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WEIGHTED SHARP MAXIMAL FUNCTION INEQUALITIES
AND BOUNDEDNESS OF A LINEAR OPERATOR
ASSOCIATED TO A SINGULAR INTEGRAL OPERATOR
WITH NON-SMOOTH KERNEL

BY

DAZHAO CHEN (Shaoyang)

Abstract. We establish weighted sharp maximal function inequalities for a linear
operator associated to a singular integral operator with non-smooth kernel. As an appli-
cation, we obtain the boundedness of a commutator on weighted Lebesgue spaces.

1. Introduction. As a development of singular integral operators (see
[GRI], [S]), their commutators have been well studied. In [CRW], [PE], [PT],
the authors proved that the commutators generated by singular integral op-
erators and BMO functions are bounded on LP(R™) for 1 < p < co. Chanillo
[C] proved a similar result when singular integral operators are replaced
by fractional integral operators. In [J|, [PA], the boundedness of commu-
tators generated by singular integral operators and Lipschitz functions on
Triebel-Lizorkin and LP(R™) (1 < p < oo) spaces was obtained. In [B], [HG],
the boundedness of commutators generated by singular integral operators
and weighted BMO and Lipschitz functions on LP(R™) (1 < p < o0) spaces
was established (see also [HEW]). In [CG], Cohen and Gosselin studied
generalized commutators of singular integral operators of the form (see
also [DL])

Rm+1 (b7 Z, y)
|z —y|™

T(f)(z) = |

R’Il

K(z,y)f(y)dy,

and obtained some sharp function estimates and boundedness of the com-
mutators if Db € BMO(R") for all @ with |a| = m. In [DM], [MA], some
singular integral operators with non-smooth kernel were introduced, and
the boundedness of these operators and their commutators was obtained
(see [DEY], [LIUT], [LIU2], [ZL]).

Motivated by these, in this paper, we will study certain linear opera-
tors generated by singular integral operators with non-smooth kernel and
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weighted Lipschitz and BMO functions, that is, D*b € BMO(w) or Db €
Lipg(w) for all a with [a| =m.

2. Preliminaries. We will study some singular integral operators as
described below (see [DM]).

DEFINITION 2.1. A family of operators Dy, t > 0, is said to be an ap-
prozimation to the identity if, for every ¢ > 0, D; can be represented by a
kernel a:(z,y) in the following sense:

Di(f)(x) = | ar(z,y)f(y) dy
Rn
for every f € LP(R™) with p > 1, and a:(z,y) satisfies
jac(w, y)| < hu(a,y) = CE"Pp(|le =y /1),
where p is a positive, bounded and decreasing function satisfying

lim 7" p(r*) =0 for some € > 0.
r—00

DEFINITION 2.2. A linear operator T’ is called a singular integral operator
with non-smooth kernel if T is bounded on L?(R") and associated with a
kernel K(z,y) such that

T(f)(x) = | K(z,9)f(y)dy
Rn

for every continuous function f with compact support, and for almost all x
not in the support of f; moreover, we assume that:

(1) There exists an approximation to the identity {B;,¢ > 0} such that
T By has kernel ky(z,y) and there exist ¢1,co > 0 so that

S | K (z,y) — ke(z,y)|de < cg for all y € R".

|z—y|>c1tl/2

(2) There exists an approximation to the identity {A¢, ¢t > 0} such that
AT has kernel K(z,y) which satisfies

|Ki(2,y)| < cat™™/? if [z —y| < est?,
K (2,y) = Ki(z,y)| < cat®Pla—y| 770 if o —y| > cst!/?,
for some 6, c3,cq > 0.

Moreover, let m be the positive integer and b be a function on R™. Set

Ronia(bi,) = bla) = 3~ Dbly)(x — o)

laj<m
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We relate to T the linear operator defined by

() () = § BB e ) i) ay,
o Tl

Note that the commutator [b, T](f) = bT(f) —T'(bf) is a particular case
of T? if m = 0. The linear operator T? is a non-trivial generalization of
the commutator. It is well known that commutators are of great interest
in harmonic analysis and have been widely studied by many authors (see
[CG], [DL]). The main purpose of this paper is to prove sharp maximal
inequalities for the linear operator T°. As an application, we obtain the
weighted LP-boundedness of T°.

Now, let us introduce some notations. Throughout this paper, @ will
denote a cube in R™ with sides parallel to the axes. For a non-negative
integrable function w, let w(Q) = {4 w(z) dz and wg = Q! §ouw(z)dz.

For any locally integrable function f, the sharp mazimal function of f
is defined by

M#(f)(x) = sup — | |£(y) — fol dy.
@2z |Q
It is well known (see [GR]) that

M#(f)(x) %Zgliclgg@ VIF(y) = cldy.

Let

M(f)(z) = SUP 5] £ ()l dy.

!Q\ )

For n > 0, let My} (f)(z) = M#(Ifln)l/"(fv) and M, (f)(x) = M(|f|")/"(x).
For 0 <n <n, 1 <p< oo and a non-negative weight function w, set

1/p
My poo(f) (@) = sup(w(@l_ [ 1F@)Pwy) dy> ,
Q

05z 1—pn/n
Mo ()(a) = sup g7 ) [ty dy.

Q

The sharp maximal function M4(f) associated with an approximation
to the identity {A,t > 0} is defined by

M (f)(x) = S 1 |Q, V17w) — Ao (N @)l dy,

where g = 1(Q)? and I(Q) denotes the side length of Q. For n > 0, let
M, (f) = ME (| f|m)M/.
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The A, weights are defined by (see [GR])

=o€ Lt S“p<\c2|S “d‘””><r@\5 (w)_l/(p_l)d‘””>p_l<°"}

for 1 < p < 00, and
Ay ={we L} (R"): M(w)(z) < Cw(z) a.e.}.

Given a non-negative weight function w, and 1 < p < oo, the weighted
Lebesgue space LP(R™ w) is the space of functions f such that

£l zp() = (S |f (z)[Pw () dx)l/p < 0.
RTL

Given a non-negative weight function w, the weighted BMO space
BMO(w) is the space of functions b such that

| b(y) — boldy < o.
Q

For 0 < 8 < 1, the weighted Lipschilz space Lipg (w) is the space of functions
b such that

b = L L b bo|Pw(z)' P d v
|| ||Lipﬁ<w>—sgpw@)ﬁ/n(w(@ §1#0) ~boPate) y) <.

REMARK. (1) It is known (see [G]) that for b € Lipg(w), w € A; and
z € Q,

1
Hb”BMO(w) = Sgp w(Q)

b — barg| < Ck|bl|Lip, (wyw(@)w (2 Q)7/™.

(2) Let b € Lipg(w) and w € A;. By [G], we know that the spaces
Lipg(w) all coincide and the norms [|b|;p, () for different 1 < p < oo are
all equivalent.

We give some preliminary lemmas.

LEMMA 2.3 (see [GRL p. 485]). Let 0 < p < q < oo. For any function
f >0 define, with 1/r =1/p—1/q,

I fllwre =sup A|[{z € R™ : f(x) > A}V,
A>0
Npqo(f) = Sgp Il fxollze/lIxellzr,

where the sup is taken over all measurable sets Q with 0 < |Q| < co. Then

1 lwee < Npg(£) < (a/ (@ =) Pl fllwra-
LEMMA 2.4 (see [DM], [MA]). Let T be a singular integral operator as in
Definition 2.2. Then T is bounded on LP(R",w) for w € A, with 1 < p < oo,
and weakly (L', L') bounded.
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LEMMA 2.5 (see [B]). Let b € BMO(w). Then
1bg — baigl < CjllbllBMO(W)WQ;
where wq, = max<i<; [2°Q|™! fpiguw(z) da.
LEMMA 2.6 (see [B]). Let w € A, with 1 < p < oo. Then there exists
e >0 such that w™"/P € A, for any p <r <p +e.

LEMMA 2.7 (see [B]). Let b € BMO(w) with w = (uv=)Y?, v € A,
and p > 1. Then there exists € > 0 such that for p’ <r <p' +¢,
| Ib() = bo|"u(z) """ dx < C|lbllpuow) | v(@) 7P da.
Q Q
LEMMA 2.8 (see [B]). Let w € A, with 1 < p < co. Then there exists
0 <& <1 such that w'=7'/P ¢ Ap e (dp) for any p' < r < p'(1+96), where
dp = w'/? dx.
LEMMA 2.9 (see [B]). Let p,v € Ay and w = (uv=)YP with 1 < p < oo.
Then there exists 1 < q < p such that

1 , , vd
WQ(I/Q)l/q < S w(z) 9 v(z)" 1/ d:c) <C.
Q)

LEMMA 2.10 (see [C], [GR]). Let 0 <np<n,1 <s<p<n/n, 1/qg=
1/p—n/n and w € Ay. Then
| My 50 (Pl Law) < Cllfllew)-

LEMMA 2.11 (see [DM], [MA]). Let {A¢, t > 0} be an approzimation to
the identity. For any v > 0, there exists a constant C > 0 independent of
such that

{z € R - M(f)(x) > DA, MF(f)(x) <A}
< Cyl{z e R™ : M(f)(z) > A}
for A > 0, where D is a fized constant which only depends on n. Thus, for
felPR"),1<p<oo,0<n<ooandw € A,
IMy(F) Loy < CIME (Do
LEMMA 2.12 (see [CG]). Let b be a function on R™ with D*b € L*(R")

for all a with |a] =m and any s > n. Then

1 1/s
rRm<b;x,y>\<0\x—y\mZ<m)| S \D“b(z)lsdz) ,
Y Q(z.y)

where Q is the cube centered at x and having side length 5/n|x — y|.

|al=m



154 D. Z. CHEN

LEMMA 2.13. Let {A;,t > 0} be an approzimation to the identity,
weA,0<B<1,1<r<oc andb € Lipg(w). Then for every f € LP(w),
p>1andzx €R"?,

sup = | [Aig (0= Q) /) ()| dy < ClbllLip, ()@ () Mp w0, (1) (E)-

Q> |Q’

Proof. We Write, for any cube Q with = € @,

S S hio (z, y)[(b(y) — bo) f(y)| dy dzx
QR"

Hth (z,y)|(b(y) — bq) f(y)| dy dx
@aq

[e.e]

+ |Q|S Vo g 9)l(b(y) — bo) f(y)] dy da
Q 2k+1Q\2FQ

At (b= bQ) f)(x)] dz <

!QI ) \QI

=14+1I
We have, by Holder’s inequality,

1< 5[ {10() — bo) f)] dy de
QRQ

S
S

< £ bly) — balw(y) 71 () ()" dy
Q)
C ” e 1/r ., 1/r
s@(érwy)—b@r w(y)'™" dy) (gwy)\ w(y) dy)
C n r! r 1/r
< 17 Pl (@) (652 FW)w(y) dy)
< Clbluipy o) ,g%w(nm

< C[bl| iy ()@ (E) M 0 (f) (Z)-

For 11, notice that if z € Q and y € 2¥1Q \ 2%Q, then |z — y| > 281t
and th(x,y) < CS(ZQ(k_I))/]Q|, SO

[e.9]

(22(=1))
<0 s !Q\ Q|

k=0

<022kn 22k 1))
k=0

V110 —b) fy)l dyda

Q 2k+1Q

1) —borsig) + (bars1g—b)| £ ()] dy
2k+1Q

|2k+1Q’
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> _ _ ! e 1/7”/
<O s (@E )2 QI (| (bly) — byresgl"w(n) T dy)
k=0 2k+1Q

(] rwrew )

2k+1Q

+C Y 25s(22ED) ML QT R b i () w(8)w (25T Q)P
k=0

1r 1 (r=1)/r
(5 werema) " (Gg | e a)
2k+1Q 2k+1Q

1 1/r s
X <M S w(y) dy> 2" Qlw(2H Q)Y
2k+1Q

o) . B w 2k;+1Q ~
< C[bllLip (w) Z k2kms(22E1)) (,gkﬂ@) + W(@)
k=0

1 1/r
X<w(2k+1Q)l—rﬁ/n S |f(y)|Tw(y)dy>

2k+1Q

< C”bHLipB(w) Z k2kns(22(k_1))w(j)Mﬁ,r,w(f)(j)
k=0

< CHb”Lipﬁ(w)w(-’i)MB,r,w(f)(i')7

where the last inequality follows from

Z kQ(k—l)ns(QQ(k—l)) S CZ ]{:2—(k—1)€ < 00
k=1 k=1
for some € > 0. This completes the proof. m

3. Theorems and proofs

THEOREM 3.1. Let T be a singular integral operator with non-smooth
kernel as in Definition 2.2, 1 < p < oo, p,v € Ap, w = (,ul/_l)l/p, O<n<l1
and D*b € BMO(w) for all o with |a] = m. Then there exists a constant
C>0,e>0,0<d<1,1<qg<pandp <r<min(p +¢,p'(1+9)) such
that, for any f € C3°(R™) and z € R™,

ME (TP ())(@) < C D ID%lsvow)

la|=m

X (M (IWT(HID) @)Y+ My (w0 f 17 )@Y+ My (w0 f19)(2)] ).

v
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Proof. 1t suffices to prove that for f € C§°(R") and some constant C,
1 b b 1/n
(i § 1000 — g T )1
Q

<C Y IDbllsrow) (M (JwT(f)|9)(F)]1/
la)l=m
+ My (w0 f[7) @Y+ M (Jw f|7) (@)]9),
where tg = d? and d denotes the side length of Q. Fix a cube Q = Q(wo, d)
and # € Q. Let Q = 5y/nQ and b(z) = b(x) — 2 lal=m (1/a)(Db) gz
Then Ry, (b;x,y) = Ry (b;x,y) and D = Db — (D)g for |a| = m. We
write, for f1 = fXQ and fo = fXR"\Q’

TN = | T K @A)
o [T =Yl
- X P k) dy
|a|=m R™

+

S Rpi1 (b3, y)
|z —y|™

K(x,y)fa(y) dy

Rn

and

y)mx v) f1(y) dy

- Ly I ) ) a

|z —y|™

S Rm-ﬁ-l(i)? x, y)

_ AtQT< Z 1($'mf1> +AtQT5(f2)(x).

al |z —-m
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Then

(

1

@ S |Tb(f)(37) -

Q
n 1/n
< C( d:c)

n 1/n
f1> dx)
n 1/n
dx)

)

F - 1/n
T (f2) () = Ao T"(f2) ()" d””)

1 (z —-)*D%
lal=m

AtQT<Rm(5; ,-)ﬁ)

1 (z—-)*D%

X
o=
o=

2 o
la)l=m

n 1/n
AtQT< dCC>

=L+ 1o+ 15+ 14+ Is.

For I, note that w € A; satisfies the reverse Holder inequality

1 o P C
(méw(aﬁ) da;) gméw(aﬁ)da:

for all cubes @ and some 1 < pg < oo (see [GR]). We take s = rpo/(r+po—1)
in Lemma 2.12. Then 1 < s < r and pg = s(r — 1)/(r — s). Hence by

Lemma 2.12 and Hélder’s inequality,

1 1/s
B(bi,9)] < Clz —y™ 3 ( 3 |D%<z>|8dz>
= \Q(z,y)| -
|ex] Q(z,y)
- 1/s
<Cle—gl™ 3107 (§ Dbz () T () DI gz /
lo|=m Q(z,y)
~ 1/r
<Cle—yl™ 3 QI (§ Db w(z) T dz)
lor|=m Q(z,y)

><( | w(z)s(rfl)/(”’s)dz)wﬂ)m
Q(zy)
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< Cla—y™ Y~ QI 1D bllmvow(@)/1Q) =/

lajl=m
1 (r—s)/rs
X < - S w(z)po dz>
< Clo —y|™ Z 1D°b]| a0 | Q1 Y9w(Q) /7| Q) >~/
|a|=m
1 (r=1)/r
X< = S w(z)dz)
< C|$ - y|m Z HDabHBMO(w)|Q’_1/QW(Q)1/T‘Q|1/S_1/TW(Q)1_1/T‘Q|1/T_1
|a|=m
m o w Q
<Clz—y™ Y [DblleMOW) I(Q])'
|a|=m

Thus, by Lemma 2.9, we obtain
¢ R (b, )

ne G i[r( fl) ;
] ) |z —|™

<C > |D*lBumoy w) \Q| Ql S
la]=m Q

() w(y) v (y) " dy

1/q
<C 3 IDBlmowmes (,Q‘ e )T(f)(y)\qV(y)dy>

|lal=m

1 W)~ vy~ 1/q
X(!Qlé (y)""v(y) dy)

1/q
< 3 1D tmorwoa) (g ST () dy)
Q

|lal=m

1 ww) T vy~ v
x(,Q‘g ORE0) dy>

<C Y IDllsnow) My (W T (f)%)(#)]

|al=m

1 1/¢'

x wQ<vQ>1/q(|Q| PO O dy)

<C Y ID%bllsmo w)[ M, (lWwT'(£)|%)(@)]M9.

|a|=m
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For I», we know v~"/? € A, by Lemma 2.6, thus

L\ v() 7 da o | v(2) /7 da o
@) )

Then, by the weak (L', L') boundedness of T (see Lemma 2.4) and Kol-
mogorov’s inequality (see Lemma 2.3), we obtain, by Lemma 2.7,

1 - 1/n
I < c|2 <M§2\T(D“bf1)(fﬂ)|”dm>

<cY QY7 |T(Dbf1)xq| Lo
B |Q!1/77 Ixoll rra-m

laj=m

<0 Y ST lwpn < S = | 1D%() fi(2)| da
\@| Q)

|lal=m |lal=m

2 \@|5’Dab< 2) — (D)o lue) 7| (@)@ (@) /P da

|lal=m

L e o r 7r/pxl/r
<0 Y (i V10ha) = (D)7

|ex] Q
1 ) ) ) 1/r'
< (i M@ (o) va) i)
@)
1 1/r
<0 Y I Hlovioes (5 |t )
Q

i 2w v(z)" P dx v
x(,@grﬂ) ()" v(z) d)

1 ) —1/r
<c \|D%|rBMo<w>(| 5 vt dw)
Q

|a|=m

X i 2" v(z)" P da v
(|Q|§?|f()()l () )

, , 1/r
<C Y IDllsmow) <1,/p | I @)w(@)"v(z)" “’dx)
Q

|lal=m

<C Z ID*b||sMmo w)[ ,,r'/p(|Wf]T ) (7 )]l/r

|lal=m



160 D. Z. CHEN

For I3, noticing that if € Q and y € 28T1Q \ 2%Q, then |z — y| > 2k 1¢g
and hy,(7,y) < Cs(22(+=1)/|Q|, similarly to the proof for I; we get, by

Lemma 2.9,
Rm(g;m") )
A dx
|@yS ot (R
o w(Q) 1
< > D bHBMO(w %] S | hig (2, )| T(f1) (v)] dy da
loo|=m QQ
+ ) (1D w(@) ¥ h
BMO(w) 0] 4 Z S | to(2,y)
o= lgungung

X [T (f1)(y)] dy dz

w
<C Z [ Dbl BMO(w)

|a)l=m

x w(y)v(y)w(y) v (y) T dy

+C Y ||DabHBMO(w)w(~Q) 3 gkng(22(-1))
la|=m Q) o
X|2'f+11@| | 1T ) w@)r) %w) ™ vy) "/ dy

2k+1Q
1/q

1
<C S 1D lsnoe | =+ | @ T(F) @) (y) dy
(a7} )

1 1/q

x WQ(VQ)I/(I(‘Q’ | w(y) T v(y)~7/ dy)
+C > ”DabHBMO(w)Z2kn8(22(k71))
|a|=m k=0

1 1/q
(g L OrOmin )

1 —q —4'/q v
250 CSQW(y) v(y) dy>

Z 1D*bllBro ) (M (IWT(£)[4) ()]

X W2k+lQ(V2k+lQ)1/q (
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For I, similarly to the proofs for I» and I3, we get

1/n
ED \T(D“bfl)(y)\”dy>

laf=m

kn  (92(k—1 1 7 1/
> Z?"S<2”>(|QWQ| GCEO

|a|=m k=0 2k+1Q

| o 1
<C Z Dbl BMO (w) < @) |f(2)w(z)|” v(z)" /pdx>

laj=m

QO =

+C Z ||Dab||BM0(w)ZQk"S(Qz(k_l))
|a|l=m k=0

!

1 . " 1/r
X <W2kélé\f@)w($)’ v(x) pd37>

<C Y IDlsMo) My (lwfI7) @)V

|a)l=m
For I, noting that |z — y| = |xg — y| for x € @Q and y € R™\ @, similarly to
the proof for I; we have
w(2*Q)

‘Rm@; z,y)| < Cle —y[™ Z HDabHBMO(w)W'

|al=m

Thus, by the conditions on K and K, we get
IT%(fo) () — Ay T*(f2) (o))

< § IR o) Ko o)
o

N Z i‘ S ’Dabl(y)"(x_y)al||K(g;7y)—Kt(l'ay)||f2(y)|dy

alom & En |z —y[™
S o w(2H1Q) &
Z Z Dbl BMO (W) ]2k+1Q\ S ] |m0_y|n+5\f(y)\dy
k=0 HFIQ\2FQ

dE
Z Z S |(D* kaHQ (Db) \W\f( y)ldy

|a|=m k= 02k+1Q

+C Y Z | [D(y) — (D b)ngQ!W\f(y)\dy

|a|=m k=0 2k+1Q
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1 1/q
<C 3 IDWsmow Zk: (i | 00 a)

laj=m 2kQ
) 1 1/q
<unqlua)(igr § et v ")
2kQ

1/r
S _,ﬂ;('m S rD%@)—<Dab>2kém<y>-r/pdy)

k=1
) 1 NI 1/¢!

(IQ’“Q\ 2§Q!f(y)! ()" v(y) ”dy)

<C Y 1Dsymow) (Mo (w17 @)+ (M, (w 7)) (@)]7).
|a|=m

Thus

I<C Y [Dlsmo) (Mo (lw fI7) @)Y + M (o f19)(#)]9).

|a|=m

This completes the proof of Theorem 3.1. =

THEOREM 3.2. Let T be a singular integral operator with non-smooth
kernel as in Definition 2.2, w € A1, 0<n <1, 1 <r<oo, 0< g <1 and
D%b € Lipg(w) for all a with |a| = m. Then there exists a constant C' > 0
such that, for any f € Cg°(R"™) and & € R",

MG (TY()(E) < C D7 [1DBl|Lip, ()@ () Mg () (E).

la|=m

Proof. 1t suffices to prove that, for f € C§°(R") and some constant C,

! T (f A, (T? nd &
(,Q‘Sr (@) = A (T () (@)] )

<C Y IDBl|Lip, ()@ (E) M ro( ) (&),

la|=m

where tg = d? and d denotes the side length of Q. Fix a cube Q = Q(wo, d)
and T € ). Similarly to the proof of Theorem 3.1, we have, for f; = fXQ

and fo = fXRn\Q,
<|§2\ | ()@ >—AtQT*’<f><x>r"dx)l/ns <«c12| 3 'T(Wh) nda)l/n
. >1/n

(@l (Z o ma)

|a|=m
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T . n 1/n
<|22\S‘A“9 <R|T;(—b7~74)fl> d“”)
z — 2D n 1/n
(@3‘% <Z o |:c)-v€ fl) dx)

L (b A, TP q .
(,Q‘Sr (o) (&) — Ao, T ) (2)] x)

=h+Jo+J3+ s+ Js.

For J; and Js3, by using the same argument as in the proof of Theorem 3.1,
we get

| R (b; 2, )
m N —1/ ar (1—r)/r (r—=1)/r 1/q
< Clo—yl™ S0 1QIT1( | 1Db(z) ()10 eo(z)70 D/ gz )
lal=m Qlzy)
m A —1/q ap T 1—r 1/r
<Clo—y™ Y 1@ § Db "w(2)! " dz)
lal=m Qlz.y)
( atr=1)/(r=a) g\ "~/
X S w(z) dz)
Q(z.y)
<Clz—y™ D QI UDbllLip ) w(Q) ™| Q| =0/
lal=m
1 (r—q)/rq
X <~ S w(z)Po dz)
Q@9 5,
<Cle—y™ > IDbLip, )| Q1 w(@)/ Qe
|a|=m
(r=1)/r
X <~1 S w(z) dz)
Q@) 5,

<Ol —y™ Y (1DblLip, () |Q1 9w (@)@ et
|a|=m

< (@G

. N w Q B/n+1
<Cla—y™ 3 ID b||Lipﬁ<w)(|)Q|
|a|=m

<Clr—yI™ 37 1D]1ip, (@) Mw(@),

lal=m
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and thus

B < C Y Dbl (@) "w(@)QI (1) de)

|a|=m R"”

1/s

<C Y I Blaiy @ @@ ({5l )

laj=m Q
< (Jeow) /= az)
|

<C

1 1/r
— L {|f@)re@ds
@) )

(r—s)/rs 1/r
y <{|Sw<m_)—s/(r—8) dac) ({Sw(m) da:) QY *w(Q)~M"
Q

Q
C 3 1Dl @@
al=

m

3 al)
<C D[ Lip 5 (w)w (2) Mg () (),
and -
R0 ,1| 652 Db(a) — (D°b)gloa) ™| f(2)]w(w) /" da
<o & (11D°0) ~ D)@y ) (§ @ty da)
a=m ¢ G Q

ey ,Q‘umbumﬁ (@)Y (GBI

|lal=m

1 1/r
< (=it V@) de
<W(Q)1 b/ 5 >

P w
<C Z [Db|Lip (w)

|lal=m

<C Y 1DbllLipy )@ () Mg, () ().

|laj=m

For J3 and J4, by Lemmas 2.12 and 2.13, and similarly to the proof for J;
and Jy, we get

T3+ Js < C Y [[DbLip, ()@ (&) M ro() ()

laf=m
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For Js, by Lemma 2.12 and similarly to the proof of Jy, for £ > 0,
|Rin(b2,9)| < Cla —y™ D [[Dl|Lip, ()@ (2°Q)"w (%),

la|=m

thus
IT(f2) () — Ay T(f2) (x0)|

< § B0l ) — K)ol

R |x_y|m
_D b —_ a1
+ Z S | 1‘33)J(yxm y) |’K(x’y)_Kt(xay)Hh(y)\dy
la|=m
Z Z HDabuLipﬁ(w)W(i')w(QkQ)/B/n
k=0 |a|]=m
dé
) T W) el dy
2k+1Q\2kQ

6
PO T | 1D g (0 i)

|Zo
|a|]=m k=0 2k+1Q ) .
x w(y)Tw(y) V" dy

d6
+0 Z Z S | D%b(y) (Dab)2k+1Q|W|f(y)|

|a|=m k=0 2k+1Q) . .
x w(y) ! wly) " dy

<C Y 1D lipy ) Zgwwﬁwm
|a|=m k=1
. 1/r 1 o (r—=1)/r
Umn<m)@@ywwuw>
2kQ 2kQ
1 kAL ok “1/r
%Wmuw@mmm@

+C Z Z de (9k J\n+d ( S~ |Dab(y) - (Dab)2kQ|T,w(y)l_T, dy) v

|a|=m k= 1 2kQ

< (5 wreway)”

2t
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1/r
_C|;mllDabHLipB Zm ké(w | |f(y)|rw(y)dx)

2kQ
« = — 6(“)(2 Q)
c > |ID bHLipB(w)ZQ g 250
|a]l=m

k=1

1 1/r
(g | e ds)

20
<C Z HDabHLipﬁ(w)w(j)Mﬂ,r,w(f)(i.)
|a)l=m

and
5 < C S D%bllusy (@) M () (2).

|a|=m
This completes the proof of Theorem 3.2. =
THEOREM 3.3. Let T be a singular integral operator with non-smooth
kernel as in Definition 2.2, 1 < p < o0, u,v € Ap, w = (,ul/_l)l/p and

Db € BMO(w) for all o with || = m. Then T is bounded from LP(R™, 1)
to LP(R™, v).

Proof. Notice v"'/? Apr g1y C Ap and v(x)dr € Ap/,,,(u(x)rl/p dx)
by Lemma 2.8. Thus, by Theorem 3.1, Lemmas 2.4 and 2.11, we get

V 1T () (@) Pr(e)de < § [My(T(f)) (@) Pv() de

R™ R™

< C | |ME(T°(f))(@)]Pv() do
R~

<O 3 IDlsmow) | (Mo (WT ()T @)/ + (M, (Jwf ™) ()P
|a|=m R
+ (M (Jw f19) ()P () de

<C 7 1D Blparow ( § (@) @) Pue) du+ | (@) T() (@) Po(e) d)

|a|=m R® Rn
=0 3 IDblniow (§ 1£@)Pa() do+ § [7(F) @) Pa(a) do)
|a|=m R R

<C Y ID%llsyow) | If(@)Pu(x) de. =

|a)]=m Rn

THEOREM 3.4. Let T be a singular integral operator with non-smooth
kernel as in Definition 2.2, w € A1, 0 < < 1,1 <p < n/B, 1/q =
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1/p — B/n and Db € Lipg(w) for all o with || = m. Then T is bounded
from LP(R™, w) to LY(R™,w!™9).

Proof. Choose 1 < r < p in Theorem 3.2 and notice w'~? € A;. Then
we have, by Lemmas 2.10 and 2.11,

1T ()| paor-o) < IMp(TP ()| ar-oy < CIME (TP ()| o)

<C Y IDDlLipy ) lwMp o ()| Lot —a)

laj=m.

=C Y [1DbllLipy () 1Mp ()l Lage)

laj=m

<C Y DD Lipy ()1 r () =

laj=m.

COROLLARY 3.5. Let [b,T|(f) =bT(f)—T(bf) be the commutator gen-
erated by a singular integral operator T as in Definition 2.2 and b. Then the
conclusion of Theorems 3.1-3.4 hold for [b,T] in place of T°.

4. Applications. In this section we shall apply the theorems of this
paper to the holomorphic functional calculus of linear elliptic operators.
First, we review some definitions regarding holomorphic functional calculus
(see [DM], [MA]). Given 0 < 6 < , define

Se={z€C: |arg(z)| <0} U{0}

and denote its interior by S9. Set Sp = Sp \ {0}. A closed linear elliptic
operator L on some Banach space F is said to be of type 6 if its spectrum
o(L) is contained in Sy and for every v € (0, 7], there exists a constant C),
such that

Il |l = L) < Coy 1 ¢ Sp.
By the Hille-Yosida theorem, such an operator with § < 7 /2 is the generator

of a bounded holomorphic semigroup e *% in the sector 5’2 with p = 7/2—6.
For v € (0,7, let

Hoo(S)) ={f: Sy — C: f is holomorphic and || f||ze < oo},
where || f[| Lo = sup{|f(2)| : z € Sp}. Set

W(Sg) = {g € HOO(SS) : ds, ¢ > 0 such that [g(z)] < Cl—i‘—zl‘z%}
If L is of type 6 and g € HOO(SB), we define an operator g(L) € L(E) by

g(L) = —(2mi)~* | (I — L) " g(n) dn,
r
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where I is the contour {¢& = e : r > 0} parameterized clockwise around
Sy with 0 < ¢ < u. If, in addition, L is one-one and has dense range, then,
for f € Hoo(S)),
FL) = [R(L)H(fR(L),
where h(z) = z(1 + 2)72. By [DM], [MA], f(L) is a well-defined linear op-
erator in E for f € W(S)). The definition of f(L) can even be extended
to unbounded holomorphic functions f (see [DM], [MA] for details). L
is said to have a bounded holomorphic functional calculus on the sector
S, if
lg(L)I| < Nligllze

for some N > 0 and for all g € HOO(SS).

Now, let L be a linear operator on L?(R") with 6§ < 7/2 so that —L
generates a holomorphic semigroup e *¥, 0 < |arg(z)| < 7/2 — 6. Applying
[DM|, Theorem 6], [MAl Theorem 7.2] and Theorems 3.1-3.4, we get

COROLLARY 4.1. Assume the following conditions are satisfied:

(i) The holomorphic semigroup e~*F, 0 < |arg(z)| < m/2 — 0, is rep-
resented by kernels a,(x,y) which satisfy, for all v > 0, an upper
bound

|az(x, y)| < Cl/h\z|($7y)
for x;y € R™ and 0 < |arg(z)| < w/2 — 0, where hy(x,y) =
Ct="/?s(|x—y|?/t) and s is a positive, bounded and decreasing func-
tion satisfying

lim 7""s(r?) =0  for some € > 0.
r—00

(ii) The operator L has a bounded holomorphic functional calculus in
L*(R™), that is, for all v > 0 and g € Huo(S}), the operator g(L)
satisfies

lg(L) (N2 < evllgllzes Lfllz-
We relate to the operator g(L) and b the linear operator defined by

gL (f) (@) = | B (b, y)

K dy.
ey (z,y)f(y) dy

Then the conclusion of Theorems 1-4 holds for the linear operator g(L)® in
place of TP.

In fact, it suffices to justify that the operator g(L) satisfies the conditions
of Definition 2.2. From [MA], for such an operator, taking the approximation
to the identity A; = Dy = e~ yields K; = k¢, and using the assumption (i),
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it was proved in [MA| Theorem 6] that the conditions of Definition 2.2 are
satisfied. Thus the operator g(L) satisfies the conditions in the corresponding
theorem by Theorem 7.3 of [MA].
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