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In this note we present a correct proof of Theorem 4.2 from [BBGS],
recalled below. Unfortunately, the proof in [BBGS] contains a gap, which
was pointed out to the third author by Prof. W. Marciszewski.

Theorem. Each infinite-dimensional closed subspace Y of the Banach
space `1 contains an element y = (y(n))∞n=1 whose set of partial sums

E(y) =
{ ∞∑
n=1

εny(n) : (εn)
∞
n=1 ∈ {0, 1}N

}
has non-empty interior in the real line.

Proof. Fix a positive real number λ < 1 such that λ+λ2 > 10/7 and for
every k ∈ N put εk = λk+1/(8k). By induction we shall construct a strictly
increasing sequence (nk)

∞
k=0 of positive integers and a sequence (xk)

∞
k=1 of

elements of Y such that n0 = 1 and for every k ∈ N the following conditions
are satisfied:

(1) xk(n) = 0 for all n < nk−1;
(2)

∑∞
n=nk−1

|xk(n)| = 1 + εk;
(3)

∑∞
n=nk

|xm(n)| < εk for all m ≤ k.

Assume that for some k ∈ N the numbers n0 < n1 < · · · < nk−1 and
points x1, . . . , xk−1 ∈ Y have been constructed. Consider the closed subspace
Yk = {y ∈ Y : y(n) = 0 for all n < nk−1} of finite codimension in Y
and choose any xk ∈ Yk with ‖xk‖ = 1 + εk. For every m ≤ k the series
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∑∞
n=1 |xm(n)| is convergent, so we can choose nk satisfying (3). It is clear

that nk and xk satisfy (1)–(3).
We claim that the set E(y) for y =

∑∞
k=1 λ

kxk ∈ Y contains an interval.
Consider the non-negative sequences

y+ = max{y, 0} and y− = max{−y, 0}

in `1 and observe that y = y+ − y− and |y| = max{y+, y−}. It follows that
for every n ∈ N we get

y−(n) + {0, 1} · y(n) = y−(n) + {0, 1} · (y+(n)− y−(n)) = {y−(n), y+(n)}
= {0, |y(n)|} = {0, 1} · |y(n)|,

which implies that

E(y) + ‖y−‖ =
{ ∞∑
n=1

(εny(n) + y−(n)) : (εn)
∞
n=1 ∈ {0, 1}N

}
=
{ ∞∑
n=1

εn |y(n)| : (εn)∞n=1 ∈ {0, 1}N
}
= E(|y|),

and hence E(y) contains an interval if and only if E(|y|) does. Consider the
sequence z = (z(k))∞k=1 ∈ `1 defined by

z(k) =

nk−1∑
n=nk−1

|y(n)| =
nk−1∑

n=nk−1

∣∣∣ ∞∑
m=1

λmxm(n)
∣∣∣ = nk−1∑

n=nk−1

∣∣∣ k∑
m=1

λmxm(n)
∣∣∣

for k ∈ N.
Since E(z) ⊂ E(|y|), it is enough to show that E(z) contains an interval.

To establish this, we will prove the Kakeya condition [K], which is sufficient
for E(z) to be an interval:

0 < z(k) ≤
∑
j>k

z(j) for all k ∈ N.

Observe that for every k ∈ N,

z(k) =

nk−1∑
n=nk−1

∣∣∣ k∑
m=1

λmxm(n)
∣∣∣ ≤ k∑

m=1

nk−1∑
n=nk−1

λm|xm(n)|

= λk
nk−1∑

n=nk−1

|xk(n)|+
k−1∑
m=1

nk−1∑
n=nk−1

λm|xm(n)|

≤ λk(1 + εk) + (k − 1)εk−1 = λk
(
1 +

λk+1

8k

)
+
λk

8
<

5

4
λk
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and

z(k) =

nk−1∑
n=nk−1

∣∣∣ k∑
m=1

λmxm(n)
∣∣∣ = nk−1∑

n=nk−1

∣∣∣λkxk(n) + k−1∑
m=1

λmxm(n)
∣∣∣

≥
nk−1∑

n=nk−1

(
λk|xk(n)| −

k−1∑
m=1

λm|xm(n)|
)

= λk
nk−1∑

n=nk−1

|xk(n)| −
k−1∑
m=1

nk−1∑
n=nk−1

λm|xm(n)|

≥ λk − (k − 1)εk−1 = λk − 1

8
λk =

7

8
λk.

Then∑
j>k

z(j) ≥ z(k + 1) + z(k + 2) ≥ 7

8
λk+1 +

7

8
λk+2 >

7

8
(λ+ λ2)λk

>
7

8
· 10
7
λk =

5

4
λk ≥ z(k),

and we are done.

Actually, we have proved something more. By the Kakeya condition, E(z)
is the interval [0,

∑∞
k=1 z(k)]. Moreover,

E(z) ⊂ E(|y|) ⊂ [0, ‖y‖] =
[
0,

∞∑
n=1

|y(n)|
]
=
[
0,

∞∑
k=1

z(k)
]
.

Hence E(|y|) and E(y) are intervals, and we obtain the following corollary:

Corollary 1. The set C ∪MC ∪ c00 is not spaceable.

Let us mention that Corollary 1 solves Problem 4.4(3) from [BBGS]; the
notation in its statement can be found there.
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informing us about the error.
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