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SELFINJECTIVE ALGEBRAS OF TUBULAR TYPE

BY

JERZY BIAŁKOWSKI and ANDRZEJ SKOWROŃSKI (Toruń)

Abstract. We classify all tame selfinjective algebras having simply connected Galois
coverings and the stable Auslander–Reiten quivers consisting of stable tubes. Moreover,
the classification of nondomestic polynomial growth standard selfinjective algebras is com-
pleted.

Introduction. Throughout, by an algebra we mean a basic connect-
ed finite-dimensional associative K-algebra with an identity over a (fixed)
algebraically closed field K. By a module over an algebra A we mean a right
A-module of finite K-dimension. An algebra A with AA injective is called
selfinjective. An important class of selfinjective algebras is formed by the
algebras of the form B̂/G where B̂ is the repetitive algebra [20] (locally
finite-dimensional, without identity) of an algebra B and G is an admissible
group of K-linear automorphisms of B̂.

From Drozd’s remarkable Tame and Wild Theorem [10] the class of al-
gebras may be divided into two disjoint classes. One class consists of tame
algebras for which the indecomposable modules occur, in each dimension d,
in a finite number of discrete and a finite number of one-parameter families.
The second class is formed by the wild algebras whose representation theory
is as complicated as the study of finite-dimensionalK-vector spaces together
with two noncommuting endomorphisms, the classification of which is a well
known unsolved problem. Hence, we can hope to classify the modules only
for tame algebras. Frequently, tame algebras are deformations of tame alge-
bras which admit simply connected Galois coverings. This is the case for all
representation-finite algebras (see [5], [6]).

In this paper we are concerned with the problem of describing (tame)
selfinjective algebras all of whose indecomposable nonprojective modules
are periodic with respect to the action of the Auslander–Reiten translation.
This class of algebras contains all representation-finite selfinjective algebras
which have been completely classified almost 20 years ago (see [7], [20],
[27], [28]). Moreover, it is known that every indecomposable nonprojective
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module over a selfinjective algebra A is periodic if and only if the Auslander–
Reiten quiver ΓA of A is cyclic, that is, all its vertices lie on oriented cycles
(see [3], [35]). Further, for a representation-infinite selfinjective algebra A,
this is equivalent to the fact that the stable Auslander–Reiten quiver Γ s

A
of A consists only of stable tubes. It is known (see [11], [12]) that, for a
representation-infinite block B of the group algebra KG of a finite group G,
all indecomposable nonprojective B-modules are periodic if and only if K
is of characteristic 2 and the defect group of B is a generalized quaternion
group, and these blocks are representation-infinite tame of nonpolynomial
growth (with the stable tubes of rank at most 2). Another class of tame
selfinjective algebras with stable Auslander–Reiten quiver consisting only
of stable tubes is formed by all nondomestic polynomial growth selfinjective
algebras having simply connected Galois coverings studied in [30], and these
are the orbit algebras B̂/G given by Ringel’s [29] tubular algebras B and
admissible infinite cyclic groups G of K-linear automorphisms of B̂.

Finally, we mention that there are also wild selfinjective algebras (even
with simply connected Galois coverings) for which the stable Auslander–
Reiten quiver consists only of stable tubes. Namely, as was discovered by
Schofield, the Gelfand–Ponomarev [16] preprojective algebras of Dynkin
graphs are selfinjective algebras with stable Auslander–Reiten quivers con-
sisting only of stable tubes of ranks dividing 6 (see also [2] for another
approach and relationship with hypersurface singularities, and [14] for rela-
tionship with Hochschild cohomology).

The aim of this paper is to classify all tame selfinjective algebras which
admit a simply connected Galois covering and their stable Auslander–Reiten
quiver consists only of stable tubes. We prove (Theorem 3.1) that this class
of algebras coincides with the class of algebras of the form B̂/G, where B is
a tubular algebra and G is an admissible infinite cyclic group G of K-linear
automorphisms of B̂, and hence with the class of all nondomestic standard
selfinjective algebras of polynomial growth investigated in [23], [30]. A clas-
sification of algebras B̂/G, with B tubular of type (2, 3, 6), has been done
recently in [21], invoking the derived category of coherent sheaves on the cor-
responding weighted projective line over K. Moreover, this can also be done
easily (see Theorem 4.2) in the tubular case (2, 2, 2, 2), because there are only
10 one-parameter families of such algebras [30]. The second objective of the
paper is to give a complete classification (Theorems 5.2 and 6.2) of algebras
B̂/G for the remaining two tubular cases (3, 3, 3) and (2, 4, 4), where a large
number of algebras is involved. This is done with the help of computer.

For basic background on the representation theory of algebras we refer
to the books [3], [29], and on selfinjective algebras to [11], [34].
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1. Self injective algebras with simply connected Galois cover-
ings. Following [5], by a locally bounded category we mean a K-category
R which is isomorphic to the factor category KQ/I, where Q is a locally
finite quiver and I is an admissible ideal in the path category KQ of Q.
Recall that the objects of a locally bounded category R = KQ/I are given
by the vertices of Q, and the morphism spaces R(x, y) are the quotients
of the spaces KQ(x, y) generated by all paths in Q from x to y modulo
the subspaces I ∩ KQ(x, y). We shall consider an algebra A as a locally
bounded category with finitely many objects, called briefly a finite cate-
gory. For a locally bounded category R, we denote by modR the cate-
gory of all finite-dimensional right R-modules, by ΓR the Auslander–Reiten
quiver of R, and by τR the Auslander–Reiten translation DTr on modR.
We shall not distinguish between an indecomposable module from modR
and the vertex of ΓR corresponding to it. Following [10], a finite bounded
category R is said to be tame if, for any dimension d, there exists a finite
number of K[x]-R-bimodules Mi, 1 ≤ i ≤ nd, which are finitely generated
and free as left K[x]-modules, and all but a finite number of isomorphism
classes of indecomposable (right) R-modules of dimension d are of the form
K[x]/(x − λ) ⊗K[x] Mi for some λ ∈ K and some i. Moreover, R is said
to be of polynomial growth if there exists a natural number m such that
for any d ≥ 1 the least number of K[x]-R-bimodules satisfying the above
conditions for d is bounded by dm (see [31]). Finally, an arbitrary locally
bounded category R is said to be tame (respectively, of polynomial growth)
if so is every finite full subcategory of R (see [8]).

A group G of K-linear automorphisms of a locally bounded category R is
said to be admissible if its action on the objects of R is free and has finitely
many orbits. Then the finite bounded category (algebra) R/G is defined
and there is a Galois covering functor F : R → R/G which assigns to each
object x of R its G-orbit Gx (see [15]). We denote by

Fλ : modR→ modR/G

the push-down functor induced by the covering F : R→ R/G (see [5]). It is
well known that if G is torsion-free then the push-down functor Fλ preserves
indecomposability of modules and Auslander–Reiten sequences (see [15]).
A locally bounded category R is called simply connected [1] if it is triangular
(its quiver has no oriented cycles) and for any presentation R

∼→ KQ/I
of R as a bound quiver category, the fundamental group Π1(Q, I) of (Q, I),
defined in [17], [22], is trivial. It has been proved in [31] that a triangular
locally bounded category R is simply connected if and only if each Galois
covering of R is trivial.

The repetitive category [20] of a locally bounded category R is the self-
injective locally bounded category R̂ whose objects are the pairs (n, x) = xn,
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x ∈ R, n ∈ Z (the set of all integers) and R̂(xn, yn) = {n} × R(x, y),
R̂(xn, yn+1) = {n} × DR(y, x), and R̂(xp, yq) = 0 if q 6= p, p + 1, where
DV denotes the dual space HomK(V,K). We denote by νR̂ the Nakayama
automorphism of R̂, which assigns to each object xn = (n, x) the object
xn+1 = (n+ 1, x). Observe that if R is finite, then the infinite cyclic group
(νR̂) generated by νR̂ is admissible and R̂/(νR̂) is isomorphic to the trivial
extension

T (R) = RnD(R)

of R by its minimal injective cogenerator D(R) = HomK(R,K). Further,
we note that a locally bounded category R is simply connected if and only if
its repetitive category R̂ is simply connected. A K-linear automorphism ϕ
of a repetitive category R̂ is said to be positive if, for any object xn of R̂,
we have ϕ(xn) = ym for some object y of R and some m ≥ n. Moreover,
ϕ is said to be rigid if, for any object xn of R̂, we have ϕ(xn) = yn for
some object y of R. We refer to [25] for some results on the structure of
K-linear automorphisms of repetitive categories, and to [33] for results on
the presentations of selfinjective algebras A in the form A ∼= B̂/(ϕνB̂) with
B a triangular algebra (triangular finite bounded category) and ϕ a positive
K-linear automorphism of B̂.

For a selfinjective locally bounded category R, we denote by Γ s
R the

stable Auslander–Reiten quiver of R, obtained from the Auslander–Reiten
quiver ΓR by removing all projective modules and arrows attached to them.
A component of ΓR (respectively, Γ s

R) of the form ZA∞/(τ r), r ≥ 1, is said
to be a stable tube of rank r. Therefore, a stable tube in ΓR (respectively, Γ s

R)
consists of τR-periodic indecomposable R-modules having period r. Finally,
since R is selfinjective, we have τR = Ω2

R ◦ NR where ΩR is Heller’s syzygy
operator and

NR : modR→ modR

is the equivalence induced by the Nakayama automorphism νR of R (see [3,
IV.3.7] and [34]).

The following theorem proved in [32] gives a characterization of all tame
selfinjective algebras which admit simply connected Galois coverings.

Theorem 1.1. A selfinjective algebra A is tame and admits a simply
connected Galois covering if and only if A ∼= B̂/G, where B is a simply
connected locally bounded category such that the Euler form χC of any finite
convex subcategory C of B is nonnegative, and G is an admissible torsion-
free group of K-linear automorphisms of B̂.

Recall that a full subcategory Λ of a locally bounded category R =
KQ/I is called convex provided Λ = KQ′/I ′ for a convex subquiver Q′ of
Q and I ′ = I ∩ KQ′. Moreover, the Euler form χR of a finite triangular
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bounded category R is the integral quadratic form χR : K0(R) → Z on
the Grothendieck group K0(R) ∼= Zm (m = the number of objects in R)
given by χR(x) = xC−tR xt, x ∈ K0(R), where CR is the Cartan matrix
(dimK R(a, b))a,b∈R of R.

2. Self injective algebras of tubular type. Following [29], by a tubu-
lar algebra we mean a tubular extension (equivalently, tubular coextension)
B of a tame concealed algebra C of tubular type (2, 2, 2, 2), (3, 3, 3), (2, 4, 4),
or (2, 3, 6). Then the rank of the Grothendieck group K0(B) of B is equal
to 6, 8, 9, or 10, respectively. By a selfinjective algebra of tubular type we
mean an algebra of the form B̂/G, where B is a tubular algebra and G is
an admissible group of K-linear automorphisms of B̂. We shall exhibit here
basic facts on the repetitive categories of tubular algebras and selfinjective
algebras of tubular type, established in [23] and [30], needed in our further
considerations.

Let B be an algebra and e1, . . . , en be a complete set of primitive or-
thogonal idempotents of B such that 1 = e1 + . . . + en. Denote by QB the
(Gabriel) quiver of B with the set of vertices {1, . . . , n} corresponding to
the set e1, . . . , en. For each vertex i ∈ QB, denote by PB(i) the indecom-
posable projective B-module eiB and by IB(i) the indecomposable injective
B-module D(Bei). Then, for a sink i ∈ QB, the reflection S+

i B of B at i
is the quotient of the one-point extension B[IB(i)] by the two-sided ideal
generated by ei. The quiver σ+

i QB of S+
i B is called the reflection of QB at i.

Observe that the sink i of QB is replaced in σ+
i QB by a source i′. Moreover,

we have

B̂ ∼= Ŝ+
i B.

A reflection sequence of sinks is a sequence i1, . . . , it of vertices of QB such
that is is a sink of σ+

is−1
. . . σ+

i1
QB for 1 ≤ s ≤ t (see [20, (2.8)]). We have the

following fact, proved in [23, Section 4], describing the relationship between
tubular algebras with isomorphic repetitive algebras.

Theorem 2.1. Let B be a tubular algebra with QB having n vertices.
There is a sequence of natural numbers 1 ≤ t1 < . . . < tr+1 = n, uniquely
determined by B, and a reflection sequence of sinks i1, . . . , it1 , it1+1, . . . , itr ,
itr+1, . . . , in in QB such that :

(a) S+
in
. . . S+

i1
B ∼= νB̂(B) ∼= B.

(b) S+
itj
. . . S+

i1
B, 1 ≤ j ≤ r, are tubular algebras of the same tubular type

as B.
(c) Every tubular algebra D with D̂ ∼= B̂ is isomorphic to S+

itj
. . . S+

i1
B

for some 1 ≤ j ≤ r + 1.
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Following [30], the tubular algebra B is said to be normal if the tubular
algebras S+

itj
. . . S+

i1
B, 1 ≤ j ≤ r + 1, are pairwise nonisomorphic, or equiv-

alently, B 6∼= S+
itj
. . . S+

i1
B for any 1 ≤ j ≤ r. Otherwise, B is said to be

exceptional. It follows from [30, Section 3] that B is exceptional if and only
if there exists an automorphism ϕ of B̂ such that ϕd = % νB̂ for some d ≥ 2
and a rigid automorphism % of B̂ induced by an automorphism of B.

The following proposition gives a general description of admissible groups
of K-linear automorphisms of repetitive categories of tubular algebras (see
[30, (3.9)]).

Proposition 2.2. Let B be a tubular algebra and G an admissible group
of K-linear automorphisms of B̂. Then G is an infinite cyclic group gener-
ated by an automorphism σϕt

B̂
for some t ≥ 1, where σ is a rigid automor-

phism of B̂ and ϕB̂ is a K-linear automorphism of B̂ such that ϕd
B̂

= %νB̂
for some d ≥ 1 and a rigid automorphism % of B̂. Moreover , if B is normal ,
we may take ϕB̂ = νB̂.

We also note that, for any tubular algebra B and an admissible group G
of K-linear automorphisms of B̂, F : B̂ → B̂/G is a simply connected Galois
covering of B̂/G, because B simply connected implies B̂ simply connected.

We end this section with the description of the structure of the Aus-
lander–Reiten quivers of selfinjective algebras of tubular type. Let B be
a tubular algebra of tubular type nB = (nλ)λ∈P1(K) consisting of positive
integers nλ, λ ∈ P1(K), and all but finitely many equal to 1. We shall write
instead of (nλ)λ∈P1(K) the finite sequence consisting of all nλ which are larger
than 1, and arranged in nondecreasing order. Then nB is one of the types
(2, 2, 2, 2), (3, 3, 3), (2, 4, 4), or (2, 3, 6). It follows from [23, Section 3] that
the Auslander–Reiten quiver ΓB̂ of B̂ is of the form

ΓB̂ =
∨

p∈Z
Tp ∨ Xp

where, for each p ∈ Z, Tp is a nonstable P1(K)-family of quasi-tubes (in
the sense of [31, (1.2)] whose stable part T s

p is a P1(K)-family of stable
tubes of tubular type nB, Xp =

∨
γ∈Qpp+1

Tγ , Qpp+1 = Q ∩ (p, p + 1), and,

for each γ ∈ Qpp+1, Tγ is a P1(K)-family of stable tubes of tubular type nB.
Further, there exists s ≥ 3 such that νB̂(Tp) = Tp+s and νB̂(Xp) = Xp+s
for all p ∈ Z. In particular, the stable Auslander–Reiten quiver Γ s

B̂
of B̂

consists of the rational family of P1(K)-families of stable tubes, all of them of
tubular type nB . Let G be an admissible group of K-linear automorphisms
of B̂ and A = B̂/G the associated selfinjective algebra (of tubular type
nB). Since G is, by Proposition 2.2, infinite cyclic (hence torsion-free), the
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push-down functor Fλ : mod B̂ → mod B̂/G = modA associated with the
Galois covering F : B̂ → B̂/G = A preserves indecomposable modules and
Auslander–Reiten sequences [15, Section 3]. Moreover, B̂ is locally support-
finite [23, Section 3], and hence invoking the main result of [9] we conclude
that Fλ : mod B̂ → modA is dense. As a consequence, the Auslander–Reiten
quiver ΓA of A is the orbit quiver ΓB̂/G, and so it is obtained from ΓB̂ by
identifying (via Fλ) Tp with Tp+r and Xp with Xp+r for some r ≥ 1 and all
p ∈ Z. Thus ΓA has the following “clock structure”:

Fλ(Tr) = Fλ(T0)

�� @R
Fλ(Xr−1) Fλ(X0)

6 ?
Fλ(Tr−1) Fλ(T1)

@I �	p p p ppp
3. Tame self injective algebras with tubular stable components.

The main aim of this section is to prove the following theorem.

Theorem 3.1. For an algebra A the following two conditions are equiv-
alent :

(i) A is a selfinjective algebra of tubular type.
(ii) A is tame, selfinjective, admits a simply connected Galois covering

and the stable Auslander–Reiten quiver Γ s
A of A consists only of stable tubes.

Proof. The implication (i)⇒(ii) has already been established in the pre-
vious section. Assume that A satisfies condition (ii). Applying Theorem 1.1
we conclude that there is a Galois covering F : R→ R/G = A where R is a
simply connected selfinjective locally bounded category of the form B̂, for a
simply connected locally bounded category B such that the Euler quadratic
form of every finite convex subcategory of B is nonnegative, and G is a
torsion-free group of K-linear automorphisms of B̂. We shall prove that B
is a tubular algebra, and consequently A = B̂/G is selfinjective of tubular
type, as required. Since Γ s

A consists of stable tubes, we conclude that A is
representation-infinite. Assume now that A is of polynomial growth. Ap-
plying the main result of [30] we then conclude that either B is tubular or
A ∼= D̂/H where D is a tilted algebra of Euclidean type and H is an admis-
sible infinite cyclic group of K-linear automorphisms of D̂. But in the latter
case, Γ s

A admits (see [30, Section 2]) a nonperiodic component of the form
Z∆, for a Euclidean quiver ∆, and this contradicts our assumption on Γ s

A.
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Hence B is tubular. Suppose now that A is not of polynomial growth. We
still have two cases to consider. Assume first that every full finite subcate-
gory of R = B̂ is representation-finite. Then, by the main theorem of [26],
we infer that B is an infinite locally bounded gentle tree K-category and
A = B̂/G is special biserial. Moreover, since A is not of polynomial growth,
applying [13, Theorem 2.2], we deduce that Γ s

A has a component of the
form ZA∞∞, which contradicts our assumption on Γ s

A. Finally, assume that
R contains a representation-infinite full finite subcategory, and A is not of
polynomial growth. Then, by [30, Theorem 1.5], R is also not of polynomial
growth. Applying now arguments as in the proof of Proposition 4.3 in [30]
(see also [32]) we conclude that B contains a finite convex simply connected
category Λ which is a generalized pg-critical algebra, that is, is given by one
of the 31 frames of pg-critical algebras or one of the algebras (r1)–(r6) pre-
sented in [24, Section 3]. It follows from [24, Theorem 6.1] that ΓΛ admits
an Auslander–Reiten sequence of the form

0→M → E1 ⊕E2 ⊕ E3 → N → 0

with E1, E2, E3 indecomposable, and the full translation subquiver of ΓΛ
formed by all successors of M (in ΓΛ) is of the form (−N)D∞. Moreover, M ,
E1, E2, E3 and N are nonprojective indecomposable R-modules, because Λ
is also a finite convex subcategory of R = B̂. Further, it is known that the
Auslander–Reiten sequence in modR with left term M (or right term N)
is an Auslander–Reiten sequence in modD for a finite convex subcategory
D of R containing Λ. On the other hand, our assumption that A is tame
implies that R, and hence Λ, is tame [9, Proposition 2]. Invoking now the fact
that D can be obtained from Λ by a sequence of one-point extensions and
coextensions, and the formula [29, p. 88] on the Auslander–Reiten sequences
for one-point extensions (or coextensions), we conclude that

0→M → E1 ⊕E2 ⊕ E3 → N → 0

is also an Auslander–Reiten sequence in modR. Finally, since the group G
is torsion-free, applying the push-down functor Fλ : modR → modR/G =
modA associated with the Galois covering F : R → R/G = A, we obtain
an Auslander–Reiten sequence

0→ Fλ(M)→ Fλ(E1)⊕ Fλ(E2)⊕ Fλ(E3)→ Fλ(N)→ 0

in modA, where the modules Fλ(E1), Fλ(E2) and Fλ(N) are indecomposable
and nonprojective. This contradicts our assumption that Γ s

A consists only
of stable tubes. Therefore, (ii) implies (i).

As a direct consequence of the above theorem and results presented in
Sections 1 and 2 we obtain the following fact.
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Corollary 3.2. Let A be a tame selfinjective algebra having a simply
connected Galois covering and the stable Auslander–Reiten quiver Γ s

A con-
sisting of stable tubes. Then all tubes in Γ s

A have rank at most 6.

4. Self injective algebras of type (2, 2, 2, 2). We give a complete de-
scription of all selfinjective algebras of tubular type (2, 2, 2, 2). Consider the
following family of bound quiver algebras (see [30, (3.3)]):

α% = 0, αξ = βγξ

αη = λβγη

B1(λ)

α

β

γ

% ξ η

q
q
q
q q q

�
�/?

S
Sw

@
@R?

�
�	

αξ + βη + γω = 0

αξ + λβη + σζ = 0

B2(λ)

α β γ σ

ξ η ω ζ

q
q q q q
q

@
@
@@R

B
B
BBN

�
�
��


�
�
��	

�
�
��	

�
�
��


B
B
BBN

@
@
@@R

αγφ = βσφ

αγψ = λβσψ

B3(λ)

α β

γ σ

φ ψ

q
q q
q
q q

@
@R

�
�	

�
�	

@
@R

@
@R

�
�	

αξ = γη, αζ = γω

σξ = βη, σζ = λβω

B4(λ)

α β
γσ

η ζ
ξ ω

q q
q q
q q

?

Z
Z
Z
ZZ~

�
�
�
��= ?

?

Z
Z
Z
ZZ~

�
�
�
��= ?

where λ ∈ K0 = K \ {0, 1}.
Theorem 4.1. Let B be a tubular algebra of type (2, 2, 2, 2). Then:

(a) B̂ is isomorphic to one of the repetitive algebras B̂1(λ), B̂2(λ), B̂3(λ),
B̂4(λ) or λ ∈ K0.

(b) B̂ has a nontrivial rigid automorphism if and only if B̂ is isomorphic
to one of the algebras

(i) B̂2(λ), B̂3(λ) or B̂4(λ), λ ∈ K0,
(ii) ̂B1(−1), if charK 6= 2,

(iii) ̂B1(−ε), where ε is a primitive 3-root of 1, if charK 6= 3.

(c) B is exceptional if and only if B is isomorphic to B3(λ), B3(λ)op or
B4(λ), λ ∈ K0.
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Proof. The statement (a) follows from [30, (3.3)] where all 10 one-para-
meter families of tubular algebras of type (2, 2, 2, 2), and their reflection
sequences, are presented. The statement (b) is proved by a direct checking.

We also mention that for a fixed i ∈ {1, . . . , 4} and any λ ∈ K0 there
are only finitely many µ ∈ K0 such that Bi(λ) ∼= Bi(µ) (see [18]).

Then we obtain the following complete classification (see [30, Theo-
rem 1.5]) of all selfinjective algebras of tubular type (2, 2, 2, 2).

Theorem 4.2. Let A be a selfinjective algebra. Then A is of tubular type
(2, 2, 2, 2) if and only if A is isomorphic to one of the algebras:

(a) B̂/(νm
B̂

), where B is one of the tubular algebras B̂1(λ), B̂2(λ), B̂3(λ)

or B̂4(λ), λ ∈ K0, and m is a positive integer.

(b) B̂/(% νm
B̂

), where B is one of the algebras B2(λ), B3(λ) or B4(λ),

λ ∈ K0, % is a rigid automorphism of B̂ induced by the corresponding auto-
morphism of B of order 2, and m is a positive integer.

(c) B̂/(% νm
B̂

), for charK 6= 2, where B = B1(−1), % is a rigid automor-

phism of B̂ induced by the corresponding automorphism of B of order 2, and
m is a positive integer.

(d) B̂/(% νm
B̂

), for charK 6= 3, where B is one of the algebras B1(−ε),
B2(−ε), ε is a primitive 3-root of 1, % is a rigid automorphism of B̂ induced
by the corresponding automorphism of B of order 3, and m is a positive
integer.

(e) B̂/(% νm
B̂

), for charK 6= 2, where B is one of the algebras B2(−1)

or B4(−1), % is a rigid automorphism of B̂ induced by the corresponding
automorphism of B of order 4, and m is a positive integer.

(f) B̂/(ϕm) or B̂/(%ϕm), where B = B3(λ) for some λ ∈ K0, ϕ is a
2-root of νB̂, % is a rigid automorphism of B̂ induced by the corresponding
automorphism of B of order 2, and m is an odd natural number.

(g) B̂/(ϕm) or B̂/(%ϕm), where B = B4(λ) for some λ ∈ K0, ϕ is a
3-root of νB̂, % is a rigid automorphism of B̂ induced by the corresponding
automorphism of B of order 2 or (for charK 6= 2 and λ = −1) of order 4,
and m is a natural number not divisible by 3.

5. Self injective algebras of type (3, 3, 3). We give a complete de-
scription of all selfinjective algebras of tubular type (3, 3, 3). Consider the
following family of bound quiver algebras (where a dotted line means that
the sum of the paths indicated by it is zero):
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We note that the algebrasB1, . . . , B29 are pairwise nonisomorphic, S−yB
′
26∼= B26 and S+

x B
′
26
∼= Bop

26 .
Then we have the following theorem.

Theorem 5.1. (a) B1, . . . , B29, B
op
1 , . . . , Bop

9 are tubular algebras of type
(3, 3, 3).

(b) The repetitive algebras B̂1, . . . , B̂24, B̂
op
1 , . . . , B̂op

9 form a complete
family of pairwise nonisomorphic repetitive algebras of tubular type (3, 3, 3)
having a nontrivial rigid automorphism.

(c) B24, Bop
24 , B25, B26, B′26, Bop

26 , B27, Bop
27 , B28, Bop

28 , B29, and Bop
29 are

(up to isomorphism) the only exceptional tubular algebras of type (3, 3, 3).

Proof. This is done with the help of a computer program calculating:

• all tubular algebras of type (3, 3, 3), using the Bongartz–Happel–Vossi-
eck list [4], [19] of tame concealed algebras and tubular extensions of such
algebras in the sense of [29],
• the reflection equivalence classes of tubular algebras of type (3, 3, 3),
• exceptional tubular algebras of type (3, 3, 3),
• nontrivial rigid automorphisms of repetitive algebras from pairwise

nonequivalent reflection classes of tubular algebras of type (3, 3, 3).

For details concerning these calculations we refer to the home page
of the first named author (http://www.mat.uni.torun.pl/˜jb/en/research/
tubular/).

We note that there are 49 (pairwise nonisomorphic) reflection sequences
of algebras of tubular type (3, 3, 3); 33 of them have a nontrivial rigid au-
tomorphism, 6 are exceptional (contain exceptional algebras), and one has
both these properties.

Then we obtain the following complete classification (see [30, Theo-
rem 1.5]) of all selfinjective algebras of tubular type (3, 3, 3).

Theorem 5.2. Let A be a selfinjective algebra. Then A is of tubular type
(3, 3, 3) if and only if A is isomorphic to one of the algebras:

(a) B̂/(νm
B̂

), where B is a tubular algebra of type (3, 3, 3) and m is a
positive integer.

(b) B̂/(% νm
B̂

), where B is one of the algebras B1, . . . , B24, B
op
1 , . . . , Bop

9 ,

% is a rigid automorphism of B̂ induced by the corresponding automorphism
of B of order 2 or 3, and m is a positive integer.

(c) B̂/(ϕm), where B is one of the algebras B25, . . . , B29, ϕ is the 2-root
of νB̂, and m is an odd natural number.

(d) B̂/(ϕm), where B is one of the algebras B25, B27, ϕ is the 4-root
of νB̂, and m is an odd natural number.
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(e) B̂/(ϕm) or B̂/(%ϕm), where B = B24, ϕ is a 2-root of νB̂, % is a
rigid automorphism of B̂ induced by the corresponding automorphism of B
of order 2 or 3, and m is an odd natural number.

6. Self injective algebras of type (2, 4, 4). We give a complete de-
scription of all selfinjective algebras of tubular type (2, 4, 4). Consider the
following family of bound quiver algebras:
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JĴ

?


�
HHj
? 

�

B56

q
q qq
q

q
q
q q

?

@
@@R

�
��	

�
��	

A
A
A
A
AAU

?

@
@@R

�
��	

�
��	

B57

q
q
q
qq

q
q
qq
?

���

���

HHj

HHj
?

?

���
?

B58

q

q
q
q
q
q

q
q
q

?
@
@@R?

�
��	

@
@@R

�
��	

?

�
��	 ?

@
@@R

B′58

x

q q
qq q
q
q q

?
�
�	

�
�	 ?

@
@R

@
@R ?

?
�
�	

We note that the algebras B1, . . . , B58 are pairwise nonisomorphic and
S+
x B
′
58
∼= B58.

Then we have the following theorem.
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Theorem 6.1. (a) B1, . . . , B58, B
op
1 , . . . , Bop

26 , B
op
58 are tubular algebras of

type (2, 4, 4).
(b) The repetitive algebras B̂1, . . . , B̂54, B̂

op
1 , . . . , B̂op

26 form a complete
family of pairwise nonisomorphic repetitive algebras of tubular type (2, 4, 4)
having a nontrivial rigid automorphism.

(c) B55, B56, Bop
56 , B57, Bop

57 , B58, B′58, Bop
58 , B′op

58 are (up to isomorphism)
the only exceptional tubular algebras of type (2, 4, 4).

Proof. This is done with the help of a computer program calculating:

• all tubular algebras of type (2, 4, 4), using the Bongartz–Happel–Vos-
sieck list [4], [19] of tame concealed algebras and tubular extensions of such
algebras in the sense of [29],
• the reflection equivalence classes of tubular algebras of type (2, 4, 4),
• exceptional tubular algebras of type (2, 4, 4),
• nontrivial rigid automorphisms of repetitive algebras from pairwise

nonequivalent reflection classes of tubular algebras of type (2, 4, 4).

For details, we again refer to the home page of the first named author.

We note that there are 454 reflection sequences of algebras of tubular
type (2, 4, 4); 80 of them have a nontrivial rigid automorphism, 5 are excep-
tional, and none has both these properties.

Then we obtain the following complete classification (see [30, Theo-
rem 1.5]) of all selfinjective algebras of tubular type (2, 4, 4).

Theorem 6.2. Let A be a selfinjective algebra. Then A is of tubular type
(2, 4, 4) if and only if A is isomorphic to one of the algebras:

(a) B̂/(νm
B̂

), where B is a tubular algebra of type (2, 4, 4) and m is a
positive integer.

(b) B̂/(% νm
B̂

), where B is one of the algebras B1, . . . , B54, B
op
1 , . . . , Bop

26 ,

% is a rigid automorphism of B̂ induced by the corresponding automorphism
of B of order 2, and m is a positive integer.

(c) B̂/(% νm
B̂

), where B = B27, % is a rigid automorphism of B̂ induced
by the corresponding automorphism of B of order 4, and m is a positive
integer.

(d) B̂/(ϕm), where B is one of the algebras B55, B56, B57, B58, Bop
58 ,

ϕ is the 3-root of νB̂, and m is a natural number not divisible by 3.
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[1] I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc.
London Math. Soc. 56 (1988), 417–450.

[2] M. Auslander and I. Reiten, DTr-periodic modules and functors, in: Representation
Theory of Algebras, CMS Conf. Proc. 18, Amer. Math. Soc., 1996, 39–50.



SELFINJECTIVE ALGEBRAS OF TUBULAR TYPE 193

[3] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras,
Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.

[4] K. Bongartz, Critical simply connected algebras, Manuscripta Math. 46 (1984), 117–
136.

[5] K. Bongartz and P. Gabriel, Covering spaces in representation theory , Invent. Math.
65 (1982), 331–378.

[6] O. Bretscher and P. Gabriel, The standard form of a representation-finite algebra,
Bull. Soc. Math. France 111 (1983), 21–40.
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[23] J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply con-
nected algebras, Fund. Math. 132 (1989), 117–134.
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Toruń, 2002.
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