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QUIVER BIALGEBRAS AND MONOIDAL CATEGORIES

BY

HUA-LIN HUANG (Jinan) and BLAS TORRECILLAS (Almeŕıa)

Abstract. We study bialgebra structures on quiver coalgebras and monoidal struc-
tures on the categories of locally nilpotent and locally finite quiver representations. It is
shown that the path coalgebra of an arbitrary quiver admits natural bialgebra structures.
This endows the category of locally nilpotent and locally finite representations of an arbi-
trary quiver with natural monoidal structures from bialgebras. We also obtain theorems
of Gabriel type for pointed bialgebras and hereditary finite pointed monoidal categories.

1. Introduction. This paper is devoted to the study of natural bialge-
bra structures on the path coalgebra of an arbitrary quiver and monoidal
structures on the category of its locally nilpotent and locally finite represen-
tations. A further purpose is to establish a quiver setting for general pointed
bialgebras and pointed monoidal categories.

Our original motivation is to extend the Hopf quiver theory [4, 7, 8, 12,
13, 25, 31] to the setting of generalized Hopf structures. As bialgebras are
a fundamental generalization of Hopf algebras, we naturally start our study
from this case. The basic problem is to determine what kind of quivers
can give rise to bialgebra structures on their associated path algebras or
coalgebras.

It turns out that the path coalgebra of an arbitrary quiver admits nat-
ural bialgebra structures (see Theorem 3.2). This seems a bit surprising at
first sight by comparison with the Hopf case given in [8], where Cibils and
Rosso showed that the path coalgebra of a quiver Q admits a Hopf algebra
structure if and only if Q is a Hopf quiver, which is very special. Bialge-
bra structures on general pointed coalgebras are also considered via quivers
thanks to the Gabriel type theorem for coalgebras (see [3, 5]). Similar to
the Hopf case obtained in [31], we give a Gabriel type theorem for general
pointed bialgebras (see Proposition 3.3).

Another motivation comes from finite monoidal categories which are a
natural generalization of finite tensor categories [10]. To the best of our
knowledge, not much is known about the construction and classification of fi-
nite monoidal categories which are not tensor categories, i.e., rigid monoidal
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categories [9]. By taking advantage of the well-developed quiver represen-
tation theory, the quiver presentation of a pointed bialgebra B can help
us to investigate the monoidal category of right B-comodules. Accordingly,
some classification results of pointed monoidal categories are obtained (see
Proposition 4.1 and Corollary 4.2).

Bialgebra structures on the path coalgebra of a quiver Q induce monoidal
structures on the category Replnlf(Q) of locally nilpotent and locally finite
representations of Q. These monoidal structures are also expected to be
useful for the studying of the category Replnlf(Q) itself. For example, the
tensor product of quiver representations naturally leads to the Clebsch–
Gordan problem, i.e., the decomposition of the tensor product of any two
representations into indecomposable summands, and the computation of
the representation ring of Replnlf(Q), etc. Note that the tensor product
given here is different from the vertex-wise and arrow-wise tensor product
used in [14, 15, 18, 19], which in general is not from the bialgebra, and
therefore should provide different information for the categories of quiver
representations. This interesting problem is the third motivation and will
be treated in the future.

We remark that a standard dual process will give rise to natural bialgebra
structures on the path algebra and monoidal structures on the category of
representations of a finite quiver. We prefer the path coalgebraic approach
as it is more convenient for exposition and, more importantly, allows infinite
quivers.

Throughout, we work over a field k. Vector spaces, algebras, coalgebras,
bialgebras, linear mappings, and unadorned ⊗ are over k. The readers are
referred to [24, 30] for general information about coalgebras and bialgebras,
and to [1, 28, 29] for quivers and their applications to (co)algebras and
representation theory.

2. Quivers, representations and path coalgebras. As preparation,
in this section we recall some basic notions and facts about quivers, repre-
sentations and path coalgebras.

A quiver is a directed graph. More precisely, a quiver is a quadruple
Q = (Q0, Q1, s, t), where Q0 is the set of vertices, Q1 is the set of arrows, and
s, t : Q1 → Q0 are two maps assigning to each arrow respectively the source
and the target. Note that in this paper the sets Q0 and Q1 are allowed to be
infinite. If Q0 and Q1 are finite, then we say Q is a finite quiver. For a ∈ Q1,
we write a : s(a) → t(a). A vertex is, by convention, said to be a trivial
path of length 0. We also write s(g) = g = t(g) for each g ∈ Q0. The length
of an arrow is set to be 1. In general, a non-trivial path of length n (≥ 1)
is a concatenation of arrows of the form p = an · · · a1 with s(ai+1) = t(ai)
for i = 1, . . . , n− 1. By Qn we denote the set of paths of length n. A quiver
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is said to be acyclic if it has no cyclic paths, i.e. non-trivial paths with
identical starting and ending vertices.

Let Q be a quiver and kQ the associated path space which is the k-span
of its paths. There is a natural coalgebra structure on kQ with comultipli-
cation as split of paths. Namely, for a trivial path g, set ∆(g) = g ⊗ g and
ε(g) = 1; for a non-trivial path p = an · · · a1, set

∆(p) = t(an)⊗ p+

n−1∑
i=1

an · · · ai+1 ⊗ ai · · · a1 + p⊗ s(a1)

and ε(p) = 0. This is the path coalgebra of the quiver Q.

There exists on kQ an intuitive length gradation kQ =
⊕

n≥0 kQn,
compatible with the comultiplication ∆. It is clear that the path coalgebra
kQ is pointed, and the set G(kQ) of group-like elements is Q0. Moreover,
the coradical filtration of kQ is

kQ0 ⊆ kQ0 ⊕ kQ1 ⊆ kQ0 ⊕ kQ1 ⊕ kQ2 ⊆ · · ·

therefore it is coradically graded in the sense of Chin–Musson [5].

The path coalgebra is exactly the dual notion of the path algebra of
a quiver, which is certainly more familiar. Dual to the freeness of path
algebras, path coalgebras are cofree. Precisely, for an arbitrary quiver Q,
the vector space kQ0 is a subcoalgebra of kQ, and over the vector space
kQ1 there is an induced kQ0-bicomodule structure via

δL(a) = t(a)⊗ a, δR(a) = a⊗ s(a)

for each a ∈ Q1; the path coalgebra has another presentation as the so-called
cotensor coalgebra (see, e.g., [31, 32])

CoTkQ0(kQ1) = kQ0 ⊕ kQ1 ⊕ kQ1 � kQ1 ⊕ · · ·

and hence enjoys the following

Universal Mapping Property. Let f : C → kQ be a coalgebra map,
πn : kQ→ kQn the canonical projection and set fn := πn ◦f : C → kQn for
each n ≥ 0. Then f0 is a coalgebra map; f1 is a kQ0-bicomodule map, where
the kQ0-bicomodule structure on C is induced by f0; and for each n ≥ 2, fn
can be written as f⊗n1 ◦∆

(n−1)
C , where ∆

(n−1)
C is the (n−1)-iterated action of

the comultiplication of C. Conversely, given a coalgebra map f0 : C → kQ0

and a kQ0-bicomodule map f1 : C → kQ1, set fn = f⊗n1 ◦ ∆(n−1)
C for

each n ≥ 2. Then as long as f :=
∑

n≥0 fn is well-defined, it is the unique

coalgebra map f : C → kQ such that f0 = π0 ◦ f and f1 = π1 ◦ f.

Let Q be a quiver. A representation of Q is a collection

V = (Vg, Va)g∈Q0, a∈Q1
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consisting of a vector space Vg for each vertex g and a linear map Va : Vs(a) →
Vt(a) for each arrow a. A morphism of representations, φ : V → W , is a
collection φ = (φg)g∈Q0 of linear maps φg : Vg → Wg for each vertex g such
that Waφs(a) = φt(a)Va for each arrow a. The category of representations of
Q is denoted by Rep(Q). Given a representation V of Q and a path p, we
define Vp as follows. If p is trivial, say p = g ∈ Q0, then put Vp = IdVg . For
a non-trivial path p = an · · · a2a1, put Vp = Van · · ·Va2Va1 . A representation
V of Q is said to be locally nilpotent if for all g ∈ Q0 and all x ∈ Vg,
there exist at most finitely many paths p with source g satisfying Vp(x) 6= 0.
A representation is called locally finite if it is a directed union of finite-
dimensional representations. We denote by Replnlf(Q) the full subcategory
of Rep(Q) consisting of all locally nilpotent and locally finite representations.
It is well-known that the category of right kQ-comodules is equivalent to
Replnlf(Q) (see [20]).

3. Quiver bialgebras. In this section we show that the path coalgebra
of an arbitrary quiver can be endowed with natural bialgebra structures. A
Gabriel type theorem for pointed bialgebras is also given. Some examples
are presented.

We start with the definition of bialgebra bimodules. Let B be a bialgebra.
A B-bialgebra bimodule is a vector space M which is a B-bimodule and
simultaneously a B-bicomodule such that the B-bicomodule structure maps
are B-bimodule maps, or equivalently, the B-bimodule structure maps are
B-bicomodule maps.

Lemma 3.1. Let Q be a quiver. The associated path coalgebra kQ admits
a bialgebra structure if and only if Q0 has a monoid structure and kQ1 can
be given a kQ0-bialgebra bimodule structure. Moreover, the set of graded
bialgebra structures on the path coalgebra kQ is in one-to-one correspon-
dence with the set of pairs (S,M) in which S is a monoid structure on Q0

and M is a kS-bialgebra bimodule structure on kQ1.

Proof. Assume first that the path coalgebra kQ admits a bialgebra struc-
ture. By considering its graded version induced by the coradical filtration
(see, e.g., [24, 26]), we can assume further that the bialgebra structure on
kQ is coradically graded. Note that the identity 1 is group-like, so 1 lies
in Q0, which is the set of group-like elements of kQ. For any g, h ∈ Q0, we
have ∆(gh) = ∆(g)∆(h) = gh ⊗ gh and ε(gh) = ε(g)ε(h) = 1, therefore
gh ∈ Q0. Hence the restriction of the multiplication of kQ to Q0 gives rise
to a monoid structure. The kQ0-bicomodule structure on kQ1 is given as
in Subsection 2.3. The multiplication of kQ0 provides a bimodule structure
on kQ1. Finally, note that the axioms for bialgebras guarantee that the kQ1

so defined is a kQ0-bialgebra bimodule.
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Conversely, assume that Q0 can be endowed with a monoid structure
and the vector space kQ1 has a kQ0-bialgebra bimodule structure. By the
method of Nichols [26], these data can be used to construct a graded bialge-
bra structure on the path coalgebra kQ by the universal mapping property.
Nichols’ construction was applied to the quiver setting for Hopf algebras in
[7, 8, 12, 13]. For completeness we include the construction below.

The cotensor coalgebra CoTkQ0(kQ1) is exactly the path coalgebra kQ.
The kQ0-bimodule structure on kQ1 can be extended to a multiplication on
kQ via the universal mapping property of kQ. Let M0 : kQ⊗kQ→ kQ0 be
the composition of the canonical projection π0⊗π0 : kQ⊗kQ→ kQ0⊗kQ0

and the multiplication of the monoid algebra kQ0, and M1 : kQ⊗kQ→ kQ1

the composition of the canonical projection

π0 ⊗ π1 ⊕ π1 ⊗ π0 : kQ⊗ kQ→ kQ0 ⊗ kQ1 ⊕ kQ1 ⊗ kQ0

and the sum of the left and right module actions. Then it is clear that
M0 is a coalgebra map and M1 is a kQ0-bicomodule map. Let Mn = M⊗n1 ◦
∆

(n−1)
2 , where ∆2 is the coproduct of the tensor product coalgebra kQ⊗kQ.

For any path p of length n, it is easy to see that Ml(p) = 0 if l 6= n.
Therefore M =

∑
n≥0Mn is a well-defined coalgebra map and moreover

respects the length gradation. The associativity for M can be deduced from
the associativity of the bimodule action without difficulty by a standard
application of the universal mapping property as before. The unit map is
obvious. Hence we have defined an associative algebra structure and we
obtain a graded bialgebra structure on kQ.

The one-to-one correspondence in the statement is obvious.

Now we state our first main result.

Theorem 3.2. Let Q be a quiver. The associated path coalgebra kQ
always admits bialgebra structures.

Proof. By Lemma 3.1, it is enough to provide a monoid structure on
Q0 and a kQ0-bialgebra bimodule on kQ1. First, we fix a kQ0-bicomodule
structure on kQ1 as in Subsection 2.3. If Q0 has only one element, then let
it be the unit group and take the trivial kQ0-bimodule structure on kQ1.
Obviously, this defines a necessary bialgebra bimodule.

Now we assume Q0 contains at least two elements. Take any e ∈ Q0, and
set it to be the identity, i.e., let eg = g = ge for all g ∈ Q0. Take any z ∈ Q0

other than e, and make it a “zero” element, that is, let gz = z = zg for any
g ∈ Q0. For any g, h ∈ Q0 − {e, z}, set gh = z. Here, g = h is allowed. One
can verify without difficulty that this endows Q0 with a monoid structure.
For the kQ0-bimodule structure on kQ1, define

e.a = a = a.e, f.a = 0 = a.f
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for all a ∈ Q1 and all f ∈ Q0−{e}. Clearly, the bicomodule structure maps
are bimodule maps and hence we have obtained a kQ0-bialgebra bimodule
structure on kQ1.

Note that in the proof of the previous theorem we provide only a very
“trivial” example of a graded bialgebra structure for the path coalgebra.
The classification of all graded bialgebra structures on kQ, or equivalently
the classification of all suitable monoid structures on Q0 and kQ0-bialgebra
bimodule structures on kQ1, is still not clear and is an interesting problem
of quiver combinatorics.

However, if Q0 can be given a group structure and further kQ1 can
be given a corresponding bialgebra bimodule structure over kQ0, then the
situation is much clearer. Indeed, in this case kQ0 becomes a Hopf algebra
and kQ1 becomes a kQ0-Hopf bimodule [26]. Now the fundamental theorem
on Hopf modules of Sweedler [30, Theorem 4.1.1] can be applied, and the
category of kQ0-Hopf bimodules is proved to be equivalent to the direct
product of the representation categories of a class of subgroups of Q0 by
Cibils and Rosso [7]. Note that a quiver Q with Q0 having a group structure
and kQ1 having a kQ0-Hopf bimodule structure is far from arbitrary. Such
quivers are called covering quivers in [13] and Hopf quivers in [8]. It would
be of interest to generalize the classification of Hopf bimodules over groups
to that of bialgebra bimodules over monoids.

For later use, we record the multiplication formula of paths, given by
Rosso’s quantum shuffle product [27], for quiver bialgebras. Given a quiverQ,
take a suitable monoid structure on Q0 and a kQ0-bialgebra bimodule struc-
ture on kQ1. Let p be a path of length l. An n-thin split of p is a sequence
(p1, . . . , pn) of vertices and arrows such that the concatenation pn · · · p1 is
exactly p. These n-thin splits of p are in one-to-one correspondence with the
n-sequences of (n− l) 0’s and l 1’s. Denote the set of such sequences by Dn

l .
Clearly |Dn

l | =
(
n
l

)
. For d = (d1, . . . , dn) ∈ Dn

l , the corresponding n-thin
split is written as dp = ((dp)1, . . . , (dp)n), where (dp)i is a vertex if di = 0
and an arrow if di = 1.

Let α = am · · · a1 and β = bn · · · b1 be a pair of paths of length m and n
respectively. Let d ∈ Dm+n

m , and let d̄ ∈ Dm+n
n be the complement sequence

which is obtained from d by replacing each 0 by 1 and vice versa. Define an
element in kQ

�m+n−1

1 , or equivalently in kQm+n, by

(α · β)d = [(dα)m+n.(d̄β)m+n] · · · [(dα)1.(d̄β)1],

where [(dα)i.(d̄β)i] is understood as the kQ0-bimodule action on kQ1, and
the terms in different brackets are put together by the cotensor product, or
equivalently concatenation. In this notation, the formula for the product of
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α and β is

α · β =
∑

d∈Dm+n
m

(α · β)d.

Now we give a Gabriel type theorem for general pointed bialgebras, which
is in the same vein as the results of Chin and Montgomery [5] for pointed
coalgebras and of Van Oystaeyen and Zhang [31] for pointed Hopf algebras.
Let B be a pointed bialgebra and {Bi}i≥0 its coradical filtration. Let grB =
B0 ⊕ B1/B0 ⊕ B2/B1 ⊕ · · · be the associated coradically graded bialgebra
induced by the coradical filtration.

Proposition 3.3. Let B be a pointed bialgebra and grB its coradically
graded version. There exist a unique quiver Q and a unique graded bialgebra
structure on kQ such that grB can be realized as a sub-bialgebra of kQ with
kQ0 ⊕ kQ1 ⊆ grB.

Proof. Note that grB is still pointed and its coradical is B0. Let Q0

be the set of group-like elements of grB. Then clearly Q0 is a monoid
and B0 = kQ0 as bialgebras, where the latter is the usual monoid bial-
gebra. Induced from the graded bialgebra structure, B1/B0 is a B0 = kQ0-
bialgebra bimodule. The bicomodule structure maps are denoted δL and δR.
As a kQ0-bicomodule, B1/B0 is in fact a Q0-bigraded space. Namely, write
M = B1/B0; then

M =
⊕

g,h∈Q0

gMh,

where gMh = {m ∈ M | δL(m) = g ⊗ m, δR(m) = m ⊗ h}. We attach
to these data a quiver Q as follows. Let the set of vertices be Q0. For all
g, h ∈ Q0, let the number of arrows with source h and target g be equal to the
k-dimension of the isotypic space gMh. Thus we have obtained a quiver Q
and moreover kQ1 has a kQ0-bialgebra bimodule structure which is identical
with the B0-bialgebra bimodule B1/B0. The kQ0-bialgebra bimodule kQ1

gives rise to a unique graded bialgebra structure on kQ. By the universal
mapping property, the coalgebra map grB

π0−→ B0 ' kQ0 and the kQ0-
bicomodule map grB

π1−→ B1/B0 ' kQ1 determine a unique coalgebra map
Θ : grB → kQ. Here, πi denotes the canonical projection grB → Bi/Bi−1.
By a theorem of Heyneman and Radford (see e.g. [24, Theorem 5.3.1]), the
coalgebra map Θ is injective since its restriction to the first term of the
coradical filtration is injective. Again, by the universal mapping property,
one can show that Θ is also an algebra map. Therefore, it is actually an
embedding of bialgebras. The last condition kQ0 ⊕ kQ1 ⊆ grB guarantees
that the quiver Q is unique.

In the following we give some examples of bialgebras on the path coal-
gebras of quivers.
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Example 3.4. Let Kn be the n-Kronecker quiver, i.e. a quiver of the
form

•
//
//... •

Denote the arrows as a1, . . . , an. Let the source vertex be e and the target
vertex be z as in Theorem 3.2. Then there is a bimodule structure on the
space spanned by {ai}ni=1 over the monoid {e, z} defined by

e.ai = ai = ai.e, z.ai = 0 = ai.z

for all i. We have the following multiplication formulas for the quiver bial-
gebra kKn:

ai · aj = 0, ∀ 1 ≤ i, j ≤ n.
Example 3.5. Let Sn be the n-subspace quiver, i.e.

• •

•?? __

..... ..

Denote the target vertex by e, the source vertices by f1, . . . , fn, and the
corresponding arrows by a1, . . . , an. Declaring e to be the identity, and f1
to be the “zero” element, we get a monoid structure on the set of vertices
as in Theorem 3.2. The bimodule structure is defined similarly:

e.ai = ai = ai.e, fi.aj = 0 = aj .fi

for all 1 ≤ i, j ≤ n. The multiplication of the quiver bialgebra kSn is similar:
ai · aj = 0 for all i, j.

Example 3.6. Let A∞ be the quiver

• • • • • · · ·// // // //

Index the vertices gi, from left to right, by N = {0, 1, 2, . . .} and consider
the additive monoid structure, i.e. gigj = gi+j . Denote the arrow gi → gi+1

by ai. Define a bialgebra bimodule structure on the space of arrows by

gi.aj = ai+j , aj .gi = qiai+j

for all i, j ∈ N, where q ∈ k− {0} is a parameter. Assume further that q is
not a root of unity. By a routine verification one can show that the axioms
of bialgebra bimodules are satisfied. Let pli denote the path ai+l−1 · · · ai+1ai
if l ≥ 1, and gi if l = 0. Apparently, {pli}i,l≥0 is a basis of kA∞. Then using
Subsection 3.4 and induction we obtain the multiplication formula

pli · pmj = qjl
(
l +m

m

)
q

pl+mi+j

for all i, j, l,m ∈ N. Here we use the quantum binomial coefficients as in [17].
For completeness, we recall their definition. For any q ∈ k and integers
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l,m ≥ 0, define

lq = 1 + q + · · ·+ ql−1, l!q = 1q · · · lq,
(
l +m

l

)
q

=
(l +m)!q
l!qm!q

.

Clearly the quiver bialgebra kA∞ is generated as an algebra by g1 and a0
with relation a0g1 = qg1a0. Therefore, kA∞ is exactly the quantum plane
of Manin [23] and the bialgebra structure given here is identical to that in
[17, p. 118].

We remark that the quivers in the previous examples admit no Hopf
algebra structures, as they are certainly not Hopf quivers. For simple quivers
as in Examples 3.4 and 3.5, it is not difficult to classify all the possible graded
bialgebra structures on the path coalgebras. The bialgebra structure given
in Example 3.6 is different from the “trivial” one as given in the proof of
Theorem 3.2.

Though theoretically any graded pointed bialgebra can be obtained as
a large sub-bialgebra of a quiver bialgebra, there seems to be no chance to
give a general method for such construction. However, in the following we
will show that a large class of pointed bialgebras whose coradical filtration
has length 2 can be constructed systematically.

Proposition 3.7. Let Q be a quiver. Assume that in Q0 there is a
sink (i.e., admitting only incoming arrows) or a source (i.e., admitting only
outgoing arrows). Then there exists on kQ a bialgebra structure such that
kQ0 ⊕ kQ1 becomes its sub-bialgebra.

Proof. By assumption, there is a sink or a source in Q0. Let it be the
identity e of the monoid on Q0 and take the graded bialgebra structure on
kQ as given in the proof of Theorem 3.2. Let B = kQ0⊕kQ1. We claim that
B is a sub-bialgebra of kQ. In fact, we only need to verify that multiplication
of arrows is closed in B. Given arrows a : g → h and b : u→ v, by Subsection
3.4 their product is

a · b = [a.v][g.b] + [h.b][a.u].

Clearly the term [a.v][g.b] survives, i.e. is not zero, only if v = g = e,
but this contradicts the assumption that e is a sink or a source. Similarly
[h.b][a.u] = 0. This shows that the multiplication of kQ is indeed closed
in B.

Remark 3.8. Coalgebras with coradical filtration having length 2 have
been studied by Kosakowska and Simson [20], where a reduction to heredi-
tary coalgebras is presented and the Gabriel quiver is discussed in terms of
irreducible morphisms. The dual of such a coalgebra is an algebra of radi-
cal square zero. The class of radical square zero algebras is very important
in the representation theory of Artin algebras (see e.g. [1, 2]). The dual of



296 H.-L. HUANG AND B. TORRECILLAS

the previous proposition asserts that every elementary radical square zero
algebra with Ext1(S,−) = 0 or Ext1(−, S) = 0 for some simple module S
has a bialgebra structure, therefore its module category has a natural tensor
product.

4. Monoidal structures over quiver representations. In this sec-
tion we consider natural monoidal structures on the categories of locally
nilpotent representations of quivers arising from bialgebra structures.

Recall that a monoidal category is a sextuple (C,⊗,1, α, λ, ρ), where C
is a category, ⊗ : C×C → C is a functor, 1 an object, and α : ⊗◦ (⊗× Id)→
⊗ ◦ (Id×⊗), λ : 1 ⊗ − → Id, ρ : − ⊗ 1 → Id are natural isomorphisms
such that the associativity and unitarity constraints hold, or equivalently
the pentagon and the triangle diagrams are commutative (see e.g. [21] for
details).

Natural examples of monoidal structures are the categories of B-modules
and B-comodules with B a bialgebra (see e.g. [17, 24]). Recall that, if U and
V are right B-comodules and U ⊗ V the usual tensor product of k-spaces,
then the comodule structure of U⊗V is given by u⊗v 7→ u0⊗v0⊗u1v1, where
we use the Sweedler notation u 7→ u0⊗u1 for comodule structure maps. The
unit object is the trivial comodule k with comodule structure map k 7→ k⊗1.
On the other hand, by the reconstruction formalism, monoidal categories
with fiber functors are obtained in this manner (see e.g. [9, 22]).

The monoidal categories arising from quiver bialgebras (as their right
comodule categories) share a common property: their simple objects all have
k-dimension 1 and consist of a monoid. Inspired by this and the notion
of pointed tensor categories introduced in [9], we call a k-linear monoidal
category pointed if the iso-classes of simple objects constitute a monoid
(under tensor product).

From now on, the field k is assumed to be algebraically closed and the
monoidal categories under consideration are k-linear abelian. A monoidal
category is said to be finite if the underlying category is equivalent to the
category of finite-dimensional comodules over a finite-dimensional coalgebra.
This is a natural generalization of the notion of finite tensor categories of
Etingof and Ostrik [10].

Classification of finite monoidal categories is a fundamental problem. Our
results in Section 3 indicate that even finite pointed monoidal categories are
“over” pervasive, it is necessary to impose a proper condition before con-
sidering the classification problem. In the following, by taking advantage of
the theory of quivers and their representations, we give classification results
for some classes of finite pointed monoidal categories.

An abelian category is said to be hereditary if the extension bifunctor
Extn vanishes in each degree n ≥ 2. Next we consider hereditary finite
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pointed monoidal categories. Though the following results are direct con-
sequences of some well-known theorems on quivers and representations, we
feel it is of interest to include them here.

Proposition 4.1. A hereditary finite pointed monoidal category with a
fiber functor is equivalent to (Rep(Q),F) with Q a finite acyclic quiver and
F the forgetful functor from Rep(Q) to the category Veck of vector spaces.

Proof. By the standard reconstruction process (see e.g. [9, 22]), a fi-
nite monoidal category with fiber functor is equivalent to (B-comod,F) in
which B-comod is the category of finite-dimensional right comodules over a
finite-dimensional bialgebra B, and F is the forgetful functor. Note that the
category of right comodules over a finite-dimensional bialgebra B is pointed
if and only if B is pointed. Now by the Gabriel type theorem for pointed
coalgebras [5], there exists a unique quiver Q such that B is isomorphic to
a large subcoalgebra, i.e. including the space spanned by the set of vertices
and arrows, of the path coalgebra kQ. The hereditariness of the category
B-comod forces B to be hereditary as a coalgebra. This indicates that B is
isomorphic to kQ as a coalgebra. Since B ∼= kQ is finite-dimensional, the
quiver Q must be finite and acyclic. Obviously, any representation of Q is
automatically locally nilpotent, hence B-comod is equivalent to Rep(Q).

Now we can use Gabriel’s famous classification theorem [11] on quivers of
finite representation type, i.e. admitting only finitely many indecomposable
representations up to isomorphism, to describe hereditary pointed monoidal
categories in which there are only finitely many iso-classes of indecomposable
objects. Following the terminology of [16], a finite monoidal category is said
to be of finite type if it has only finitely many iso-classes of indecomposable
objects.

Corollary 4.2. A hereditary pointed monoidal category of finite type
with a fiber functor is of the form Rep(Q) where Q is a finite disjoint union
of quivers of ADE type.

Finally we give two examples of quiver monoidal categories. We also work
out their Clebsch–Gordan formula and representation ring respectively.

Example 4.3. Let An be the quiver

• • • • •· · · · · ·// // //

with n ≥ 2 vertices v1, . . . , vn and n − 1 arrows a1, . . . , an−1 where ai :
vi → vi+1. Set v1 to be the identity, v2 to be the zero element, take the
monoid structure on {vi | 1 ≤ i ≤ n} as in Theorem 3.2 and consider the
corresponding bialgebra structure with multiplication given by

v1 · ai = ai = ai · v1, vj · ai = 0 = ai · vj (j ≥ 2), ai · aj = 0.
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For a pair of integers i, j satisfying 1 ≤ i ≤ j ≤ n, define a representation
V (i, j) of An by

V (i, j)vk =

{
k, i ≤ k ≤ j,
0, otherwise,

V (i, j)ak =

{
1, i ≤ k ≤ j − 1,

0, otherwise.

It is well-known that the set {V (i, j) | 1 ≤ i ≤ j ≤ n} is a complete list
of indecomposable representations of An. For the Clebsch–Gordan problem
of the category Rep(An), it is enough to consider the decomposition rule of
V (i, j)⊗ V (k, l) thanks to the Krull–Schmidt theorem.

Given a representation V (i, j), let es (i ≤ s ≤ j) denote a basis element
of the vector space k assigned to the sth vertex. Recall that the associated
comodule structure map for V (i, j) is given by

δ(es) =

j∑
x=s

ex ⊗ px−ss ,

where pyx denotes the path of length y starting at x. Now for es ⊗ et ∈
V (i, j)⊗ V (k, l), we have

δ(es ⊗ et) =



j∑
x=s

ex ⊗ et ⊗ px−ss +

l∑
y=t

es ⊗ ey ⊗ py−tt , s = t = 1,

l∑
y=t

es ⊗ ey ⊗ py−tt , s = 1, t ≥ 2,

j∑
x=s

ex ⊗ et ⊗ px−ss , s ≥ 2, t = 1,

es ⊗ et ⊗ v2, s ≥ 2, t ≥ 2.

Therefore, it is clear that

V (i, j)⊗ V (k, l) =


V (i, j)⊕ V (k, l)⊕ V (2, 2)(j−i)(l−k)+1, i = k = 1,

V (k, l)⊕ V (2, 2)(j−i)(l−k+1), i = 1, k ≥ 2,

V (i, j)⊕ V (2, 2)(j−i+1)(l−k), i ≥ 2, k = 1,

V (2, 2)(j−i+1)(l−k+1), i ≥ 2, k ≥ 2.

Example 4.4. Consider the infinite quiverA∞. Take the bialgebra struc-
ture on kA∞ as in Example 3.6 and keep the notations therein. For any pair
of integers i, j with 0 ≤ i ≤ j, define a representation V (i, j) of A∞ as in
the previous example. Clearly, {V (i, j) | 0 ≤ i ≤ j} is a complete set of
locally nilpotent and locally finite indecomposable representations of A∞.
As in Example 4.3, take a basis element es for the vector space k in V (i, j)
attached to the sth vertex gs. The corresponding comodule structure map
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of V (i, j) is

δ(es) =

j∑
x=s

ex ⊗ px−ss .

Consider the tensor product V (i, j)⊗V (k, l). For es⊗ et ∈ V (i, j)⊗V (k, l),
we have

δ(es ⊗ et) =

j∑
x=s

l∑
y=t

(
x− s+ y − t

y − t

)
q

ex ⊗ ey ⊗ px−s+y−ts+t .

From this, it is not hard to see that

V (0, 1)⊗ V (0, n) = V (0, n+ 1)⊕ V (1, n),

V (i, j)⊗ V (1, 1) = V (i+ 1, j + 1) = V (1, 1)⊗ V (i, j).

This implies that the representation ring of Replnlf(A∞) is generated by
V (0, 1) and V (1, 1) and is isomorphic to the polynomial ring in two variables
Z[X,Y ].
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