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A CHARACTERIZATION OF PARTITION POLYNOMIALS
AND GOOD BERNOULLI TRIAL MEASURES IN MANY SYMBOLS

BY

ANDREW YINGST (Lancaster, SC)

Abstract. Consider an experiment with d + 1 possible outcomes, d of which occur
with probabilities x1, . . . , xd. If we consider a large number of independent occurrences
of this experiment, the probability of any event in the resulting space is a polynomial in
x1, . . . , xd. We characterize those polynomials which arise as the probability of such an
event. We use this to characterize those ~x for which the measure resulting from an infinite
sequence of such trials is good in the sense of Akin.

1. Introduction. Let m be a probability measure on the finite space
{0, 1, . . . , d} with d ≥ 1, and let xi = m({i}) for i = 1, . . . , d (and so
m({0}) = 1 − x1 − · · · − xd). Then the product measure mn is the mea-
sure suggested by n independent trials of m, and is defined on the space
{0, 1, . . . , d}n. There are (d + 1)n points in this space, and the m-measure
of each is given by

xi11 · . . . · x
id
d (1− x1 − · · · − xd)n−i1−···−id ,

where it is the number of occurrences of the symbol t in the coordinates
of the point. The mn measure of a subset of {0, 1, . . . , d}n is a sum of such
expressions, and so will be a polynomial p(x1, . . . , xd). When there exists
an integer n and a subset of {0, 1, . . . , d}n such that the probability of this
subset is p(x1, . . . , xd), we say p is a partition polynomial.

The term “partition polynomial” was coined by Austin [4] for d = 1
while discussing the homeomorphic measures problem among Bernoulli trial
measures. In this case of d = 1, it was shown by Dougherty, Mauldin and
Yingst [5] that p(x1) is a partition polynomial if and only if it is either
zero or one, or else is a polynomial p(x1) with integer coefficients having
0 < p(x1) < 1 on the interval 0 < x1 < 1.

The relevance of partition polynomials can be seen by considering the
following elementary problem: Suppose we have a three-sided die which
shows each of its three faces with probabilities

(
1
9 ,

4
9 ,

4
9

)
. Can we use this

die to create an experiment whose probability is 1
3? If we are able to roll
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264 A. YINGST

the die an unlimited number of times, the answer is certainly yes since we
can find a sequence of mutually exclusive events whose probabilities sum
to 1

3 ; but if we restrict our attention to experiments that will terminate in
bounded time, the answer is not immediately obvious. In the above termi-
nology, we are asking whether there exists a partition polynomial p(x, y)
with p

(
4
9 ,

4
9

)
= 1

3 . (We will return to this question at the end of the pa-
per.)

As a more abstract way of expressing the same example, consider the
Bernoulli measure on {0, 1, 2}N suggested by rolling the above

(
1
9 ,

4
9 ,

4
9

)
die

a sequence of times. In this space, the measure of a clopen set is given by
evaluating p

(
4
9 ,

4
9

)
for a partition polynomial p. The question of whether

there exists a clopen set with a given measure
(
say, 1

3

)
can arise when

considering what measure-preserving homeomorphisms exist for this space.

The majority of this paper is spent proving Theorem 3.2, which charac-
terizes for general d when a polynomial p(x1, . . . , xd) is a partition polyno-
mial. In Sections 2 and 3 we introduce some terminology, in Section 4 we
prove the theorem in the case of d = 2 as a warm-up, while in Section 5 we
prove the general case. Finally, in Section 6 we use the theorem to give a
characterization of when a Bernoulli trial measure is good in the sense of
Akin, and we give some examples of this.

We remark that Section 4 is intended to ease the reader into the ideas
for Section 5, and is not strictly necessary.

2. Partition polynomials. A partition polynomial in d + 1 symbols
(or in d variables) is a polynomial p(x1, . . . , xd) for which there exists some
(sufficiently large) n ≥ 0 so that p can be expressed in the form

p(~x) =
∑

(i1,...,id)∈Zd

cn~i (1− x1 − · · · − xd)n−i1−···−idxi11 · . . . · x
id
d ,

where each cn~i is an integer with 0 ≤ cn~i ≤
(n
~i

)
. (We will soon see that this

corresponds with the earlier definition.)

As a convenience, we write x0 = 1 − x1 − · · · − xd, and when n is un-
derstood, we write i0 = n− i1 − · · · − id. This lets us abbreviate the above
as

p(~x) =
∑
~i

cn~i x
i0
0 x

i1
1 · . . . · x

id
d .

Throughout the paper,
(n
~i

)
denotes n!/(i0!i1! · . . . · id!) if each ik is non-

negative, or denotes 0 if one of them (including i0) is negative. This neces-
sitates that each cn~i in the sum above is zero unless each ik is non-negative,

and so we may interpret any such sum over ~i as a sum of only finitely
many terms: those where each ik including i0 is non-negative. It is a little
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counter-intuitive to allow cn~i and
(n
~i

)
to be defined for negative i values, but

it lets us avoid manipulating indices of summation as in the sum above. We
also get easy base cases for induction. The product xi00 x

i1
1 · . . . · x

id
d occurs

frequently enough that it is worthwhile to occasionally abbreviate it as ~x
~i,

so a compact expression of the above is p(~x) =
∑
~i c

n
~i
~x
~i.

The definition of partition polynomial given here can be easily seen to
match the description given in Section 1: For a given~i, the number of points

in {0, . . . , d}n whose m-measure is ~x
~i is the number of points for which the

symbol t occurs in exactly it coordinates, for each t = 1, . . . , d. The number
of such points is exactly

(n
~i

)
, and so the measure of a subset of {0, . . . , d}n

will include a number of these terms between 0 and
(n
~i

)
.

For a given n, let Bn = {xi00 x1i1 · . . . · x
id
d : i0, i1, . . . id ≥ 0}. Note that a

linear combination of these is clearly a polynomial of degree at most n. Also,
if q(x1, . . . , xd) is a polynomial of degree at most n, then we may multiply
any term of degree u by an expansion of 1 = (x0 +x1 + · · ·+xd)

n−u showing
that q is in the span of Bn. Hence the span of Bn is the space of polyno-
mials of degree at most n. Also, there is a clear one-to-one correspondence
between elements of Bn and the usual basis of the space of polynomials of
degree at most n. (The usual basis is precisely the elements of Bn with all
factors of x0 removed.) Therefore Bn is a basis of the space of polynomi-
als of degree at most n, and so if p is fixed, and n ≥ deg p, then there
do exist coefficients cn~i as in the definition of a partition polynomial, and

they are uniquely defined. We will describe these cn~i as the partition coef-

ficients of p, and p(~x) =
∑
~i c

n
~i
~x
~i as the partition form of p. The question

of whether p is a partition polynomial is thus not a question of whether cn~i
exist, but whether they will all lie in the correct range for some (sufficiently
large) n.

The well-known relation
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1
)

has a generalization to
multinomial coefficients:(

n

i1, . . . , id

)
=

(
n− 1

i1, . . . , id

)
+

(
n− 1

i1 − 1, . . . , id

)
+ · · ·+

(
n− 1

i1, . . . , id − 1

)
.

Letting ~et denote the standard basis vector, and letting ~e0 denote zero, we
may write the above as

(n
~i

)
=
∑n

t=0

(n−1
~i−~et

)
. (The use of ~e0 can remind us

that n has decreased, but our shorthand i0 = n− i1−· · ·− id did not change
with it. The denominator of the binomial coefficient for the t = 0 term has
a factor of (n− 1− i1 − · · · − id)! = (i0 − 1)!, but the vector ~i = (i1, . . . , id)
is not affected.)

We bring up this relation because it mirrors the recursion satisfied by
the partition coefficients of a polynomial. If cn~i are the partition coefficients

of p, then multiplying p(~x) =
∑
~i c

n
~i
~x
~i by 1 = x0 + · · · + xd and collecting
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like terms gives the relation

cn+1
~j

= cn~j−~e0
+ cn~j−~e1

+ · · ·+ cn~j−~ed
.

With this relation, we see that if there is some n for which the cn~i are all
non-negative, this holds for all larger n as well, and likewise for the condition

cn~i ≤
(n
~i

)
.

3. Supporting polynomials. When working in d variables, we say the
closed simplex is the region

x1, . . . , xd ≥ 0, x1 + · · ·+ xd ≤ 1.

We say the open simplex is the same with strict inequality. (Alternatively,
we could let x0 be an independent variable and look at the behavior of poly-
nomials only on the more standard simplex, the portion of the hyperplane
x0 + · · ·+xd = 1 with xt ≥ 0 for all t. In that context however, polynomials
are only considered unique modulo (1− x0 − · · · − xd). Thus, we are choos-
ing to work on the less standard simplex but to work with a more standard
notion of equality of polynomials.)

Before moving on, we briefly discuss why the case of d > 1 is significantly
more difficult than d = 1. In the d = 1 case, the polynomial p(x) has non-
negative partition coefficients for some large n if and only if p > 0 on (0, 1).
(The condition cni ≤

(
n
i

)
for some n is equivalent to p < 1 on (0, 1).) The

hope would be that in two variables, a polynomial p(x, y) which is positive
on the open simplex might similarly have non-negative partition coefficients
if n is large. This fails for two essentially different reasons.

First consider the polynomial q(x, y) = x2 − xy + y2. It is already in
partition form for n = 2, and its next two partition forms are

q(x, y) = x2(1− x− y)− xy(1− x− y) + y2(1− x− y) + x3 + y3,

q(x, y) = x2(1− x− y)2 − xy(1− x− y)2 + y2(1− x− y)2

+ additional terms.

We can verify that this polynomial, despite being positive on the open sim-
plex, is not a partition polynomial, since the negative coefficient on the term
−xy(1− x− y)n−2 persists as n increases.

Next, consider the polynomial r(x, y) = (2x−1)2+y. Again, it is positive
on the open simplex, but it cannot be a partition polynomial: as is easily
verified, if r(x, y) is a partition polynomial in two variables, then r(x, 0)
is a partition polynomial in one variable, and this is not the case since
r(1/2, 0) = 0, but r(x, 0) is not identically zero. A tighter restriction might
be to ask that if the polynomial is positive anywhere on an edge of the
simplex then it must be positive along the entire edge. The polynomial
r̂(x, y) = (2x − 1)2y + y2 similarly foils this plan, hiding the isolated zero
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at (0, 1/2) by zeroing out the entire edge. The correct requirement is to
first divide off all factors of y, and then substitute y = 0. The resulting
polynomial in x must be positive on 0 < x < 1.

We will soon define the notion of a supporting polynomial, a single idea
that generalizes the −1 in the example q(x, y) and the (2x − 1)2 in r(x, y)
and r̂(x, y). Above, we considered the behavior of r and r̂ on the edge y = 0.
Clearly, the other two edges of the simplex in R2 (x = 0 and 1− x− y = 0)
should also be considered in the same way. Our terminology will be easier
to work with if instead of defining a supporting polynomial along a general
edge, we let y = 0 be the standard edge to read from, and we permute
the variables of the polynomial when we need to read from the other edges.
(Similarly, (0, 0) will be the standard vertex to read coefficients from.)

To this end, if p(x1, . . . , xd) is a polynomial in d variables, we say that a
polynomial q(x1, . . . , xd) is a simplex permutation of p if there is a permu-
tation π of {0, . . . , d} such that

q(x1, . . . , xd) = p(xπ(1), . . . , xπ(d)).

In this case, we write q = p◦π. Note that x0 = 1−x1−· · ·−xd is allowed to
appear. For example, there are six simplex permutations of p(x, y) = x2y,
two of them being f(x, y) = p(y, x) = xy2 and g(x, y) = p(1 − x − y, x) =
(1 − x − y)2x. Among these six polynomials, the behaviors of p along the
various three edges and three vertices are each moved into all six configura-
tions.

Definition 3.1. If p(~x) is a polynomial in x1, . . . , xd and 0 ≤ v ≤ d, we
say that s(x1, . . . , xv) is a standard supporting polynomial of p in v variables
if we can write

p(x1, . . . , xd) = x
av+1

v+1 · . . . · x
ad
d s(x1, . . . , xv)(3.1)

+x
1+av+1

v+1 gv+1(x1, . . . , xd)+ · · ·+x1+add gd(x1, . . . , xd)

for some integers av+1, . . . , ad and some polynomials gv+1, . . . , gd in d vari-
ables. We say s(x1, . . . , xv) is a supporting polynomial of p if it is a supporting
polynomial of some simplex permutation of p.

The g’s are not unique, and we call them garbage polynomials into which
we can throw certain leftover terms.

We think of a standard supporting polynomial s as being some terms
of p, all of which have the same powers av+1 through ad on the variables
xv+1 through xd, so that every other term of p has a larger power of one
of these and hence can be lumped in with one of the garbage polynomials
in the above expression. The vector (av+1, . . . , ad) of these powers is called
the exponent vector associated with this supporting polynomial, and it is
minimal in a certain sense: for k ≥ v+1, no term of p may have its exponent
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on xk smaller than ak while still having its powers on the remaining x’s as
small as the corresponding a’s. That is, if s is non-zero, then under the order
(Zd−v,≤) the vector (av+1, . . . , ad) must be minimal among exponent vectors
appearing at powers of xv+1, . . . , xd in terms of p. With this observation, we
can see that for a given p, if the av+1, . . . , ad have been given (and are indeed
minimal in the above sense) then the corresponding standard supporting
polynomial s is uniquely determined by these.

Note that s = 0 often counts as a standard supporting polynomial: If
p vanishes on xv+1 = · · · = xd = 0, then we can take (av+1, . . . , ad) =
(0, . . . , 0), s = 0, and every term of p can be lumped in with one of the
garbage polynomials. Even more trivially, we have allowed the a’s to be
negative in our definition: when v < d we can use s = 0, av+1 = −1 and
gv+1 = p, with all other a’s and g’s being zero. (Again, allowing the a’s to
be negative is non-intuitive, but this adds only more occasions of s = 0 as a
supporting polynomial, and it is useful to eliminate the need for a base case
in some inductions.) For these reasons, we will usually be concerned only
with the non-zero standard supporting polynomials.

We allow the special case where v = 0, in which case s is a constant,
and we call s a standard supporting coefficient of p. That is, a standard
supporting coefficient of p is a number c such that there is a term of p of
the form cxa11 · . . . · x

ad
d , where every other term of p has an exponent of

some variable greater than this one. We say a supporting coefficient of p is
a standard supporting coefficient of some simplex permutation of p.

We also allow the special case of v = d, in which case the only standard
supporting polynomial is p itself. (No garbage polynomials are allowed, so
the only expression of this type is p(~x) = 1p(~x) + 0.) This is the only
value of v when zero does not count as a standard supporting polynomial
(unless p is zero itself). The case of v = d is often handled separately.
Those (standard) supporting polynomials with v < d are called the proper
(standard) supporting polynomials.

The term “supporting polynomial” is named after “supporting hyper-
plane”. A d − 1-dimensional hyperplane supports a compact convex subset
C of Rd when it intersects C but C lies only on one side of the hyperplane.
A face of a polytope is the intersection of the polytope with a supporting
hyperplane. This is a generalization of edge, face, or vertex of a polyhe-
dron. A line can intersect each edge of a triangle in only one way, and
similarly a polynomial in two variables has only three supporting polyno-
mials in one variable (actually six, but occurring in three pairs which are
simplex permutations of each other and so are usually equivalent for our
purposes). A line can intersect the corner of a triangle in a one-parameter
family of ways. Likewise, there is a one-parameter family of standard sup-
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porting coefficients for each simplex permutation of p(x, y). (Again those
six permutations can be grouped into pairs for which the same vertex is
in standard position. These pairs will find the same standard supporting
coefficients but in reversed order.) The definition of a face of a polytope
mentioned above often comes with an exception, allowing the polytope to
count as a face of itself. Similar reasoning motivates us to consider a poly-
nomial (and its simplex permutations) as a supporting polynomial of it-
self.

We are now able to state the main result of our paper, a complete charac-
terization of partition polynomials. We will prove this theorem in Section 5:

Theorem 3.2. If p(~x) = p(x1, . . . , xd) is a polynomial such that any
non-zero supporting polynomial of p is positive on the appropriate open sim-
plex for its domain (or is a positive number in the case of a non-zero sup-
porting coefficient), then there is some n such that p is expressible in the
form

p(~x) =
∑
i1,...,id

cn~i x
i1
1 · . . . · x

id
d (1− x1 − · · · − xd)n−i1−···−id ,

where each cn~i is non-negative.

Furthermore, p is a partition polynomial iff p and 1 − p each have the
above property, and p has integer coefficients.

Note that if s is a non-zero standard supporting polynomial of p, then
no term of s can be canceled by any term of a garbage polynomial in equa-
tion (3.1), and so we must have av+1 + · · ·+ ad ≤ deg p. Because of this, we
know that the number of supporting polynomials of p is finite, and our abil-
ity to algorithmically determine whether a specific polynomial is a partition
polynomial is limited only by our ability to determine whether a polynomial
is positive on the simplex.

It is easy to verify that the partition coefficients of p are integers if and
only if p has integer coefficients in the usual sense, since the change-of-basis
processes described earlier preserve integral coefficients.

Also, we can write 1 =
∑
~i

(n
~i

)
~x
~i, so that if (cn~i )~i are the partition coeffi-

cients of p, then
((n
~i

)
− cn~i

)
~i

are the partition coefficients of 1− p. From this
we can see that p is a partition polynomial if and only if 1− p is, and in the
definition of a partition polynomial, the upper bound on the partition coef-
ficients of p is equivalent to the lower bound on the partition coefficients of
1−p. With these observations, the second statement in Theorem 3.2 follows
from the first.

We briefly consider the simplest non-trivial case, when d = 1. A polyno-
mial p(x) can have only two non-zero standard supporting polynomials: the
polynomial itself, and one standard supporting coefficient. Suppose p(x) is
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positive on its open simplex (the open unit interval). If C is the supporting
coefficient of p, we have an expression p(x) = Cxa + xa+1g(x). The term
Cxa is the largest term of p near 0, and since p is positive on the interval
(0, δ), we deduce that C must be positive.

From this we see that if 0 < p(x) < 1 on the open interval, then every
simplex permutation of p or 1 − p is positive on its simplex, and so every
supporting coefficient of p or 1 − p is positive as well. Thus, when d = 1,
Theorem 3.2 reduces to the characterization given by Dougherty, Mauldin
and Yingst [5]: p(x) with integer coefficients is a partition polynomial if and
only if p is zero or one or has 0 < p(x) < 1 on 0 < x < 1.

Before moving on, we quickly note the following observation about sup-
porting polynomials which will help generate partition polynomials in Sec-
tion 6.

Proposition 3.3. If every (standard) supporting polynomial of p1 and
p2 in v variables is positive on the appropriate open simplex for its domain
(or is a positive number if v = 0), then every (standard) supporting polyno-
mial of p1p2 in v variables is also positive on the simplex.

Proof. The property is clearly preserved under simplex permutations and
so we prove the theorem for standard supporting polynomials. For each of
p1 and p2, we may collect the terms according to the powers of xv+1, . . . , xd
and thus express them in the form

p1(~x) =
∑

bv+1,...,bd

x
bv+1

v+1 · . . . · x
bd
d pbv+1,...,bd(x1, . . . , xv),

p2(~x) =
∑

cv+1,...,cd

x
cv+1

v+1 · . . . · x
cd
d qcv+1,...,cd(x1, . . . , xv).

Thus we may write

p1p2(~x) =
∑

~a=(av+1,...,ad)

x
av+1

v+1 · . . . · x
ad
d

( ∑
~b,~c:~b+~c=~a

p~bq~c

)
.

Let B denote the set of all exponent vectors (bv+1, . . . , bd) which contribute

a non-zero term to the above sum for p1. (That is, B = {~b : p~b 6= 0}.) Also,
let C denote the same for p2. Note that from our understanding of support-
ing polynomials, the exponent vectors associated with standard supporting
polynomials of p1 are precisely the minimal elements of B, where “minimal”
is with respect to the order ≤ on Zd−v.

Note that in the above sum, if the term associated with ~a= (av+1, . . . , ad)

is non-zero, then there are some~b and ~c associated with non-zero polynomials
in the first two sums respectively with ~b + ~c = ~a. So ~a ∈ B + C. (We take

the algebraic sum, B + C = {~b + ~c : ~b ∈ B, ~c ∈ C}.) So we must have

~a ≥ ~a0 for some ~a0 which is minimal in B + C. We see that a0 = ~b + ~c for
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some ~b ∈ B and ~c ∈ C. There may be many such expressions of a0, but
for each such expression, ~b is minimal in B and ~c is minimal in C. This
implies that in the above expression for p1p2, the term associated with ~a0
consists of a sum of products of supporting polynomials of p1 and p2, and
is therefore positive. Thus, if a 6= a0, then a is not the exponent vector
of a supporting polynomial, while if a = a0, it is the exponent vector of a
supporting polynomial, and that polynomial is positive.

4. Three symbols. Before attempting the difficult proof of The-
orem 3.2, we will warm up by doing the special case when d + 1 = 3. As
above, the problem reduces to showing that

Theorem 4.1. If p(x, y) is a polynomial with real coefficients such that
any non-zero supporting polynomial of p is positive on its open simplex (or
is a positive number in the case of a supporting coefficient), then there
is n such that we may write p as a non-negative linear combination of
{(1− x− y)n−i−jxiyj}i≥0, j≥0, i+j≤n.

Proof. Fix p as in the statement. When n ≥ deg p, we let cni,j denote the
(unique) values such that

p(x, y) =
∑
i,j

cni,j(1− x− y)n−i−jxiyj .

We want to show that for some sufficiently large n, we have cni,j ≥ 0 for all
i and j.

Recall that for ease of indexing we take the convention that cni,j = 0
whenever i < 0 or j < 0 or i + j > n. With this, whenever n ≥ deg p we
have

cn+1
i,j = cni,j + cni−1,j + cni,j−1.

Let A denote the largest integer such that for all j and n, i < A implies
cni,j = 0. Similarly, let B denote the largest integer such that for all i and n,
j < B implies cni,j = 0. We may note that A,B ≥ 0.

Claim 4.2. There are u1 ≥ A+B and N ≥ deg p such that

• cni,j ≥ 0 whenever n ≥ N , i+ j ≤ u1, and

• cni,j > 0 whenever n ≥ N , i+ j = u1, i ≥ A, j ≥ B.

(Note: It is possible that cnA,B happens to be zero for n = deg p, in which
case it will remain zero for all n. If it is zero, it is further possible that cnA+1,B
or cnA,B+1 is zero for n = deg p, in which case they will also remain zero. The
above claim says that there is some u1 beyond all these possibilities, where
A and B capture the only i, j for which cni,j is always zero, and all others will
be strictly positive for large n. The issue of A and B could be avoided by
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removing a factor of xAyB from p, but we would like to illustrate a difficult
aspect of the proof for d > 3.)

To show Claim 4.2, we prove (by induction on i+ j) that for each non-
negative i and j, the function f(t) = cti,j is a polynomial with non-negative
leading coefficient, which is constant only when it is a standard supporting
coefficient for the exponent vector (i, j). A base for our induction can be
any case when i + j < 0, as these are trivially supporting coefficients and
f(t) is identically zero here.

This induction step is straightforward, and comes from noting that f(t)
satisfies the recurrence relation f(t + 1) = f(t) + cti−1,j + cti,j−1. By our
induction hypothesis, the last two terms are polynomials with non-negative
leading coefficient, and so the solution is also such a polynomial. Our solution
will be constant only if the sum of the last two terms is zero. Since they have
non-negative leading coefficient, this implies that each is zero, so each is a
supporting coefficient. In this case, all terms of p have a power of x greater
than i (since cti,j−1 is a supporting coefficient) or a power of y greater than j

(since cti−1,j is a supporting coefficient). So cti,j is a supporting coefficient.
Now let u1 be so large that the exponent vector (i, j) of any standard

supporting coefficient has i+ j ≤ u1. Claim 4.2 becomes a requirement that
finitely many polynomials with non-negative leading coefficient are eventu-
ally all positive.

Claim 4.3. There are δ1 > 0 and N1 ≥ deg p such that for all n > N1,
the assumption i+ j < δ1n implies that cni,j ≥ 0.

With N as in Claim 4.2, let ε = min{cNi,j : i ≥ A, j ≥ B, i+j = u1}. Let

−M = min{cNi,j}i,j . We assume M ≥ 0, since if not, all cNi,j are non-negative,

and we are done. Now, our relation cn+1
i,j = cni,j + cni,j−1 + cni−1,j inducts the

following:

(4.1) cN+n
i,j =

n∑
α=0

n−α∑
β=0

(
n

α, β, n− α− β

)
cNi−α,j−β.

For the terms of the above with i − α + j − β < u1, or i − α < A, or
j − β < B we may use the approximation cNi−α,j−β ≥ 0. For those with

i−α+ j − β = u1, i−α ≥ A, and j − β ≥ B, we have cNi−α,j−β ≥ ε. For the

remaining terms, we use cNi−α,j−β ≥ −M . These yield

cN+n
i,j ≥ ε

∑
i−α≥A, j−β≥B,α+β=i+j−u1

(
n

α, β, n− α− β

)

−M
∑

i−α≥A, j−β≥B,α+β<i+j−u1

(
n

α, β, n− α− β

)
.
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Recall that
(

n
α,β,n−α−β

)
gives the number of ways to color a set of n el-

ements so that α of the elements are red, β of the elements are blue, and
n − α − β of the elements are green. Let C(x) denote the number of red-
green-blue colorings of a set with n elements such that the number of reds
does not exceed i−A, the number of blues does not exceed j −B, and the
number of greens is exactly n− i− j + u1 + x. The above becomes

cN+n
i,j ≥ εC(0)−M

i+j−u∑
x=1

C(x).

Let ρ = (i+ j)/n. We need to show that for sufficiently large n, there is

δ1 > 0 such that if ρ < δ1, we have
∑i+j−u

x=1 C(x)/C(0) < ε/M .

We now compare C(x) with C(x+1). For the moment, fix some 0 ≤ x <
i + j − u, and let D denote the number of colorings of a set of n elements
such that the number of reds does not exceed i − A, the number of blues
does not exceed j − B, the number of greens is exactly n − i − j + u + x,
and one element is colored white.

It is easy to compare D with C(x+ 1): Painting the white element green
matches each coloring in C(x+1) with exactly n− i− j+u+x+1 elements
of D. (There are that many greens which could have been the white.) So
D = (n− i− j + u+ x+ 1)C(x+ 1).

Comparing D with C(x) is trickier. For each coloring of C(x), the num-
ber of reds and blues is exactly i + j − u − x. If we choose a coloring, and
choose a red or blue to paint white, there are exactly (i + j − u − x)C(x)
possible choices. Doing this will create every coloring in D, but not neces-
sarily uniquely, since we may or may not be able to tell whether the new
white element came from a red or a blue. However, there are at most two
possibilities, and we know D ≤ (i+ j − u− x)C(x) ≤ 2D.

Combining these, we get

C(x+ 1)/C(x) ≤ i+ j − u− x
n− i− j + u+ x+ 1

≤ i+ j

n− i− j
=

ρ

1− ρ
.

So C(x)/C(0) ≤
( ρ
1−ρ
)x

, and we have

i+j−u∑
x=1

C(x)/C(0) ≤
i+j−u∑
x=1

(
ρ

1− ρ

)x

=
ρ

1− ρ
1−

( ρ
1−ρ
)i+j−u

1− ρ
1−ρ

≤ ρ

1− 2ρ
.

Clearly, this will be < ε/M for sufficiently small ρ. This ends the proof of
Claim 4.3.
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Claim 4.4. There are δ̂1 > 0 and N̂1 such that for n > N̂1 we have
cni,j ≥ 0 whenever i+ j < δ̂1n or n− i < δ̂1n or n− j < δ̂1n.

This comes immediately by applying Claim 4.3 to simplex permutations
of p.

We have now essentially shown that all partition coefficients near the
corners are non-negative, in two senses, first for those within u1 of a corner,
and then with that done we had sure footing to prove the statement in the
stronger way, for those coefficients within δ1n of a corner. Our next step
is to repeat, moving up a dimension, showing that all partition coefficients
near an edge are non-negative.

Recall that we let B denote the largest integer such that for all i and n,
j < B implies cni,j = 0. Note that in the following claim, the label u2 is not
strictly necessary, as in the end we will be taking u2 = B. The name u2 is
used only to help the reader keep track of the parallel with Claim 4.2 of this
proof and Claim 5.5 in the future.

Claim 4.5. There are u2 ≥ B and N2 ≥ deg p such that

• cni,j ≥ 0 whenever n ≥ N2, j ≤ u2, and

• cni,j > 0 whenever j = u2, i ≥ δ̂1n, i ≤ (1− δ̂1)n, n ≥ N2.

In the expression p(x, y) =
∑

i,j c
n
i,j(1− x− y)n−i−jxiyj , every non-zero

term has j ≥ B, while some non-zero term has j = B. Collecting those
terms where j = B, we can write this as

p(x, y) = yB
[∑

i

cni,B(1− x− y)n−i−Bxi
]

+ yB+1g(x, y),

where g is some polynomial. Furthermore, if we selectively expand our power
of (1 − x) − y, we can throw all terms having a y in with g(x, y). This lets
us write

p(x, y) = yB
[∑

i

cni,B(1− x)n−i−Bxi
]

+ yB+1ĝ(x, y).

The sum here is written in partition form for a polynomial in one variable.
In particular, if s(x) is the sum above, and dni are the partition coefficients
of s, then dn−Bi = cni,B. By choice of B, these d’s are not all zero, and so s(x)
is a non-zero supporting polynomial of p. It is therefore positive on (0, 1),
and so from the one-variable case, it has non-negative partition coefficients
for sufficiently large n. Taking u2 = B, we deduce for large n that cni,j ≥ 0
whenever j ≤ u2.

We must still show that all coefficients not too close to a corner are
strictly positive. Fix some M for which j ≤ u2 implies cMi,j ≥ 0, and fix

some I with cMI,u2 > 0. (Such an I exists by the definition of B = u2.)
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The expansion of cM+n
i,u2

in (4.1) becomes

cM+n
i,u2

=

n∑
α=0

n−α∑
β=0

(
n

α, β, n− α− β

)
cMi−α,u2−β.

This sum contains only non-negative terms, and will be positive if it con-
tains a term of cnI,u2 . This happens when the value α = i − I lies in the
range 0 ≤ α ≤ n, and so we only need I ≤ i ≤ n + I. We are now done,
since whenever n is sufficiently large, we will have I ≤ δ̂1(M + n) ≤ i ≤
(1− δ̂1)(M + n) < n+ I.

Claim 4.6. There are δ2 > 0 and N2 ≥ deg p such that for all n ≥ N2

the assumption j < δ2n implies cni,j ≥ 0.

We repeat the method of proving Claim 4.3. Let ε(N) = min{cNi,u :

δ̂1N ≤ i ≤ (1 − δ̂1)N}. By Claim 4.5, if N is sufficiently large, we have
ε(N) > 0. Fix N > N̂1 sufficiently large that this ε(N) (now just called ε)
is positive. Let −M be the least value of cNi,j . Again, we assume M ≥ 0, as

otherwise every cNi,j is non-negative and we are done. We have

cN+n
i,j =

n∑
α=0

n−α∑
β=0

(
n

α, β, n− α− β

)
cNi−α,j−β.

First note that if (i − α) > (1 − δ̂1/2)N , then N − (i − α) < δ̂1N , and by

Claim 4.4, we have cNi−α,j−β ≥ 0. Secondly, we may assume that δ2 < δ̂1/2

so we need only consider the case of j < δ̂1n/2. When i− α < δ̂1N/2, these

combine to give (i − α) + (j − β) < δ̂1n, and we again have cNi−α,j−β ≥ 0.
Removing these non-negative c’s, applying our ε bound when it applies, and
our −M bound to all remaining cases, we get

cN+n
i,j ≥ εC(0)−M

∞∑
x=1

C(x),

where C(x) =
∑(

n
α,β,n−α−β

)
with the sum being over all (α, β) such that

δ̂1N/2 ≤ i− α ≤ (1− δ̂1/2)N and j − β = u+ x.

Again, we view C(x) as a counting of colorings: C(x) gives the number
of red-blue-green colorings of n objects such that the number of reds, α, the
number of blues, β, and the number of greens, n−α−β, satisfy β = j−u−x
and i− (1− δ̂1/2)N ≤ α ≤ i− δ̂1N/2.

Fixing x for the moment, let D denote the number of red-green-blue-
white colorings of n objects such that exactly one object is white, and the
numbers (α, β, n − α − β − 1) of red, blue, and green objects, respectively,

satisfy β = j − u− x− 1 and i− (1− δ̂1/2)N ≤ α ≤ i− δ̂1N/2.
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Again, we use D as a stepping stone to compare C(x) with C(x + 1).
First C(x): To convert a D coloring to a C(x + 1) coloring, we must paint
the white marble either red or green. Because our restrictions to become a
C(x+ 1) coloring depend only on α and β, green is certainly a legal choice,
but perhaps red is also. Given a C(x + 1) coloring, the number of ways it
can be so produced is at most the total number of reds and greens. We have

2D ≥ (n− j + u+ x+ 1)C(x+ 1).

To convert a C(x) coloring into a D coloring, we must choose one of the
j−u−x blue objects to paint white. Each D coloring will be chosen exactly
once this way, and we get

D = (j − u− x)C(x).

Combining these and relaxing, we get

(n− j)C(x+ 1) ≤ 2jC(x).

If we write j = ρn, then we have C(x+ 1) ≤ 2ρ
1−ρC(x), and hence

cN+n
i,j ≥

(
ε−

∞∑
x=1

(
2ρ

1− ρ

)x)
C(0).

Again, the right-hand side is a rational function of ρ which is positive at
ρ = 0, and hence is positive for all sufficiently small ρ, as desired, and
Claim 4.6 is proved.

Again, we may apply Claim 4.6 to simplex permutations of p and get
the following:

Claim 4.7. There are δ̂2 > 0 and N̂2 ≥ deg p such that for all n ≥ N̂2

the assumption j < δ̂2n or i < δ̂2n or n− i− j < δ̂2 implies cni,j ≥ 0.

To wrap up our proof, we will need the following theorem.

Lemma 4.8. Let p(x, y) be a polynomial, and let {cni,j}i,j,n−i−j≥0 be the
unique coefficients (for n ≥ deg p) such that

p(x, y) =

n∑
i=0

n−i∑
j=0

cni,jx
iyj(1− x− y)n−i−j .

Then

lim
n→∞

sup

{∣∣∣∣p( in, jn
)
−

cni,j(
n
i,j

)∣∣∣∣ : 0 ≤ i, j, n− i− j
}

= 0.

We will give a detailed proof of this later for more general d in Lemma 5.1.
A brief sketch is: The class of all polynomials for which this theorem is true
is linear, contains 1, and is closed under multiplication by x or y. It therefore
must contain all polynomials.
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We finally conclude our proof of Theorem 4.1. Since p is a supporting
polynomial of itself, we know that either it is zero (in which case we are
done) or it is positive on the open simplex x, y, 1 − x − y > 0. But then it

is positive on the compact region x, y, 1 − x − y ≥ δ̂2, and so greater than
some ε > 0 on that region. The above lemma tells us that for large n, we

have
∣∣p( in , jn)− cni,j/( ni,j)∣∣ < ε/2. So those cni,j with i, j, n− i− j > δ̂2 are all

positive for large n, while Claim 4.7 handles all other cni,j .

We will soon begin proving Theorem 3.2, but first we will take stock of
some lessons learned from the case of d = 2. Within this proof, we needed
to refer to the d = 1 theorem, which indicates we will be arguing by induc-
tion on d. Lemma 4.8 and its generalization, Lemma 5.1, will show that all
coefficients of a distance more than δn from the edge are positive, so our
difficulty is in dealing with these coefficients near the edges. As indicated
by the similarity of Claims 4.2–4.4 and Claims 4.5–4.7, we will do this by
induction on the dimension of the edge. We first show that those coefficients
within u of the corner are positive, and then those within δn for some δ. We
repeat this process for coefficients near an edge, then a 2-dimensional face,
eventually working our way up to the d − 1-dimensional faces, after which
Lemma 5.1 applies and we are done.

5. Characterizing partition polynomials. We begin with the fol-
lowing generalization of Lemma 4.8.

Lemma 5.1. If p(~x) = p(x1, . . . , xd) is a polynomial, and if cn~i are the
unique coefficients for each n ≥ deg p such that

p(~x) =
∑

i0,i1,...,id≥0
cn~i x

i0
0 x

i1
1 · . . . · x

id
d ,

then

lim
n→∞

sup

{∣∣∣∣p(~in
)
−

cn~i(n
~i

)∣∣∣∣ : i0, i1, . . . , id ≥ 0

}
= 0.

Remark. Readers familiar with Bernstein polynomials may note we are
showing a reverse of the usual. When g is a function defined on the simplex,
we can define a higher-dimensional version of the nth Bernstein polynomial
of g by

Bn(g)(~x) =
∑
~i

g

(
~i

n

)(
n
~i

)
xi00 · . . . · x

id
d .

A common proof of Weierstrass’ theorem is to show that for continuous g,
Bn(g) converges uniformly to g on the simplex. In Lemma 5.1, we are fixing
the Bernstein polynomial p, and showing that is is well approximated by the

function gn : (
~i
n) 7→ cn~i /

(n
~i

)
. That is, if gn is the function for which p is the
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nth Bernstein polynomial, we are showing that gn converges uniformly to p.
This gn is defined only on a discrete set which changes with n, and so we
get the awkward version of uniform convergence described in the theorem.

Proof. We first show that if the assertion holds for some p(~x), then it

holds for q(~x) = x1p(~x) as well. Write p(~x) =
∑
~i c

n
~i
~x
~i and q(~x) =

∑
~i d

n
~i
~x
~i.

If we use these expansions of q(~x) = x1p(~x), apply a change of variable and
equate like terms, we find that dn+1

~i
= cn~i−~e1

if i1 > 0, while dn+1
~i

= 0 if

i1 = 0. We are looking at the limit of

sup
i1,...,id,n+1−i1−···−id≥0

∣∣∣∣q( ~i

n+ 1

)
−
dn+1
~i(n+1
~i

)∣∣∣∣.
Those elements where i1 = 0 are all zero, so we may remove them from
consideration. Doing this, and replacing i1 with i1 + 1, gives

sup
i1+1,i2,i3,...,id, n−i1−···−id≥0

∣∣∣∣ i1 + 1

n+ 1
p

(
~i+ e1
n+ 1

)
−

cn~i(n+1
~i+e1

)∣∣∣∣
≤ sup

∣∣∣∣ i1 + 1

n+ 1
p

(
~i+ e1
n+ 1

)
− i1
n
p

(
~i

n

)∣∣∣∣+ sup

∣∣∣∣ i1n p
(
~i

n

)
− i1 + 1

n+ 1
p

(
~i

n

)∣∣∣∣
+ sup

∣∣∣∣ i1 + 1

n+ 1
p

(
~i

n

)
− i1 + 1

n+ 1

cn~i(n
~i

)∣∣∣∣+ sup

∣∣∣∣ i1 + 1

n+ 1

cn~i(n
~i

) − cn~i(n+1
~i+e1

)∣∣∣∣.
The first of these is the distance between the value of q at two nearby

points; this goes to zero by the uniform continuity of q on the compact
simplex. The second of these goes to zero trivially: p is bounded on the
simplex. The third (after removing the bounded common factor) goes to
zero by the assumption that the theorem holds for p, and the fourth is
identically zero by a property of multinomial coefficients.

We have now shown that the set of p for which the theorem holds is
closed under multiplication by x1. When p = 1, we have cn~i =

(n
~i

)
, so p = 1

is in this set also, as the sequence whose limit we are taking is identically
zero. Further, it is trivial to verify that the set of all p for which the claim
holds is linear, and is closed under simplex permutations. Finally, any set
which has these four properties contains all polynomials, and so the theorem
holds always.

Proof of Theorem 3.2. The second statement clearly follows from the
first; we show the first statement. Our proof has nested inductions that
go down to four layers deep. For clarity, we state each of the outer three
inductions as Proposition 5.2, Proposition 5.3, and Claim 5.4. The fourth
induction occurs in the proof of Claim 5.4 and is brief enough not to need
a name.
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Our first induction is on d. We will need something slightly stronger than
the first statement of Theorem 3.2 as an induction hypothesis: we prove the
following (by induction on d):

Proposition 5.2. Let p(x1, . . . , xd) be a polynomial in d variables with
partition coefficients (cn~i )~i. If the non-zero supporting polynomials of p are

positive on the simplices of their respective domains (or are positive numbers
for supporting coefficients), then for sufficiently large n we have cn~i ≥ 0 for

all ~i. Furthermore, if p is non-zero and 0 < δ < 1/d then

lim inf
n→∞

min

{
cn~i /

(
n
~i

)
: i0, i1, . . . , id > δn

}
> 0.

(Note: The condition that δ < 1/d is present only to ensure the set
minimized above is non-empty.)

Fix some d ≥ 1, and if d > 1 assume that this statement holds for lower
values of d. Let p be as in this statement. (We begin with our application
of Lemma 5.1, which was the last step when we proved 4.1.)

Since p is a supporting polynomial of itself, we know that p is zero or
is positive on x0, x1, . . . , xd > 0. If p is zero we are done. For small δ > 0
consider the region K = {~x : x0, x1, . . . , xd ≥ δ}. Since p is strictly positive
on this compact region, there is ε such that 0 < ε < p(~x) on K. But by

Lemma 5.1, for large n we have
∣∣p(~in) − cn~i /(n~i)∣∣ < ε/2. Hence the lim inf

above is at least ε/2, and cn~i > 0 when ~i/n ∈ K.

All that remains is to show that cn~i ≥ 0 for those ~i where ~i/n 6∈ K. That

is, we must show that cn~i ≥ 0 when it/n < δ for some t = 0, . . . , d. Since
our requirement is symmetric under simplex permutations, it is sufficient to
show that there is δ > 0 such that id < δn implies cn~i ≥ 0.

Note that the condition id < δn is equivalent to i0+ · · ·+id−1 ≥ (1−δ)n.
We are done then if we can show the following, which we do by induction
on k.

Proposition 5.3. If 0 ≤ k ≤ d− 1, there are Nk and δk > 0 such that
i0 + · · ·+ ik ≥ (1− δk)n and n > Nk implies cn~i ≥ 0.

Fix 0≤ k≤ d−1, and if k > 0, assume that we have found δk−1 and Nk−1.
By applying this induction hypothesis to simplex permutations of p, we may
replace the sum i0 + · · ·+ ik−1 with a sum of any k of the indices. That is, if
k > 0 we assume that we have found δ̂ < 1/d and N̂ with the property that

whenever S ⊆ {0, . . . , d} with |S| = k, then n ≥ N̂ and
∑

s∈S is ≥ (1− δ̂)n
implies cn~i ≥ 0.

(In the base case we have no induction hypothesis, but the conditions

required of δ̂ and N̂ are vacuous: for k = 0, we can let δ̂ = 1/(d+ 1) and
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N̂ = deg p and the above requirement holds. In either case, we treat δ̂ and
N̂ as fixed until we finish the proof of Proposition 5.3.)

We will find δk and Nk as in Proposition 5.3.
To get our c’s near the edge to be non-negative, we will need to know that

the c’s closest to the edge are strictly positive, except for those which are
always zero. This set of c’s which are always zero must be treated carefully,
so we introduce the following notation:

Z = {(ik+1, . . . , id) : for all j1, . . . , jk,

(jk+1, . . . , jd) ≤ (ik+1, . . . , id)⇒ cdeg p~j
= 0}.

(Here and elsewhere, we write ~u ≤ ~v to mean that each coordinate of ~u is
less than or equal to the corresponding coordinate of ~v.)

We will now show

Claim 5.4. For each (ik+1, . . . , id) we have:

• If (ik+1, . . . , id) ∈ Z, then cn~i = 0 (for all i1, . . . , ik and all n ≥ deg p).

• If (ik+1, . . . , id) 6∈ Z, then

lim inf
n→∞

min

{
cn~i /

(
i0 + i1 + · · ·+ ik
i0, i1, . . . , ik

)
: i0, i1, . . . , ik >

δ̂

2
n

}
> 0.

We proceed by induction on ik+1 + · · ·+ id. As a base for our induction,
we can take those cases where ik+1+ · · ·+id < 0; in such cases, (ik+1, . . . , id)
∈ Z, and cn~i = 0.

Let v ≥ 0. Assume the above holds whenever ik+1 + · · ·+ id < v, and fix
some (ik+1, . . . , id) with ik+1 + · · ·+ id = v. We will focus on the identity

(5.1) cn~i = (cn−1~i−~e0
+ · · ·+ cn−1~i−~ek

) + (cn−1~i−~ek+1
+ · · ·+ cn−1~i−~ed

)

We need to consider three cases.

Case 1: (ik+1, . . . , id) ∈ Z. We must show cn~i = 0. In this simplest case,
we need a brief induction on n. When n = deg p, cn~i = 0 by the definition

of Z. For larger n, we examine equation (5.1). Every term on the right-hand
side is zero: the first batch are zero by our current induction hypothesis
on n. Since we have (ik+1, . . . , id)−~et ∈ Z for all t, each term of the second
batch is zero by our induction hypothesis from Claim 5.4.

Note that the vector (ik+1, . . . , id) has d − k coordinates, so when we
subtract ~et, t is ranging from 1 to d− k, above and in the following.

Case 2: (ik+1, . . . , id) 6∈ Z, and (ik+1, . . . , id) − ~et 6∈ Z for some t =
1, . . . , d−k. We may apply our Claim 5.4 induction hypothesis to the second
collection of terms. We see that those whose subscript is in Z are identically
zero, while at least one has its subscript not in Z. For some ε > 0, the second
collection of terms is greater than

(
i0+i1+···+ik
i0,i1,...,ik

)
ε for sufficiently large n.
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Let f(n) denote the minimum whose lower limit we must show to be
positive, and let cn~i be an element appearing in this minimum. (So we are

assuming that i0, . . . , ik > δ̂n/2.) We examine the right-hand side of (5.1).
We divide terms of the first batch of terms into two types. For some t =
0, . . . , k, we may have it − 1 > δ̂(n− 1)/2. When this is the case, Claim 5.4
applies to the corresponding term, immediately giving us

cn−1~i−et
≥ f(n− 1)

(
i0 + i1 + · · ·+ ik − 1

(i0, i1, . . . , ik)− ~et

)
,

so we have a lower bound for some terms of the first batch in (5.1).

For those terms with it−1 ≤ δ̂(n−1)/2, we argue that if n is large, then

cn−1~i−et
≥ 0. This occurs since if n is so large that δ̂(n− 1)/2 > v, we will have

it − 1 + ik+1 + · · ·+ id ≤
δ̂(n− 1)

2
+ v ≤ δ̂(n− 1).

Let S = {0, . . . , k} \ {t}. Subtracting both sides from n− 1 gives
∑

s∈S is ≥
(1− δ̂)(n− 1). By choice of δ̂, this implies cn−1~i−et

≥ 0 for large n.

We now combine these, noting that in the above three paragraphs, our
notion of sufficiently large n did not depend on~i itself, but only on v. Assume
n is sufficiently large in this sense. We will use (5.1) to compare f(n) with
f(n−1). We will first deal with the case that f(n−1) is negative. We know

that the second group of terms is greater than ε
(
i0+i1+···+ik
i0,i1,...,ik

)
. Each term

of the first group is greater than either 0 or f(n − 1)
(i0+i1+···+ik−1
(i0,i1,...,ik)−~et

)
. When

f(n− 1) is negative, the second possibility is the lesser, and we get

cn~i ≥
k∑
t=0

f(n− 1)

(
i0 + i1 + · · ·+ ik − 1

(i0, i1, . . . , ik)− ~et

)
+ ε

(
i0 + i1 + · · ·+ ik
i0, i1, . . . , ik

)
= (f(n− 1) + ε)

(
i0 + i1 + · · ·+ ik
i0, i1, . . . , ik

)
.

Dividing and taking a minimum gives f(n) ≥ f(n− 1) + ε. This means that
for large n, f(n) will be positive. Once f(n) is positive, we can use the same
argument, but replace the first collection of terms in (5.1) with zero, yielding
f(n) ≥ ε. So lim inf f(n) > 0.

Case 3: (ik+1, . . . , id) 6∈ Z, but (ik+1, . . . , id) − ~et ∈ Z for all t = 1, . . . ,
d−k. Using the definition of Z, we see that if (jk+1, . . . , jd) ≤ (ik+1, . . . , id)
and (jk+1, . . . , jd) 6= (ik+1, . . . , id), then (jk+1, . . . , jd) ∈ Z, and so cn~j = 0.

Hence, if cn~j is non-zero, we must have either (jk+1, . . . , jd) = (ik+1, . . . , id),

or else jt > it for some t ∈ {k + 1, . . . , d}.
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Thus, we can write

p(~x) =
∑
~j

cn~j x0
j0xj11 · . . . · x

jd
d

= x
ik+1

k+1 · . . . · x
id
d

∑
~j∈I

cn~j x
j0
0 x

j1
1 · . . . · x

jk
k

+ x
ik+1+1
k+1 gk+1(~x) + · · ·+ xid+1

d gd(~x),

where gk+1, . . . , gd are some polynomials, and I is the set of all ~j such that
the last d− k coordinates of ~j are (jk+1, . . . , jd) = (ik+1, . . . , id).

We now expand the multinomial xj00 , writing it as

((1− x1 − · · · − xk)− xk+1 − · · · − xd)j0 .
We will get one term of the form (1− x1 − · · · − xk)j0 , and all other terms
will have a factor of xt for some k + 1 ≤ t ≤ d, and so can be lumped in
with the g’s. We get

p(~x) = x
ik+1

k+1 · . . . · x
id
d

∑
~j∈I

cn~j (1− x1 − · · · − xk)(n−v)−j1−···−jkxj11 · . . . · x
jk
k

+ x
ik+1+1
k+1 ĝk+1(~x) + · · ·+ xid+1

d ĝd(~x).

Let s(x1, . . . , xk) denote the sum over ~j in the above display. We notice
that s is a supporting polynomial of p. Furthermore, for a given choice of
(ik+1, . . . , id), this defines s, and so s(x1, . . . , xk) does not depend on n,
and the expression of s in partition form above holds for all n. Letting
dnj1,...,jk denote the partition coefficient of s, the above display shows that

dnj1,...,jk = cn+vj1,...,jk,ik+1,...,id
.

The relation “is a supporting polynomial of” is transitive, and so s sat-
isfies the conditions of the induction hypothesis of Proposition 5.2. For any
0 < ρ < 1/d, if n is sufficiently large, we must have dnj1,...,jk ≥ 0, and also

lim inf
n→∞

min

{
dnj1,...,jk/

(
n

j1, . . . , jk

)
: (n− j1, . . .− jk), j1, . . . , jk > ρn

}
> 0.

Replacing n with n − v in the above, and choosing ρ < δ̂/2, will give the
desired statement, concluding our proof of Claim 5.4 in Case 3.

Before moving on, we make an observation about when Case 3 can occur.
Note that s cannot be zero, as this would imply that each cn~j in the sum

above is zero, meaning that (ik+1, . . . , id) ∈ Z, which we have assumed it
is not. Simplifying the above, s yields a non-zero term of p not canceled
elsewhere, so we must have deg p ≥ v = ik+1 + · · ·+ id.

That is: If (uk+1, . . . , ud) 6∈ Z, and uk+1 + · · ·+ ud > deg p, then there is
some 1 ≤ t ≤ d− k such that (uk+1, . . . , ud)− et 6∈ Z.
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We have now finished showing Claim 5.4, whose awkward statement was
necessary for the induction to work. What we actually need is the following
simpler statement, which comes from applying Claim 5.4 to a finite number
of choices of (ik+1, . . . , id). In the following, δ̂ and N̂ are still as defined
shortly after the statement of Proposition 5.3.

Claim 5.5. Let u = deg p. There are ε > 0 and Ñ ≥ N̂ such that cÑ~i ≥ 0

whenever ik+1 + · · · + id ≤ u, and cÑ~i > ε whenever ik+1 + · · · + id = u,

(ik+1, . . . , id) 6∈ Z, and it > δ̂Ñ/2 for each t = 0, . . . , k.

All that remains is to show Proposition 5.3. We want to prove that there
are some δk > 0 and Nk such that ik+1 + · · · + id < δkn, n ≥ Nk, implies
cn~i ≥ 0.

We may assume that δk < δ̂/2. This assumption means we are concerned
only with the case that ik+1 + · · ·+ id < δ̂n/2.

Let −M = min{cÑ~i }. We can assume that M > 0, since if not, then all

cÑ~i are positive, and hence all cn~i are positive for n > Ñ , and we are done.

The recursion relation cn+1
~i

=
∑d

t=0 c
n
~i−et

easily generalizes to

cN+z
~i

=
∑
~α∈Zn

(
z

~α

)
cN~i−~α.

We use this to write a general cÑ+n
~i

in terms of the level Ñ values, for which

we have inequalities. Fix~i, and assume ik+1+ · · ·+ id < δ̂n/2. We may write

cÑ+n
~i

=
∑
~α

(
n

~α

)
cÑ~i−~α =

∑
~α∈I1

(
n

~α

)
cÑ~i−~α +

∑
~α∈I2

(
n

~α

)
cÑ~i−~α +

∑
~α∈I3

(
n

~α

)
cÑ~i−~α,

where

I1 = {~α : (ik+1 − αk+1) + · · ·+ (id − αd) < u or

(ik+1 − αk+1, . . . , id − αd) ∈ Z or it − αt ≤ δ̂Ñ/2 for some t = 0, . . . , k},
I2 = {~α : (ik+1 − αk+1) + · · ·+ (id − αd) = u

and (ik+1 − αk+1, . . . , id − αd) 6∈ Z and i0 − α0, . . . , ik − αk ≥ δ̂Ñ/2},
I3 = {~α : (ik+1 − αk+1) + · · ·+ (id − αd) > u

and (ik+1 − αk+1, . . . , id − αd) 6∈ Z and i0 − α0, . . . , ik − αk ≥ δ̂Ñ/2}.

On each of these sets we use a lower bound on cÑ~i−~α. On I2, we have cÑ~i−~α ≥ ε,
by choice of ε. On I3, we have no good bound, so we use cÑ~i−~α ≥ −M .

On I1, we have cÑ~i−~α ≥ 0: This is clear for either of the first two con-

ditions. If the third holds, we may combine it with our assumption that
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ik+1+ · · ·+ id < δ̂Ñ/2 to find (it−αt)+(ik+1−αk+1)+ · · ·+(id−αd) < δ̂Ñ .
Subtracting both sides from Ñ and letting S = {0, . . . , k} \ {t}, we have∑

s∈S(is − αs) > (1− δ̂)Ñ . This gives cÑ~i−~α ≥ 0 by the induction hypothesis

of Proposition 5.3.

Thus, we have

cÑ+n
~i

≥ 0
∑
~α∈I1

(
n

~α

)
+ ε

∑
~α∈I2

(
n

~α

)
−M

∑
~α∈I3

(
n

~α

)
.

We wish to group terms together according to what value (greater than
or equal to u) they have for (ik+1−αk+1)+ · · ·+(id−αd). We write C(x) =∑(

n
~α

)
, where the sum is over all ~α with (ik+1−αk+1)+· · ·+(id−αd) = u+x,

with (ik+1 − αk+1, . . . , id − αd) 6∈ Z, and with i0 − α0, . . . , ik − αk ≥ δ̂n/2.

Under this notation, we have shown that

cÑ+n
~i

≥ εC(0)−M
∞∑
t=1

C(t).

For our ~i, let ρ = (ik+1 + · · ·+ id)/n. We are then trying to find δk such

that cN1+n
~i

is non-negative as long as ρ < δk. We will do this by showing

C(x+ 1) ≤ (k+1)ρ
1−ρ C(x) for all x ≥ 0. From this, we will know that

cÑ+n
~i

≥
(
ε−M

∞∑
t=1

(
(k + 1)ρ

1− ρ

)t)
C(0).

We have C(0) ≥ 1 for any legal choice of ~i. (This is true but tricky
to verify and unnecessary for Proposition 5.3; if C(0) were zero, the above

would hold and we would have cÑ+n
~i

≥ 0 for all ρ. Assume therefore that

C(0) ≥ 1.) Also this geometric series converges if ρ is sufficiently small.
The right-hand side is therefore a rational function which depends only on
ρ. This rational function equals εC(0) at zero, and so the existence of δk
follows from the continuity of this rational function at zero.

All that remains is to verify C(x + 1) ≤ (k+1)ρ
1−ρ C(x). We do this by a

counting argument. (We eschew the coloring metaphor from d = 2, as it is
less helpful in the case of d colors.) Recall that

(
n
~α

)
counts the number of

functions f : {1, . . . , n} → {0, 1, . . . , d} such that the number of elements
in f−1(j) is αj for all 0 ≤ j ≤ d. (We have defined the multinomial coef-
ficient to be zero if any αj is negative, so this fact remains true even for
nonsensical ~α.)

We may thus interpret C(x) as the number of functions f which map
{1, . . . , n} to {0, 1, . . . , d} and which satisfy:
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• #f−1({k + 1, . . . , d}) = ik+1 + · · ·+ id − u− x
(or equivalently, #f−1({0, 1, . . . , k}) = n+ u+ x− (ik+1 + · · ·+ id)),
• (ik+1 −#f−1(k + 1), . . . , id −#f−1(d)) 6∈ Z,

• i0 −#f−1(0), . . . , ik − f−1(k) > δ̂n/2.

Fixing x, we define D to be the number of functions f from {1, . . . , n}
to {−1, 0, 1, . . . , d} that satisfy:

• #f−1({k + 1, . . . , d}) = ik+1 + · · ·+ id − u− x− 1,
• #f−1(−1) = 1,
• (ik+1 −#f−1(k + 1), . . . , id −#f−1(d)) 6∈ Z,

• i0 −#f−1(0), . . . , ik − f−1(k) > δ̂n/2.

(If the second condition holds, the first says #f−1({0, . . . , k}) = n+u+x−
ik+1 − · · · − id.)

Choose an f of the type counted by C(x + 1). If y is an element of
f−1({0, . . . , k}), we may change the value of f(y) to be −1 and we will
get a function of the type counted by D. Any function from D can be so
constructed at most k + 1 times (once for each possible previous value of
f(y)). Counting the number of ways to choose such a y, we find

(n+ u+ x+ 1− (ik+1 + · · ·+ id))C(x+ 1) ≤ (k + 1)D.

Now let f be a function of the type counted by D. By the observation
preceding Claim 5.5, we know that there is v ∈ {1, . . . , d − k} such that
(ik+1−#f−1(k+1), . . . , id−#f−1(d))−ev 6∈ Z. If x is the unique value with
f(x) = −1, we may adjust f(x) to be v, and the resulting function will be of
the type counted by C(x). Any C(x)-type function constructed in this way
will be so constructed at most once for each element of f−1({k+ 1, . . . , d}).
(Only such an element could have been the x in the construction.) Thus

D ≤ (ik+1 + · · ·+ id − u− x)C(x).

Combining these two inequalities yields

(n+u+x+1−(ik+1+ · · ·+id))C(x+1) ≤ (k+1)(ik+1+ · · ·+id−u−x)C(x).

Decreasing the lower bound and increasing the upper shows that

(1− ρ)nC(x+ 1) ≤ (k + 1)ρnC(x).

Dividing both sides by (1− ρ)n, we are done and Theorem 3.2 is proved.

Finally, we conclude by stating a corollary which allows one to build
partition polynomials without discussing supporting polynomials.

Corollary 5.6. If p(x1, . . . , xd) is a non-constant partition polynomial,
and k = deg p, then for any integer polynomial g(~x), the polynomial

q(~x) = p(~x) + (1− x1 − · · · − xd)k+1xk+1
1 · . . . · xk+1

d g(~x)
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is a partition polynomial if and only if it satisfies 0 < q(~x) < 1 on the region
of x1, . . . , xd with 1− x1 − · · · − xd > 0.

Proof. Note that in the contribution made to p to produce q, every term
has a factor of xk+1

d which is greater than occurs on any term of p, and
such terms do exist since p 6= 0. Thus, an exponent vector (av+1, . . . , ad)
of q which uses ad ≥ k + 1 cannot be minimal (so any proper standard
supporting polynomial of q is also one for p). Similarly, for any minimal
exponent vector of p, we have ad < k + 1, meaning that all extra terms
for q can be lumped in with the x1+add garbage polynomial (so any proper
standard supporting polynomial of p is one for q).

The contribution to p has similar factors for all xi, so the same argument
applies to any simplex permutation of p and q, hence p and q have exactly the
same proper supporting polynomials, and thus every supporting polynomial
of q is positive.

Finally, for the non-proper case, we clearly see that the simplex permuta-
tions of q and 1−q are positive on the simplex, so q is a partition polynomial
by Theorem 3.2.

6. Good measures. A Cantor space is any compact perfect totally
disconnected metrizable space. (Any such space is homeomorphic to {0, 1}N.)
Let µ be a probability measure on (the Borel subsets of) a Cantor space X.
We assume µ is full (has positive measure on open sets) and non-atomic
(points have measure zero).

We say such a measure is good in the sense of Akin or simply good if
whenever U and V are clopen sets in X with µ(U) ≤ µ(V ), there is a clopen
set Û ⊆ V with µ(Û) = µ(U). That is, if α is the measure of some clopen
set, then there are many clopen sets of measure α, and they can be found
wherever there is room for one.

Good measures are interesting for a number of reasons, mainly to do with
constructing measure-preserving homeomorphisms. If µ and ν are probabil-
ity measures on a Cantor space X, one might expect it to be trivial to
verify that there is a homeomorphism of Cantor space which sends µ to ν.
This is not the case however: The clopen values set of µ, defined to be
{µ(E) : E is clopen}, is a countable, dense subset of [0, 1]. Two measures
will typically have different clopen values sets, and thus not be homeomor-
phic. This invariant is not sufficient in general to determine if two measures
are homeomorphic, but among good measures, it is (Akin [2]).

Another notable property of good measures is that they are precisely the
invariant measures of uniquely ergodic homeomorphisms of Cantor space.
That is, if T is a uniquely ergodic homeomorphism of a Cantor space, then its
unique invariant measure is good (Glasner and Weiss [6]), and if a measure
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µ is good, then there is a uniquely ergodic transformation for which it is the
unique invariant measure (Akin [2]).

Given a probability vector ~p = (p0, p1, . . . , pd), we define β(~p) to be the
Bernoulli trial measure on (the Borel subsets of) X = {0, 1, . . . , d}N. That
is, it is the countable product of independent copies of ~p. Surprisingly, there
is a large class of good measures found among the Bernoulli trial measures.

Dougherty, Mauldin and Yingst [5] showed that the measure β(1−r, r) is
good when there is an integer polynomial R(x) with R(0) = ±1, R(1) = ±1,
and r is the unique root of R in [0, 1]. (Equivalently, β(1 − r, r) is good
precisely when r is an algebraic number in (0, 1) with no conjugates in (0, 1)
and such that 1/r and 1/(1− r) are algebraic integers.)

Akin, Dougherty, Mauldin and Yingst [3] looked at the case of more than
two symbols, finding many partial results in the general case, and completely
solving it for a rational measure, in a result we will state shortly.

The notion of an algebraic conjugate is tricky in multiple symbols. (The
ring Z[x, y] is not a principal ideal domain and so a point in R2 does not
have a single minimal polynomial.) Given a point (p1, . . . , pd) in Rd, we let
Z(p1, . . . , pd) denote the set of all integer polynomials which equal zero at
(p1, . . . , pd). The notion of the set of algebraic conjugates of (p1, . . . , pd) is
made precise by considering (as we often shall) the set of points at which
every element of Z(p1, . . . , pd) vanishes.

Also, we note the connection between partition polynomials and Bernoulli
trial measures: From our understanding of partition polynomials, it is clear
that given a subset E of {0, . . . , d}N which depends only on finitely many
coordinates, there is a partition polynomial f such that β(x0, . . . , xd)(E) =
f(x1, . . . , xd). But in the space {0, . . . , d}N, a set depends on only finitely
many coordinates precisely when it is clopen. (Such a set is clearly clopen.
A clopen set is open and so is covered by the basic open sets inside it; there
is a finite subcover, each element of which depends on finitely many coor-
dinates.) Thus, each clopen set in {0, . . . , d}N has an associated partition
polynomial, which gives its Bernoulli trial measure. Conversely, given a par-
tition polynomial f in d variables, there is a clopen set E for which f gives
the Bernoulli trial measure of E. This clopen set associated with f is usually
not unique, while the polynomial associated with a given clopen set clearly
is unique.

Theorem 6.1. Let (p0, . . . , pd) be a probability vector. Then β(p0, . . . , pd)
is good if and only if there exists an integer polynomial f(x1, . . . , xd) such
that (p1, . . . , pd) is the only point in the simplex at which f equals zero, and
f equals one on the boundary of the simplex.

Equivalently, β(p0, . . . , pd) is good if and only if the point (p1, . . . , pd) is
the only point in the simplex at which all polynomials in Z(p1, . . . , pd) equal
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zero, and also Z(p1, . . . , pd) contains f0, f1, . . . , fd such that ft equals one
identically on the hyperplane xt = 0 for t = 0, 1, . . . , d.

Proof. First we show that these two conditions are equivalent. The first
clearly implies the second; suppose the second holds. There must be a finite
set of polynomials in Z(p1, . . . , pd) among which (p1, . . . , pd) is the only
common zero in the simplex. (This follows from Hilbert’s basis theorem.) If
we square these and add them, we will get a single polynomial φ for which
(p1, . . . , pd) is the only zero in the simplex. Now consider the polynomial

(1− (1− f0)(1− f1) · . . . · (1− fd))2 + x0 · x1 · . . . · xdφ.
This polynomial is zero at (p1, . . . , pd), is positive elsewhere in the simplex,
and equals one when any xt is zero, and so the first condition holds.

We will prove that a good measure satisfies the second condition. Suppose
that β(p0, . . . , pd) is good. Let ~b = (b1, . . . , bd) be a point in the simplex
other than ~p = (p1, . . . , pd). It is simple to verify that there are partition

polynomials qU and qV with qV (~p) > qU (~p), with qU (~b) > qV (~b), and with
qV = 0 and qU = 1 on the boundary of the simplex.

(One strategy is to let (m1/n, . . . ,md/n) be a rational vector very close
to ~p. The polynomial xm1

1 · . . . ·x
md
d ·x

n−m1−···−md
0 is positive on the simplex,

with most of its mass centered at its local maximum at (m1/n, . . . ,md/n).
For some positive integer A, the polynomial qV (~x) = Axm1

1 · . . . · xmd
d ·

xn−m1−···−md
0 will be sufficiently large at ~p (say greater than 1/2) but still

less than 1 on the simplex. If n is sufficiently large then we will have qV (~b) <
1/2. Let qU = 1 − qV . Any non-zero supporting polynomial of a simplex
permutation of qV is an expression of a similar form to qV , and so it is
positive on its simplex. Since qU equals one on the boundary, we can verify
that the only non-zero proper supporting polynomial of qU is one. So qU
and qV are partition polynomials as desired, by Theorem 3.2.)

Let U and V be clopen sets in {0, . . . , d}N associated with the parti-
tion polynomials qU and qV , respectively. We have qU (~p) < qV (~p), and
so β(p0, . . . , pd)(U) < β(p0, . . . , pd)(V ). Since this measure is good, there

must be Û with Û ⊆ V and β(p0, . . . , pd)(U) = β(p0, . . . , pd)(Û). Let q̂ be

the partition polynomial associated with Û . From Û ⊆ V , it follows that
β(x0, . . . , xd)(Û) ≤ β(x0, . . . , xd)(V ), and so q̂ ≤ qV on the simplex, and in
particular q̂ = 0 on the boundary.

Combining the above, we have q̂(~p) = qU (~p), but q̂(~b) ≤ qV (~b) < qU (~b).
Hence, qU − q̂ is a polynomial in Z(~p) which equals 1− 0 on the boundary

of the simplex. Furthermore, qU − q̂ is not zero at ~b, and such a polynomial
exists for any ~b in the simplex other than ~p.

Next, we show that if f exists as in the first statement of the theorem,
then β(~p) is good. Note that f ≥ 0 on the simplex. It is possible that f
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gets as large as two on the simplex. If this occurs, we may replace f with
f1(~x) = (1− x0x1 · . . . · xd)Nf(~x) for some large N . (We already have f < 2
near the boundary, and as N increases, f1 → 0 uniformly on compact subsets
of the interior of the simplex.) This f1 still equals one on the boundary and
has ~p as its only zero in the simplex.

Now observe that 1 − f1 vanishes on the boundary of the simplex, and
so has a factor of x0x1 · . . . ·xd. If we replace f1 with f2 = 1− (1− f1)2, then
f2 still has ~p as its only zero in the simplex (since we have ensured f1 6= 2),
f2 equals one on the boundary, and 1− f2 has a factor of (x0x1 · . . . · xd)2.
Furthermore, we have f2 ≤ 1 on the interior of the simplex.

Next consider replacing f2 with f3(~x) = (1−x0x1 · . . . ·xd)f2(~x). We may
note that again f3 also has ~p as its only zero in the simplex, and equals one on
the boundary of the simplex. Further, the non-zero supporting polynomials
of 1 − f3 are all positive on the interiors of their respective simplices. To
see this, first note that f2 ≤ 1 on the closed simplex implies that 1 − f3
itself is positive on the interior of the simplex. For the proper supporting
polynomials, recall that 1−f2 is divisible by (x0x1 · . . . ·xd)2, and so we may
write f2(~x) = 1− (x0x1 · . . . · xd)2g2(~x) for some integer polynomial g2(~x).
Hence,

1− f3(~x) = x0x1 · . . . · xd + (x0x1 · . . . · xd)2g2(~x)(1− x0x1 · . . . · xd).

Since x0x1 · . . . · xd divides 1 − f3, it follows that if s(x1, . . . , xv) is a
non-zero standard supporting polynomial of 1 − f3 with exponent vector
(av+1, . . . , ad), we must have (av+1, . . . , ad) ≥ (1, . . . , 1). But inspecting the
above expression of 1 − f3 we see that the exponent vector (av+1, . . . , ad)
= (1, . . . , 1) does yield a non-zero standard supporting polynomial of
x1x2 · . . . · xv(1 − x1 − · · · − xv), and so this can be the only non-zero sup-
porting polynomial for this choice of v, and it is positive on the interior of
its simplex. Looking at the form of the above expression for 1−f3, the same
argument also applies to simplex permutations of 1− f3.

Suppose U and V are clopen sets in {0, . . . , d}N such that the β(p0, . . . , pd)
measure of U is less than that of V . Let qU and qV be their associated
partition polynomials, respectively. So qU (~p) < qV (~p). Consider q̂V (~x) =
qV (~x)(1 − f3(~x))N for some sufficiently large N . We argue that q̂V and
qU − q̂V have supporting polynomials that are positive on their respective
simplices. The first of these is easy: by Proposition 3.3, the supporting poly-
nomials of q̂V are positive since those of qV and 1− f3 are.

Next we show that the supporting polynomials of qU − q̂V are positive
on their open simplices. The important properties of q̂V are preserved under
simplex permutations, while qU is arbitrary. The argument that follows will
therefore apply to simplex permutations of qU − q̂V , and we will concern
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ourselves only with the standard supporting polynomials: first the proper
ones and then qU − q̂V itself.

Assume N was chosen so large that it exceeds deg qU . Then xNd is not a
factor of qU but is a factor of q̂V . As in the proof of Corollary 5.6, we have
adjusted qU by adding only terms with a larger power of xd than any term
of qU , and so the proper standard supporting polynomials of qU and qU − q̂V
are the same. The standard supporting polynomials of qU − q̂V are therefore
positive because qU is a partition polynomial.

All that remains is to show that qU− q̂V itself (and therefore any simplex
permutation) is positive on the open simplex. We do this over three regions:
At ~p, we have q̂V = qV < qU , so on some neighborhood of ~p we have
q̂V ≤ qV < qU . Since qU is a non-zero partition polynomial, we may write it
in partition form for some n and find a term xi00 · . . . · x

id
d which is less than

qU on the simplex. Since 1−f3 has a factor of x0 · . . . ·xd, there will be some
large N for which q̂V = qV (1 − f3)N has more than it factors of xt, and so

q̂V (~x) < xi00 · . . . · x
id
d < qU (~x) when ~x is inside the simplex and within δ

of the boundary. (The same δ will also work for larger N since q̂V will only
decrease.) Away from the boundary and away from ~p we have qU > 0 and
1 − f3 < 1. This region is compact, so qU > ε and 1 − f3 < 1 − ε for some
ε > 0. When N is so large that (1− ε)N < ε, we have qV (1− f3)N < qU on
this region.

Finally, q̂V , qU , and qU − q̂V all have positive supporting polynomials,
and so have non-negative partition coefficients for large n. Since each level
n partition coefficient of qU is the sum of the corresponding level n partition
coefficients of q̂V and qU − q̂V , we see that if n is large then the partition
coefficients of q̂V are positive and are less than those of qU .

Let n also be sufficiently large that U depends only on the first n coordi-
nates of {0, . . . , d}N. Recall that the partition coefficient an~i of qU gives the
number of words of length n which are permitted to appear as the first n co-
ordinates of a point in U such that the symbol ‘t’ occurs in this word exactly
it times for each t. By throwing away some of these words leaving a number
equal to the corresponding partition coefficient of q̂V , we will find a clopen
subset of U whose associated partition polynomial is q̂V . The β(p0, . . . , pd)
measure of this set is q̂V (~p) = qV (~p) = β(p0, . . . , pd)(V ). So β(p0, . . . , pd) is
good.

The existence of polynomials which equal one on the faces of the bound-
ary can be a tricky question. A direct approach is as follows: Hilbert’s basis
theorem ensures that the ideal

Z(~p) = {f(~x) ∈ Z[x1, . . . , xd] : f(~p) = 0}

is finitely generated. That is, there are integer polynomials f1, . . . , fk such
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that

Z(~p) = [f1, . . . , fd] = {f1g1 + · · ·+ fkgk : g1, . . . , gk ∈ Z[x1, . . . , xd]}.

(We are being precise since much of the literature is more focused on
Q[x1, . . . , xd], but Hilbert’s basis theorem does apply in this sense.) Now
the question of whether this ideal contains an element which equals one on
the face x1 = 0 is equivalent to the question of whether 1 is in the ideal
[f̂1, . . . , f̂k] ⊆ Z[x2, . . . , xd] where f̂t(x2, . . . , xd) = ft(0, x2, . . . , xd). To de-
termine whether 1 is in this ideal, we need only calculate a strong Gröbner
basis (over Z) of this ideal and check whether 1 is in it, and similarly we
can handle the other edges. (Again, one has to be careful since it is more
common to find discussion of Gröbner bases over a field. One nice treatment
of Gröbner bases over a ring is by Adams and Loustaunau [1].)

The computation of a Gröbner basis can give an algorithm for determin-
ing whether a given measure is good, but in many simple cases is unneces-
sary. Note that p(~x) equals one on the hyperplane xt = 0 if and only if xt
is a factor of p(~x)− 1. Thus, such a polynomial is precisely one of the form

f(~x) = 1 + xtg(~x)

for some integer polynomial g. Asking such a polynomial to equal zero at ~p is
then equivalent to asking 1/pt = −g(~p) for some integer polynomial g. But
the elements that can appear as −g(~p) are exactly those elements of the ring
Z[p1, . . . , pd] = Z[p0, p1, . . . , pd]. (It is clear that these are the same ring.)
We therefore have the following equivalent formulation of Theorem 6.1:

Corollary 6.2. Suppose that (p0, . . . , pd) is a probability vector. Then
β(p0, . . . , pd) is good if and only if the point (p1, . . . , pd) is the only point in
the simplex at which all polynomials in Z(p1, . . . , pd) equal zero, and also
each pt for t = 0, . . . , d is a unit in the ring Z[p0, . . . , pd].

A few examples are in order.

Consider β
(
1 − 1√

2
, 1√

8
, 1√

8

)
. Is this measure good? The polynomials

8x2 − 1 and 8y2 − 1 have only one common zero in the simplex, so the
first condition holds easily. It is simple to verify that the ring Z

[
1√
8
, 1√

8

]
is

precisely those numbers of the form (A+B
√

2)/2n for integers A,B, n with

n ≥ 0. This set includes
√

8 = 2
√

2 and 1/(1 − 1/
√

2) = 2 +
√

2, so each
coordinate of (p0, p1, p2) is a unit in this ring, and the measure is good.

Is the measure β
(
1− 3√

11
, 1√

11
, 2√

11

)
good? Again it is clear that

(
1√
11
, 2√

11

)
is the unique root in the simplex of the ideal of polynomials equaling zero

there. The ring we consider is those numbers expressible in the form A+B
√
11

11n .

Even denominators are not allowed, so 2√
11

is not a unit in this ring, and

the measure is not good.
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We conclude with the following theorem, originally proved in [3], which
shows when a rational vector is good.

Theorem 6.3 (Akin, Dougherty, Mauldin, Yingst). Let (p0, . . . , pd) be a
rational probability vector. Then β(p0, . . . , pd) is good iff every prime factor
of the numerator of (the reduced form of ) any of the pt appears as a prime
factor of the denominator of (the reduced form of ) one of the pt.

Proof. It is clear that the linear polynomials which specify each rational
coordinate specify ~p = (p1, . . . , pd) as their only common zero in Rd. Let
u be the least common denominator of {p0, . . . , pd}. It is also easy to see
that the ring generated by {p0, . . . , pd} is precisely the set of fractions of the
form A/un, where A,n are integers and n ≥ 0. The coordinate pt is a unit in
this ring if and only if it is expressible in the form un/A for some n and A.
A number can be written in this form exactly when every prime factor of
its numerator is a factor of u.

With this theorem, we can tell at a glance that β
(
2
5 ,

2
5 ,

1
5

)
is not good,

but β
(
2
5 ,

2
5 ,

1
10 ,

1
10

)
is good.

Wrapping up, we return to the problem stated in the introduction.

Problem. Using a die with 3 sides which occur with probability
(
1
9 ,

4
9 ,

4
9

)
,

is there some n such that an event depending on n rolls of the die has prob-
ability 1

3? That is, is there a partition polynomial p(x, y) with p
(
4
9 ,

4
9

)
= 1

3?

First, we can note that f(x, y) = 3(1 − x − y) is one polynomial with
f
(
4
9 ,

4
9

)
= 1

3 . We can compute that the polynomials h with h
(
4
9 ,

4
9

)
= 0

are precisely those of the form (x − y)g1(x, y) + (9x − 4)g2(x, y) for some
integer polynomials g1 and g2. (Some experience with Hilbert’s basis theorem
and Gröbner bases over rings is useful here but not necessary: we can use
multiples of x − y to remove all occurrences of y from h(x, y), leaving a
polynomial of x which equals zero at 4

9 and hence is a multiple of 9x − 4.)
Thus, we are looking to determine whether there exist integer polynomials g1
and g2 such that

f(x, y) = (3− 3x− 3y) + (x− y)g1(x, y) + (9x− 4)g2(x, y)

is a partition polynomial.

We can start thinking about choices of g1 and g2 that will give positive
supporting polynomials, but we will hit a roadblock when it comes to look
at the standard supporting coefficients of f and 1− f . The exponent vector
(0, 0) gives a standard supporting coefficient of f as 3− 4g2(0, 0), while for
1 − f the same is −2 + 4g2(0, 0). It is easy to see that these cannot both
be positive while g2(0, 0) is an integer, and so we have answered the above
question in the negative.
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(Since above we were considering the (0, 0) standard supporting coeffi-
cient, the same result could have been answered by considering f(0, 0) =
3− 4g2(0, 0). If f is a supporting polynomial, it lies between 0 and 1 in the
interior of the simplex, and so f(0, 0), an integer, must be zero or one, which
is impossible for the above function.)
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