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ON HEREDITARY ARTINIAN RINGS AND THE
PURE SEMISIMPLICITY CONJECTURE:

RIGID TILTING MODULES AND A WEAK CONJECTURE

BY

JOSÉ L. GARCÍA (Murcia)

Abstract. A weak form of the pure semisimplicity conjecture is introduced and char-
acterized through properties of matrices over division rings. The step from this weak con-
jecture to the full pure semisimplicity conjecture would be covered by proving that there
do not exist counterexamples to the conjecture in a particular class of rings, which is also
studied.

1. Introduction. A ring R is left (resp., right) pure semisimple when
every left (resp., right) R-module is a direct sum of indecomposable submod-
ules. The ring R is of finite representation type if it is left artinian and there
exist only finitely many indecomposable finitely presented left R-modules,
up to isomorphism. A ring is of finite representation type if and only if it is
left and right pure semisimple. The pure semisimplicity conjecture (which
we shall abbreviate as pssC) states that every left pure semisimple ring is
of finite representation type.

The conjecture has been proved under certain additional hypotheses
[6, 21, 31, 32] but remains undecided. It is known [21] that to prove the
conjecture it suffices to show that all left pure semisimple rings of matrices
of the form

(1) RB =

[
F 0

B G

]
,

where F , G are division rings and B is a G-F -bimodule, have finite repre-
sentation type.

Simson [34] showed that the pssC would be disproved if the following
linear algebra problem had a positive solution: find a division ring embed-
ding F ≤ G such that the right dimension of G over F is infinite, while
the left dimension of FG and of all the successive left dual vector spaces
G∗ = HomF (G,F ), G∗∗ = HomG(G∗, G), . . . is constantly 2. However, the
existence of such an example is not necessary for the conjecture to be false,
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and Simson [35] has also identified other conditions on rings of the form (1)
that would make them counterexamples to the pssC: these are the poten-
tial counterexamples constructed by Simson in the hope that some of them
could be shown to exist, thus solving the conjecture in the negative. In fact,
he studied potential counterexamples R such that all indecomposable left
R-modules are either preinjective or preprojective, i.e., there exist only two
Auslander–Reiten components of indecomposable left R-modules.

Even the non-existence of all these potential counterexamples would not
automatically imply the truth of the conjecture. A necessary and sufficient
condition for the conjecture to hold has also been given by Simson [33,
Proposition 4.2] by means of the so-called generalized Artin problems. These
ask for the existence of G-F -bimodules B with a certain condition on the
left dimension of the sequence of left dual modules B∗, B∗∗, . . . , and such
that the corresponding ring RB =

[
F 0
B G

]
is left pure semisimple.

It is clear that it would be crucial to have a usable characterization of
those rings of matrices RB =

[
F 0
B G

]
which are left pure semisimple. Much

is known about the properties and distribution of indecomposable modules
over left pure semisimple rings [2, 3, 15–18, 34–36], but in order to have
good characterizations of rings of the form (1) that are pure semisimple it
is of interest to proceed in the other way, by identifying properties of such
rings that could imply pure semisimplicity. Accordingly, we try to work in
the direction of finding properties of rings of the form (1) which ensure the
validity of conditions known to hold in the pure semisimple case; we do this
mainly in Sections 2 and 3. In this sense, tilting modules (in particular, what
we call rigid tilting modules) are ubiquitous among pure semisimple rings
(see [17, Theorem 3.9(d)]) and thus play a major role in our study. In fact,
these tilting modules do the job of the reflection functors used by Simson
to relate the sequence of the left dimensions of the bimodules B,B∗, . . . to
the dimensions of the vector spaces defining the preinjective modules. But
tilting modules yield relations of this same type for all the indecomposable
finitely presented modules, and not only for the preinjective ones.

It turns out that such a tilting module has an endomorphism ring which
is again a ring of the form (1) and has the same basic properties as the
original ring. Keeping in mind this identification, we can divide the class
of rings of the form RB =

[
F 0
B G

]
into two. The first one is the class of

those rings which (up to the identification pointed to above) come from a
division ring extension F ⊆ G, i.e., rings RB =

[
F 0
B G

]
with B = G. For

these rings, we may find a characterization of their pure semisimplicity in
linear algebra terms, namely, in terms of the behaviour of their matrices.
The second class of pure semisimple rings lends itself to a detailed study,
since it is a very special class which can be accurately described in terms of
the defining bimodule B.
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Our aim in this paper is to further analyze the conjecture, by splitting
it into two parts, according to the above classification of pure semisimple
rings of the form (1): one of these parts, which we call the weak pure semi-
simplicity conjecture (wpssC), depends on the characterization of the first
class named above, and hence the wpssC is equivalent to a problem on ma-
trices over division rings, so that it is a pure linear algebra problem. The
second part of the conjecture postulates the non-existence of certain po-
tential counterexamples with a very particular structure, and these we call
sporadic (potential) counterexamples. We hope that this division will be use-
ful to researchers, by isolating the part of the conjecture that is equivalent
to a problem on matrices over division rings, and identifying the second
part of the conjecture as a question on the existence of certain rings of
the form (1), the sporadic pure semisimple rings. In a subsequent paper,
we shall describe the structure of all potential counterexamples to the pssC
that are sporadic and have only finitely many Auslander–Reiten components
of indecomposable modules. In so doing, we will show how these potential
counterexamples are related to (finite) dimension sequences, in the sense of
Dowbor–Ringel–Simson [12].

For general concepts and terminology from ring and representation the-
ory we refer to [1, 5, 7]. For tilting modules as they are used here, the
reference is [9]. For results on pure semisimple rings and pure semisimple
Grothendieck categories, and the history of the pure semisimplicity con-
jecture, see [6, 19–22, 24, 28–36]. For several other notions and notations
(add(C), Add(C), R-Mod, R-mod, R-ind, Mod-R, preinjective or preprojec-
tive modules, strong preinjective partition) we refer to [16] (original sources
are [8, 23]).

2. Rigid tilting modules. Throughout this section, R will be a hered-
itary and left artinian ring, and RB will denote the ring

[
F 0
B G

]
, where G, F

are division rings and B is a G-F -bimodule. We shall assume that B is
finite-dimensional as a left G-vector space, or equivalently RB is left ar-
tinian. In particular, every finitely generated left RB-module is a direct sum
of indecomposable left RB-modules.

It is well known (see, for instance, [7]) that each finitely generated left
RB-module determines a triple (V,W, h) where V (resp., W ) is a finite-
dimensional left F (resp., G)-vector space and h : B ⊗F V → W is a
G-linear map. Conversely, any finitely generated left RB-module is deter-
mined by such a triple. Notable modules are the simple injective module E0

given through the map B ⊗F F → 0 and the simple projective module P0

given by B ⊗F 0 → G. There is only one other indecomposable projective
module P1, corresponding to the canonical map B⊗F F → B; and one other
indecomposable injective module E1, corresponding to the canonical linear
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map B ⊗F B∗ → G, with B∗ = HomG(B,G). The submodules of P1 are
projective and hence RB is hereditary. Note that the endomorphism ring of
P1 is isomorphic to F , and that E1 is finitely generated if and only if B∗ is
left finite-dimensional.

With the above representation, a module homomorphism (V1,W1, h1)→
(V2,W2, h2) can be identified with a pair of linear maps f : V1 → V2 and
g : W1 →W2 such that the corresponding diagram

B ⊗F V1
h1 //

1⊗f
��

W1

g

��
B ⊗F V2

h2 //W2

is commutative. The homomorphism is an isomorphism if and only if f , g are
both isomorphisms. Kernels and cokernels can be described in the expected
way [7].

Given a finitely generated module X represented by the tuple (V,W, h),
we say (following Simson [34]) that the pair (dim(V ),dim(W )) is the d-vector
of X. Note that if X is indecomposable and non-injective, then dim(W ) is
the length of the socle of X, while dim(V ) is the length of the top X/rad(X)
of X. Accordingly, we shall denote as (t, s) the d-vector of a general finitely
generated moduleX. For instance, the d-vectors of the indecomposable mod-
ules E0, E1 (provided E1 is finitely generated), P0, P1 are, respectively,
(1, 0), (d∗, 1), (0, 1), (1, d), where d = l.dim(B) and d∗ = l.dim(B∗).

We will use tilting modules in the sense of Colby and Fuller [9]. Since
our rings R will be left artinian and hereditary, a tilting module is a finitely
generated left R-module W such that Ext1

R(W,W ) = 0 and there is a short
exact sequence 0 → R → W1 → W2 → 0 where W1,W2 ∈ add(W ). In
connection with the tilting module W (with endomorphism ring S), the
following functors are of interest:

H = HomR(W,−), H ′ = Ext1
R(W,−) : R-Mod→ S-Mod,

G = W ⊗S −, G′ = TorS1 (W,−) : S-Mod→ R-Mod.

When W is a tilting module, the pair (T ,F) with T = Ker(H ′) and
F = Ker(H) is a torsion theory of R-Mod; and, according to the tilting
theorem [9, 1.4], we have G′ ◦ H = 0, H ′ ◦ G = 0 and the functors H, G
induce an equivalence between the subcategory T of R-Mod and a sub-
category Y of S-Mod. Similarly, H ′ and G′ induce an equivalence between
the subcategory F of R-Mod and a subcategory X of S-Mod. Furthermore
(X ,Y) is a splitting torsion theory of S-Mod. By [37, Lemma 1.4], when
the endomorphism ring S is left artinian, the above equivalences restrict to
equivalences between the finitely presented modules of each of the categories
T , Y, F , X .
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When R is the ring RB =
[
F 0
B G

]
, a basic tilting module (see [37, p. 6059]

or [17, paragraph before Theorem 2.14]) is the direct sum of two non-
isomorphic indecomposable modules, by [37, Theorem 1.5].

In view of the above equivalences, we have HomS(H(M1), H(M2)) ∼=
HomR(M1,M2) (as bimodules) and the analogous property holds (with

H ′ instead of H) for the modules in F ; and Ext1
S(H(M1), H(M2)) ∼=

Ext1
R(M1,M2), with the same again true for F . The following lemmas iden-

tify the other Hom or Ext groups.

Lemma 2.1. Let R be a hereditary and left artinian ring, let W be a
tilting module and use the notation above. Suppose that X, Y are inde-
composable finitely presented left R-modules such that X ∈ T and Y ∈ F ,
and let S be the endomorphism ring of W . Then there is an isomorphism
HomS(H(X), H ′(Y )) ∼= Ext1

R(X,Y ) of left modules over the endomorphism
ring of X.

Proof. By construction, every injective module belongs to T . Since Y is
torsionfree, it cannot be injective, and thus we have a non-split short exact
sequence in R-mod, 0 → Y → U → U ′ → 0, where U , U ′ are injective
modules. Consequently, they are torsion modules, and we get another short
exact sequence of left S-modules

0 → HomR(W,U) = H(U) → H(U ′) → Ext1
R(W,Y ) = H ′(Y ) → 0

because HomR(W,Y ) = 0. If we now apply the functor HomS(H(X),−) to
this sequence and bear in mind that Ext1

S(H(X), H(U)) ∼= Ext1
R(X,U) = 0,

we get the exact sequence

0→ HomS(H(X), H(U))→ HomS(H(X), H(U ′))

→ HomS(H(X), H ′(Y ))→ 0,

which, by the canonical isomorphisms HomS(H(X), H(Z)) ∼= HomR(X,Z),
shows that HomS(H(X), H ′(Y )) is isomorphic to the cokernel of the homo-
morphism HomR(X,U)→ HomR(X,U ′) induced by the given U → U ′. But
if we start from the initial sequence, we get the exact sequence of induced
homomorphisms

0→ HomR(X,Y )→ HomR(X,U)→ HomR(X,U ′)→ Ext1
R(X,Y )→ 0,

and this proves that HomS(H(X), H ′(Y )) ∼= Ext1
R(X,Y ).

Lemma 2.2. Let R be a hereditary and left artinian ring and let W
be a tilting module with endomorphism ring S. Assume that S is left ar-
tinian and hereditary. Suppose that X and Y are indecomposable finitely
presented left R-modules such that X ∈ F and Y ∈ T . Then there is an
isomorphism Ext1

S(H ′(X), H(Y )) ∼= HomR(X,Y ) of right modules over the
endomorphism ring of Y .
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Proof. By the tilting theorem [9, 1.4], we know that G′ ◦H ′ is equivalent
to the identity functor on the modules of F . Therefore, we have a canonical
isomorphism X ∼= G′(H ′(X)). Moreover, H ′(X) is not projective, because
S = H(W ) ∈ Y while H ′(X) ∈ X . Since S is hereditary, there is a non-split
short exact sequence of left S-modules

0→ P ′ → P → H ′(X)→ 0

where P ′, P are projective. By tensoring, this gives an exact sequence

0→ TorS1 (W,H ′(X)) = G′(H ′(X))→W ⊗S P ′

→W ⊗S P →W ⊗S H ′(X)→ 0

because TorS1 (W,P ) = G′(P ) = G′(H(W ′)) with W ′ ∈ add(W ), as P is
projective. Thus TorS1 (W,P ) = 0 because G′ ◦H = 0 [9, 1.4]. On the other
hand, W ⊗S H ′(X) = G(H ′(X)) = 0, again by the tilting theorem. So, we
have the short exact sequence in R-Mod

0→ G′(H ′(X)) ∼= X → G(P ′)→ G(P )→ 0,

and G(P ′)→ G(P ) is induced by the monomorphism P ′ → P .

If we now apply HomR(−, Y ), we get another short exact sequence of
right EndR(Y )-modules

0→ HomR(G(P ), Y )→ HomR(G(P ′), Y )→ HomR(X,Y )→ 0

as Ext1
R(G(P ), Y ) ∼= Ext1

R(G(H(W ′)), G(H(Y ))) ∼= Ext1
R(W ′, Y ) = 0, be-

cause G◦H is naturally equivalent to the identity functor on torsion modules
and Y ∈ T . Thus, HomR(X,Y ) is isomorphic to the cokernel of the induced
homomorphism HomR(G(P ), Y )→ HomR(G(P ′), Y ).

But, from our starting short exact sequence of S-modules, we obtain, by
applying HomS(−, H(Y )), the following exact sequence in R-Mod:

0→ HomS(P,H(Y ))→ HomS(P ′, H(Y ))→ Ext1
S(H ′(X), H(Y ))→ 0

since HomS(H ′(X), H(Y )) = 0. Now, G(P ) = W ⊗S P and H(Y ) =
HomR(W,Y ), so that there is a natural isomorphism HomR(G(P ), Y ) ∼=
HomS(P,H(Y )), and similarly for P ′. This shows that Ext1

S(H ′(X), H(Y ))
∼= HomR(X,Y ), as was to be seen.

We will make frequent use of results in [17]. For the convenience of the
reader, we collect some of them in a separate proposition.

Proposition 2.3 ([17, Proposition 2.1, Theorems 3.1 and 3.9]). Let RB
be a ring of the form (1).

(a) RB is left pure semisimple if and only if RB-mod has a strong prein-
jective partition.
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(b) If RB is left pure semisimple, then there is a well-ordering of
the set RB-ind of indecomposable left RB-modules giving X0 = E0,
X1, . . . , Xδ+1 = P0 for some ordinal δ, and such that α < β if and
only if HomRB

(Xα, Xβ) = 0. In that case:

(b.1) Each endomorphism ring EndRB
(Xα) is a division ring.

(b.2) For each α such that 0 ≤ α and α + 2 ≤ δ + 1, there is an
almost split sequence 0→ Xα+2 → Xk

α+1 → Xα → 0.
(b.3) For each 0 ≤ α < δ + 1, the module Xα ⊕ Xα+1 is a tilting

module and EndRB
(Xα⊕Xα+1) is again a left pure semisimple

ring of the form (1). Conversely, if M is a basic tilting left
RB-module, then M ∼= Xα ⊕Xα+1 for some α.

Our first purpose is to determine when the left artinian ring RB =
[
F 0
B G

]
has some properties similar to those in Proposition 2.3(b). We will see that
the existence of tilting modules is crucial for having these properties in a
more general setting.

Definition 2.4. Let the ring RB =
[
F 0
B G

]
be left artinian. A basic tilt-

ing module M ⊕N will be called a rigid tilting module if the endomorphism
rings of M,N are division rings, HomRB

(M,N) = 0 and the left dimension
of HomRB

(N,M) (over EndRB
(N)) is finite and ≥ 1.

By convention, when we say that M ⊕ N is a rigid tilting module, the
order is such that HomRB

(M,N) = 0 (and not the other way round). If S
is the endomorphism ring of a rigid tilting module W , then S is again of
the form (1), left artinian and hereditary. Consequently, the torsion theory
(T ,F) defined on RB-Mod by W is splitting [4, Lemma 4.5]. Note that
P1⊕P0 is a projective rigid tilting module. On the other hand, when RB is
left pure semisimple, every basic tilting module is rigid by Proposition 2.3.
In the following result, the projective tilting module has to be excluded.

Proposition 2.5. Let RB =
[
F 0
B G

]
and let W = M ⊕ N be a rigid

tilting module with d = l.dim(HomRB
(N,M)) > 0 and such that M is not

projective. Then there is an indecomposable module K and an almost split
short exact sequence

0→ K → Nd →M → 0.

Moreover, S = EndRB
(W ) is left artinian and hereditary, and EndRB

(K) ∼=
EndRB

(M).

Proof. The torsion theory (T ,F) determined by the tilting module W
is splitting because the endomorphism ring S of W is a left artinian ring
of the form (1) by our hypothesis that HomRB

(N,M) is finite-dimensional.
Hence S is hereditary and the claim follows from [4, Lemma 4.5].
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With the notation above for tilting modules, we have H(M) = P ′1 and
H(N) = P ′0 (respectively, the non-simple and simple projective indecompos-
able left S-modules). We first show that the homomorphism h : Nd → M
induced by a basis {f1, . . . , fd} of HomRB

(N,M) is an epimorphism.
Suppose, to the contrary, that C = Coker(h) 6= 0 and X = Im(h), so

that there is a short exact sequence

0→ X →M → C → 0

and an epimorphism Nd → X. Since X,C ∈ T , we get the exact sequence
in S-Mod

0→ H(X)→ H(M) = P ′1 → H(C)→ H ′(X) = 0

where H(C) 6= 0 and the homomorphism H(h) : (P ′0)d → P ′1 factors through
the monomorphism H(X)→ P ′1.

On the other hand, since H(f1), . . . ,H(fn) form a basis of HomS(P ′0, P
′
1)

by equivalence, we infer that H(h) is a monomorphism that gives a short
exact sequence

0→ (P ′0)d → P ′1 → E′0 → 0

where E′0 is the simple injective left S-module, because the d-vector of P ′1 is
(1, d). By comparing with the previous sequence, we see that (P ′0)d ∼= H(X)
and E′0

∼= H(C). Thus the simple injective S-module belongs to Y. This
means that X is trivial and so F is trivial too, and all left RB-modules are
generated by M and N . Hence M and N are projective modules, contrary
to the hypothesis about M .

This shows that h : Nd → M is an epimorphism. Thus we have a short
exact sequence

0→ K → Nd h→M → 0

with K = Ker(h), and h is not split. We claim that K ∈ F . Since (T ,F)
is splitting, it will suffice to check that no indecomposable direct summand
K0 of K is torsion. So, assume that some K0 is in T . This entails that
Ext1

RB
(M,K0) = 0 and, by the above short exact sequence, K0 is isomorphic

to a direct summand of Nd, hence is isomorphic to N . If we delete this sum-
mand K0, we obtain a factorization of h : Nd →M through h0 : Nd−1 →M .
But then every homomorphism N →M could be factored through h0, which
contradicts the hypothesis that d is the left dimension of HomRB

(N,M).
This shows that K ∈ F , and thus H(K) = 0.

By applying the functor HomRB
(W,−) to the epimorphism h, we get a

short exact sequence of left S-modules

0→ H(N)d = (P ′0)d → H(M) = P ′1 → H ′(K)→ 0.

But it has been observed in the first part of this proof that H(h) gives the
exact sequence 0 → (P ′0)d → P ′1 → E′0 → 0, and hence H ′(K) ∼= E′0 and
H ′(K) is indecomposable. By equivalence, K is indecomposable.
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We next show that HomRB
(K,Z) = 0 for every indecomposable module

Z such that Z � K and Z ∈ F . Let g : K → Z be such that Z ∈ F . Then
H ′(g) : H ′(K) ∼= E′0 → H ′(Z) is zero, or otherwise H ′(Z) ∼= E′0, so that
either H ′(g) is 0 or it is an isomorphism. Since H ′ is an equivalence, the
claim follows immediately.

Back to our short exact sequence 0→ K
u→ Nd h→M → 0, we show now

that u is a left almost split map of RB-mod. To this end, take a non-zero
and non-split homomorphism f : K → X where we may assume that X
is indecomposable and torsion. By completing the pushout, we obtain a
short exact sequence 0 → X → Y → M → 0 which has to be split, since
Ext1

RB
(M,X) = 0. Therefore, we obtain a homomorphism g : Nd → X with

f = g ◦ u, so f factors through u.
We now define a ring homomorphism EndRB

(M) → EndRB
(K) in a

natural way: given α : M → M , the composition α ◦ h : Nd → M is
determined by d homomorphisms N → M which can be factored as N →
Nd h→M , because h is constructed from a generating set of HomRB

(N,M).
So, α ◦ h can be factored through h, giving β : Nd → Nd satisfying α ◦ h
= h ◦ β.

We observe that β is unique satisfying this commutativity relation, as two
different β’s would give a homomorphism Nd → K; but HomRB

(N,K) = 0
because N is torsion and K is torsionfree. Then this homomorphism β de-
termines a unique γ : K → K such that u ◦ γ = β ◦ u. We set α 7→ γ; it is
easily seen that this is an injective ring homomorphism.

We must check that it is surjective. Take an endomorphism f : K → K.
Since u is a left almost split map, f can be extended to some β : Nd → Nd so
that u ◦ f = β ◦u. But β clearly induces a homomorphism α : M →M such
that α◦h = h◦β. By the construction of the ring homomorphism, α 7→ f and
hence the homomorphism is an isomorphism, and EndRB

(K) ∼= EndRB
(M).

Since EndRB
(K) is a division ring, the left almost split map u is left

minimal, and 0→ K → Nd →M → 0 is an almost split sequence.

From the preceding result and [7, Proposition V.1.14], we identify the
kernel K as D(Tr(M)), where Tr denotes the usual transpose operator (see
[1, p. 356]), and D(X) = HomE(X,C) is the local dual of X; here C is a
minimal injective cogenerator of Mod-E, E being the endomorphism ring
of X. We remark that the above proof also shows that, under the stated
hypotheses, H ′(K) is isomorphic to the simple injective left S-module E′0,
and that if HomRB

(K,Z) 6= 0 and Z ∈ F , then Z has a direct summand
isomorphic to K. Also, we have seen that H(N) is isomorphic to the simple
projective left S-module P ′0.

We recall that a left R-module X is endofinite when X is finitely gener-
ated as a right module over its endomorphism ring E = EndR(X). This is
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equivalent to HomR(A,X) being finitely generated as a right E-module for
each finitely presented left R-module A.

Proposition 2.6. Let RB and W = M ⊕ N be as in Proposition 2.5.
Then both K = D(Tr(M)) and N are endofinite modules.

Proof. If N = P0, then Ext1
RB

(M,N) = 0 implies that M is projective,
contrary to the hypothesis, so that this is impossible. If N = P1, then the
only torsionfree modules (in the theory (T ,F) determined by the tilting
module W ) are the direct sums of copies of P0 so that K = P0. But then K
is trivially endofinite.

Assume now that N is not projective. Observe that the projective inde-
composable modules P0, P1 are both torsionfree, and that HomRB

(Pi,K) ∼=
HomS(H ′(Pi), H

′(K)), where S = EndRB
(W ). But H ′(K) is the simple

injective left S-module E′0 by the remark following Proposition 2.5. Now,
E′0 is clearly endofinite in S-Mod and hence HomS(X,E′0) is right finitely
generated, for any finitely generated left S-module X. In particular,
HomRB

(Pi,K) is finitely generated as a right module over EndRB
(K), and

this implies that K is endofinite.

Next, let X be any finitely presented torsionfree left RB-module and con-
sider HomRB

(X,N). By Lemma 2.2, HomRB
(X,N) ∼= Ext1

S(H ′(X), H(N)),
and H(N) is the simple projective module P ′0 over the ring S = EndRB

(W ),
which is of the form (1). So, it will be enough to show that over a left artinian
ring RB =

[
F 0
B G

]
, Ext1

S(A,P0) is finitely generated as a right EndS(P0)-
module, for every finitely generated left S-module A.

To this end, we note that there is a short exact sequence 0 → P k0 →
P r1 → A → 0. Then we get another exact sequence over EndS(P0): 0 =
HomS(P r1 , P0) → HomS(P k0 , P0) → Ext1

S(A,P0) → 0. Now HomS(P k0 , P0)
is finitely generated as a right EndS(P0)-module, and so is Ext1

S(A,P0), by
the above isomorphism.

In the proof of Proposition 2.5 we showed that EndRB
(K) ∼= EndRB

(M)
by constructing, from the almost split sequence 0 → K → Nd → M → 0,
injective ring homomorphisms EndRB

(M)→ EndRB
(Nd) and EndRB

(K)→
EndRB

(Nd) whose images coincide.

A rigid tilting module W = M ⊕ N determines the bimodule BW =
HomRB

(N,M) and the ring RBW
=
[
E 0
BW H

]
where E = EndRB

(M) and
H = EndRB

(N). If W = RB
RB, then BW = B.

Lemma 2.7. Let RB =
[
F 0
B G

]
be left artinian, let W = M⊕N be a rigid

tilting module such that M is not projective, and let K = D(Tr(M)). We
write B∗W = HomH(BW , H). Then B∗W

∼= HomRB
(K,N) as E-H-bimodules.
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Proof. By Proposition 2.5 there is an almost split sequence 0 → K →
Nd →M → 0. This gives an isomorphism HomRB

(Nd, N) ∼= HomRB
(K,N),

as HomRB
(M,N) = Ext1

RB
(M,N) = 0. It can be checked that this iso-

morphism is an E-H-bimodule isomorphism, where the left structure of
HomRB

(Nd, N) comes by restriction of scalars from the ring homomor-
phism E = EndRB

(M) → EndRB
(Nd). In fact, Nd is in this way a right

E-module.

There is also a natural isomorphism of bimodules BW ∼= HomRB
(N,Nd),

due to the fact that the sequence 0 → K → Nd → M → 0 is almost
split and HomRB

(N,K) = 0 because K belongs to F (here, the right
structure of HomRB

(N,Nd) comes again from the structure of Nd). Thus
N ⊗H BW ∼= N ⊗H HomRB

(N,Nd) ∼= N ⊗H Hd ∼= Nd. Therefore B∗W =
HomH(BW ,HomRB

(N,N)) ∼= HomRB
(N⊗HBW , N) ∼= HomRB

(Nd, N) and
we get the bimodule isomorphism B∗W

∼= HomRB
(K,N).

Proposition 2.8. Let RB =
[
F 0
B G

]
be left artinian, let W = M ⊕N be

a rigid tilting module such that M is not projective, and let K ∼= D(Tr(M)).
Then N⊕K is again a tilting module. It is a rigid tilting module if and only
if B∗W is left finite-dimensional.

Proof. Let (T ,F) be the splitting torsion theory determined by W (see
[4, Lemma 4.5]). We will show that the class of all left RB-modules gener-
ated by W ′ = N ⊕ K coincides with the class of left RB-modules X that
are right perpendicular to W ′ (i.e., such that Ext1

RB
(W ′, X) = 0). By [10,

Proposition 1.3], this proves that W ′ is tilting.

Since N generates M by Proposition 2.5, every module in the class T
is generated by W ′. On the other hand, if X ∈ F is generated by W ′,
then X is K-generated, as HomRB

(N,X) = 0. But our observation after
Proposition 2.5 means that in this case X is isomorphic to a direct sum of
copies of K. Therefore, the modules generated by W ′ are the direct sums of
a module in T plus a direct sum of copies of K.

If X is such that Ext1
RB

(N,X) = 0, then the exactness of the sequence

0 → K → Nd → M → 0 implies that Ext1
RB

(K,X) = 0 and thus all

modules in T are right perpendicular to N ⊕K = W ′. Also Ext1
RB

(N,K) =

Ext1
RB

(K,K) = 0, according to [2, Corollary 1.4]. Therefore, all the modules
generated by W ′ are right perpendicular to W ′.

Finally, if X 6= 0 is any module in F without direct summands iso-
morphic to K, then HomRB

(K,X) = 0 so that the induced sequence 0 →
Ext1

RB
(M,X) → Ext1

RB
(Nd, X) → Ext1

RB
(K,X) → 0 is exact. Thus if

Ext1
RB

(N,X) = 0, then Ext1
RB

(M,X) = 0 and X would belong to T .

Therefore, Ext1
RB

(N,X) 6= 0 and X is not right perpendicular to W ′. This
completes the proof that W ′ is tilting.
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We already saw that EndRB
(K) is a division ring, and so is EndRB

(N).
We also have HomRB

(N,K) = 0 because K ∈ F . Therefore, N ⊕ K is a
rigid tilting module if and only if HomRB

(K,N) is finite-dimensional over
EndRB

(K). By Lemma 2.7, this happens if and only if B∗W is left finite-
dimensional.

The preceding result lends significance to the following definition, in
which we follow the terminology in [27] and [31].

Definition 2.9. Let B be a left finite-dimensional G-F -bimodule. Let
us consider the sequence B∗ = HomG(B,G), B∗∗ = HomF (B∗, F ), . . . ,
B(k∗), . . . of left dualizations, which are again bimodules over the rings G, F .
We say that B has the left finite-dimension property when each B(k∗) is left
finite-dimensional.

Proposition 2.10. Let RB =
[
F 0
B G

]
be left pure semisimple. Then B

has the left finite-dimension property. More generally, if RB is left pure
semisimple and W = M ⊕ N is a rigid tilting module, then the associated
bimodule BW has the left finite-dimension property.

Proof. If W = M ⊕ N is a rigid tilting module, then BW is left finite-
dimensional by definition. Moreover, if W is not projective and K =
D(Tr(M)), then W ′ = N⊕K is again a rigid tilting module and BW ′ = B∗W
is left finite-dimensional, by Lemma 2.7, Proposition 2.8 and [13, Corol-
lary 3.13]. Inductively, we see that B∗∗W = B∗W ′ , . . . , are all left finite-dimen-
sional, hence BW has the left finite-dimension property.

If W is the projective tilting module, then BW = B and B∗ is left
finite-dimensional because the ring R has a left Morita duality (see [31,
Proposition 2.4]), and W ′ = E0 ⊕ E1 is obviously a rigid tilting module
with BW ′ = B∗∗. The first case then applies to show that B has the left
finite-dimension property.

We have seen in Proposition 2.3 that if RB is left pure semisimple,
then all indecomposable and non-simple left modules are totally ordered
by the relation: X < Y if and only if HomRB

(X,Y ) = 0. We see next
that, more generally, rigid tilting modules determine a similar ordering
for a set of finitely presented indecomposable modules in the torsionfree
class F .

Proposition 2.11. Let RB =
[
F 0
B G

]
be left artinian and W = M ⊕N

a rigid tilting module such that BW has the left finite-dimension property.
If (T ,F) is the splitting torsion theory of RB-Mod determined by W , then
there is a (uniquely determined) sequence X0, X1, X2, . . . of finitely pre-
sented indecomposable modules, such that:

(i) X0 = M and X1 = N ;
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(ii) for k ≥ 1, if the set Sk of indecomposable finitely presented modules
of F which are not isomorphic to any of the modules X2, . . . , Xk is
not empty, then Xk+1 is the only element in Sk such that A ∈ Sk
and HomRB

(Xk+1, A) 6= 0 imply A = Xk+1.

If there is a smallest k ≥ 0 such that Xk is projective, then Xk+1 is the
simple projective, Sk+1 is empty and the sequence is finite. Otherwise the
sequence is infinite. Moreover, for each index k ≥ 0, Xk ⊕Xk+1 is a rigid
tilting module and Xk+2

∼= D(Tr(Xk)).
In particular, if RB =

[
F 0
B G

]
is left artinian and B has the left finite-

dimension property, then W = E0⊕E1 is a rigid tilting module, BW = B∗∗

has the left finite-dimension property, and the sequence defined as above by
this tilting module is formed precisely by all the preinjective indecomposable
modules.

Proof. As induction hypothesis, we assume that Wk = Xk ⊕ Xk+1 is a
rigid tilting module and BWk

has the left finite-dimension property, which
is our hypothesis for k = 0. Furthermore, we also assume that the torsion
pair (Tk,Fk) determined by Wk is such that Fk ⊆ F and the finitely pre-
sented indecomposable modules in F that do not belong to Fk are precisely
X0, X1, . . . , Xk+1. We must see that, by choosing Xk+2 = D(Tr(Xk)), this
module has the stated property, and moreover Wk+1 = Xk+1 ⊕ Xk+2 and
the torsion pair (Tk+1,Fk+1) fulfill the same conditions above.

Proposition 2.5 shows that HomRB
(Xk+2, A) 6= 0 for A ∈ F \ Sk+1

implies Xk+2 = A. Suppose, on the other hand, that Y ∈ Fk is such that
HomRB

(Y,Xk+2) = 0. Then Ext1
RB

(Xk, Y ) = 0 by [2, Corollary 1.4]. If S =
EndRB

(Wk), we deduce by Lemma 2.1 that HomS(H(Xk), H
′(Y )) = 0. But

H(Xk) is the non-simple projective indecomposable left S-module and this
implies that H ′(Y ) = 0, which is a contradiction. This proves the uniqueness
of Xk+2 relative to the stated condition.

Next, Wk+1 is a rigid tilting module by Proposition 2.8 and BWk+1
=

(BWk
)∗ by Lemma 2.7, hence it has the left finite-dimension property. The

fact that Fk+1 has the same finitely presented indecomposable modules as Fk
except for Xk+2 is given in the proof of Proposition 2.8. This completes the
induction.

Finally, if B has the left finite-dimension property, then so does B∗∗ ∼=
HomRB

(E1, E0). It is clear that W = E0 ⊕ E1 is a rigid tilting module and
BW = B∗∗, so we may apply the result to get a sequence X0, X1, . . . of
preinjective modules. On the other hand, we have just seen that if Y ∈ F
is finitely presented indecomposable but is not isomorphic to any of the
modules X0, . . . , Xk, then HomRB

(Y,Xj) 6= 0 for any j ≤ k. This shows that
in case the above sequence is infinite and Y is not a member of the sequence,
then Y is not preinjective and thus the sequence consists of all preinjective
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modules. If the sequence is finite, then the number of finitely presented
indecomposable modules is finite and all these modules are preinjective.

3. The sequence of d-vectors. When the ring RB =
[
F 0
B G

]
is such

that B has the left finite-dimension property, the existence of enough re-
flection functors has allowed Simson [33, 34] to relate the d-vectors of the
preinjective left RB-modules to the sequence of the left dimensions of the
successive dualizations of the bimodule B. Our purpose in this section is to
use rigid tilting modules for the study of this relationship even for modules
that are not preinjective.

Lemma 3.1. Let M⊕N be a rigid tilting module such that M is not pro-
jective. Suppose that (t, s), (tτ , sτ ) are the d-vectors of M , D(Tr(M)) respec-
tively, and (t′, s′) is the d-vector of N . Then for d = l.dim(HomRB

(N,M))
we have

t+ tτ = dt′, s+ sτ = ds′.

Proof. This is straightforward from Proposition 2.5.

We make the overall assumption that the G-F -bimodule B has the left
finite-dimension property. By Proposition 2.11, the preinjective indecompos-
able finitely presented left RB-modules can be written as M0,M1,M2, . . .
so that: HomRB

(Mk,Mj) = 0 if k < j; each module Mk ⊕Mk+1 is a rigid
tilting module; each endomorphism ring EndRB

(Mk) is a division ring; and
Mk+2

∼= D(Tr(Mk)).

Moreover, we are going to see how to obtain the d-vectors (tk, sk) of
each preinjective module Xk from the sequence of the dimensions dk =
l.dim(B(k+2)∗). We add to these dimensions the numbers d = l.dim(B) and
d∗ = l.dim(B∗).

In order to state the result, we make a construction that is analogous
to that of continued fractions. Let a, a1, a2, . . . , ak be positive integers and
b 6= 0 a rational number. We define

[a, b] := a− 1

b
, [a1, . . . , ak] := [a1, [a2, . . . , ak]], if [a2, . . . , ak] 6= 0.

We have dk = l.dim(B(k+2)∗) = l.dim(HomRB
(Mk+1,Mk)) (see Lem-

ma 2.7). Then, we may define recursively the sequences pn and qn thus:

p0 = 1, q0 = 0, p1 = d∗, q1 = 1

and
pn+2 = dnpn+1 − pn, qn+2 = dnqn+1 − qn.

In view of Lemma 3.1 and Proposition 2.11, and the values of the
d-vectors for E0, E1, it is clear that (pk, qk) = (tk, sk) is the d-vector of Mk,
following the order of the preinjective modules given in Proposition 2.11.
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Lemma 3.2. Let RB =
[
F 0
B G

]
, assume that B has the left finite-dimen-

sion property, and suppose that RB is not of finite representation type. Then
for any k ≥ 0, the value [d∗, d0, d1, . . . , dk] is defined and non-zero, and

[d∗, d0, d1, . . . , dk] =
pk+2

qk+2
.

Proof. By induction, we assume that, as B∗ has the left finite-dimension
property and RB∗ =

[
G 0
B∗ F

]
is not of finite representation type, the value

[d0, . . . , dk] is defined and non-zero, and equals uk+1/vk+1, where (uj , vj) are
given as (pn, qn) but from the sequence for B∗. Consequently, [d∗, d0, . . . , dk]
is defined and the equation of the statement follows in the same way as
the corresponding property of continued fractions (see, e.g., [25]). Finally,
[d∗, d0, . . . , dk] 6= 0 because the d-vector (pk+2, qk+2) has a positive ratio.

Of course, if RB =
[
F 0
B G

]
is of finite representation type, then there is

some n such that [d∗, d0, . . . , dn] = 0, and the above relation holds only for
k < n. In that case, there are exactly n+ 1 non-isomorphic indecomposable
left modules.

This result relates the sequence of dimensions of the dualizations of B to
the d-vectors of the sequence of indecomposable finitely presented preinjec-
tive modules (the same was done by Simson [33–35] through other means).
We now collect other properties which are also easily proven in an analogous
way to the corresponding properties of continued fractions.

Lemma 3.3. With the notation and hypotheses of Lemma 3.2, the fol-
lowing properties hold for each k ≥ 0:

(1) tksk+1 − tk+1sk = 1. Consequently, gcd(tk, sk) = 1.

(2) tk/sk − tk+1/sk+1 = 1/sksk+1. Consequently, the sequence tk/sk is
strictly decreasing.

Unless the ring RB is of finite representation type, we know that the
number of indecomposable finitely presented preinjective left RB-modules
is infinite, and hence the sequences tk, sk, dk are infinite. In particular,
the sequence tk/sk is infinite and monotone, by Lemma 3.3. Moreover,
dtk > sk as the linear map B⊗F V →W is surjective for any non-projective
indecomposable module, and thus 1/d is a lower bound for the terms of
the sequence. By these conditions, the sequence tk/sk has a limit a, so that
1/d ≤ a.

We study the d-vectors of non-preinjective modules in two steps. When
W is a rigid tilting module and S = EndRB

(W ), a non-preinjective mod-
ule X may be such that H(X) is preinjective over the ring S, with H =
HomRB

(W,−). If the bimodule BW has the left finite-dimension property,
then we can get information about the d-vector of H(X) from the first re-
sults in this section applied to the ring S. In order to obtain information
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about the d-vector of X we need to investigate the relationship between the
d-vectors of X and of H(X), and this is our aim in the next results.

Proposition 3.4. Let W = M ⊕ N be a rigid tilting left module of
the left artinian ring RB =

[
F 0
B G

]
, and consider the splitting torsion theory

(T ,F) determined by W . If X ∈ T is an indecomposable finitely presented
left RB-module and X � N,M , then there is a short exact sequence

0→ N j →M r → X → 0.

Proof. We denote by H = HomRB
(W,−) and H ′ = Ext1

RB
(W,−) the

equivalence functors defined by the tilting module W from T and F to the
subcategories Y and X of S-Mod, S being the endomorphism ring of W .
We know that, if P ′0, P ′1 are, respectively, the simple projective and the
non-simple projective indecomposable left S-modules, then H(M) ∼= P ′1 and
H(N) ∼= P ′0. Therefore, there is an epimorphism of left S-modules H(g) :
H(M)r → H(X). We note first that g : M r → X is an epimorphism of left
RB-modules. Indeed, if we had an epimorphism h : X → Y in RB-mod such
that h ◦ g = 0, then Y ∈ T and H(h ◦ g) = H(h) ◦H(g) = 0, from which it
follows that H(h) = 0 and hence h = 0.

Observe further that HomRB
(M,X) ∼= HomS(P ′1, H(X)), which is

clearly left finitely generated. This entails that we may assume that the
epimorphism g : M r → X is such that every homomorphism M → X
factors through g.

Let K0 = Ker(g). Exactness of the sequence 0→ K0 →M r → X → 0
implies exactness of the sequence

HomRB
(M,M r)→ HomRB

(M,X)→ Ext1
RB

(M,K0)→ Ext1
RB

(M,M r) = 0

in S-Mod and the first of these homomorphisms is an epimorphism, hence
Ext1

RB
(M,K0) = 0.

Let Z be an indecomposable direct summand of K0 so that Ext1
RB

(M,Z)
= 0. We may assume Z � M (this can be achieved by selecting a mini-
mal generating set of HomRB

(M,X) to construct the epimorphism g) and,
as a consequence, HomRB

(M,Z) = 0 (because a non-zero homomorphism
M → Z composed with Z → M r would give a non-zero automorphism of
M factoring through Z, which would entail Z ∼= M). Since (T ,F) is split-
ting, Z is either torsion or torsionfree. If it is torsionfree, by Lemma 2.1 we
have 0 = Ext1

RB
(M,Z) ∼= HomS(H(M), H ′(Z)) = HomS(P ′1, H

′(Z)), which

entails that H ′(Z) = P ′0 = H(N), a contradiction. Therefore, Z must be
torsion. Since we have seen at the beginning of this proof that M generates
every indecomposable torsion module not isomorphic to N , we conclude
that Z ∼= N . Thus every indecomposable direct summand of K0 is isomor-
phic to N , as was to be seen.
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Proposition 3.5. Let M , N , RB, T , F be as in Proposition 3.4 and
assume that M is not projective. Let X ∈ F be an indecomposable finitely
presented module. Then there is a short exact sequence

0→ X → Nk →M r → 0.

Proof. Let k0 = r.dim(HomRB
(X,N)), which is finite by Proposition 2.6.

Suppose that Z ⊆ X is the kernel of the homomorphism X → Nk0 obtained
from a basis of HomRB

(X,N). Then any indecomposable direct summand
of X/Z which is not isomorphic to N has to belong to F , since every finitely
presented torsion module is N -generated and it cannot have a monomor-
phism to Nk0 . This clearly implies that Ext1

RB
(X/Z,N) = 0, and thus the

induced homomorphism HomRB
(X,N)→ HomRB

(Z,N) is an epimorphism.
Consequently, HomRB

(Z,N) = 0.

By Proposition 2.5, every non-zero homomorphism Z → M has to be
a split epimorphism, which is impossible since Z is torsionfree. Therefore,
HomRB

(Z,W ) = 0. But we also clearly have Ext1
RB

(Z,W ) = 0, as Z is

torsionfree. Then, by [9, Proposition 2.1], Z = 0, and we deduce that X →
Nk0 is a monomorphism.

Consider now the short exact sequence

0→ X → Nk0 → C → 0

where C is a torsion module. The induced homomorphism HomRB
(Nk0 , N)

→ HomRB
(X,N) is an epimorphism, by construction. Since we have exact-

ness of the sequence

HomRB
(Nk0 , N)→ HomRB

(X,N)→ Ext1
RB

(C,N)→ Ext1
RB

(Nk0 , N) = 0

this implies that Ext1
RB

(C,N) = 0. By Proposition 3.4, each indecomposable
direct summand of C has to be isomorphic to M or N . Bearing in mind that
the endomorphism ring of N is a division ring, we may delete, if necessary,
the direct summands of C that are isomorphic to N , and thus we obtain the
short exact sequence as stated.

We may now relate the d-vectors of indecomposable finitely presented
modules X and of the corresponding modules H(X) or H ′(X).

Proposition 3.6. Let W , RB, T , F be as in Proposition 3.4. Assume
that (t0, s0) and (t1, s1) are the d-vectors of M , N respectively. Let X ∈ T
be a finitely presented indecomposable module with d-vector (t′, s′). Assume
that (t, s) is the d-vector of H(X) over the ring S = EndRB

(W ). Then

t =
t′s1 − t1s′

s1t0 − s0t1
, s =

t(dt1 − t0) + t′

t1

where d is the left dimension of HomRB
(N,M).
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Proof. If X is either M or N , then H(N) = P ′0 is the simple projective
left S-module, and H(M) = P ′1 is the non-simple projective module. Their
d-vectors are, respectively, (0, 1) and (1, d), so that the equations are ob-
viously satisfied. Otherwise, we know from Proposition 3.4 that there is a
short exact sequence

0→ Nk →M r → X → 0.

This gives the equations kt1 + t′ = rt0, ks1 + s′ = rs0, and we may apply
the functor H giving the equivalence associated to the tilting module W .
This gives again a short exact sequence of left S-modules

0→ H(N)k → H(M)r → H(X)→ 0.

But H(M), H(N) are the projective indecomposable modules over S.
Therefore, by considering their d-vectors over S, we have the equations

t = r, k = rd− s = dt− s.
By inserting these results into the previous equations, we get t′ + (dt− s)t1
= t0t and s′ + (dt − s)s1 = s0t. We may compute s from any of these
equations. For instance,

st1 = t(dt1 − t0) + t′, s =
t(dt1 − t0) + t′

t1
.

Now, if we consider the equation td − s = (t0t− t′)/t1, and substitute
in the second equation above, we obtain the value of t as stated in the
proposition, completing the proof.

Proposition 3.7. Let M , N , RB, T , F be as in Proposition 3.4 and
assume that M is not projective. Let (t0, s0) and (t1, s1) be the d-vectors of
M and N respectively. Let X ∈ F be a finitely presented indecomposable left
RB-module with d-vector (t′, s′). Assume that (t, s) is the d-vector of H ′(X)
over the ring S = EndRB

(W ). Then

t =
s′t1 − t′s1

s1t0 − s0t1
, s =

t(dt1 − t0)− t′

t1
where d is the left dimension of HomRB

(N,M).

Proof. This is analogous to the proof of Proposition 3.6, now using
Proposition 3.5.

We show next that these results may be improved by extending to all
the indecomposable modules the equation we found for preinjective modules
in Lemma 3.3.

Lemma 3.8. Let W = M ⊕ N be a rigid tilting module over the left
artinian ring RB =

[
F 0
B G

]
. Let (t0, s0) and (t1, s1) be the d-vectors of M

and N respectively. Then t0s1 − s0t1 = 1.



HEREDITARY ARTINIAN RINGS 245

Proof. If M is projective, the result is obvious, and if only N is projec-
tive, this is a direct consequence of Proposition 2.5. For the general situation,
we start by computing the d-vectors for the modules H ′(P0) and H ′(P1) over
the endomorphism ring S of W .

Let us write (t, s) and (t, s) for the d-vectors of H ′(P0), H ′(P1) respec-
tively, and let d = l.dim(HomRB

(N,M)). We know that HomRB
(P0, N)

and HomRB
(P1, N) are right finitely generated, because N is endofinite, by

Proposition 2.6. By Proposition 3.7, we have

t =
t1

s1t0 − s0t1
, s =

dt1 − t0
s1t0 − s0t1

.

Thus s1t0 − s0t1 divides both t1 and dt1 − t0, hence it divides both t0, t1.

Concerning P1, its d-vector is (1, d′) (if we write d′ for the left dimension
of B) and thus we have

t =
d′t1 − s1

s1t0 − s0t1
,

so that s1t0 − s0t1 is a divisor of s1. Finally,

s =
(dt1 − t0)(d′t1 − s1)

t1(s1t0 − s0t1)
− 1

t1
=
dd′t1 − ds1 − d′t0 + s0

s1t0 − s0t1
,

and thus s1t0 − s0t1 is also a divisor of s0.

Let us write u = s1t0− s0t1. We have seen that u divides the four values
t0, s0, t1, s1. Therefore u2 | t0s1 and u2 | s0t1, so u2 |u. Furthermore we infer,
for instance from the above equation for t, that u > 0, and hence u = 1, as
was to be seen.

We may now adapt the foregoing results to this new piece of information.

Proposition 3.9. Let W = M⊕N be a rigid tilting module over the ring
RB =

[
F 0
B G

]
and assume that M is not projective. Letting K = D(Tr(M)),

assume further that HomRB
(K,N) is left finite-dimensional. Let (t0, s0) and

(t1, s1) be the d-vectors of N and K respectively. Let X be a finitely pre-
sented indecomposable left RB-module with d-vector (t′, s′), such that X is
torsion (resp., torsionfree). Assume that (t, s) is the d-vector of H(X) (resp.,
H ′(X)). Then

t = t′s0 − t0s′, s = t′s1 − t1s′

(resp., t = s′t0 − t′s0, s = s′t1 − t′s1).

Proof. The first equation for t follows directly from Proposition 3.6, on
taking into account Lemma 3.8. For the s-equation, we have, from Proposi-
tion 3.6 and Lemma 3.1,

s =
t1t+ t′

t0
.
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By using now the value of t we have just found,

s =
t1(t′s0 − s′t0) + t′

t0
=
t′(t1s0 + 1)

t0
− t1s′,

and thus all that is left is to show that t1s0 + 1 = t0s1. But this is obvious
by Lemma 3.8, since N ⊕K is a rigid tilting module by Proposition 2.8.

The proof of the second part is analogous.

When the ring RB =
[
F 0
B G

]
is left pure semisimple there are enough rigid

tilting modules, and we may apply the foregoing results in order to obtain
a description of the d-vectors of indecomposable modules. To this end, we
need some lemmas.

Lemma 3.10. Let RB =
[
F 0
B G

]
be left artinian, and W = M ⊕N a rigid

tilting module such that M is not projective. Consider the splitting torsion
theory determined by W . Suppose that X, Y are finitely presented indecom-
posable left RB-modules which are either both torsion or both torsionfree. Let
(t, s), (t′, s′) be the d-vectors of X, Y respectively and assume t/s < t′/s′.
For S the endomorphism ring of W , let (u, v), (u′, v′) be the d-vectors of
H(X), H(Y ) (or of H ′(X), H ′(Y )) over S. Then uv′ < vu′.

Proof. This is a straightforward computation from Propositions 3.6
and 3.7 and Lemma 3.8.

Proposition 3.11. Let RB =
[
F 0
B G

]
be left artinian and not of finite

representation type, and assume that B has the left finite-dimension prop-
erty. Let X0, X1, . . . be the sequence of preinjective modules, and write the
d-vector of Xk as (tk, sk). Let a be the limit of the ratios tk/sk and let X
be an indecomposable finitely presented module with d-vector (t, s) such that
t/s > a. Then X is preinjective.

Proof. Suppose, to the contrary, that there exists an indecomposable
finitely presented module X with d-vector (t, s) which is not preinjective
and such that t/s > a. Since we must have t/s < d∗ (because every non-
injective indecomposable finitely presented module satisfies this inequal-
ity) and t1/s1 = d∗, we see that there is a smallest k ≥ 0 such that
t/s ≥ tk+2/sk+2. If we choose the rigid tilting module Mk ⊕ Mk+1 with
endomorphism ring S, which determines the splitting torsion theory (T ,F),
then Mk+2 ∈ F and X ∈ F too, as torsion modules are all preinjective.

Over the ring S, the module Mk+2 gives the simple injective H ′(Mk+2)
as Mk+2 has no non-zero homomorphism to any other torsionfree module, by
the construction in Proposition 2.5. Thus it has d-vector (1, 0). By applying
Lemma 3.10, we find that if (t′, s′) is the d-vector of H ′(X) then s′ < 0, a
contradiction that proves the result.
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Lemma 3.12. Let RB =
[
F 0
B G

]
be left artinian and not of finite repre-

sentation type, and assume that B has the left finite-dimension property.
Consider the chain of preinjective modules Xk (k = 0, 1, . . . ) with d-vectors
(tk, sk). Then there is an infinite sequence of positive integers i1 < i2 < · · ·
such that si1 < si2 < · · · and for any k = 0, 1, . . . and j > ik, we have
sik < sj.

Proof. As induction hypothesis, we assume that there is a sequence
i1 < · · · < ir satisfying the conditions of the statement. We will show how
to choose ir+1.

Consider the set of all indices j > ir (so that sj > sir). Then the set
of all integers sj for those j has a minimum value s and we have s > sir .
Consider now all the preinjective modules Xm with m > ir and such that
sm = s. We note that there are only finitely many such modules. This is
because if we have m1 > m2 and sm1 = s = sm2 , then tm1/s < tm2/s and
hence tm1 < tm2 and the set of possible t-values is finite. So, we may choose
the largest possible index m with the property that the d-vector of Xm has
sm = s. Then we set ir+1 = m. This entails that si1 < · · · < sir+1 ; and if
j > ir+1, then necessarily sj > sir+1 , showing that the conditions hold for
the extended sequence.

We now arrive at the last of our preliminary results.

Lemma 3.13. Let RB =
[
F 0
B G

]
be left artinian and not of finite repre-

sentation type, and assume that B has the left finite-dimension property.
Consider the chain of preinjective modules Xk (k = 0, 1, . . . ) with d-vectors
(tk, sk). Let a be the limit of the sequence tk/sk. Then either there exists a
non-preinjective indecomposable finitely presented module with d-vector (t, s)
such that t/s = a, or else there is an infinite chain of non-preinjective inde-
composable finitely presented modules Y1, Y2, . . . with d-vectors (ui, vi) such
that the sequence ui/vi is strictly increasing and bounded above by a.

Proof. Suppose that no finitely presented indecomposable module has
d-vector (t, s) with t/s = a. Choose any non-preinjective indecomposable
finitely presented module Y1 with d-vector (t, s) so that t/s 6= a. It follows
from Proposition 3.11 that t/s < a. Let us set ε = a − t/s, and let Xk be
any preinjective module. Since tk/sk > a, we have tk/sk−t/s > ε. Therefore
tks− skt > sksε.

By Lemma 3.12, there exists k such that skε > 1, and moreover, if j > k,
then sj > sk. For this k, one has tks − skt > s. On the other hand, con-
sider a maximal submodule L of Xk. Since the quotient must be simple,
it is isomorphic to the simple injective whose d-vector is (1, 0). Accord-
ingly, the d-vector of L is (tk− 1, sk). We observe that each indecomposable
direct summand of L is non-preinjective. This is because such a direct sum-
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mand cannot be of the form Xi for i < k, because HomRB
(Xi, Xk) = 0.

But if we take j > k, then sj > sk and hence there is no monomorphism
Xj → Xk. Consequently, each direct summand of L has a d-vector (u, v)
such that u/v < a, in view of Proposition 3.11 and our assumption. If we
had u/v ≤ t/s for all those direct summands, then we would also have
(tk − 1)/sk ≤ t/s and hence tks−skt ≤ s, which contradicts our choice of k.
Therefore, there is some indecomposable non-preinjective finitely presented
module with d-vector (u, v) such that t/s < u/v < a. By repeating the ar-
gument, we see that we may construct the announced infinite sequence of
indecomposable modules.

When the ring RB is left pure semisimple, we know from Proposition 2.3
that the indecomposable left RB-modules form a unique chain indexed by
ordinals, X0, X1, . . . , such that α < β implies HomRB

(Xα, Xβ) = 0. By ap-
plying to this case the results in the current section, we obtain the following
consequences.

Theorem 3.14. Let RB =
[
F 0
B G

]
be a left pure semisimple ring which

is not of finite representation type, and consider the unique chain of inde-
composable left RB-modules X0, X1, . . . , Xρ satisfying HomRB

(Xα, Xβ) = 0
if α < β ≤ ρ. Denote the d-vector of Xα as (tα, sα). Then:

(i) For any α < ρ, we have tαsα+1 − sαtα+1 = 1.
(ii) α < β ≤ ρ implies tα/sα > tβ/sβ.

(iii) If µ < ρ is a limit ordinal and λ = µ+ ω, then

tλ
sλ

= lim
k→∞

tµ+k

sµ+k
.

Proof. (i) follows by a direct application of Lemma 3.8, since Xα⊕Xα+1

is a rigid tilting module.
(ii) follows by induction on β. The induction step is clear by (i) when β

is not a limit ordinal, so suppose that tα/sα ≤ tβ/sβ for some limit ordinal
β and α < β. Take W = Xα ⊕ Xα+1 and S = EndRB

(W ). If H and H ′

denote the equivalence functors associated to the rigid tilting module W ,
then the ratio t/s for the preinjective S-module H ′(Xα+2) is greater than
the ratio for the non-preinjective S-module H ′(Xβ) by Proposition 3.11. But
this contradicts our supposition about the ratio of Xβ by Lemma 3.10.

(iii) First, let a = limk→∞ tk/sk. By (ii), an infinite chain of indecompos-
able modules with an increasing sequence of ratios t/s cannot exist, hence
by Lemma 3.13 there exists a non-preinjective indecomposable module with
d-vector (t, s) such that t/s = a. By applying (ii) again, we see that this
module has to be Xω.

Let now µ be any non-zero limit ordinal and λ = µ + ω. Take W =
Xµ ⊕Xµ+1 and S = EndRB

(W ). Then H ′(Xλ) is the first non-preinjective
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S-module in the ordering of the indecomposable modules, and hence its d-
vector has a ratio that is the limit of the ratios for the preinjective S-modules
H ′(Xµ+2+k), by the first part of this proof. The result follows from the
relationship between the ratios of Xα and H ′(Xα) obtained in Proposi-
tion 3.9.

4. The weak pure semisimplicity conjecture. Suppose that the
ring RB =

[
F 0
B G

]
is left pure semisimple. Then we will consider the chain

{Xα | 0 ≤ α ≤ δ + 1} of indecomposable left RB-modules of Proposi-
tion 2.3. Let us write dα (for α= 0, 1, . . . , δ) to denote the left dimension of
HomRB

(Xα+1, Xα), and also d∗ = dδ+1 for the left dimension of B∗. We
introduce the following concept.

Definition 4.1. Let RB =
[
F 0
B G

]
be left pure semisimple, and consider

the dimensions dα for α = 0, 1, . . . , δ+ 1. Then RB will be called a sporadic
ring if dα > 1 for any 0 ≤ α ≤ δ + 1.

Any left pure semisimple sporadic ring is a counterexample to the pssC
(see [12]). Suppose that a ring RB of the form (1) is a non-sporadic coun-
terexample to the pssC, with dα = 1 for some α ≤ δ (using the notation at
the beginning of this section). Thus W = Xα ⊕Xα+1 is a rigid tilting mod-
ule with endomorphism ring S =

[D1 0
B′ D2

]
which is still a counterexample

to the pssC, and there are corresponding equivalence functors H, H ′. Here,
D1, D2 are division rings, and if P0, P1 are the indecomposable projective
left S-modules, then P0 = H(Xα+1), P1 = H(Xα), and B′ ∼= HomS(P0, P1)
has left dimension 1 so that B′ ∼= D2. This suggests the following weak ver-
sion of the pssC, which we shall call the weak pure semisimplicity conjecture
(briefly, wpssC).

(wpssC) If the ring

(2) RG =
[
F 0
G G

]
is left pure semisimple, then it is of finite representation type.

Proposition 4.2. The pure semisimplicity conjecture holds if and only
if the weak pure semisimplicity conjecture holds and there do not exist left
pure semisimple sporadic rings.

Proof. One way is obvious. For the converse, if the pssC does not hold
but there do not exist left pure semisimple sporadic rings, then there ex-
ists a left pure semisimple ring RB of the form (1) such that dα = 1 for
some α ≤ δ + 1 (following the notation at the beginning of this section).
If α = dδ+1, then the left dimension of B∗ is 1, i.e., the left dimension of
Ext1

RB
(E0, P0) is 1, where P0, E0 are the simple projective and simple injec-

tive modules. If W is any non-projective rigid tilting left RB-module with
endomorphism ring S and equivalence functors H, H ′, then H(E0), H ′(P0)
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are consecutive modules in the ordering of the modules over the left pure
semisimple ring S, and the left dimension of HomS(H(E0), H ′(P0)) is 1 by
Lemma 2.1. Thus we may assume that α ≤ δ and we have just seen above
that this will give a left pure semisimple ring of the form (2) which is not of
finite representation type, hence the wpssC does not hold.

In this section we study the wpssC and show that it is equivalent to
a property of embeddings of division rings that is a purely linear algebra
property. Let us define, for any division ring embedding F ⊆ G, a couple of
notions.

Lemma 4.3. Let F ⊆ G be a division ring embedding. Let m,n ≥ 1 be
integers, and A any G-matrix of size m × n. Consider the rings of square
matrices Mm(F ) and Mn(G). Then the sets

MA
n (G) = {M ∈Mn(G) | A ·M = X ·A for some X ∈Mm(F )}

and

MA
m(F ) = {N ∈Mm(F ) | N ·A = A ·X for some X ∈Mn(G)}

are subrings of Mn(G) and Mm(F ), respectively.

Proof. This is straightforward.

Lemma 4.4. Let F , G, A, m, n be as in Lemma 4.3. Suppose that the
right column rank of the matrix A is n (i.e., the columns of A are right lin-
early independent vectors in Gm) and that the rows of A are left F -linearly
independent (i.e., they are vectors of Gn that are independent when Gn is
viewed as a left F -vector space). Then the map MA

m(F ) → MA
n (G) which

assigns to each matrix N ∈ MA
m(F ) the unique G-matrix X such that

NA = AX, is a ring isomorphism.

Proof. By hypothesis, the columns of A are right linearly independent,
and thus it is clear that X is unique. On the other hand, if M ∈MA

n (G), then
NA = AM for some matrix N ∈MA

m(F ), from which the surjectivity of the
map follows. Similarly, this F -matrix N is also unique by the hypothesis on
the rows, and thus the map is injective. It is trivially a ring homomorphism.

We are interested in certain bimodules defined for these rings. Let A1

and A2 be G-matrices with respective sizes mi × ni, i.e., they belong to the
Mmi(G)-Mni(G)-bimodule of matrices Mmi,ni(G). Then we define

MA1,A2
m1,m2

(F ) = {N ∈Mm1,m2(F ) | N ·A2 = A1 ·X for some X ∈Mn1,n2(G)},
MA1,A2
n1,n2

(G) = {M ∈Mn1,n2(G) | A1 ·M =X ·A2 for some X ∈Mm1,m2(F ).

It easily turns out that MA1,A2
m1,m2(F ) is an MA1

m1
(F )-MA2

m2
(F )-bimodule, and

MA1,A2
n1,n2 (G) is an MA1

n1
(G)-MA2

n2
(G)-bimodule. Moreover, we have:
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Lemma 4.5. Let F , G, A1, A2 be as above. Suppose that the matrices
A1, A2 have right column rank n1, n2, respectively; and that the rows of
each matrix are left F -linearly independent. Then the map MA1,A2

m1,m2(F ) →
MA1,A2
n1,n2 (G) which carries a matrix N in the first bimodule to the unique

G-matrix X such that NA2 = A1X, is a semilinear bimodule isomorphism.

Proof. This is a routine check.

We now develop a connection between these rings and bimodules of
matrices and the modules over the ring RG =

[
F 0
G G

]
of the form (2).

We know that each non-zero finitely generated left RG-module without
simple projective direct summands is given through a G-linear surjective
map G ⊗F V → W , where V and W are respectively left F - and G-vector
spaces of finite dimension. Therefore, if m, n are the dimensions of V , W
respectively, then n ≤ m. Moreover, n > 0 if the module is not semisimple
injective.

Let us define the category CG,F whose objects are all the G-matrices
of size m × n such that 0 < n ≤ m, whose right column rank is n and
such that the rows are left F -linearly independent. As the set of morphisms
from one such matrix A to another one B, we takeMA,B

m1,m2(F ). Like this, the
endomorphism ring of each object A isMA

m(F ). Composition of morphisms is
given by matrix multiplication. It is easy to see that this is indeed a category,
whose sets of morphisms have compatible abelian group structures.

Proposition 4.6. Let F ⊆ G be an embedding of division rings such
that the left F -dimension of G is finite, and let RG =

[
F 0
G G

]
. There is an

equivalence between the full subcategory of RG-mod consisting of non-zero
modules which have no simple direct summands, and the category CG,F .

Proof. We define a functor giving the equivalence from a skeleton of the
above subcategory of RG-mod to CG,F . Thus, for each isomorphism class
of finitely generated left RG-modules we choose a module M represented
by a surjective G-linear map hM : G ⊗ Fm → Gn, where 0 < n ≤ m. We
then associate to M the matrix AM of the linear map hM relative to the
canonical bases. Since hM is surjective, the matrix AM has right column
rank n. Moreover, if we had some left F -linear dependence relation between
the rows of AM , then the module would have a direct summand isomorphic
to the simple injective module E0, and hence AM is indeed an object of the
category CG,F .

Now, for modules M and N we have HomRB
(M,N) identified to the set

of pairs (f, g) of linear maps f : Fm1 → Fm2 and g : Gn1 → Gn2 with the
property hM ·g = (1⊗f)·hN . This means that AM ·X = C ·AN , where C, X
are, respectively, the matrices of the maps f , g. Then we associate the ma-
trix C to the homomorphism (f, g). Since the group of morphisms in CG,F
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from AM to AN is MAM ,AN
m1,m2 (F ), in this way we clearly have an isomorphism

HomRG
(M,N) ∼= HomCG,F

(AM , AN ). This shows that our functor is full
and faithful. On the other hand, any object of CG,F is a matrix A which can
always be interpreted as AM for a non-zero module M which has no simple
direct summands. This shows that the functor is an equivalence.

Next, we give a characterization of rings of the form (1) which are left
pure semisimple, and we then use the above equivalence to translate the
characterization into a linear algebra condition.

Theorem 4.7. Let RB =
[
F 0
B G

]
be left artinian. The ring RB is left

pure semisimple if and only if the following conditions hold:

(i) B∗ = HomG(B,G) is a finite-dimensional left F -module (equivalen-
tly, the non-simple injective left RB-module E1 is finitely presented).

(ii) Given any non-empty family {Mi | i ∈ I} of finitely generated left
RB-modules such that each Mi is non-zero and without simple di-
rect summands, there exists an index j ∈ I such that for every
i ∈ I and homomorphism g : Mi → E1, there exist homomor-
phisms h1, . . . , hn : Mi → Mj and f1, . . . , fn : Mj → E1 such that
g =

∑n
k=1 hkfk.

Furthermore, if RB is left pure semisimple, then it is a ring of finite
representation type if and only if the following condition holds (here P1 will
denote the non-simple projective indecomposable left RB-module).

(iii) Given any non-empty family {Mi | i ∈ I} of finitely generated left
RB-modules such that each Mi is non-zero and without simple direct
summands, there exists j ∈ I such that for every i ∈ I and ho-
momorphism g : P1 → Mi, there exist homomorphisms h1, . . . , hn :
Mj →Mi and f1, . . . , fn : P1 →Mj such that g =

∑n
k=1 fkhk.

Proof. We prove the first part of the theorem. Suppose that RB is left
pure semisimple. Since it has a left Morita duality by [31, Proposition 2.4],
we know that E1, being the injective hull of the simple projective P0, is
finitely generated, so condition (i) holds. Suppose now we are given a fam-
ily {Mi | i ∈ I} of finitely generated left RB-modules which are non-zero
and without simple direct summands. Consider the set C of all indecompos-
able direct summands of the modules Mi, so that each module Mi belongs
to add(C). If E1 belongs to C, then the property is obviously true with
Mj = E1 ⊕ N and taking f1 : Mj → E1 as the canonical projection. If
E1 /∈ C, then we know from Proposition 2.3 that there is a smallest ordinal
β > 0 such that Xβ ∈ C, where the Xα give the well-ordered set of indecom-
posable modules. Also, Xβ is the only splitting injective module of C and
thus Xβ cogenerates every module Mi [8, Theorem 2.3]. We then choose Mj

such that Mj = Xβ ⊕N . Now, we take any homomorphism g : Mi → E1
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and a monomorphism h : Mi →Mn
j . We may factor g through h, getting

f : Mj → E1 such that g = hf . This proves (ii).

Conversely, suppose that the conditions hold. Then we show that
RB-ind has a strong preinjective partition, so that RB is left pure semisimple
by Proposition 2.3. Consider first the set C0 of all non-injective indecompos-
able finitely presented left RB-modules. By (ii), there is a module M1 ∈ C0

satisfying the condition. Since any indecomposable finitely presented left
RB-module without simple injective direct summands is cogenerated by E1,
we may find a monomorphismMi → Er1 for any moduleMi ∈ C0. By (ii), this
monomorphism can be factored through some direct sum of copies of M1,
and hence Mi is cogenerated by M1. Applying again [8, Theorem 2.3], we
see that M1 is the only splitting injective module in add(C0). This gives the
first steps of the preinjective partition of RB-ind, that is, I0 = {E0, E1} and
I1 = {M1}.

As inductive step, assume that we have constructed the strong prein-
jective partition for all Iβ with β < α. As above, we take the set Cα of
all finitely presented indecomposable left RB-modules not belonging to the
sets Iβ. By hypothesis, there is Mα in this set satisfying condition (ii) of our
statement. The same argument above shows that any other indecomposable
finitely presented module of Cα is cogenerated by Mα, and thus Mα is the
only splitting injective of Cα; this gives Iα = {Mα}. Since we may proceed
in this way until we exhaust all isomorphism classes of finitely presented
indecomposable modules, we see that there is a strong preinjective partition
of RB-ind, and we are done.

The second part of the theorem can be proved by using dual arguments,
since P1 generates all non-simple modules.

Then, we may translate this into a linear algebra condition.

Theorem 4.8. Let F ⊆ G be a division ring embedding such that G
is left F -finite-dimensional, and let RG =

[
F 0
G G

]
. Then RG is left pure

semisimple if and only if the following holds: Given any family {Ai | i ∈ I}
of G-matrices with respective sizes mi × ni where 1 ≤ ni ≤ mi and such
that each Ai has right column rank ni and left F -linearly independent rows,
there exists j ∈ I such that for each i ∈ I, the canonical map

MAi,Aj
ni,nj (G)⊗

M
Aj
nj

(G)
Gnj → Gni

is a surjection.

Proof. Let A be any G-matrix of size m × n with 1 ≤ n ≤ m and with
right column rank equal to n and with left F -linearly independent rows.
Let M be the finitely generated left RG-module that corresponds to A in
the equivalence of Proposition 4.6. Since we have assumed that G is left
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F -finite-dimensional, we know that E1 is finitely generated. It is easy to see
that HomRG

(M,E1) ∼= Gn, with the left structure of Gn obtained through
the isomorphism MA

m(F ) ∼= MA
n (G) of Lemma 4.4. Also, HomRG

(Mi,Mj)
∼= MAi,Aj

ni,nj (G) for matrices Ai and Aj as above, in view of Lemma 4.5.
Suppose that RG is left pure semisimple and we want to check the condi-

tion above. Take any family {Ai | i ∈ I} of G-matrices as in the statement.
The matrices Ai correspond by the equivalence of Proposition 4.6 to a family
of finitely generated left RG-modules Mi without simple direct summands.
Theorem 4.7 implies that there exists j ∈ I with property (ii) of that the-
orem. Given any i ∈ I and H ∈ Gni , we may consider the corresponding
h : Mi → E1 as shown above, and find homomorphisms g1, . . . , gr : Mi →Mj

and f1, . . . , fr : Mj → E1 with h =
∑r

k=1 gkfk. Now, each fk : Mj → E1

gives naturally a columnG-matrixHk ∈ Gnj . Similarly, each homomorphism
gk corresponds through the equivalence of Proposition 4.6 to a matrix Lk
in MAi,Aj

ni,nj (G), and thus we get
∑r

k=1 LkHk = H. This justifies the stated
condition.

For the converse, suppose now that we are given a set of finitely generated
modules Mi without simple direct summands. Then we may obtain the
corresponding set of matrices Ai by the equivalence of Proposition 4.6. It
is straightforward to see that our condition now implies (ii) of Theorem 4.7
by the equivalence of Proposition 4.6, and thus the proof is complete.

To achieve our goal, we need a characterization, in these linear algebra
terms, of the rings of finite representation type inside the class of left pure
semisimple rings of the form (2).

Theorem 4.9. Let F ⊆ G be an embedding of division rings, and let
RG =

[
F 0
G G

]
be left pure semisimple. Then RG is of finite representation

type if and only if any of the following equivalent conditions holds:

(a) For any G-matrix A of size m×n with 1 ≤ n ≤ m with right column
rank n and left F -linearly independent rows, Gn is finitely generated
as a right module over the ring MA

n (G).
(b) Given any family {Ai | i ∈ I} of G-matrices with respective sizes

mi×ni where 0 < ni ≤ mi and Ai has right column rank ni and left
F -linearly independent rows, there exists j ∈ I such that for each
i ∈ I, the canonical map

Fmj ⊗
M

Aj
mj

(F )
MAj ,Ai
mj ,mi(F )→ Fmi

is a surjection.

Proof. Assume that RG is left pure semisimple. The fact that RG is of
finite representation type if and only if (b) holds follows from the second
part of Theorem 4.7 in a way similar to the proof of Theorem 4.8. So, we
set to show that RG is of finite representation type if and only if (a) holds.
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Let A be any G-matrix as in the statement. By Proposition 4.6, there is a
finitely generated left RG-module M without simple direct summands such
that the map G ⊗F V → W defining M has matrix A (with respect to the
canonical bases). By this same equivalence of categories, we know that the
endomorphism ring of M is isomorphic toMA

m(F ). By Lemma 4.4,MA
m(F ) ∼=

MA
n (G) and so the right structure of HomRG

(P0,M) ∼= Gn is the natural
structure of Gn as an MA

n (G)-module. Thus, Gn is right finitely generated
over MA

n (G) if and only if HomRG
(P0,M) is right finitely generated.

If RG is of finite representation type, then this property holds because
every left module is endofinite (see, e.g., [11] or [26]).

Conversely, suppose that the property holds. Therefore HomRG
(P0,M)

is right finitely generated for every indecomposable left RG-module M which
is not simple. Since the simple indecomposable modules P0, E0 are clearly
endofinite, it only remains to show that HomRG

(P1,M) is right finitely gen-
erated for every non-simple indecomposable left RG-module M , and the
result holds by [14, Theorem 4.1].

Take any such module M . We have a short exact sequence 0 → P0 →
P1 → E0 → 0, and HomRG

(E0,M) = 0. Consequently, we have a short exact
sequence 0 → HomRG

(P1,M) → HomRG
(P0,M) → Ext1

RG
(E0,M) → 0.

Since this is a sequence of right EndRG
(M)-modules and HomRG

(P0,M)
is right finite-dimensional, we find immediately that HomRG

(P1,M) is also
right finite-dimensional.

We may finally state the wpssC in terms of linear algebra.

Proposition 4.10. Consider the following conditions for an embedding
F ⊆ G of division rings:

(1) Given any family {Ai | i ∈ I} of G-matrices with respective sizes
mi × ni where 0 < ni ≤ mi and Ai has right column rank ni and left
F -linearly independent rows, there exists j ∈ I such that for each
i ∈ I, the canonical map

MAi,Aj
ni,nj (G)⊗

M
Aj
nj

(G)
Gnj → Gni

is a surjection.
(2) For any G-matrix A of size m × n with 0 < n ≤ m, right column

rank n and left F -linearly independent rows, Gn is finitely generated
as a right module over the ring MA

n (G).
(2′) Given any family {Ai | i ∈ I} of G-matrices with respective sizes

mi×ni where 0 < ni ≤ mi and Ai has right column rank ni and left
F -linearly independent rows, there exists j ∈ I such that for each
i ∈ I, the canonical map

Fmj ⊗
M

Aj
mj

(F )
MAj ,Ai
mj ,mi(F )→ Fmi

is a surjection.
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The weak pure semisimplicity conjecture is equivalent to the assertion that
whenever G is left F -finite-dimensional and (1) holds, then one of the equiv-
alent conditions (2) or (2′) holds.

Proof. Apply Theorems 4.8 and 4.9.

5. Sporadic pure semisimple rings. Let RB =
[
F 0
B G

]
be left pure

semisimple. Following the notation at the beginning of Section 4, the inde-
composable left RB-modules form a chain {Mα | 0 ≤ α ≤ δ+ 1} with α < β
precisely when HomRB

(Mα,Mβ) = 0. We denote by dα the left dimension of
HomRB

(Mα+1,Mα) when α ≤ δ, and d∗ = dδ+1 is the left dimension of B∗.

Suppose that δ + 1 = ρ + n for some limit ordinal ρ and n > 0. As
shown in [16], if 0 ≤ β ≤ ρ is a limit ordinal, then Uβ = {Mβ+k | k < ω} is
one of the Auslander–Reiten components of RB-ind. Thus U0 is the set of
preinjective modules and Uρ is the finite set of preprojective modules.

Recall that we say that RB is sporadic if dα > 1 for every ordinal α ≤
δ + 1. Now, if RB is such that dα > 1 for all ordinals α that are not infinite
limit ordinals, then we shall say that the ring R is almost sporadic.

The crucial property of pure semisimple almost sporadic rings is the
following:

Theorem 5.1. Let RB =
[
F 0
B G

]
be a left pure semisimple almost spo-

radic ring. Suppose that Uλ is any Auslander–Reiten component of RB-ind
which is not the preprojective component. Then there exists n ≥ 0 such that
for all k ≥ n we have dλ+k = 2.

Proof. Let us denote the d-vector of each module Mα as (tα, sα) and
let Uβ be any Auslander–Reiten component which is not the preprojective
component. For each natural number k ≥ 0, let us consider the values vk =
dtβ+k−sβ+k. We start by establishing the following claim: Either there exists
some m ≥ 0 such that the sequence vk is strictly increasing for k ≥ m, or
else there exists m ≥ 0 such that the sequence vk is constant for k ≥ m.
Note that vk > 0 because if Mβ+k is indecomposable and not projective, the
linear map B ⊗F V →W defining Mβ+k is a proper surjection.

To prove the claim, we observe that if vk < vk+1 with k > 0, then the
sequence vk, vk+1, . . . is strictly increasing. To see this, it is enough to apply
Lemma 3.1:

vk+2 = d(dβ+ktβ+k+1 − tβ+k)− (dβ+ksβ+k+1 − sβ+k) = dβ+kvk+1 − vk.

Therefore

vk+2 − vk+1 = (dβ+k − 1)vk+1 − vk ≥ vk+1 − vk > 0

as dβ+k > 1 by our hypothesis that the ring is almost sporadic.
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As a consequence, if the sequence is not eventually strictly increasing,
then we have vk+1 ≤ vk for any k > 0. But since all these values are
≥ 1, this implies that the sequence is eventually constant. This proves the
claim.

Now, since Uλ is not the preprojective component, we know that there
is a next component Uµ with µ = λ + ω. The module Mµ ⊕ Mµ+1 is a
tilting module whose endomorphism ring S is again a left pure semisimple
ring of the form (1). Moreover, in view of the equivalences H, H ′ of the
tilting theorem, the sequence of the indecomposable left S-modules con-
sists of the images (in the corresponding order) through the equivalence H ′

of the indecomposable torsionfree left RB-modules, followed by the images
through H of the indecomposable torsion modules (again, in the same or-
der as in RB-ind). Moreover, the left dimension of HomS(Xα+1, Xα) for two
consecutive modules over this ring is the same as the left dimension of the
Hom of the corresponding left RB-modules. Therefore, S is again almost
sporadic. Thus, without loss of generality, we may assume that Uµ is the
preprojective component and consists only of the two projective modules P1

and P0.

We know that for each k ≥ 0, there is an irreducible map hk : Mλ+k+1 →
Mλ+k. This has to be either a monomorphism or an epimorphism. But if
some hk with k > 0 is an epimorphism, then hk+1 cannot be a monomor-
phism, hence it is an epimorphism too. This is because, if hk were an epi-
morphism and hk+1 were a monomorphism, then tλ+k+1 ≥ tλ+k, tλ+k+2 and
similarly for sλ+k+1; by the equation of Lemma 3.1, we would have

dλ+ktλ+k+1 = tλ+k+2 + tλ+k, dλ+ksλ+k+1 = sλ+k+2 + sλ+k.

But this would contradict the hypothesis that dλ+k ≥ 2 because the ring is
almost sporadic. Therefore, if hk is an epimorphism for some positive k, then
all the successive maps hk+m are epimorphisms. On the other hand, it can-
not be the case that all the mappings are monomorphisms, and hence, from
some index onwards, all hk are epimorphisms. Consequently, the lengths of
the modules Mλ+k are growing from some index onwards and hence the
d-vectors (tλ+k, sλ+k) have non-decreasing components (with at least one of
them strictly increasing).

Let m > 0 be such an index. Then (tλ+m, sλ+m) will be the d-vector of
Mλ+m. If L is a maximal submodule of Mλ+m, then each indecomposable di-
rect summand of L has to be projective, since the other modules in Uλ either
have length greater than Mλ+m, or else have no non-zero homomorphisms
to Mλ+m. Thus, we have a short exact sequence

0→ P l0 ⊕ P h1 →Mλ+m → E0 → 0.
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This entails the equation

l(0, 1) + h(1, d) + (1, 0) = (1 + h, l + dh) = (tλ+m, sλ+m)

so that 1 + h = tλ+m and l + dh = sλ+m.
Note that this is also valid for any index k ≥ m, by the same argument.

Of course, the numbers l and h will in general depend on that index. But
we must always have d > l. Indeed, since vk > 0 as we have seen above, it
follows that

vm = d(1 + h)− (l + dh) = d− l > 0,

and the same is true for each vk with k ≥ m. This shows that vk ≤ d for all
those indices, and hence the sequence vk cannot be strictly increasing.

Thus, as a consequence of our claim, there exists some index i > 0 such
that the sequence vk for k ≥ i is constant. We then choose an index n
such that both conditions hold, so that for k ≥ n the mapping hk is an
epimorphism and the value vk = d − l is constant. Accordingly, the value l
is constant for those indices.

Consider now three consecutive modules in Uλ whose indices are λ+ k,
λ + k + 1 and λ + k + 2, with k ≥ n. Then their respective d-vectors will
have the form

(1 + h, l + dh), (1 + h1, l + dh1), (1 + h2, l + dh2).

Now, the value dλ+k = d′ ≥ 2 satisfies, by Lemma 3.1, d′(1 + h1) =
(1 + h) + (1 + h2) and d′(l + dh1) = (l + dh) + (l + dh2). So we have

(1 + h1)(2l + dh+ dh2) = (l + dh1)(2 + h+ h2),

and thus

2l+ 2lh1 + d(h+ h2) + dhh1 + dh1h2 = 2l+ hl+ h2l+ 2dh1 + dhh1 + dh1h2.

Simplifying gives 2lh1 + d(h+ h2) = (h+ h2)l+ 2dh1, from which it follows
that (h+ h2)(d− l) = 2h1(d− l) and h+ h2 = 2h1.

Now, since we had d′(1 + h1) = 2 + h+ h2, we conclude that

d′(1 + h1) = 2 + 2h1 = 2(1 + h1),

which shows that d′ = 2. Since d′ = dλ+k for any k ≥ n, the result is
proven.

An easy consequence follows:

Corollary 5.2. If the pssC is false, then there exists a counterexample
which is a ring of the form (1), i.e. RB =

[
F 0
B G

]
, such that l.dim(B) ≤ 2.

Proof. If some dα equals 1, then the endomorphism ring of the tilting
module Mα+1⊕Mα is a ring RB =

[
F 0
B G

]
such that B = HomR(Mα+1,Mα).

Its left dimension is 1, by our assumption. On the other hand, if dα > 1
for each possible ordinal α, then the ring is sporadic and hence dα = 2
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for some α, by Theorem 5.1. By taking Mα ⊕Mα+1 as a tilting module,
its endomorphism ring would be a counterexample which is a ring of the
form (1) such that the left dimension of the defining bimodule is 2.

We observe that left pure semisimple sporadic rings seem to be relatively
scarce (if there are any at all). In this connection, we show now that there
is no sporadic left pure semisimple ring with only two Auslander–Reiten
components. This follows also from Simson’s description of potential coun-
terexamples to the pssC with two components (see, e.g., [35]), but we give
an independent and simple proof here.

Proposition 5.3. Let RB =
[
F 0
B G

]
be a left pure semisimple almost spo-

radic ring with only two Auslander–Reiten components. Up to replacement
by the endomorphism ring of a basic tilting module, the only preprojective
modules are the projective modules P0, P1; furthermore, B has left dimen-
sion 1 and the sequence of the left dimensions of the dualizations B∗, . . .
has all its values equal to 2. In particular, there are no sporadic left pure
semisimple rings with only two Auslander–Reiten components.

Proof. Suppose RB-ind has only the preinjective and the preprojec-
tive component. By Theorem 5.1, we may choose k ≥ 0 such that dj = 2
for all j ≥ k. By replacing RB with the endomorphism ring of the
tilting module Mk+1 ⊕ Mk+2, we may assume that our ring is such that
d∗ = d0 = d1 = · · · = 2. Hence, the sequence of the d-vectors of the prein-
jective left RB-modules will be

(1, 0), (2, 1), (3, 2), . . . , (h+ 1, h), . . . .

The limit of the ratios th/sh is 1, and thus by Theorem 3.14, the d-vector
of Mω is (1, 1). By Lemma 3.8, the d-vector of Mω+1 is (t, t + 1) for some
t ≥ 0. If t = 0, then Mω+1 = P0 and Mω = P1, so that d = 1 and the ring
has the form given in the statement of the proposition.

Thus, let t > 0. Let us introduce an order for d-vectors with: (t, s) <
(t′, s′) if t ≤ t′, s ≤ s′ and either t < t′ or s < s′. Then, assume we are given
three consecutive indecomposable modules, say with indices α, α+ 1, α+ 2
such that (tα, sα) < (tα+1, sα+1). We are going to show that if d′ = dα > 1,
then (tα+1, sα+1) < (tα+2, sα+2).

This is an easy computation. If we write (t, s), (t′, s′), (t′′, s′′) for the
d-vectors in this sequence and d′ = dα, then we deduce by Lemma 3.1 and
Proposition 2.3(b2) that

d′t′ = t+ t′′, d′s′ = s+ s′′.

Thus t′′ − t′ = (d′t′ − t)− t′ = (d′ − 1)t′ − t ≥ t′ − t ≥ 0, and similarly for s.
This shows the claim.
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Since t > 0, we have (tω, sω) < (tω+1, sω+1). If dω > 1, then the sequence
of pairs (tω+k, sω+k) would be increasing, which is impossible as it has to end
with (0, 1). It follows that dω = 1 and hence the ring R cannot be sporadic.
According to Lemma 3.1, the d-vector of Mω+2 is (t− 1, t).

Since the sequence of pairs (tω+k, sω+k) must be decreasing, we easily
see that each dω+k with k ≥ 1 has to be 2.

If we now substitute the endomorphism ring of the tilting module
Mω ⊕Mω+1 for RB, we get the ring described in the statement of the propo-
sition.

Remark 5.4. The (essentially unique) class of potential almost sporadic
left pure semisimple rings of Proposition 5.3 was constructed by Simson [34].
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[37] H. Valenta, Existence criteria and construction methods for certain classes of tilting
modules, Comm. Algebra 22 (1994), 6047–6071.
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