each vertex g and a linear map $V_{a}: V_{s(a)} \rightarrow$ $V_{t(a)}$ for each arrow a. A morphism of representations, $\phi: V \rightarrow W$, is a collection $\phi=\left(\phi_{g}\right)_{g \in Q_{0}}$ of linear maps $\phi_{g}: V_{g} \rightarrow W_{g}$ for each vertex g such that $W_{a} \phi_{s(a)}=\phi_{t(a)} V_{a}$ for each arrow a. The category of representations of Q is denoted by $\operatorname{Rep}(Q)$. Given a representation V of Q and a path p, we define V_{p} as follows. If p is trivial, say $p=g \in Q_{0}$, then put $V_{p}=\operatorname{Id}_{V_{g}}$. For a non-trivial path $p=a_{n} \cdots a_{2} a_{1}$, put $V_{p}=V_{a_{n}} \cdots V_{a_{2}} V_{a_{1}}$. A representation V of Q is said to be locally nilpotent if for all $g \in Q_{0}$ and all $x \in V_{g}$, there exist at most finitely many paths p with source g satisfying $V_{p}(x) \neq 0$. A representation is called locally finite if it is a directed union of finitedimensional representations. We denote by $\operatorname{Rep}^{\ln l f}(Q)$ the full subcategory of $\operatorname{Rep}(Q)$ consisting of all locally nilpotent and locally finite representations. It is well-known that the category of right $\mathbb{k} Q$-comodules is equivalent to $\operatorname{Rep}^{\operatorname{lnlf}}(Q)$ (see [20]).
3. Quiver bialgebras. In this section we show that the path coalgebra of an arbitrary quiver can be endowed with natural bialgebra structures. A Gabriel type theorem for pointed bialgebras is also given. Some examples are presented.

We start with the definition of bialgebra bimodules. Let B be a bialgebra. A B-bialgebra bimodule is a vector space M which is a B-bimodule and simultaneously a B-bicomodule such that the B-bicomodule structure maps are B-bimodule maps, or equivalently, the B-bimodule structure maps are B-bicomodule maps.

Lemma 3.1. Let Q be a quiver. The associated path coalgebra $\mathbb{k} Q$ admits a bialgebra structure if and only if Q_{0} has a monoid structure and $\mathbb{k} Q_{1}$ can be given a $\mathbb{k} Q_{0}$-bialgebra bimodule structure. Moreover, the set of graded bialgebra structures on the path coalgebra $\mathbb{k}_{k} Q$ is in one-to-one correspondence with the set of pairs (S, M) in which S is a monoid structure on Q_{0} and M is a $\mathbb{k} S$-bialgebra bimodule structure on $\mathbb{k} Q_{1}$.

Proof. Assume first that the path coalgebra $\mathbb{k} Q$ admits a bialgebra structure. By considering its graded version induced by the coradical filtration (see, e.g., [24, 26]), we can assume further that the bialgebra structure on $\mathbb{k} Q$ is coradically graded. Note that the identity 1 is group-like, so 1 lies in Q_{0}, which is the set of group-like elements of $\mathbb{k}_{k} Q$. For any $g, h \in Q_{0}$, we have $\Delta(g h)=\Delta(g) \Delta(h)=g h \otimes g h$ and $\varepsilon(g h)=\varepsilon(g) \varepsilon(h)=1$, therefore $g h \in Q_{0}$. Hence the restriction of the multiplication of $\mathbb{k} Q$ to Q_{0} gives rise to a monoid structure. The $\mathbb{k} Q_{0}$-bicomodule structure on $\mathbb{k}_{k} Q_{1}$ is given as in Subsection 2.3. The multiplication of $\mathbb{k} Q_{0}$ provides a bimodule structure on $\mathbb{k} Q_{1}$. Finally, note that the axioms for bialgebras guarantee that the $\mathbb{k} Q_{1}$ so defined is a $\mathbb{k} Q_{0}$-bialgebra bimodule.

Conversely, assume that Q_{0} can be endowed with a monoid structure and the vector space $\mathbb{k} Q_{1}$ has a $\mathbb{k} Q_{0}$-bialgebra bimodule structure. By the method of Nichols [26], these data can be used to construct a graded bialgebra structure on the path coalgebra $\mathbb{k} Q$ by the universal mapping property. Nichols' construction was applied to the quiver setting for Hopf algebras in [7, 8, 12, 13]. For completeness we include the construction below.

The cotensor coalgebra $\operatorname{CoT}_{\mathbb{k} Q_{0}}\left(\mathbb{k} Q_{1}\right)$ is exactly the path coalgebra $\mathbb{k} Q$. The $\mathbb{k} Q_{0}$-bimodule structure on $\mathbb{k} Q_{1}$ can be extended to a multiplication on $\mathbb{k} Q$ via the universal mapping property of $\mathbb{k} Q$. Let $M_{0}: \mathbb{k} Q \otimes \mathbb{k} Q \rightarrow \mathbb{k} Q_{0}$ be the composition of the canonical projection $\pi_{0} \otimes \pi_{0}: \mathbb{k} Q \otimes \mathbb{k} Q \rightarrow \mathbb{k} Q_{0} \otimes \mathbb{k} Q_{0}$ and the multiplication of the monoid algebra $\mathfrak{k} Q_{0}$, and $M_{1}: \mathbb{k} Q \otimes \mathbb{k} Q \rightarrow \mathbb{k} Q_{1}$ the composition of the canonical projection

$$
\pi_{0} \otimes \pi_{1} \oplus \pi_{1} \otimes \pi_{0}: \mathbb{k} Q \otimes \mathbb{k} Q \rightarrow \mathbb{k} Q_{0} \otimes \mathbb{k} Q_{1} \oplus \mathbb{k} Q_{1} \otimes \mathbb{k} Q_{0}
$$

and the sum of the left and right module actions. Then it is clear that M_{0} is a coalgebra map and M_{1} is a $\mathbb{k} Q_{0}$-bicomodule map. Let $M_{n}=M_{1}^{\otimes n} \circ$ $\Delta_{2}^{(n-1)}$, where Δ_{2} is the coproduct of the tensor product coalgebra $\mathbb{k} Q \otimes \mathbb{k} Q$. For any path p of length n, it is easy to see that $M_{l}(p)=0$ if $l \neq n$. Therefore $M=\sum_{n \geq 0} M_{n}$ is a well-defined coalgebra map and moreover respects the length gradation. The associativity for M can be deduced from the associativity of the bimodule action without difficulty by a standard application of the universal mapping property as before. The unit map is obvious. Hence we have defined an associative algebra structure and we obtain a graded bialgebra structure on $\mathbb{k} Q$.

The one-to-one correspondence in the statement is obvious.
Now we state our first main result.
Theorem 3.2. Let Q be a quiver. The associated path coalgebra $\mathbb{k} Q$ always admits bialgebra structures.

Proof. By Lemma 3.1, it is enough to provide a monoid structure on Q_{0} and a $\mathbb{k} Q_{0}$-bialgebra bimodule on $\mathbb{k} Q_{1}$. First, we fix a $\mathbb{k} Q_{0}$-bicomodule structure on $\mathbb{k} Q_{1}$ as in Subsection 2.3. If Q_{0} has only one element, then let it be the unit group and take the trivial $k Q_{0}$-bimodule structure on $\mathbb{k} Q_{1}$. Obviously, this defines a necessary bialgebra bimodule.

Now we assume Q_{0} contains at least two elements. Take any $e \in Q_{0}$, and set it to be the identity, i.e., let $e g=g=g e$ for all $g \in Q_{0}$. Take any $z \in Q_{0}$ other than e, and make it a "zero" element, that is, let $g z=z=z g$ for any $g \in Q_{0}$. For any $g, h \in Q_{0}-\{e, z\}$, set $g h=z$. Here, $g=h$ is allowed. One can verify without difficulty that this endows Q_{0} with a monoid structure. For the $\mathbb{k}_{k} Q_{0}$-bimodule structure on $\mathbb{k}_{k} Q_{1}$, define

$$
e . a=a=a . e, \quad f . a=0=a . f
$$

for all $a \in Q_{1}$ and all $f \in Q_{0}-\{e\}$. Clearly, the bicomodule structure maps are bimodule maps and hence we have obtained a $\mathbb{k} Q_{0}$-bialgebra bimodule structure on $\mathbb{k} Q_{1}$.

Note that in the proof of the previous theorem we provide only a very "trivial" example of a graded bialgebra structure for the path coalgebra. The classification of all graded bialgebra structures on $\mathbb{k} Q$, or equivalently the classification of all suitable monoid structures on Q_{0} and $\mathbb{k} Q_{0}$-bialgebra bimodule structures on $\mathbb{k} Q_{1}$, is still not clear and is an interesting problem of quiver combinatorics.

However, if Q_{0} can be given a group structure and further $\mathbb{k} Q_{1}$ can be given a corresponding bialgebra bimodule structure over $\mathbb{k} Q_{0}$, then the situation is much clearer. Indeed, in this case $\mathbb{k} Q_{0}$ becomes a Hopf algebra and $\mathbb{k} Q_{1}$ becomes a $\mathbb{k} Q_{0}$-Hopf bimodule [26]. Now the fundamental theorem on Hopf modules of Sweedler [30, Theorem 4.1.1] can be applied, and the category of $\mathbb{k} Q_{0}$-Hopf bimodules is proved to be equivalent to the direct product of the representation categories of a class of subgroups of Q_{0} by Cibils and Rosso [7]. Note that a quiver Q with Q_{0} having a group structure and $\mathbb{k} Q_{1}$ having a $\mathbb{k} Q_{0}$-Hopf bimodule structure is far from arbitrary. Such quivers are called covering quivers in [13] and Hopf quivers in [8]. It would be of interest to generalize the classification of Hopf bimodules over groups to that of bialgebra bimodules over monoids.

For later use, we record the multiplication formula of paths, given by Rosso's quantum shuffle product [27], for quiver bialgebras. Given a quiver Q, take a suitable monoid structure on Q_{0} and a $\mathbb{k} Q_{0}$-bialgebra bimodule structure on $\mathbb{k} Q_{1}$. Let p be a path of length l. An n-thin split of p is a sequence $\left(p_{1}, \ldots, p_{n}\right)$ of vertices and arrows such that the concatenation $p_{n} \cdots p_{1}$ is exactly p. These n-thin splits of p are in one-to-one correspondence with the n-sequences of $(n-l) 0$'s and l 1's. Denote the set of such sequences by D_{l}^{n}. Clearly $\left|D_{l}^{n}\right|=\binom{n}{l}$. For $d=\left(d_{1}, \ldots, d_{n}\right) \in D_{l}^{n}$, the corresponding n-thin split is written as $d p=\left((d p)_{1}, \ldots,(d p)_{n}\right)$, where $(d p)_{i}$ is a vertex if $d_{i}=0$ and an arrow if $d_{i}=1$.

Let $\alpha=a_{m} \cdots a_{1}$ and $\beta=b_{n} \cdots b_{1}$ be a pair of paths of length m and n respectively. Let $d \in D_{m}^{m+n}$, and let $\bar{d} \in D_{n}^{m+n}$ be the complement sequence which is obtained from d by replacing each 0 by 1 and vice versa. Define an element in $\mathbb{k} Q_{1}^{\square m+n-1}$, or equivalently in $\mathbb{k} Q_{m+n}$, by

$$
(\alpha \cdot \beta)_{d}=\left[(d \alpha)_{m+n} \cdot(\bar{d} \beta)_{m+n}\right] \cdots\left[(d \alpha)_{1} \cdot(\bar{d} \beta)_{1}\right],
$$

where $\left[(d \alpha)_{i} \cdot(\bar{d} \beta)_{i}\right]$ is understood as the $\mathbb{k} Q_{0}$-bimodule action on $\mathbb{k} Q_{1}$, and the terms in different brackets are put together by the cotensor product, or equivalently concatenation. In this notation, the formula for the product of
α and β is

$$
\alpha \cdot \beta=\sum_{d \in D_{m}^{m+n}}(\alpha \cdot \beta)_{d}
$$

Now we give a Gabriel type theorem for general pointed bialgebras, which is in the same vein as the results of Chin and Montgomery [5] for pointed coalgebras and of Van Oystaeyen and Zhang [31] for pointed Hopf algebras. Let B be a pointed bialgebra and $\left\{B_{i}\right\}_{i \geq 0}$ its coradical filtration. Let gr $B=$ $B_{0} \oplus B_{1} / B_{0} \oplus B_{2} / B_{1} \oplus \cdots$ be the associated coradically graded bialgebra induced by the coradical filtration.

Proposition 3.3. Let B be a pointed bialgebra and gr B its coradically graded version. There exist a unique quiver Q and a unique graded bialgebra structure on $\mathbb{k}_{\mathrm{k}} Q$ such that $\operatorname{gr} B$ can be realized as a sub-bialgebra of $\mathbb{k} Q$ with $\mathbb{k} Q_{0} \oplus \mathbb{k} Q_{1} \subseteq \operatorname{gr} B$.

Proof. Note that gr B is still pointed and its coradical is B_{0}. Let Q_{0} be the set of group-like elements of $\operatorname{gr} B$. Then clearly Q_{0} is a monoid and $B_{0}=\mathbb{k} Q_{0}$ as bialgebras, where the latter is the usual monoid bialgebra. Induced from the graded bialgebra structure, B_{1} / B_{0} is a $B_{0}=\mathbb{k} Q_{0^{-}}$ bialgebra bimodule. The bicomodule structure maps are denoted δ_{L} and δ_{R}. As a $\mathbb{k}_{k} Q_{0}$-bicomodule, B_{1} / B_{0} is in fact a Q_{0}-bigraded space. Namely, write $M=B_{1} / B_{0}$; then

$$
M=\bigoplus_{g, h \in Q_{0}}{ }^{g} M^{h}
$$

where ${ }^{g} M^{h}=\left\{m \in M \mid \delta_{L}(m)=g \otimes m, \delta_{R}(m)=m \otimes h\right\}$. We attach to these data a quiver Q as follows. Let the set of vertices be Q_{0}. For all $g, h \in Q_{0}$, let the number of arrows with source h and target g be equal to the \mathbb{k}-dimension of the isotypic space ${ }^{g} M^{h}$. Thus we have obtained a quiver Q and moreover $\mathbb{k} Q_{1}$ has a $\mathbb{k} Q_{0}$-bialgebra bimodule structure which is identical with the B_{0}-bialgebra bimodule B_{1} / B_{0}. The $\mathbb{k} Q_{0}$-bialgebra bimodule $\mathbb{k} Q_{1}$ gives rise to a unique graded bialgebra structure on $\mathbb{k} Q$. By the universal mapping property, the coalgebra map $\operatorname{gr} B \xrightarrow{\pi_{0}} B_{0} \simeq \mathbb{k} Q_{0}$ and the $\mathbb{k} Q_{0^{-}}$ bicomodule map $\operatorname{gr} B \xrightarrow{\pi_{1}} B_{1} / B_{0} \simeq \mathbb{k} Q_{1}$ determine a unique coalgebra map $\Theta: \operatorname{gr} B \rightarrow \mathbb{k} Q$. Here, π_{i} denotes the canonical projection gr $B \rightarrow B_{i} / B_{i-1}$. By a theorem of Heyneman and Radford (see e.g. [24, Theorem 5.3.1]), the coalgebra map Θ is injective since its restriction to the first term of the coradical filtration is injective. Again, by the universal mapping property, one can show that Θ is also an algebra map. Therefore, it is actually an embedding of bialgebras. The last condition $\mathbb{k} Q_{0} \oplus \mathbb{k} Q_{1} \subseteq$ gr B guarantees that the quiver Q is unique.

In the following we give some examples of bialgebras on the path coalgebras of quivers.

Example 3.4. Let \mathcal{K}_{n} be the n-Kronecker quiver, i.e. a quiver of the form

Denote the arrows as a_{1}, \ldots, a_{n}. Let the source vertex be e and the target vertex be z as in Theorem 3.2. Then there is a bimodule structure on the space spanned by $\left\{a_{i}\right\}_{i=1}^{n}$ over the monoid $\{e, z\}$ defined by

$$
e . a_{i}=a_{i}=a_{i} \cdot e, \quad z \cdot a_{i}=0=a_{i} . z
$$

for all i. We have the following multiplication formulas for the quiver bialgebra $\mathbb{k} \mathcal{K}_{n}$:

$$
a_{i} \cdot a_{j}=0, \quad \forall 1 \leq i, j \leq n .
$$

Example 3.5. Let \mathcal{S}_{n} be the n-subspace quiver, i.e.

Denote the target vertex by e, the source vertices by f_{1}, \ldots, f_{n}, and the corresponding arrows by a_{1}, \ldots, a_{n}. Declaring e to be the identity, and f_{1} to be the "zero" element, we get a monoid structure on the set of vertices as in Theorem 3.2. The bimodule structure is defined similarly:

$$
\text { e. } a_{i}=a_{i}=a_{i} \cdot e, \quad f_{i} \cdot a_{j}=0=a_{j} \cdot f_{i}
$$

for all $1 \leq i, j \leq n$. The multiplication of the quiver bialgebra $\mathbb{k} \mathcal{S}_{n}$ is similar: $a_{i} \cdot a_{j}=0$ for all i, j.

Example 3.6. Let \mathcal{A}_{∞} be the quiver

Index the vertices g_{i}, from left to right, by $\mathbb{N}=\{0,1,2, \ldots\}$ and consider the additive monoid structure, i.e. $g_{i} g_{j}=g_{i+j}$. Denote the arrow $g_{i} \rightarrow g_{i+1}$ by a_{i}. Define a bialgebra bimodule structure on the space of arrows by

$$
g_{i} \cdot a_{j}=a_{i+j}, \quad a_{j} \cdot g_{i}=q^{i} a_{i+j}
$$

for all $i, j \in \mathbb{N}$, where $q \in \mathbb{k}-\{0\}$ is a parameter. Assume further that q is not a root of unity. By a routine verification one can show that the axioms of bialgebra bimodules are satisfied. Let p_{i}^{l} denote the path $a_{i+l-1} \cdots a_{i+1} a_{i}$ if $l \geq 1$, and g_{i} if $l=0$. Apparently, $\left\{p_{i}^{l}\right\}_{i, l \geq 0}$ is a basis of $\mathbb{k} \mathcal{A}_{\infty}$. Then using Subsection 3.4 and induction we obtain the multiplication formula

$$
p_{i}^{l} \cdot p_{j}^{m}=q^{j l}\binom{l+m}{m}_{q} p_{i+j}^{l+m}
$$

for all $i, j, l, m \in \mathbb{N}$. Here we use the quantum binomial coefficients as in [17. For completeness, we recall their definition. For any $q \in \mathbb{k}$ and integers
$l, m \geq 0$, define

$$
l_{q}=1+q+\cdots+q^{l-1}, \quad l!_{q}=1_{q} \cdots l_{q}, \quad\binom{l+m}{l}_{q}=\frac{(l+m)!_{q}}{l!{ }_{q} m!!_{q}} .
$$

Clearly the quiver bialgebra $\mathbb{k} \mathcal{A}_{\infty}$ is generated as an algebra by g_{1} and a_{0} with relation $a_{0} g_{1}=q g_{1} a_{0}$. Therefore, $\mathbb{k} \mathcal{A}_{\infty}$ is exactly the quantum plane of Manin [23] and the bialgebra structure given here is identical to that in [17, p. 118].

We remark that the quivers in the previous examples admit no Hopf algebra structures, as they are certainly not Hopf quivers. For simple quivers as in Examples 3.4 and 3.5, it is not difficult to classify all the possible graded bialgebra structures on the path coalgebras. The bialgebra structure given in Example 3.6 is different from the "trivial" one as given in the proof of Theorem 3.2.

Though theoretically any graded pointed bialgebra can be obtained as a large sub-bialgebra of a quiver bialgebra, there seems to be no chance to give a general method for such construction. However, in the following we will show that a large class of pointed bialgebras whose coradical filtration has length 2 can be constructed systematically.

Proposition 3.7. Let Q be a quiver. Assume that in Q_{0} there is a sink (i.e., admitting only incoming arrows) or a source (i.e., admitting only outgoing arrows). Then there exists on $\mathbb{k} Q$ a bialgebra structure such that $\mathbb{k} Q_{0} \oplus \mathbb{k} Q_{1}$ becomes its sub-bialgebra.

Proof. By assumption, there is a sink or a source in Q_{0}. Let it be the identity e of the monoid on Q_{0} and take the graded bialgebra structure on $\mathbb{k} Q$ as given in the proof of Theorem 3.2. Let $B=\mathbb{k} Q_{0} \oplus \mathbb{k} Q_{1}$. We claim that B is a sub-bialgebra of $\mathbb{k} Q$. In fact, we only need to verify that multiplication of arrows is closed in B. Given arrows $a: g \rightarrow h$ and $b: u \rightarrow v$, by Subsection 3.4 their product is

$$
a \cdot b=[a . v][g . b]+[h . b][a . u] .
$$

Clearly the term $[a . v][g . b]$ survives, i.e. is not zero, only if $v=g=e$, but this contradicts the assumption that e is a sink or a source. Similarly $[h . b][a . u]=0$. This shows that the multiplication of $\mathbb{k} Q$ is indeed closed in B.

Remark 3.8. Coalgebras with coradical filtration having length 2 have been studied by Kosakowska and Simson [20], where a reduction to hereditary coalgebras is presented and the Gabriel quiver is discussed in terms of irreducible morphisms. The dual of such a coalgebra is an algebra of radical square zero. The class of radical square zero algebras is very important in the representation theory of Artin algebras (see e.g. [1, 2]). The dual of
the previous proposition asserts that every elementary radical square zero algebra with $\operatorname{Ext}^{1}(S,-)=0$ or $\operatorname{Ext}^{1}(-, S)=0$ for some simple module S has a bialgebra structure, therefore its module category has a natural tensor product.
4. Monoidal structures over quiver representations. In this section we consider natural monoidal structures on the categories of locally nilpotent representations of quivers arising from bialgebra structures.

Recall that a monoidal category is a sextuple $(\mathcal{C}, \otimes, \mathbf{1}, \alpha, \lambda, \rho)$, where \mathcal{C} is a category, $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ is a functor, $\mathbf{1}$ an object, and $\alpha: \otimes \circ(\otimes \times \mathrm{Id}) \rightarrow$ $\otimes \circ(\operatorname{Id} \times \otimes), \lambda: \mathbf{1} \otimes-\rightarrow \mathrm{Id}, \rho:-\otimes \mathbf{1} \rightarrow \mathrm{Id}$ are natural isomorphisms such that the associativity and unitarity constraints hold, or equivalently the pentagon and the triangle diagrams are commutative (see e.g. 21] for details).

Natural examples of monoidal structures are the categories of B-modules and B-comodules with B a bialgebra (see e.g. [17, 24]). Recall that, if U and V are right B-comodules and $U \otimes V$ the usual tensor product of \mathbb{k}-spaces, then the comodule structure of $U \otimes V$ is given by $u \otimes v \mapsto u_{0} \otimes v_{0} \otimes u_{1} v_{1}$, where we use the Sweedler notation $u \mapsto u_{0} \otimes u_{1}$ for comodule structure maps. The unit object is the trivial comodule \mathbb{k} with comodule structure map $k \mapsto k \otimes 1$. On the other hand, by the reconstruction formalism, monoidal categories with fiber functors are obtained in this manner (see e.g. [9, 22]).

The monoidal categories arising from quiver bialgebras (as their right comodule categories) share a common property: their simple objects all have \mathbb{k}-dimension 1 and consist of a monoid. Inspired by this and the notion of pointed tensor categories introduced in 9], we call a \mathfrak{k}-linear monoidal category pointed if the iso-classes of simple objects constitute a monoid (under tensor product).

From now on, the field \mathbb{k} is assumed to be algebraically closed and the monoidal categories under consideration are \mathbb{k}-linear abelian. A monoidal category is said to be finite if the underlying category is equivalent to the category of finite-dimensional comodules over a finite-dimensional coalgebra. This is a natural generalization of the notion of finite tensor categories of Etingof and Ostrik [10].

Classification of finite monoidal categories is a fundamental problem. Our results in Section 3 indicate that even finite pointed monoidal categories are "over" pervasive, it is necessary to impose a proper condition before considering the classification problem. In the following, by taking advantage of the theory of quivers and their representations, we give classification results for some classes of finite pointed monoidal categories.

An abelian category is said to be hereditary if the extension bifunctor Ext n vanishes in each degree $n \geq 2$. Next we consider hereditary finite
pointed monoidal categories. Though the following results are direct consequences of some well-known theorems on quivers and representations, we feel it is of interest to include them here.

Proposition 4.1. A hereditary finite pointed monoidal category with a fiber functor is equivalent to $(\operatorname{Rep}(Q), \mathcal{F})$ with Q a finite acyclic quiver and \mathcal{F} the forgetful functor from $\operatorname{Rep}(Q)$ to the category $\mathrm{Vec}_{\mathrm{k}}$ of vector spaces.

Proof. By the standard reconstruction process (see e.g. [9, 22]), a finite monoidal category with fiber functor is equivalent to (B-comod, \mathcal{F}) in which B-comod is the category of finite-dimensional right comodules over a finite-dimensional bialgebra B, and \mathcal{F} is the forgetful functor. Note that the category of right comodules over a finite-dimensional bialgebra B is pointed if and only if B is pointed. Now by the Gabriel type theorem for pointed coalgebras [5], there exists a unique quiver Q such that B is isomorphic to a large subcoalgebra, i.e. including the space spanned by the set of vertices and arrows, of the path coalgebra $\mathbb{k} Q$. The hereditariness of the category B-comod forces B to be hereditary as a coalgebra. This indicates that B is isomorphic to $\mathbb{k} Q$ as a coalgebra. Since $B \cong \mathbb{k} Q$ is finite-dimensional, the quiver Q must be finite and acyclic. Obviously, any representation of Q is automatically locally nilpotent, hence B-comod is equivalent to $\operatorname{Rep}(Q)$.

Now we can use Gabriel's famous classification theorem [11] on quivers of finite representation type, i.e. admitting only finitely many indecomposable representations up to isomorphism, to describe hereditary pointed monoidal categories in which there are only finitely many iso-classes of indecomposable objects. Following the terminology of [16], a finite monoidal category is said to be of finite type if it has only finitely many iso-classes of indecomposable objects.

Corollary 4.2. A hereditary pointed monoidal category of finite type with a fiber functor is of the form $\operatorname{Rep}(Q)$ where Q is a finite disjoint union of quivers of ADE type.

Finally we give two examples of quiver monoidal categories. We also work out their Clebsch-Gordan formula and representation ring respectively.

Example 4.3. Let \mathcal{A}_{n} be the quiver

with $n \geq 2$ vertices v_{1}, \ldots, v_{n} and $n-1$ arrows a_{1}, \ldots, a_{n-1} where a_{i} : $v_{i} \rightarrow v_{i+1}$. Set v_{1} to be the identity, v_{2} to be the zero element, take the monoid structure on $\left\{v_{i} \mid 1 \leq i \leq n\right\}$ as in Theorem 3.2 and consider the corresponding bialgebra structure with multiplication given by

$$
v_{1} \cdot a_{i}=a_{i}=a_{i} \cdot v_{1}, \quad v_{j} \cdot a_{i}=0=a_{i} \cdot v_{j} \quad(j \geq 2), \quad a_{i} \cdot a_{j}=0 .
$$

For a pair of integers i, j satisfying $1 \leq i \leq j \leq n$, define a representation $V(i, j)$ of \mathcal{A}_{n} by

$$
V(i, j)_{v_{k}}=\left\{\begin{array}{ll}
\mathbb{k}, & i \leq k \leq j, \\
0, & \text { otherwise },
\end{array} \quad V(i, j)_{a_{k}}= \begin{cases}1, & i \leq k \leq j-1, \\
0, & \text { otherwise }\end{cases}\right.
$$

It is well-known that the set $\{V(i, j) \mid 1 \leq i \leq j \leq n\}$ is a complete list of indecomposable representations of \mathcal{A}_{n}. For the Clebsch-Gordan problem of the category $\operatorname{Rep}\left(\mathcal{A}_{n}\right)$, it is enough to consider the decomposition rule of $V(i, j) \otimes V(k, l)$ thanks to the Krull-Schmidt theorem.

Given a representation $V(i, j)$, let $e_{s}(i \leq s \leq j)$ denote a basis element of the vector space \mathbb{k} assigned to the s th vertex. Recall that the associated comodule structure map for $V(i, j)$ is given by

$$
\delta\left(e_{s}\right)=\sum_{x=s}^{j} e_{x} \otimes p_{s}^{x-s},
$$

where p_{x}^{y} denotes the path of length y starting at x. Now for $e_{s} \otimes e_{t} \in$ $V(i, j) \otimes V(k, l)$, we have

$$
\delta\left(e_{s} \otimes e_{t}\right)= \begin{cases}\sum_{x=s}^{j} e_{x} \otimes e_{t} \otimes p_{s}^{x-s}+\sum_{y=t}^{l} e_{s} \otimes e_{y} \otimes p_{t}^{y-t}, & s=t=1 \\ \sum_{y=t}^{l} e_{s} \otimes e_{y} \otimes p_{t}^{y-t}, & s=1, t \geq 2 \\ \sum_{x=s}^{j} e_{x} \otimes e_{t} \otimes p_{s}^{x-s}, & s \geq 2, t=1 \\ e_{s} \otimes e_{t} \otimes v_{2}, & s \geq 2, t \geq 2\end{cases}
$$

Therefore, it is clear that

$$
V(i, j) \otimes V(k, l)= \begin{cases}V(i, j) \oplus V(k, l) \oplus V(2,2)^{(j-i)(l-k)+1}, & i=k=1, \\ V(k, l) \oplus V(2,2)^{(j-i)(l-k+1)}, & i=1, k \geq 2, \\ V(i, j) \oplus V(2,2)^{(j-i+1)(l-k)}, & i \geq 2, k=1, \\ V(2,2)^{(j-i+1)(l-k+1)}, & i \geq 2, k \geq 2 .\end{cases}
$$

Example 4.4. Consider the infinite quiver \mathcal{A}_{∞}. Take the bialgebra structure on $\mathbb{k} \mathcal{A}_{\infty}$ as in Example 3.6 and keep the notations therein. For any pair of integers i, j with $0 \leq i \leq j$, define a representation $V(i, j)$ of \mathcal{A}_{∞} as in the previous example. Clearly, $\{V(i, j) \mid 0 \leq i \leq j\}$ is a complete set of locally nilpotent and locally finite indecomposable representations of \mathcal{A}_{∞}. As in Example 4.3, take a basis element e_{s} for the vector space \mathbb{k} in $V(i, j)$ attached to the s th vertex g_{s}. The corresponding comodule structure map
of $V(i, j)$ is

$$
\delta\left(e_{s}\right)=\sum_{x=s}^{j} e_{x} \otimes p_{s}^{x-s}
$$

Consider the tensor product $V(i, j) \otimes V(k, l)$. For $e_{s} \otimes e_{t} \in V(i, j) \otimes V(k, l)$, we have

$$
\delta\left(e_{s} \otimes e_{t}\right)=\sum_{x=s}^{j} \sum_{y=t}^{l}\binom{x-s+y-t}{y-t}_{q} e_{x} \otimes e_{y} \otimes p_{s+t}^{x-s+y-t}
$$

From this, it is not hard to see that

$$
\begin{aligned}
V(0,1) \otimes V(0, n) & =V(0, n+1) \oplus V(1, n) \\
V(i, j) \otimes V(1,1) & =V(i+1, j+1)=V(1,1) \otimes V(i, j)
\end{aligned}
$$

This implies that the representation ring of $\operatorname{Rep}^{\operatorname{lnlf}}\left(\mathcal{A}_{\infty}\right)$ is generated by $V(0,1)$ and $V(1,1)$ and is isomorphic to the polynomial ring in two variables $\mathbb{Z}[X, Y]$.

Acknowledgements. The research of H.-L. Huang was partially supported by SDNSF (grant no. 2009ZRA01128) and IIFSDU (grant no. 2010TS021). The paper was written while Huang was visiting the Universidad de Almería and he acknowledges its hospitality. Both authors are grateful to the referees for their useful suggestions.

REFERENCES

[1] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Vol. 1. Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge, 2006.
[2] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.
[3] X. Chen, H.-L. Huang and P. Zhang, Dual Gabriel theorem with applications, Sci. China Ser. A 49 (2006), 9-26.
[4] X. Chen and P. Zhang, Comodules of $U_{q}\left(s l_{2}\right)$ and modules of $S L_{q}(2)$ via quiver methods, J. Pure Appl. Algebra 211 (2007), 862-876.
[5] W. Chin and S. Montgomery, Basic coalgebras, in: Modular Interfaces (Riverside, CA, 1995), AMS/IP Stud. Adv. Math. 4, Amer. Math. Soc., Providence, RI, 1997, 41-47.
[6] W. Chin and I. M. Musson, The coradical filtration for quantized enveloping algebras, J. London Math. Soc. (2) 53 (1996), 50-62.
[7] C. Cibils et M. Rosso, Algèbres des chemins quantiques, Adv. Math. 125 (1997), 171-199.
[8] C. Cibils and M. Rosso, Hopf quivers, J. Algebra 254 (2002), 241-251.
[9] P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor categories, lecture note for the MIT course 18.769, 2009; www-math.mit.edu/~etingof/tenscat.pdf.
[10] P. Etingof and V. Ostrik, Finite tensor categories, Moscow Math. J. 4 (2004), 627-654.
[11] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71-103.
[12] E. L. Green, Constructing quantum groups and Hopf algebras from coverings, J. Algebra 176 (1995), 12-33.
[13] E. L. Green and \varnothing. Solberg, Basic Hopf algebras and quantum groups, Math. Z. 229 (1998), 45-76.
[14] M. Herschend, Tensor products on quiver representations, J. Pure Appl. Algebra 212 (2008), 452-469.
[15] M. Herschend, On the representation ring of a quiver, Algebr. Represent. Theory 12 (2009), 513-541.
[16] H.-L. Huang, G. Liu and Y. Ye, Quviers, quasi-quantum groups and finite tensor categories, Comm. Math. Phys. 303 (2011), 595-612.
[17] C. Kassel, Quantum Groups, Grad. Texts in Math. 155, Springer, New York, 1995.
[18] R. Kinser, The rank of a quiver representation, J. Algebra 320 (2008), 2363-2387.
[19] R. Kinser, Rank functions on rooted tree quivers, Duke Math. J. 152 (2010), 27-92.
[20] J. Kosakowska and D. Simson, Bipartite coalgebras and a reduction functor for coradical square complete coalgebras, Colloq. Math. 112 (2008), 89-129.
[21] S. Mac Lane, Categories for the Working Mathematician, 3rd ed., Grad. Texts in Math. 5, Springer, New York, 1998.
[22] S. Majid, Foundations of Quantum Group Theory, Cambridge Univ. Press, Cambridge, 1995.
[23] Yu. I. Manin, Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier (Grenoble) 37 (1987), 191-205.
[24] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Reg. Conf. Ser. in Math. 82, Amer. Math. Soc., Providence, RI, 1993.
[25] S. Montgomery, Indecomposable coalgebras, simple comodules and pointed Hopf algebras, Proc. Amer. Math. Soc. 123 (1995), 2343-2351.
[26] W. D. Nichols, Bialgebras of type one, Comm. Algebra 6 (1978), 1521-1552.
[27] M. Rosso, Quantum groups and quantum shuffles, Invent. Math. 133 (1998), 399-416.
[28] D. Simson, Coalgebras, comodules, pseudocompact algebras and tame comodule type, Colloq. Math. 90 (2001), 101-150.
[29] D. Simson, Coalgebras of tame comodule type, comodule categories, and a tame-wild dichotomy problem, in: Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 561-660.
[30] M. Sweedler, Hopf Algebras, W. A. Benjamin, New York, 1969.
[31] F. Van Oystaeyen and P. Zhang, Quiver Hopf algebras, J. Algebra 280 (2004), 577-589.
[32] D. Woodcock, Some categorical remarks on the representation theory of coalgebras, Comm. Algebra 25 (1997), 2775-2794.

Hua-Lin Huang
School of Mathematics
Shandong University
Jinan 250100, China
E-mail: hualin@sdu.edu.cn

Blas Torrecillas
Department of Algebra and Analysis
Universidad de Almería 04071 Almería, Spain
E-mail: btorreci@ual.es

[^0]: 2010 Mathematics Subject Classification: Primary 16T10; Secondary 18D10, 16G20. Key words and phrases: bialgebra, monoidal category, quiver representation.

