HEREDITARILY INDECOMPOSABLE CONTINUA WITH EXACTLY \(n \) AUTOHOMEOMORPHISMS

BY

ELŻBIETA POL (Warszawa)

Abstract. The main goal of this paper is to construct, for every \(n, m \in \mathbb{N} \), a hereditarily indecomposable continuum \(X_{nm} \) of dimension \(m \) which has exactly \(n \) autohomeomorphisms.

1. Introduction. All spaces considered are assumed to be metrizable separable. Our terminology follows [6] and [10]. A continuum \(X \) is hereditarily indecomposable, abbreviated HI, if for any two intersecting subcontinua \(K, L \) of \(X \), either \(K \subset L \) or \(L \subset K \). For a continuum \(X \), let \(\mathcal{G}(X) \) denotes the group of all homeomorphisms of \(X \) onto \(X \). A continuum \(X \) is rigid if the identity \(1_X \) is the only homeomorphism of \(X \) onto \(X \), i.e., \(\mathcal{G}(X) = \{1_X\} \). In [5] H. Cook gave an example of a rigid, 1-dimensional, HI continuum. Recently M. Reńska [18] constructed, for every \(m \in \mathbb{N} \), an HI rigid \(m \)-dimensional Cantor manifold. The main goal of this paper is to prove the following theorem.

1.1. THEOREM. For every \(n \in \mathbb{N} \) and \(m \in \mathbb{N} \cup \{\infty\} \) there exists an HI continuum \(X_{nm} \) such that \(\dim X_{nm} = m \) and the group \(\mathcal{G}(X_{nm}) \) of homeomorphisms of \(X_{nm} \) onto \(X_{nm} \) is a cyclic group of order \(n \).

A homeomorphism \(h : X \to X \) is stable if there exist homeomorphisms \(h_0, h_1, \ldots, h_n \) such that \(h = h_nh_{n-1} \ldots h_1h_0 \) and for every \(i \leq n \) there exists a nonempty open set \(U_i \) such that \(h_i|U_i \) is the identity. The continua \(X_{nm} \) constructed in Theorem 1.1 have the property that the set of stable homeomorphisms of \(X_{nm} \) onto \(X_{nm} \) is degenerate and is not dense in the space \(\mathcal{G}(X_{nm}) \) for \(n > 1 \). The next theorem shows that there exist HI continua with \(2^{\aleph_0} \) homeomorphisms, each of which is stable (moreover, it is the identity on some open nonempty subset).

2000 Mathematics Subject Classification: 54F15, 54F45.

Key words and phrases: hereditarily indecomposable continua, dimension, the group of homeomorphisms, hereditarily strongly infinite-dimensional.

Research partially supported by KBN grant 5 P03A 02420.

This paper was written while the author was holding a visiting position at the Mathematical Institute of the Polish Academy of Sciences.
1.2. Theorem. For every \(m \in \mathbb{N} \cup \{\infty\} \) there exists an HI continuum \(Y_m \) with \(\dim Y_m = m \) such that the group \(\mathcal{G}(Y_m) \) of homeomorphisms of \(Y_m \) onto \(Y_m \) has cardinality \(2^{\aleph_0} \) and there exists a nonempty open subset \(U_m \) of \(Y_m \) such that for every \(h \in \mathcal{G}(Y_m) \), \(h|U_m = 1_{U_m} \).

A space \(X \) is strongly infinite-dimensional (abbreviated SID) if there exists an infinite sequence \((A_1, B_1), (A_2, B_2), \ldots \) of pairs of disjoint closed subsets of \(X \) such that if \(L_i \) is a partition between \(A_i \) and \(B_i \) in \(X \) for \(i = 1, 2, \ldots \) then \(\bigcap_{i=1}^{\infty} L_i \neq \emptyset \). An SID space \(X \) is hereditarily SID if every subset of \(X \) of positive dimension is SID. An infinite-dimensional continuum \(X \) is a Cantor manifold if all closed sets which disconnect \(X \) are infinite-dimensional. The first hereditarily SID compactum was constructed by Rubin \[19\] (cf. [6, Problem 6.1.G]); while the first example of an SID compactum all of whose nontrivial subcontinua are infinite-dimensional was given earlier by Henderson \[7\]. In \[18\] M. Reńska constructed a rigid HI hereditarily SID Cantor manifold. We will prove the following theorem.

1.3. Theorem. For every \(n \in \mathbb{N} \) there exists an HI continuum \(Z_n \), all of whose nontrivial subcontinua are strongly infinite-dimensional, such that the group \(\mathcal{G}(Z_n) \) of homeomorphisms of \(Z_n \) onto \(Z_n \) is a cyclic group of order \(n \).

In our constructions we apply some ideas of [3], [18] and [16].

It is an interesting question whether the spaces \(X_{nm} \) and \(Y_m \) satisfying the conditions of Theorems 1.1 and 1.2 can be \(m \)-dimensional Cantor manifolds (for \(m > 1 \)) and whether the spaces \(Z_n \) from Theorem 1.3 can be infinite-dimensional Cantor manifolds.

2. Preliminaries. The first HI continuum, now called the pseudo-arc, was constructed by B. Knaster \[9\] in 1922. The pseudo-arc, which will be denoted by \(P \), is an HI one-dimensional chainable continuum (unique, up to homeomorphism); and it is the only (up to homeomorphism) nondegenerate, homogeneous, chainable continuum. The pseudo-arc \(P \) is also hereditarily equivalent, i.e., every nontrivial subcontinuum of \(P \) is homeomorphic to \(P \) (cf. [10, §48, X], or [13]).

The first examples of HI continua of arbitrary dimension \(n \), where \(n \in \{2, 3, \ldots, \infty\} \), were constructed by R. H. Bing \[2\].

The composant of a point \(x \) in a continuum \(X \) is the union of all proper subcontinua of \(X \) containing \(x \). If \(X \) is a nontrivial HI continuum, then (see [10, §48, VI])

(a) every composant of \(X \) is a connected \(F_\sigma \)-subset of \(X \), both dense and boundary in \(X \),
(b) different composants of \(X \) are disjoint, and
(c) (Mazurkiewicz’s theorem) \(X \) has continuum many different composants.

A subcontinuum \(K \) of a continuum \(X \) is \textit{terminal} if every subcontinuum of \(X \) which intersects both \(K \) and its complement must contain \(K \). A continuous mapping from a continuum \(X \) onto \(Y \) is called \textit{atomic} if every fiber of \(f \) is a terminal subcontinuum of \(X \).

In our constructions we will apply the method of condensation of singularities, which goes back to Anderson and Choquet [1]. Namely, we will need the following construction, based on the technique of Maćkowiak [14], [15] and described in detail in [17] (cf. also [4]).

\[\text{2.1. Theorem. Let } X \text{ be a continuum, } \{ Z_i : i \in \mathbb{N} \} \text{ a sequence of compacta, } \{ A_i : i \in \mathbb{N} \} \text{ a sequence of 0-dimensional compact disjoint subsets of } X, \text{ and suppose each } Z_i \text{ admits a continuous map onto } A_i \text{ with connected fibers. Then there exist a continuum } L(X, Z_i, A_i) \text{ and an atomic mapping } p : L(X, Z_i, A_i) \to X \text{ such that } \]
\[\begin{align*}
\text{(i) } & p|p^{-1}(X \setminus \bigcup_{i=1}^{\infty} A_i) : p^{-1}(X \setminus \bigcup_{i=1}^{\infty} A_i) \to X \setminus \bigcup_{i=1}^{\infty} A_i \text{ is a homeomorphism,} \\
\text{(ii) } & p^{-1}(X \setminus \bigcup_{i=1}^{\infty} A_i) \text{ is dense in } L(X, Z_i, A_i), \\
\text{(iii) } & p^{-1}(A_i) \text{ is homeomorphic to } Z_i \text{ for every } i \in \mathbb{N} \text{ (hence } p^{-1}(a) \text{ is homeomorphic to a component of } Z_i \text{ if } a \in A_i), \\
\text{(iv) } & \text{if } n \text{ and } m \text{ are natural numbers such that } \dim X \leq n \text{ and } \dim Z_i \leq m \text{ for every } i \in \mathbb{N} \text{ then } \dim L(X, Z_i, A_i) \leq \max(n, m), \\
\text{(v) } & \text{if } C(x) \text{ is the composant of } x \text{ in } L(X, Z_i, A_i) \text{ then } C(x) = p^{-1}(C(p(x))), \text{ where } C(p(x)) \text{ is the composant of } p(x) \text{ in } X.
\end{align*} \]

The existence of the space \(L(X, Z_i, A_i) \) which admits an atomic mapping \(p : L(X, Z_i, A_i) \to X \) with properties (i)–(iv) follows from [17, Theorem 3.2] and property (v) follows from the atomicity of \(p \) (see [17, Lemma 2.8]).

We will also need the following auxiliary facts.

\[\text{2.2. Lemma. For every } m \in \mathbb{N} \text{ there exists an infinite family of pairwise nonhomeomorphic HI } m\text{-dimensional Cantor manifolds.} \]

For \(m = 1 \) such a family of cardinality \(2^{\aleph_0} \) was constructed by R. H. Bing [3]. For \(m = 2, 3, \ldots \), the existence of such a family follows, for example, from the following lemma proved by M. Reńka in [18]: for every \(m\)–dimensional HI continuum \(K \) there exists an HI \(m\)–dimensional Cantor manifold \(M \) such that \(K \) is not embeddable into \(M \). Indeed, let \(K \) and \(M \) be two \(m\)–dimensional Cantor manifolds such that \(K \) does not embed in \(M \) and let \(a_1, a_2, \ldots \) be points of \(M \) such that \(a_k \) and \(a_l \) belong to different composants of \(M \) if \(k \neq l \). Then \(K_j = L(M, Z_i, A_i) \), where \(Z_i = K \) and \(A_i = \{ a_i \} \) for \(i = 1, \ldots, j \) and \(Z_i = \emptyset = A_i \) for \(i > j \), is an \(m\)–dimensional Cantor manifold exactly \(j \) of whose composants do not embed in \(M \) (see Theorem 2.1).
Thus K_j is not homeomorphic to K_l for $j \neq l$. Let us add that, as proved in [18], there also exists a family of cardinality 2^{n_0} consisting of topologically different HI rigid m-dimensional Cantor manifolds.

2.3. Lemma (H. Cook [5]). There exists a one-dimensional HI continuum no two of whose nondegenerate subcontinua are homeomorphic.

2.4. Lemma. There exists an infinite family of topologically different HI hereditarily SID Cantor manifolds.

The existence of such a family follows from Corollary 4.3 of [16] stating that for every hereditarily SID compactum K there exists an HI hereditarily SID Cantor manifold which does not embed in K. Moreover, as proved in [16], there exists such a family of cardinality 2^{n_0}.

2.5. Lemma (W. Lewis [12]). For every $n \in \mathbb{N}$ there exists a homeomorphism r of the pseudo-arc of period n. Moreover, for each $n \in \mathbb{N}$ there exists an embedding of the pseudo-arc in the plane such that r is the restriction of a period n rotation of the plane.

2.6. Lemma. Let U be an open subset of the pseudo-arc P such that $P \setminus \overline{U} \neq \emptyset$. Then there exists a family $\{h_t : t \in T\}$ of homeomorphisms of P onto P, where $|T| = 2^{n_0}$, such that $h_{t'} \neq h_t$ if $t' \neq t$ and $h_t|U = 1_U$ for every t.

This lemma follows immediately from Theorem 8 in [11], stating that if p and q are distinct points of $P \setminus U$, where U is open in P, such that the subcontinuum M irreducible between p and q does not intersect $\text{cl}(U)$, then there is a homeomorphism $h : P \rightarrow P$ with $h(p) = q$ and $h|U = 1_U$ (cf. also [8, Theorem]).

2.7. Lemma. Let $p : X \rightarrow Y$ and $\tilde{p} : \tilde{X} \rightarrow Y$ be mappings between continua such that p is atomic and for every $y \in Y$ with $\tilde{p}^{-1}(y)$ nondegenerate there exists an open neighborhood U of y in Y, a homeomorphism h of $\tilde{p}^{-1}(\overline{U})$ onto a subset of X and a homeomorphism g of $ph(\tilde{p}^{-1}(\overline{U}))$ onto \overline{U} such that $\tilde{p}(x) = gph(x)$ for every $x \in \tilde{X}$. Then \tilde{p} is atomic.

Proof. Take $y \in Y$ such that $\tilde{p}^{-1}(y)$ is nondegenerate and let U, h and g be as above. Let L be any continuum in \tilde{X} such that $L \cap \tilde{p}^{-1}(y) \neq \emptyset \neq L \setminus \tilde{p}^{-1}(y)$. We will show that $L \supset \tilde{p}^{-1}(y)$.

(a) First consider the case when $L \subset \tilde{p}^{-1}(\overline{U})$. Then $h(L)$ is a continuum in $h(\tilde{p}^{-1}(\overline{U}))$ such that $h(L) \cap (g \circ p)^{-1}(y) \neq \emptyset \neq h(L) \setminus (g \circ p)^{-1}(y)$. Since $g \circ p$ is atomic as the composition of an atomic map and a homeomorphism, we have $h(L) \supset (g \circ p)^{-1}(y)$. Thus $L \supset h^{-1}p^{-1}g^{-1}(y) = \tilde{p}^{-1}(y)$.

(b) Suppose now that $L \not\subset \tilde{p}^{-1}(\overline{U})$. Then $L \cap \tilde{p}^{-1}(\overline{U})$ intersects the boundary of $\tilde{p}^{-1}(\overline{U})$ in \tilde{X}. Let $y_0 \in L \cap \tilde{p}^{-1}(y)$. Then the component K of
Let \(L \cap \tilde{p}^{-1}(\overline{U}) \) containing \(y_0 \) intersects the boundary of \(L \cap \tilde{p}^{-1}(\overline{U}) \) in \(L \) (by Janiszewski’s theorem, see [10, §47, III]). Thus \(K \setminus \tilde{p}^{-1}(y) \neq \emptyset \neq K \setminus \tilde{p}^{-1}(y) \) and \(K \subset \tilde{p}^{-1}(\overline{U}) \), hence, by case (a), \(K \supset K \), that finishes the proof.

3. The proofs

Proof of Theorem 1.1. Fix \(n, m \in \mathbb{N} \). By Lemma 2.5, there exist a pseudo-arc \(P \subset \mathbb{R}^2 \) and a homeomorphism \(r : P \to P \) of period \(n \), which is the restriction of a period \(n \) rotation of the plane around \((0, 0)\) (so the point \((0, 0) \in P \) is a fixed point of \(r \)). Let \(V_0 = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 = \lambda \cos \alpha \) and \(x_2 = \lambda \sin \alpha \) for some \(0 < \lambda < \infty \) and \(0 < \alpha < 2\pi/n \}\), \(P_0 = P \cap V_0 \) and \(P_k = r^k(P_0) \) for \(k = 0, 1, \ldots, n - 1 \). Then every \(P_k \) is open in \(P \) and \(P \setminus \bigcup_{k=0}^{n-1} P_k \) is a 0-dimensional boundary subset of \(P \).

Let \(A_0 = \{a_1, a_2, \ldots\} \) be a countable dense subset of \(P_0 \) such that \(a_i \) and \(a_j \) are in the same composant of \(P \) if and only if \(i = j \). Put \(A_k = r^k(A_0) \) for \(k = 0, 1, \ldots, n - 1 \) and let \(A = \bigcup_{k=0}^{n-1} A_k \). The set \(A \) is dense in \(P \). Since a homeomorphic image of a composant of \(P \) is a composant of \(P \), every composant of \(P \) contains at most \(n \) points of \(A \).

Consider now three cases. If \(2 \leq m < \infty \) then let \(K_1, K_2, \ldots \) be a sequence of topologically different \(HI \) \(m \)-dimensional Cantor manifolds (see Lemma 2.2). If \(m = 1 \) then, by Cook’s Lemma 2.3, one can find a sequence \(K_1, K_2, \ldots \) of \(HI \) one-dimensional continua such that: if \(L \) and \(L' \) are two different nondegenerate subcontinua of \(K_1 \) and \(K_j \) respectively, where \(i, j \in \mathbb{N} \), then \(L \) and \(L' \) are not homeomorphic; in particular, no subcontinuum of any \(K_i \) is homeomorphic to the pseudo-arc. If \(m = \infty \) then let \(K_i \) be any \(i \)-dimensional \(HI \) Cantor manifold, for \(i = 1, 2, \ldots \).

Let \(M_{nm} = L(P, K_i, \{a_i\}) \) be an \(HI \) continuum and \(p : M_{nm} \to P \) be an atomic mapping satisfying the conditions of Theorem 2.1. We can assume additionally that \(M_{nm} \subset P \times I^\infty \), where \(I = [0, 1] \), and that \(p \) is the restriction of the projection of \(P \times I^\infty \) onto \(P \). Moreover, we can assume that \(p^{-1}(y) = (y, (0, 0, \ldots)) \) for every \(y \in P \setminus P_0 \).

Indeed, assume that \(M_{nm} \subset I^\infty \) and \(p : M_{nm} \to P \) is as in Theorem 2.1, and for \(x, y \in \mathbb{R}^2 \) let \(g(x, y) = \min(g_e(x, y), 1) \), where \(g_e \) the Euclidean metric in the plane. Put \(f(x) = (p(x), g(p(x), \mathbb{R}^2 \setminus V_0) \cdot x) \) for \(x \in M_{nm} \). Then \(f \) is continuous and one-to-one, hence it is a homeomorphism of \(M_{nm} \) onto \(f(M_{nm}) \subset P \times I^\infty \). Thus we can replace \(M_{nm} \) by \(f(M_{nm}) \) and \(p \) by the restriction of the projection of \(P \times I^\infty \) onto \(P \).

Let \(\overline{\pi}(y, t) = (r(y), t) \) for \((y, t) \in P \times I^\infty \). For \(k = 0, 1, \ldots, n - 1 \), let \(\tilde{P}_k = \pi^k(p^{-1}(\overline{P}_0)) \) and \(\tilde{X}_{nm} = \bigcup_{k=0}^{n-1} \tilde{P}_k \).

Let \(\tilde{p} : X_{nm} \to P \) be the restriction of the projection of \(P \times I^\infty \) onto \(P \). The mapping \(\tilde{r} = \pi|X_{nm} \) is a period \(n \) homeomorphism of \(X_{nm} \) onto \(X_{nm} \),
which is the restriction of the product of r and the identity. Thus,

\[(1)\quad \tilde{p} \circ r^k = r^k \circ \tilde{p} \quad \text{for every } k = 1, \ldots, n - 1,\]

and

\[(2)\quad p(x) = \tilde{p}(x) \quad \text{for } x \in \tilde{P}_0.\]

The map \tilde{p} is atomic by Lemma 2.7. Indeed, we apply Lemma 2.7 to $\tilde{X} = X_{nm}$, $X = M_{nm}$, $Y = P$ and let $\tilde{p} : \tilde{X}_{nm} \to P$ and $p : M_{nm} \to P$ be as above. For every $y \in P$ such that $\tilde{p}^{-1}(y)$ is nondegenerate there exists $k \in \{0, 1, \ldots, n - 1\}$ such that $y \in r^k(P_0)$. If we put $U = \tilde{p}^{-1}(r^k(P_0))$, $h(x) = (\tilde{r}^k)^{-1}(x)$ for $x \in U$ and $g = r^k$ then $\text{gph}(y) = r^k(\tilde{p}(\tilde{r}^k)^{-1}(y)) = \tilde{p}(y)$ by (1) and (2). Thus the assumptions of Lemma 2.7 are satisfied. It follows that \tilde{p} is atomic.

The space X_{nm} is an HI continuum, being the preimage of an HI continuum under the atomic mapping \tilde{p} with HI fibers (see [15]). By Theorem 2.1(iv), $\dim M_{nm} = m$, so $\dim X_{nm} = m$ by the sum theorem.

Note that $\tilde{p}[\tilde{p}^{-1}(P \setminus A) : \tilde{p}^{-1}(P \setminus A) \to P \setminus A$ is one-to-one, so $\tilde{p}^{-1}(P \setminus A)$ is a one-dimensional set homeomorphic to $P \setminus A$.

On the other hand, if $t \in A$, then $t = r^k(a_i)$ for some $i \in \mathbb{N}$ and $k \in \{0, 1, \ldots, n - 1\}$; hence $\tilde{p}^{-1}(t)$ is homeomorphic to K_i. Note that by Theorem 2.1(v) every composant of X_{nm} is the preimage under \tilde{p} of a composant of P, hence it is the union of a one-dimensional subset homeomorphic to P with finitely many points removed and of at most n disjoint m-dimensional Cantor manifolds homeomorphic to some K_i. In particular, if $t \in A$ then $\tilde{p}^{-1}(t)$ is a maximal m-dimensional Cantor manifold which is a proper subset of X_{nm} and homeomorphic to some K_i (that is, there is no m-dimensional Cantor manifold contained in a certain composant, homeomorphic to $\tilde{p}^{-1}(t)$ and containing $\tilde{p}^{-1}(t)$). For $m > 1$ this follows from the fact that $\tilde{p}^{-1}(t)$ is obviously a maximal m-dimensional Cantor manifold which is a proper subset of X_{nm}. For $m = 1$, $\tilde{p}^{-1}(t)$ is a maximal proper subcontinuum of X_{nm} homeomorphic to $\tilde{p}^{-1}(t)$, since no subcontinuum of $\tilde{p}^{-1}(t)$ embeds in P.

We will show that $1_{X_{nm}} = \tilde{r}_0, \tilde{r}, \tilde{r}^2, \ldots, \tilde{r}^{n-1}$ are the only homeomorphisms of X_{nm} onto X_{nm}, so $\mathcal{G}(X_{nm})$ is a cyclic group of order n.

Let h be an arbitrary homeomorphism of X_{nm} onto X_{nm}. The image under h of a composant C of X_{nm} is a composant of X_{nm}. Since h must map maximal m-dimensional Cantor manifolds lying in C and homeomorphic to K_i onto maximal m-dimensional Cantor manifolds in $h(C)$ homeomorphic to K_i, and since no two different K_i’s are homeomorphic, we have

\[(3)\quad \text{for every } t \in A, h(\tilde{p}^{-1}(t)) = \tilde{r}^k(\tilde{p}^{-1}(t)) \quad \text{for some } k \in \{0, 1, \ldots, n - 1\}.\]

Thus the mapping $\overline{h} : P \to P$, where $\overline{h}(t) = \tilde{p}(h(\tilde{r}^{-1}(t)))$, is well defined. From the upper semicontinuity of \tilde{p}^{-1} it follows that \overline{h} is continuous (in fact,
it is a homeomorphism). By (3) we have

\[(4) \quad \text{for every } t \in A, \bar{h}(t) = r^k(t) \text{ for some } k \in \{0, 1, \ldots, n-1\}.\]

For every \(k \in \{0, 1, \ldots, n-1\}\) let \(D_k = \{t \in P : \bar{h}(t) = r^k(t)\}\). It is easy to see that every \(D_k\) is closed and \(D_k \cap D_l = \{(0,0)\}\) for every \(k \neq l\). By (4) the set \(\bigcup_{k=0}^{n-1} D_k\) is dense in \(P\), hence we have \(P = \bigcup_{k=0}^{n-1} D_k\). Since \(P\) is connected, every \(D_k\) is connected. From indecomposability of \(P\) we have \(P = D_{k_0}\) for some \(k_0\), so \(\bar{h} = r^{k_0}\). Since \(\bar{p}|\bar{p}^{-1}(P \setminus A)\) is one-to-one, \(h\) coincides with \(\bar{r}^{k_0}\) on \(\bar{p}^{-1}(P \setminus A)\). Since the latter set is dense in \(X_{nm}\), \(h\) coincides with \(\bar{r}^{k_0}\) on the whole space. This ends the proof.

Proof of Theorem 1.2. From the proof of Theorem 1.1 it follows that if \(n > 1\) then the continuum \(M_{nm}\) and the mapping \(p : M_{nm} \to P\) obtained during the construction of \(X_{nm}\) have the following properties:

(a) \(M_{nm}\) is HI and \(\dim M_{nm} = m\),

(b) if \(U_m = p^{-1}(P_0)\), then \(U_m\) is an open subset of \(M_{nm}\) such that every homeomorphism of \(M_{nm}\) onto \(M_{nm}\) is the identity on \(U_m\),

(c) if \(V_m = p^{-1}(P \setminus \bar{P}_0)\), then \(V_m\) is an open nonempty subset of \(M_{nm}\) such that \(\bar{V}_n \cup \bar{U}_n = M_{nm}\) and \(p : V_n \to P \setminus \bar{P}_0\) is a homeomorphism (recall that \(p^{-1}(y) = (y, (0,0,\ldots))\) for all \(y \in P \setminus P_0\).

Set \(Y_m = M_{nm}\), where \(n\) is any fixed natural number \(> 1\). Then \(Y_m\) satisfies the conditions of Theorem 1.2. Indeed, by (a) and (b) it suffices to show that \(Y_m\) has continuum many different autohomeomorphisms. Applying Lemma 2.6 for \(U = P_0\) we obtain a family \(\{h_t : t \in T\}\) of different homeomorphisms of \(P\) onto \(P\), where \(|T| = 2^\aleph_0\), such that \(h_t|P_0 = 1_{P_0}\). Define \(\tilde{h}_t : Y_m \to Y_m\) in the following way: if \(x \in \bar{V}_m\), then \(\tilde{h}_t(x) = p^{-1}h_t p(x)\) and if \(x \in \bar{U}_m\) then \(\tilde{h}_t(x) = x\). It is easy to see that \(p^{-1}h_t p(x) = x\) for \(x \in \bar{V}_m \cup \bar{U}_m\). It follows that \(\tilde{h}_t\) is a homeomorphism of \(Y_m\) onto \(Y_m\). Since \(p|p^{-1}(K)\) is one-to-one and \(h_{t'} \neq h_t\) for \(t' \neq t\), we have \(\tilde{h}_{t'} \neq \tilde{h}_t\) for \(t' \neq t\). This ends the proof.

Proof of Theorem 1.3. We use the idea and notation of the proof of Theorem 1.1. First we divide \(P_0\) into two dense 0-dimensional subsets \(P'_0\) and \(P'_1\) such that \(P'_0\) is the union of countably many disjoint sets \(F_1, F_2, \ldots\) closed in \(P\). Then we choose a countable dense subset \(A_0 = \{a_1, a_2, \ldots\}\) of \(P'_1\). Now, let \(B_1, B_2, \ldots\) be a sequence of closed disjoint 0-dimensional subsets of \(P\) defined by \(B_{2i-1} = F_i\) and \(B_{2i} = \{a_i\}\) for \(i = 1, 2, \ldots\). Let \(K_1, K_2, \ldots\) be a sequence of topologically different HI hereditarily SID Cantor manifolds (see Lemma 2.4).

Let \(M = L(P, K_i \times B_i, B_i)\) be an HI continuum and \(p : M \to P\) be an atomic mapping satisfying the conditions of Theorem 2.1. As in the proof of Theorem 1.1, we can assume additionally that \(M \subset P \times I^\infty\), \(p\) is the
restriction of the projection of $P \times I^{\infty}$ onto P and $p^{-1}(y) = (y, (0, 0, \ldots))$
for every $y \in P \setminus P_0$.

Let \bar{r} be the product of r and the identity. For $k = 0, 1, \ldots, n - 1$, put \(\tilde{P}_k = \bar{r}^k(p^{-1}(P_0))\) and \(Z_n = \bigcup_{k=0}^{n-1} \tilde{P}_k \).

Let $\tilde{p} : Z_n \to P$ be the restriction of the projection of $P \times I^{\infty}$ onto P.

The map \tilde{p} is atomic by Lemma 2.7. The mapping $\tilde{r} = \bar{r}|Z_m$ is a period n
homeomorphism of Z_n onto Z_n, which is the restriction of the product of r and the identity. Since \tilde{p} is an atomic mapping with HI fibers onto an HI
continuum, Z_n is HI.

To prove that all nontrivial subcontinua of Z_n are SID, take any non-
trivial continuum L contained in Z_n. Note that $B = \bigcup_{k=1}^{n-1} r^k(\bigcup_{i=1}^{\infty} B_i)$ is a
0-dimensional subset of P such that $P \setminus B$ is 0-dimensional and $\tilde{p}|B \setminus \tilde{p}^{-1}(P \setminus B)$
is one-to-one. Thus $\tilde{p}^{-1}(P \setminus B)$ is a 0-dimensional set homeomorphic to $P \setminus B$.
It follows that L must intersect one of the sets $\tilde{p}^{-1}(b)$ for $b \in B$. If $L \subset \tilde{p}^{-1}(b)$
for some $b \in B$, then L is SID, since $\tilde{p}^{-1}(b)$ is homeomorphic to an HI hered-
itarily SID Cantor manifold. If, for some $b \in B$, L intersects both $\tilde{p}^{-1}(b)$
and its complement, then $L \cap \tilde{p}^{-1}(b)$, by the atomicity of \tilde{p}. It follows that
L is SID.

To prove that \(1, \tilde{r}, \tilde{r}^2, \ldots, \tilde{r}^{n-1} \) are the only homeomorphisms of Z_n onto
Z_n, we modify the reasoning in the proof of Theorem 1.1. First we note that
a subcontinuum Z of Z_n is a maximal infinite-dimensional Cantor manifold
in Z_n if and only if it is equal to $\tilde{p}^{-1}(b)$ for some $b \in B$. Indeed, if $b \in B$, then
$\tilde{p}^{-1}(b)$ is homeomorphic to some K_i. Moreover, if $Z \subset Z_n$ is a continuum
such that $\tilde{p}(Z)$ contains two different points x and y, then one can find a
partition L between x and y in P disjoint from B (see [6, Theorem 1.5.13]).
Then $\tilde{p}^{-1}(L) \cap Z$ is a partition of Z homeomorphic to a subset of L, hence it
is one-dimensional. This implies that Z is not an infinite-dimensional Cantor
manifold.

Let h be a homeomorphism of Z_n onto Z_n. Then, for every $b \in B$, h maps
$\tilde{p}^{-1}(b)$ onto a maximal infinite-dimensional Cantor manifold in Z_n, so there exists $b' \in B$ such that $h(\tilde{p}^{-1}(b)) = \tilde{p}^{-1}(b')$. Moreover, since every $\tilde{p}^{-1}(a_i)$
is homeomorphic to K_{2i} and no two different K_i’s are homeomorphic, for
every $i \in \mathbb{N}$ and $l \in \{0, 1, \ldots, n - 1\}$ we have
\[
(5) \quad h(\tilde{r}^l(\tilde{p}^{-1}(a_i))) = \tilde{r}^s(\tilde{p}^{-1}(a_i)) \quad \text{for some } s \in \{0, 1, \ldots, n - 1\}.
\]

It follows that the induced continuous mapping $\bar{h} : P \to P$, where $\bar{h} = \tilde{p}(h(\tilde{p}^{-1}(t)))$, has the property:
\[
(6) \quad \text{for every } t \in \bigcup_{k=0}^{n-1} r^k(A_0), \ \bar{h}(t) = r^k(t) \text{ for some } k \in \{0, 1, \ldots, n - 1\}.
\]

Next, as in the proof of Theorem 1.1, we put $D_k = \{t \in P : h(t) = r^k(t)\}$
for $k \in \{0, 1, \ldots, n - 1\}$ and show that $P = D_{k_0}$ for some k_0, which implies
that $\overline{h} = r^{k_0}$. Since $\overline{p}^{-1}(P \setminus B)$ is one-to-one, h coincides with \overline{r}^{k_0} on $\overline{p}^{-1}(P \setminus B)$. Since the latter set is dense in Z_n, h coincides with \overline{r}^{k_0} on the whole Z_n.

3.1. Remark. Note that there exist continuum many topologically different spaces X_{nm} (respectively, Y_m, Z_n) satisfying the conditions of Theorem 1.1 (resp., 1.2, 1.3). Indeed, if we replace in the proof of Theorem 1.1 (resp., 1.2, 1.3) K_1 by a continuum K'_1 nonhomeomorphic to any of K_1, K_2, \ldots, then we obtain a topologically different continuum. Since we can choose K'_1 from an appropriate family of cardinality 2^∞ satisfying the conditions of Lemma 2.2, 2.3 or 2.4 (see Sec. 2), we can obtain in this way continuum many nonhomeomorphic continua.

Acknowledgements. The author thanks the referee for remarks improving the exposition of the paper.

REFERENCES

Institute of Mathematics
University of Warsaw
Banacha 2
02-097 Warszawa, Poland
E-mail: pol@mimuw.edu.pl

*Received 11 December 2001;
revised 8 May 2002*